perf_event.c 121.0 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17 18
#include <linux/poll.h>
#include <linux/sysfs.h>
19
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
20
#include <linux/percpu.h>
21
#include <linux/ptrace.h>
22
#include <linux/vmstat.h>
23
#include <linux/vmalloc.h>
24 25
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
26 27 28
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
29
#include <linux/kernel_stat.h>
30
#include <linux/perf_event.h>
L
Li Zefan 已提交
31
#include <linux/ftrace_event.h>
32
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
33

34 35
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
36
/*
37
 * Each CPU has a list of per CPU events:
T
Thomas Gleixner 已提交
38
 */
39
static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
T
Thomas Gleixner 已提交
40

41
int perf_max_events __read_mostly = 1;
T
Thomas Gleixner 已提交
42 43 44
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

45 46 47 48
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
49

50
/*
51
 * perf event paranoia level:
52 53
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
54
 *   1 - disallow cpu events for unpriv
55
 *   2 - disallow kernel profiling for unpriv
56
 */
57
int sysctl_perf_event_paranoid __read_mostly = 1;
58

59 60
static inline bool perf_paranoid_tracepoint_raw(void)
{
61
	return sysctl_perf_event_paranoid > -1;
62 63
}

64 65
static inline bool perf_paranoid_cpu(void)
{
66
	return sysctl_perf_event_paranoid > 0;
67 68 69 70
}

static inline bool perf_paranoid_kernel(void)
{
71
	return sysctl_perf_event_paranoid > 1;
72 73
}

74
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
75 76

/*
77
 * max perf event sample rate
78
 */
79
int sysctl_perf_event_sample_rate __read_mostly = 100000;
80

81
static atomic64_t perf_event_id;
82

T
Thomas Gleixner 已提交
83
/*
84
 * Lock for (sysadmin-configurable) event reservations:
T
Thomas Gleixner 已提交
85
 */
86
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
87 88 89 90

/*
 * Architecture provided APIs - weak aliases:
 */
91
extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
T
Thomas Gleixner 已提交
92
{
93
	return NULL;
T
Thomas Gleixner 已提交
94 95
}

96 97 98
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

99 100
void __weak hw_perf_event_setup(int cpu)	{ barrier(); }
void __weak hw_perf_event_setup_online(int cpu)	{ barrier(); }
101 102

int __weak
103
hw_perf_group_sched_in(struct perf_event *group_leader,
104
	       struct perf_cpu_context *cpuctx,
105
	       struct perf_event_context *ctx, int cpu)
106 107 108
{
	return 0;
}
T
Thomas Gleixner 已提交
109

110
void __weak perf_event_print_debug(void)	{ }
111

112
static DEFINE_PER_CPU(int, perf_disable_count);
113 114 115

void __perf_disable(void)
{
116
	__get_cpu_var(perf_disable_count)++;
117 118 119 120
}

bool __perf_enable(void)
{
121
	return !--__get_cpu_var(perf_disable_count);
122 123 124 125 126 127 128 129 130 131 132 133 134 135
}

void perf_disable(void)
{
	__perf_disable();
	hw_perf_disable();
}

void perf_enable(void)
{
	if (__perf_enable())
		hw_perf_enable();
}

136
static void get_ctx(struct perf_event_context *ctx)
137
{
138
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
139 140
}

141 142
static void free_ctx(struct rcu_head *head)
{
143
	struct perf_event_context *ctx;
144

145
	ctx = container_of(head, struct perf_event_context, rcu_head);
146 147 148
	kfree(ctx);
}

149
static void put_ctx(struct perf_event_context *ctx)
150
{
151 152 153
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
154 155 156
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
157
	}
158 159
}

160
static void unclone_ctx(struct perf_event_context *ctx)
161 162 163 164 165 166 167
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

168
/*
169
 * If we inherit events we want to return the parent event id
170 171
 * to userspace.
 */
172
static u64 primary_event_id(struct perf_event *event)
173
{
174
	u64 id = event->id;
175

176 177
	if (event->parent)
		id = event->parent->id;
178 179 180 181

	return id;
}

182
/*
183
 * Get the perf_event_context for a task and lock it.
184 185 186
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
187
static struct perf_event_context *
188
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
189
{
190
	struct perf_event_context *ctx;
191 192 193

	rcu_read_lock();
 retry:
194
	ctx = rcu_dereference(task->perf_event_ctxp);
195 196 197 198
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
199
		 * perf_event_task_sched_out, though the
200 201 202 203 204 205 206
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
		spin_lock_irqsave(&ctx->lock, *flags);
207
		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
208 209 210
			spin_unlock_irqrestore(&ctx->lock, *flags);
			goto retry;
		}
211 212 213 214 215

		if (!atomic_inc_not_zero(&ctx->refcount)) {
			spin_unlock_irqrestore(&ctx->lock, *flags);
			ctx = NULL;
		}
216 217 218 219 220 221 222 223 224 225
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
226
static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
227
{
228
	struct perf_event_context *ctx;
229 230 231 232 233 234 235 236 237 238
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
		spin_unlock_irqrestore(&ctx->lock, flags);
	}
	return ctx;
}

239
static void perf_unpin_context(struct perf_event_context *ctx)
240 241 242 243 244 245 246 247 248
{
	unsigned long flags;

	spin_lock_irqsave(&ctx->lock, flags);
	--ctx->pin_count;
	spin_unlock_irqrestore(&ctx->lock, flags);
	put_ctx(ctx);
}

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
static inline u64 perf_clock(void)
{
	return cpu_clock(smp_processor_id());
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

277 278 279 280 281 282
	if (ctx->is_active)
		run_end = ctx->time;
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
283 284 285 286 287 288 289 290 291

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
		run_end = ctx->time;

	event->total_time_running = run_end - event->tstamp_running;
}

292
/*
293
 * Add a event from the lists for its context.
294 295
 * Must be called with ctx->mutex and ctx->lock held.
 */
296
static void
297
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
298
{
299
	struct perf_event *group_leader = event->group_leader;
300 301

	/*
302 303
	 * Depending on whether it is a standalone or sibling event,
	 * add it straight to the context's event list, or to the group
304 305
	 * leader's sibling list:
	 */
306 307
	if (group_leader == event)
		list_add_tail(&event->group_entry, &ctx->group_list);
P
Peter Zijlstra 已提交
308
	else {
309
		list_add_tail(&event->group_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
310 311
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
312

313 314 315
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
316
		ctx->nr_stat++;
317 318
}

319
/*
320
 * Remove a event from the lists for its context.
321
 * Must be called with ctx->mutex and ctx->lock held.
322
 */
323
static void
324
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
325
{
326
	struct perf_event *sibling, *tmp;
327

328
	if (list_empty(&event->group_entry))
329
		return;
330 331
	ctx->nr_events--;
	if (event->attr.inherit_stat)
332
		ctx->nr_stat--;
333

334 335
	list_del_init(&event->group_entry);
	list_del_rcu(&event->event_entry);
336

337 338
	if (event->group_leader != event)
		event->group_leader->nr_siblings--;
P
Peter Zijlstra 已提交
339

340
	update_event_times(event);
341 342 343 344 345 346 347 348 349 350

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
351

352
	/*
353 354
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
355 356
	 * to the context list directly:
	 */
357
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
358

359
		list_move_tail(&sibling->group_entry, &ctx->group_list);
360 361 362 363
		sibling->group_leader = sibling;
	}
}

364
static void
365
event_sched_out(struct perf_event *event,
366
		  struct perf_cpu_context *cpuctx,
367
		  struct perf_event_context *ctx)
368
{
369
	if (event->state != PERF_EVENT_STATE_ACTIVE)
370 371
		return;

372 373 374 375
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
376
	}
377 378 379
	event->tstamp_stopped = ctx->time;
	event->pmu->disable(event);
	event->oncpu = -1;
380

381
	if (!is_software_event(event))
382 383
		cpuctx->active_oncpu--;
	ctx->nr_active--;
384
	if (event->attr.exclusive || !cpuctx->active_oncpu)
385 386 387
		cpuctx->exclusive = 0;
}

388
static void
389
group_sched_out(struct perf_event *group_event,
390
		struct perf_cpu_context *cpuctx,
391
		struct perf_event_context *ctx)
392
{
393
	struct perf_event *event;
394

395
	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
396 397
		return;

398
	event_sched_out(group_event, cpuctx, ctx);
399 400 401 402

	/*
	 * Schedule out siblings (if any):
	 */
403 404
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
405

406
	if (group_event->attr.exclusive)
407 408 409
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
410
/*
411
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
412
 *
413
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
414 415
 * remove it from the context list.
 */
416
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
417 418
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
419 420
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
421 422 423 424 425 426

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
427
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
428 429
		return;

430
	spin_lock(&ctx->lock);
431 432
	/*
	 * Protect the list operation against NMI by disabling the
433
	 * events on a global level.
434 435
	 */
	perf_disable();
T
Thomas Gleixner 已提交
436

437
	event_sched_out(event, cpuctx, ctx);
438

439
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
440 441 442

	if (!ctx->task) {
		/*
443
		 * Allow more per task events with respect to the
T
Thomas Gleixner 已提交
444 445 446
		 * reservation:
		 */
		cpuctx->max_pertask =
447 448
			min(perf_max_events - ctx->nr_events,
			    perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
449 450
	}

451
	perf_enable();
452
	spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
453 454 455 456
}


/*
457
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
458
 *
459
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
460
 *
461
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
462
 * call when the task is on a CPU.
463
 *
464 465
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
466 467
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
468
 * When called from perf_event_exit_task, it's OK because the
469
 * context has been detached from its task.
T
Thomas Gleixner 已提交
470
 */
471
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
472
{
473
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
474 475 476 477
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
478
		 * Per cpu events are removed via an smp call and
T
Thomas Gleixner 已提交
479 480
		 * the removal is always sucessful.
		 */
481 482 483
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
484 485 486 487
		return;
	}

retry:
488 489
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
490 491 492 493 494

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
495
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
T
Thomas Gleixner 已提交
496 497 498 499 500 501
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
502
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
503 504
	 * succeed.
	 */
P
Peter Zijlstra 已提交
505
	if (!list_empty(&event->group_entry))
506
		list_del_event(event, ctx);
T
Thomas Gleixner 已提交
507 508 509
	spin_unlock_irq(&ctx->lock);
}

510
/*
511
 * Update total_time_enabled and total_time_running for all events in a group.
512
 */
513
static void update_group_times(struct perf_event *leader)
514
{
515
	struct perf_event *event;
516

517 518 519
	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
520 521
}

522
/*
523
 * Cross CPU call to disable a performance event
524
 */
525
static void __perf_event_disable(void *info)
526
{
527
	struct perf_event *event = info;
528
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
529
	struct perf_event_context *ctx = event->ctx;
530 531

	/*
532 533
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
534
	 */
535
	if (ctx->task && cpuctx->task_ctx != ctx)
536 537
		return;

538
	spin_lock(&ctx->lock);
539 540

	/*
541
	 * If the event is on, turn it off.
542 543
	 * If it is in error state, leave it in error state.
	 */
544
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
545
		update_context_time(ctx);
546 547 548
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
549
		else
550 551
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
552 553
	}

554
	spin_unlock(&ctx->lock);
555 556 557
}

/*
558
 * Disable a event.
559
 *
560 561
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
562
 * remains valid.  This condition is satisifed when called through
563 564 565 566
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
567
 * is the current context on this CPU and preemption is disabled,
568
 * hence we can't get into perf_event_task_sched_out for this context.
569
 */
570
void perf_event_disable(struct perf_event *event)
571
{
572
	struct perf_event_context *ctx = event->ctx;
573 574 575 576
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
577
		 * Disable the event on the cpu that it's on
578
		 */
579 580
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
581 582 583 584
		return;
	}

 retry:
585
	task_oncpu_function_call(task, __perf_event_disable, event);
586 587 588

	spin_lock_irq(&ctx->lock);
	/*
589
	 * If the event is still active, we need to retry the cross-call.
590
	 */
591
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
592 593 594 595 596 597 598 599
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
600 601 602
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
603
	}
604 605 606 607

	spin_unlock_irq(&ctx->lock);
}

608
static int
609
event_sched_in(struct perf_event *event,
610
		 struct perf_cpu_context *cpuctx,
611
		 struct perf_event_context *ctx,
612 613
		 int cpu)
{
614
	if (event->state <= PERF_EVENT_STATE_OFF)
615 616
		return 0;

617 618
	event->state = PERF_EVENT_STATE_ACTIVE;
	event->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
619 620 621 622 623
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

624 625 626
	if (event->pmu->enable(event)) {
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
627 628 629
		return -EAGAIN;
	}

630
	event->tstamp_running += ctx->time - event->tstamp_stopped;
631

632
	if (!is_software_event(event))
633
		cpuctx->active_oncpu++;
634 635
	ctx->nr_active++;

636
	if (event->attr.exclusive)
637 638
		cpuctx->exclusive = 1;

639 640 641
	return 0;
}

642
static int
643
group_sched_in(struct perf_event *group_event,
644
	       struct perf_cpu_context *cpuctx,
645
	       struct perf_event_context *ctx,
646 647
	       int cpu)
{
648
	struct perf_event *event, *partial_group;
649 650
	int ret;

651
	if (group_event->state == PERF_EVENT_STATE_OFF)
652 653
		return 0;

654
	ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
655 656 657
	if (ret)
		return ret < 0 ? ret : 0;

658
	if (event_sched_in(group_event, cpuctx, ctx, cpu))
659 660 661 662 663
		return -EAGAIN;

	/*
	 * Schedule in siblings as one group (if any):
	 */
664 665 666
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event_sched_in(event, cpuctx, ctx, cpu)) {
			partial_group = event;
667 668 669 670 671 672 673 674 675 676 677
			goto group_error;
		}
	}

	return 0;

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
678 679
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
680
			break;
681
		event_sched_out(event, cpuctx, ctx);
682
	}
683
	event_sched_out(group_event, cpuctx, ctx);
684 685 686 687

	return -EAGAIN;
}

688
/*
689 690
 * Return 1 for a group consisting entirely of software events,
 * 0 if the group contains any hardware events.
691
 */
692
static int is_software_only_group(struct perf_event *leader)
693
{
694
	struct perf_event *event;
695

696
	if (!is_software_event(leader))
697
		return 0;
P
Peter Zijlstra 已提交
698

699 700
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		if (!is_software_event(event))
701
			return 0;
P
Peter Zijlstra 已提交
702

703 704 705 706
	return 1;
}

/*
707
 * Work out whether we can put this event group on the CPU now.
708
 */
709
static int group_can_go_on(struct perf_event *event,
710 711 712 713
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
714
	 * Groups consisting entirely of software events can always go on.
715
	 */
716
	if (is_software_only_group(event))
717 718 719
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
720
	 * events can go on.
721 722 723 724 725
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
726
	 * events on the CPU, it can't go on.
727
	 */
728
	if (event->attr.exclusive && cpuctx->active_oncpu)
729 730 731 732 733 734 735 736
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

737 738
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
739
{
740 741 742 743
	list_add_event(event, ctx);
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
744 745
}

T
Thomas Gleixner 已提交
746
/*
747
 * Cross CPU call to install and enable a performance event
748 749
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
750 751 752 753
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
754 755 756
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
T
Thomas Gleixner 已提交
757
	int cpu = smp_processor_id();
758
	int err;
T
Thomas Gleixner 已提交
759 760 761 762 763

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
764
	 * Or possibly this is the right context but it isn't
765
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
766
	 */
767
	if (ctx->task && cpuctx->task_ctx != ctx) {
768
		if (cpuctx->task_ctx || ctx->task != current)
769 770 771
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
772

773
	spin_lock(&ctx->lock);
774
	ctx->is_active = 1;
775
	update_context_time(ctx);
T
Thomas Gleixner 已提交
776 777 778

	/*
	 * Protect the list operation against NMI by disabling the
779
	 * events on a global level. NOP for non NMI based events.
T
Thomas Gleixner 已提交
780
	 */
781
	perf_disable();
T
Thomas Gleixner 已提交
782

783
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
784

785
	/*
786
	 * Don't put the event on if it is disabled or if
787 788
	 * it is in a group and the group isn't on.
	 */
789 790
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
791 792
		goto unlock;

793
	/*
794 795 796
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
797
	 */
798
	if (!group_can_go_on(event, cpuctx, 1))
799 800
		err = -EEXIST;
	else
801
		err = event_sched_in(event, cpuctx, ctx, cpu);
802

803 804
	if (err) {
		/*
805
		 * This event couldn't go on.  If it is in a group
806
		 * then we have to pull the whole group off.
807
		 * If the event group is pinned then put it in error state.
808
		 */
809
		if (leader != event)
810
			group_sched_out(leader, cpuctx, ctx);
811
		if (leader->attr.pinned) {
812
			update_group_times(leader);
813
			leader->state = PERF_EVENT_STATE_ERROR;
814
		}
815
	}
T
Thomas Gleixner 已提交
816

817
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
818 819
		cpuctx->max_pertask--;

820
 unlock:
821
	perf_enable();
822

823
	spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
824 825 826
}

/*
827
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
828
 *
829 830
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
831
 *
832
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
833 834
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
835 836
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
837 838
 */
static void
839 840
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
841 842 843 844 845 846
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
847
		 * Per cpu events are installed via an smp call and
T
Thomas Gleixner 已提交
848 849 850
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
851
					 event, 1);
T
Thomas Gleixner 已提交
852 853 854 855 856
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
857
				 event);
T
Thomas Gleixner 已提交
858 859 860 861 862

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
863
	if (ctx->is_active && list_empty(&event->group_entry)) {
T
Thomas Gleixner 已提交
864 865 866 867 868 869
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
870
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
871 872
	 * succeed.
	 */
873 874
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
875 876 877
	spin_unlock_irq(&ctx->lock);
}

878
/*
879
 * Put a event into inactive state and update time fields.
880 881 882 883 884 885
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
886 887
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
888
{
889
	struct perf_event *sub;
890

891 892 893 894
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry)
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
895 896 897 898
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
}

899
/*
900
 * Cross CPU call to enable a performance event
901
 */
902
static void __perf_event_enable(void *info)
903
{
904
	struct perf_event *event = info;
905
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
906 907
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
908
	int err;
909

910
	/*
911 912
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
913
	 */
914
	if (ctx->task && cpuctx->task_ctx != ctx) {
915
		if (cpuctx->task_ctx || ctx->task != current)
916 917 918
			return;
		cpuctx->task_ctx = ctx;
	}
919

920
	spin_lock(&ctx->lock);
921
	ctx->is_active = 1;
922
	update_context_time(ctx);
923

924
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
925
		goto unlock;
926
	__perf_event_mark_enabled(event, ctx);
927 928

	/*
929
	 * If the event is in a group and isn't the group leader,
930
	 * then don't put it on unless the group is on.
931
	 */
932
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
933
		goto unlock;
934

935
	if (!group_can_go_on(event, cpuctx, 1)) {
936
		err = -EEXIST;
937
	} else {
938
		perf_disable();
939 940
		if (event == leader)
			err = group_sched_in(event, cpuctx, ctx,
941 942
					     smp_processor_id());
		else
943
			err = event_sched_in(event, cpuctx, ctx,
944
					       smp_processor_id());
945
		perf_enable();
946
	}
947 948 949

	if (err) {
		/*
950
		 * If this event can't go on and it's part of a
951 952
		 * group, then the whole group has to come off.
		 */
953
		if (leader != event)
954
			group_sched_out(leader, cpuctx, ctx);
955
		if (leader->attr.pinned) {
956
			update_group_times(leader);
957
			leader->state = PERF_EVENT_STATE_ERROR;
958
		}
959 960 961
	}

 unlock:
962
	spin_unlock(&ctx->lock);
963 964 965
}

/*
966
 * Enable a event.
967
 *
968 969
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
970
 * remains valid.  This condition is satisfied when called through
971 972
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
973
 */
974
void perf_event_enable(struct perf_event *event)
975
{
976
	struct perf_event_context *ctx = event->ctx;
977 978 979 980
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
981
		 * Enable the event on the cpu that it's on
982
		 */
983 984
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
985 986 987 988
		return;
	}

	spin_lock_irq(&ctx->lock);
989
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
990 991 992
		goto out;

	/*
993 994
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
995 996 997 998
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
999 1000
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1001 1002 1003

 retry:
	spin_unlock_irq(&ctx->lock);
1004
	task_oncpu_function_call(task, __perf_event_enable, event);
1005 1006 1007 1008

	spin_lock_irq(&ctx->lock);

	/*
1009
	 * If the context is active and the event is still off,
1010 1011
	 * we need to retry the cross-call.
	 */
1012
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1013 1014 1015 1016 1017 1018
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1019 1020
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1021

1022 1023 1024 1025
 out:
	spin_unlock_irq(&ctx->lock);
}

1026
static int perf_event_refresh(struct perf_event *event, int refresh)
1027
{
1028
	/*
1029
	 * not supported on inherited events
1030
	 */
1031
	if (event->attr.inherit)
1032 1033
		return -EINVAL;

1034 1035
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1036 1037

	return 0;
1038 1039
}

1040
void __perf_event_sched_out(struct perf_event_context *ctx,
1041 1042
			      struct perf_cpu_context *cpuctx)
{
1043
	struct perf_event *event;
1044

1045 1046
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
1047
	if (likely(!ctx->nr_events))
1048
		goto out;
1049
	update_context_time(ctx);
1050

1051
	perf_disable();
P
Peter Zijlstra 已提交
1052
	if (ctx->nr_active) {
1053 1054
		list_for_each_entry(event, &ctx->group_list, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1055
	}
1056
	perf_enable();
1057
 out:
1058 1059 1060
	spin_unlock(&ctx->lock);
}

1061 1062 1063
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1064 1065 1066 1067
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1068
 * in them directly with an fd; we can only enable/disable all
1069
 * events via prctl, or enable/disable all events in a family
1070 1071
 * via ioctl, which will have the same effect on both contexts.
 */
1072 1073
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1074 1075
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1076
		&& ctx1->parent_gen == ctx2->parent_gen
1077
		&& !ctx1->pin_count && !ctx2->pin_count;
1078 1079
}

1080 1081
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1082 1083 1084
{
	u64 value;

1085
	if (!event->attr.inherit_stat)
1086 1087 1088
		return;

	/*
1089
	 * Update the event value, we cannot use perf_event_read()
1090 1091
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1092
	 * we know the event must be on the current CPU, therefore we
1093 1094
	 * don't need to use it.
	 */
1095 1096
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1097 1098
		event->pmu->read(event);
		/* fall-through */
1099

1100 1101
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1102 1103 1104 1105 1106 1107 1108
		break;

	default:
		break;
	}

	/*
1109
	 * In order to keep per-task stats reliable we need to flip the event
1110 1111
	 * values when we flip the contexts.
	 */
1112 1113 1114
	value = atomic64_read(&next_event->count);
	value = atomic64_xchg(&event->count, value);
	atomic64_set(&next_event->count, value);
1115

1116 1117
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1118

1119
	/*
1120
	 * Since we swizzled the values, update the user visible data too.
1121
	 */
1122 1123
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1124 1125 1126 1127 1128
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1129 1130
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1131
{
1132
	struct perf_event *event, *next_event;
1133 1134 1135 1136

	if (!ctx->nr_stat)
		return;

1137 1138
	update_context_time(ctx);

1139 1140
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1141

1142 1143
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1144

1145 1146
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1147

1148
		__perf_event_sync_stat(event, next_event);
1149

1150 1151
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1152 1153 1154
	}
}

T
Thomas Gleixner 已提交
1155
/*
1156
 * Called from scheduler to remove the events of the current task,
T
Thomas Gleixner 已提交
1157 1158
 * with interrupts disabled.
 *
1159
 * We stop each event and update the event value in event->count.
T
Thomas Gleixner 已提交
1160
 *
I
Ingo Molnar 已提交
1161
 * This does not protect us against NMI, but disable()
1162 1163 1164
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
T
Thomas Gleixner 已提交
1165
 */
1166
void perf_event_task_sched_out(struct task_struct *task,
1167
				 struct task_struct *next, int cpu)
T
Thomas Gleixner 已提交
1168 1169
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1170 1171 1172
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
1173
	struct pt_regs *regs;
1174
	int do_switch = 1;
T
Thomas Gleixner 已提交
1175

1176
	regs = task_pt_regs(task);
1177
	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1178

1179
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1180 1181
		return;

1182 1183
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1184
	next_ctx = next->perf_event_ctxp;
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
		spin_lock(&ctx->lock);
		spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
		if (context_equiv(ctx, next_ctx)) {
1199 1200
			/*
			 * XXX do we need a memory barrier of sorts
1201
			 * wrt to rcu_dereference() of perf_event_ctxp
1202
			 */
1203 1204
			task->perf_event_ctxp = next_ctx;
			next->perf_event_ctxp = ctx;
1205 1206 1207
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1208

1209
			perf_event_sync_stat(ctx, next_ctx);
1210 1211 1212
		}
		spin_unlock(&next_ctx->lock);
		spin_unlock(&ctx->lock);
1213
	}
1214
	rcu_read_unlock();
1215

1216
	if (do_switch) {
1217
		__perf_event_sched_out(ctx, cpuctx);
1218 1219
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1220 1221
}

1222 1223 1224
/*
 * Called with IRQs disabled
 */
1225
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1226 1227 1228
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1229 1230
	if (!cpuctx->task_ctx)
		return;
1231 1232 1233 1234

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1235
	__perf_event_sched_out(ctx, cpuctx);
1236 1237 1238
	cpuctx->task_ctx = NULL;
}

1239 1240 1241
/*
 * Called with IRQs disabled
 */
1242
static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1243
{
1244
	__perf_event_sched_out(&cpuctx->ctx, cpuctx);
1245 1246
}

1247
static void
1248
__perf_event_sched_in(struct perf_event_context *ctx,
1249
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
1250
{
1251
	struct perf_event *event;
1252
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
1253

1254 1255
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
1256
	if (likely(!ctx->nr_events))
1257
		goto out;
T
Thomas Gleixner 已提交
1258

1259
	ctx->timestamp = perf_clock();
1260

1261
	perf_disable();
1262 1263 1264 1265 1266

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
1267 1268 1269
	list_for_each_entry(event, &ctx->group_list, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF ||
		    !event->attr.pinned)
1270
			continue;
1271
		if (event->cpu != -1 && event->cpu != cpu)
1272 1273
			continue;

1274 1275
		if (group_can_go_on(event, cpuctx, 1))
			group_sched_in(event, cpuctx, ctx, cpu);
1276 1277 1278 1279 1280

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1281 1282 1283
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1284
		}
1285 1286
	}

1287
	list_for_each_entry(event, &ctx->group_list, group_entry) {
1288
		/*
1289 1290
		 * Ignore events in OFF or ERROR state, and
		 * ignore pinned events since we did them already.
1291
		 */
1292 1293
		if (event->state <= PERF_EVENT_STATE_OFF ||
		    event->attr.pinned)
1294 1295
			continue;

1296 1297
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1298
		 * of events:
1299
		 */
1300
		if (event->cpu != -1 && event->cpu != cpu)
T
Thomas Gleixner 已提交
1301 1302
			continue;

1303 1304
		if (group_can_go_on(event, cpuctx, can_add_hw))
			if (group_sched_in(event, cpuctx, ctx, cpu))
1305
				can_add_hw = 0;
T
Thomas Gleixner 已提交
1306
	}
1307
	perf_enable();
1308
 out:
T
Thomas Gleixner 已提交
1309
	spin_unlock(&ctx->lock);
1310 1311 1312
}

/*
1313
 * Called from scheduler to add the events of the current task
1314 1315
 * with interrupts disabled.
 *
1316
 * We restore the event value and then enable it.
1317 1318
 *
 * This does not protect us against NMI, but enable()
1319 1320 1321
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
1322
 */
1323
void perf_event_task_sched_in(struct task_struct *task, int cpu)
1324 1325
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1326
	struct perf_event_context *ctx = task->perf_event_ctxp;
1327

1328 1329
	if (likely(!ctx))
		return;
1330 1331
	if (cpuctx->task_ctx == ctx)
		return;
1332
	__perf_event_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
1333 1334 1335
	cpuctx->task_ctx = ctx;
}

1336
static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1337
{
1338
	struct perf_event_context *ctx = &cpuctx->ctx;
1339

1340
	__perf_event_sched_in(ctx, cpuctx, cpu);
1341 1342
}

1343 1344
#define MAX_INTERRUPTS (~0ULL)

1345
static void perf_log_throttle(struct perf_event *event, int enable);
1346

1347
static void perf_adjust_period(struct perf_event *event, u64 events)
1348
{
1349
	struct hw_perf_event *hwc = &event->hw;
1350 1351 1352 1353
	u64 period, sample_period;
	s64 delta;

	events *= hwc->sample_period;
1354
	period = div64_u64(events, event->attr.sample_freq);
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
}

1367
static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1368
{
1369 1370
	struct perf_event *event;
	struct hw_perf_event *hwc;
1371
	u64 interrupts, freq;
1372 1373

	spin_lock(&ctx->lock);
1374
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1375
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1376 1377
			continue;

1378
		hwc = &event->hw;
1379 1380 1381

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1382

1383
		/*
1384
		 * unthrottle events on the tick
1385
		 */
1386
		if (interrupts == MAX_INTERRUPTS) {
1387 1388 1389
			perf_log_throttle(event, 1);
			event->pmu->unthrottle(event);
			interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1390 1391
		}

1392
		if (!event->attr.freq || !event->attr.sample_freq)
1393 1394
			continue;

1395 1396 1397
		/*
		 * if the specified freq < HZ then we need to skip ticks
		 */
1398 1399
		if (event->attr.sample_freq < HZ) {
			freq = event->attr.sample_freq;
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412

			hwc->freq_count += freq;
			hwc->freq_interrupts += interrupts;

			if (hwc->freq_count < HZ)
				continue;

			interrupts = hwc->freq_interrupts;
			hwc->freq_interrupts = 0;
			hwc->freq_count -= HZ;
		} else
			freq = HZ;

1413
		perf_adjust_period(event, freq * interrupts);
1414

1415 1416 1417 1418 1419 1420 1421
		/*
		 * In order to avoid being stalled by an (accidental) huge
		 * sample period, force reset the sample period if we didn't
		 * get any events in this freq period.
		 */
		if (!interrupts) {
			perf_disable();
1422
			event->pmu->disable(event);
1423
			atomic64_set(&hwc->period_left, 0);
1424
			event->pmu->enable(event);
1425 1426
			perf_enable();
		}
1427 1428 1429 1430
	}
	spin_unlock(&ctx->lock);
}

1431
/*
1432
 * Round-robin a context's events:
1433
 */
1434
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1435
{
1436
	struct perf_event *event;
T
Thomas Gleixner 已提交
1437

1438
	if (!ctx->nr_events)
T
Thomas Gleixner 已提交
1439 1440 1441 1442
		return;

	spin_lock(&ctx->lock);
	/*
1443
	 * Rotate the first entry last (works just fine for group events too):
T
Thomas Gleixner 已提交
1444
	 */
1445
	perf_disable();
1446 1447
	list_for_each_entry(event, &ctx->group_list, group_entry) {
		list_move_tail(&event->group_entry, &ctx->group_list);
T
Thomas Gleixner 已提交
1448 1449
		break;
	}
1450
	perf_enable();
T
Thomas Gleixner 已提交
1451 1452

	spin_unlock(&ctx->lock);
1453 1454
}

1455
void perf_event_task_tick(struct task_struct *curr, int cpu)
1456
{
1457
	struct perf_cpu_context *cpuctx;
1458
	struct perf_event_context *ctx;
1459

1460
	if (!atomic_read(&nr_events))
1461 1462 1463
		return;

	cpuctx = &per_cpu(perf_cpu_context, cpu);
1464
	ctx = curr->perf_event_ctxp;
1465

1466
	perf_ctx_adjust_freq(&cpuctx->ctx);
1467
	if (ctx)
1468
		perf_ctx_adjust_freq(ctx);
1469

1470
	perf_event_cpu_sched_out(cpuctx);
1471
	if (ctx)
1472
		__perf_event_task_sched_out(ctx);
T
Thomas Gleixner 已提交
1473

1474
	rotate_ctx(&cpuctx->ctx);
1475 1476
	if (ctx)
		rotate_ctx(ctx);
1477

1478
	perf_event_cpu_sched_in(cpuctx, cpu);
1479
	if (ctx)
1480
		perf_event_task_sched_in(curr, cpu);
T
Thomas Gleixner 已提交
1481 1482
}

1483
/*
1484
 * Enable all of a task's events that have been marked enable-on-exec.
1485 1486
 * This expects task == current.
 */
1487
static void perf_event_enable_on_exec(struct task_struct *task)
1488
{
1489 1490
	struct perf_event_context *ctx;
	struct perf_event *event;
1491 1492 1493 1494
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
1495 1496
	ctx = task->perf_event_ctxp;
	if (!ctx || !ctx->nr_events)
1497 1498
		goto out;

1499
	__perf_event_task_sched_out(ctx);
1500 1501 1502

	spin_lock(&ctx->lock);

1503 1504
	list_for_each_entry(event, &ctx->group_list, group_entry) {
		if (!event->attr.enable_on_exec)
1505
			continue;
1506 1507
		event->attr.enable_on_exec = 0;
		if (event->state >= PERF_EVENT_STATE_INACTIVE)
1508
			continue;
1509
		__perf_event_mark_enabled(event, ctx);
1510 1511 1512 1513
		enabled = 1;
	}

	/*
1514
	 * Unclone this context if we enabled any event.
1515
	 */
1516 1517
	if (enabled)
		unclone_ctx(ctx);
1518 1519 1520

	spin_unlock(&ctx->lock);

1521
	perf_event_task_sched_in(task, smp_processor_id());
1522 1523 1524 1525
 out:
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1526
/*
1527
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1528
 */
1529
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1530
{
1531
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1532 1533
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
I
Ingo Molnar 已提交
1534

1535 1536 1537 1538
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1539 1540
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1541 1542 1543 1544
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

P
Peter Zijlstra 已提交
1545
	spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1546
	update_context_time(ctx);
1547
	update_event_times(event);
P
Peter Zijlstra 已提交
1548 1549
	spin_unlock(&ctx->lock);

P
Peter Zijlstra 已提交
1550
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1551 1552
}

1553
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1554 1555
{
	/*
1556 1557
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1558
	 */
1559 1560 1561 1562
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1563 1564 1565 1566 1567
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

		spin_lock_irqsave(&ctx->lock, flags);
		update_context_time(ctx);
1568
		update_event_times(event);
P
Peter Zijlstra 已提交
1569
		spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1570 1571
	}

1572
	return atomic64_read(&event->count);
T
Thomas Gleixner 已提交
1573 1574
}

1575
/*
1576
 * Initialize the perf_event context in a task_struct:
1577 1578
 */
static void
1579
__perf_event_init_context(struct perf_event_context *ctx,
1580 1581 1582 1583
			    struct task_struct *task)
{
	spin_lock_init(&ctx->lock);
	mutex_init(&ctx->mutex);
1584
	INIT_LIST_HEAD(&ctx->group_list);
1585 1586 1587 1588 1589
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

1590
static struct perf_event_context *find_get_context(pid_t pid, int cpu)
T
Thomas Gleixner 已提交
1591
{
1592
	struct perf_event_context *ctx;
1593
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1594
	struct task_struct *task;
1595
	unsigned long flags;
1596
	int err;
T
Thomas Gleixner 已提交
1597 1598

	/*
1599
	 * If cpu is not a wildcard then this is a percpu event:
T
Thomas Gleixner 已提交
1600 1601
	 */
	if (cpu != -1) {
1602
		/* Must be root to operate on a CPU event: */
1603
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1604 1605 1606 1607 1608 1609
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
1610
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
1611 1612 1613 1614 1615 1616 1617 1618
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1619
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1636
	/*
1637
	 * Can't attach events to a dying task.
1638 1639 1640 1641 1642
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1643
	/* Reuse ptrace permission checks for now. */
1644 1645 1646 1647 1648
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry:
1649
	ctx = perf_lock_task_context(task, &flags);
1650
	if (ctx) {
1651
		unclone_ctx(ctx);
1652
		spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1653 1654
	}

1655
	if (!ctx) {
1656
		ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1657 1658 1659
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1660
		__perf_event_init_context(ctx, task);
1661
		get_ctx(ctx);
1662
		if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1663 1664 1665 1666 1667
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1668
			goto retry;
1669
		}
1670
		get_task_struct(task);
1671 1672
	}

1673
	put_task_struct(task);
T
Thomas Gleixner 已提交
1674
	return ctx;
1675 1676 1677 1678

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
1679 1680
}

L
Li Zefan 已提交
1681 1682
static void perf_event_free_filter(struct perf_event *event);

1683
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
1684
{
1685
	struct perf_event *event;
P
Peter Zijlstra 已提交
1686

1687 1688 1689
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
1690
	perf_event_free_filter(event);
1691
	kfree(event);
P
Peter Zijlstra 已提交
1692 1693
}

1694
static void perf_pending_sync(struct perf_event *event);
1695

1696
static void free_event(struct perf_event *event)
1697
{
1698
	perf_pending_sync(event);
1699

1700 1701 1702 1703 1704 1705 1706 1707
	if (!event->parent) {
		atomic_dec(&nr_events);
		if (event->attr.mmap)
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
1708
	}
1709

1710 1711 1712
	if (event->output) {
		fput(event->output->filp);
		event->output = NULL;
1713 1714
	}

1715 1716
	if (event->destroy)
		event->destroy(event);
1717

1718 1719
	put_ctx(event->ctx);
	call_rcu(&event->rcu_head, free_event_rcu);
1720 1721
}

1722
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
1723
{
1724
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1725

1726
	WARN_ON_ONCE(ctx->parent_ctx);
1727
	mutex_lock(&ctx->mutex);
1728
	perf_event_remove_from_context(event);
1729
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1730

1731 1732 1733 1734
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
1735

1736
	free_event(event);
T
Thomas Gleixner 已提交
1737 1738 1739

	return 0;
}
1740
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
1741

1742 1743 1744 1745
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
1746
{
1747
	struct perf_event *event = file->private_data;
1748

1749
	file->private_data = NULL;
1750

1751
	return perf_event_release_kernel(event);
1752 1753
}

1754
static int perf_event_read_size(struct perf_event *event)
1755 1756 1757 1758 1759
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

1760
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1761 1762
		size += sizeof(u64);

1763
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1764 1765
		size += sizeof(u64);

1766
	if (event->attr.read_format & PERF_FORMAT_ID)
1767 1768
		entry += sizeof(u64);

1769 1770
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
1771 1772 1773 1774 1775 1776 1777 1778
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

1779
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1780
{
1781
	struct perf_event *child;
1782 1783
	u64 total = 0;

1784 1785 1786
	*enabled = 0;
	*running = 0;

1787
	mutex_lock(&event->child_mutex);
1788
	total += perf_event_read(event);
1789 1790 1791 1792 1793 1794
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
1795
		total += perf_event_read(child);
1796 1797 1798
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
1799
	mutex_unlock(&event->child_mutex);
1800 1801 1802

	return total;
}
1803
EXPORT_SYMBOL_GPL(perf_event_read_value);
1804

1805
static int perf_event_read_group(struct perf_event *event,
1806 1807
				   u64 read_format, char __user *buf)
{
1808
	struct perf_event *leader = event->group_leader, *sub;
1809 1810
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
1811
	u64 values[5];
1812
	u64 count, enabled, running;
1813

1814
	mutex_lock(&ctx->mutex);
1815
	count = perf_event_read_value(leader, &enabled, &running);
1816 1817

	values[n++] = 1 + leader->nr_siblings;
1818 1819 1820 1821
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
1822 1823 1824
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
1825 1826 1827 1828

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
1829
		goto unlock;
1830

1831
	ret = size;
1832

1833
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1834
		n = 0;
1835

1836
		values[n++] = perf_event_read_value(sub, &enabled, &running);
1837 1838 1839 1840 1841
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

1842
		if (copy_to_user(buf + ret, values, size)) {
1843 1844 1845
			ret = -EFAULT;
			goto unlock;
		}
1846 1847

		ret += size;
1848
	}
1849 1850
unlock:
	mutex_unlock(&ctx->mutex);
1851

1852
	return ret;
1853 1854
}

1855
static int perf_event_read_one(struct perf_event *event,
1856 1857
				 u64 read_format, char __user *buf)
{
1858
	u64 enabled, running;
1859 1860 1861
	u64 values[4];
	int n = 0;

1862 1863 1864 1865 1866
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
1867
	if (read_format & PERF_FORMAT_ID)
1868
		values[n++] = primary_event_id(event);
1869 1870 1871 1872 1873 1874 1875

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
1876
/*
1877
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
1878 1879
 */
static ssize_t
1880
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
1881
{
1882
	u64 read_format = event->attr.read_format;
1883
	int ret;
T
Thomas Gleixner 已提交
1884

1885
	/*
1886
	 * Return end-of-file for a read on a event that is in
1887 1888 1889
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
1890
	if (event->state == PERF_EVENT_STATE_ERROR)
1891 1892
		return 0;

1893
	if (count < perf_event_read_size(event))
1894 1895
		return -ENOSPC;

1896
	WARN_ON_ONCE(event->ctx->parent_ctx);
1897
	if (read_format & PERF_FORMAT_GROUP)
1898
		ret = perf_event_read_group(event, read_format, buf);
1899
	else
1900
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
1901

1902
	return ret;
T
Thomas Gleixner 已提交
1903 1904 1905 1906 1907
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
1908
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
1909

1910
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
1911 1912 1913 1914
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
1915
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
1916
	struct perf_mmap_data *data;
1917
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
1918 1919

	rcu_read_lock();
1920
	data = rcu_dereference(event->data);
P
Peter Zijlstra 已提交
1921
	if (data)
1922
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
1923
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1924

1925
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
1926 1927 1928 1929

	return events;
}

1930
static void perf_event_reset(struct perf_event *event)
1931
{
1932 1933 1934
	(void)perf_event_read(event);
	atomic64_set(&event->count, 0);
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
1935 1936
}

1937
/*
1938 1939 1940 1941
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
1942
 */
1943 1944
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
1945
{
1946
	struct perf_event *child;
P
Peter Zijlstra 已提交
1947

1948 1949 1950 1951
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
1952
		func(child);
1953
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
1954 1955
}

1956 1957
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
1958
{
1959 1960
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
1961

1962 1963
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
1964
	event = event->group_leader;
1965

1966 1967 1968 1969
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
1970
	mutex_unlock(&ctx->mutex);
1971 1972
}

1973
static int perf_event_period(struct perf_event *event, u64 __user *arg)
1974
{
1975
	struct perf_event_context *ctx = event->ctx;
1976 1977 1978 1979
	unsigned long size;
	int ret = 0;
	u64 value;

1980
	if (!event->attr.sample_period)
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	spin_lock_irq(&ctx->lock);
1991 1992
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
1993 1994 1995 1996
			ret = -EINVAL;
			goto unlock;
		}

1997
		event->attr.sample_freq = value;
1998
	} else {
1999 2000
		event->attr.sample_period = value;
		event->hw.sample_period = value;
2001 2002 2003 2004 2005 2006 2007
	}
unlock:
	spin_unlock_irq(&ctx->lock);

	return ret;
}

L
Li Zefan 已提交
2008 2009
static int perf_event_set_output(struct perf_event *event, int output_fd);
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2010

2011 2012
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2013 2014
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2015
	u32 flags = arg;
2016 2017

	switch (cmd) {
2018 2019
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2020
		break;
2021 2022
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2023
		break;
2024 2025
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2026
		break;
P
Peter Zijlstra 已提交
2027

2028 2029
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2030

2031 2032
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2033

2034 2035
	case PERF_EVENT_IOC_SET_OUTPUT:
		return perf_event_set_output(event, arg);
2036

L
Li Zefan 已提交
2037 2038 2039
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2040
	default:
P
Peter Zijlstra 已提交
2041
		return -ENOTTY;
2042
	}
P
Peter Zijlstra 已提交
2043 2044

	if (flags & PERF_IOC_FLAG_GROUP)
2045
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2046
	else
2047
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2048 2049

	return 0;
2050 2051
}

2052
int perf_event_task_enable(void)
2053
{
2054
	struct perf_event *event;
2055

2056 2057 2058 2059
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2060 2061 2062 2063

	return 0;
}

2064
int perf_event_task_disable(void)
2065
{
2066
	struct perf_event *event;
2067

2068 2069 2070 2071
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2072 2073 2074 2075

	return 0;
}

2076 2077
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2078 2079
#endif

2080
static int perf_event_index(struct perf_event *event)
2081
{
2082
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2083 2084
		return 0;

2085
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2086 2087
}

2088 2089 2090 2091 2092
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2093
void perf_event_update_userpage(struct perf_event *event)
2094
{
2095
	struct perf_event_mmap_page *userpg;
2096
	struct perf_mmap_data *data;
2097 2098

	rcu_read_lock();
2099
	data = rcu_dereference(event->data);
2100 2101 2102 2103
	if (!data)
		goto unlock;

	userpg = data->user_page;
2104

2105 2106 2107 2108 2109
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2110
	++userpg->lock;
2111
	barrier();
2112 2113 2114 2115
	userpg->index = perf_event_index(event);
	userpg->offset = atomic64_read(&event->count);
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&event->hw.prev_count);
2116

2117 2118
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2119

2120 2121
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2122

2123
	barrier();
2124
	++userpg->lock;
2125
	preempt_enable();
2126
unlock:
2127
	rcu_read_unlock();
2128 2129
}

2130
static unsigned long perf_data_size(struct perf_mmap_data *data)
2131
{
2132 2133
	return data->nr_pages << (PAGE_SHIFT + data->data_order);
}
2134

2135
#ifndef CONFIG_PERF_USE_VMALLOC
2136

2137 2138 2139
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2140

2141 2142 2143 2144 2145
static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > data->nr_pages)
		return NULL;
2146

2147 2148
	if (pgoff == 0)
		return virt_to_page(data->user_page);
2149

2150
	return virt_to_page(data->data_pages[pgoff - 1]);
2151 2152
}

2153 2154
static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2155 2156 2157 2158 2159
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

2160
	WARN_ON(atomic_read(&event->mmap_count));
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

2179
	data->data_order = 0;
2180 2181
	data->nr_pages = nr_pages;

2182
	return data;
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
2194
	return NULL;
2195 2196
}

2197 2198
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2199
	struct page *page = virt_to_page((void *)addr);
2200 2201 2202 2203 2204

	page->mapping = NULL;
	__free_page(page);
}

2205
static void perf_mmap_data_free(struct perf_mmap_data *data)
2206 2207 2208
{
	int i;

2209
	perf_mmap_free_page((unsigned long)data->user_page);
2210
	for (i = 0; i < data->nr_pages; i++)
2211
		perf_mmap_free_page((unsigned long)data->data_pages[i]);
2212
	kfree(data);
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
}

#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > (1UL << data->data_order))
		return NULL;

	return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

static void perf_mmap_data_free_work(struct work_struct *work)
{
	struct perf_mmap_data *data;
	void *base;
	int i, nr;

	data = container_of(work, struct perf_mmap_data, work);
	nr = 1 << data->data_order;

	base = data->user_page;
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
2253
	kfree(data);
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
}

static void perf_mmap_data_free(struct perf_mmap_data *data)
{
	schedule_work(&data->work);
}

static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	void *all_buf;

	WARN_ON(atomic_read(&event->mmap_count));
2269

2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
	size = sizeof(struct perf_mmap_data);
	size += sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	INIT_WORK(&data->work, perf_mmap_data_free_work);

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

	data->user_page = all_buf;
	data->data_pages[0] = all_buf + PAGE_SIZE;
	data->data_order = ilog2(nr_pages);
	data->nr_pages = 1;

	return data;

fail_all_buf:
	kfree(data);

fail:
	return NULL;
}

#endif

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
	data = rcu_dereference(event->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

	vmf->page = perf_mmap_to_page(data, vmf->pgoff);
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static void
perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
{
	long max_size = perf_data_size(data);

	atomic_set(&data->lock, -1);

	if (event->attr.watermark) {
		data->watermark = min_t(long, max_size,
					event->attr.wakeup_watermark);
	}

	if (!data->watermark)
2347
		data->watermark = max_size / 2;
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358


	rcu_assign_pointer(event->data, data);
}

static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data;

	data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
	perf_mmap_data_free(data);
2359 2360
}

2361
static void perf_mmap_data_release(struct perf_event *event)
2362
{
2363
	struct perf_mmap_data *data = event->data;
2364

2365
	WARN_ON(atomic_read(&event->mmap_count));
2366

2367
	rcu_assign_pointer(event->data, NULL);
2368
	call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2369 2370 2371 2372
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2373
	struct perf_event *event = vma->vm_file->private_data;
2374

2375
	atomic_inc(&event->mmap_count);
2376 2377 2378 2379
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2380
	struct perf_event *event = vma->vm_file->private_data;
2381

2382 2383
	WARN_ON_ONCE(event->ctx->parent_ctx);
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2384
		unsigned long size = perf_data_size(event->data);
2385 2386
		struct user_struct *user = current_user();

2387
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2388
		vma->vm_mm->locked_vm -= event->data->nr_locked;
2389
		perf_mmap_data_release(event);
2390
		mutex_unlock(&event->mmap_mutex);
2391
	}
2392 2393
}

2394
static const struct vm_operations_struct perf_mmap_vmops = {
2395 2396 2397 2398
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2399 2400 2401 2402
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2403
	struct perf_event *event = file->private_data;
2404
	unsigned long user_locked, user_lock_limit;
2405
	struct user_struct *user = current_user();
2406
	unsigned long locked, lock_limit;
2407
	struct perf_mmap_data *data;
2408 2409
	unsigned long vma_size;
	unsigned long nr_pages;
2410
	long user_extra, extra;
2411
	int ret = 0;
2412

2413
	if (!(vma->vm_flags & VM_SHARED))
2414
		return -EINVAL;
2415 2416 2417 2418

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2419 2420 2421 2422 2423
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2424 2425
		return -EINVAL;

2426
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2427 2428
		return -EINVAL;

2429 2430
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2431

2432 2433 2434
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
	if (event->output) {
2435 2436 2437 2438
		ret = -EINVAL;
		goto unlock;
	}

2439 2440
	if (atomic_inc_not_zero(&event->mmap_count)) {
		if (nr_pages != event->data->nr_pages)
2441 2442 2443 2444
			ret = -EINVAL;
		goto unlock;
	}

2445
	user_extra = nr_pages + 1;
2446
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2447 2448 2449 2450 2451 2452

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2453
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2454

2455 2456 2457
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2458 2459 2460

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;
2461
	locked = vma->vm_mm->locked_vm + extra;
2462

2463 2464
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
2465 2466 2467
		ret = -EPERM;
		goto unlock;
	}
2468

2469
	WARN_ON(event->data);
2470 2471 2472 2473

	data = perf_mmap_data_alloc(event, nr_pages);
	ret = -ENOMEM;
	if (!data)
2474 2475
		goto unlock;

2476 2477 2478
	ret = 0;
	perf_mmap_data_init(event, data);

2479
	atomic_set(&event->mmap_count, 1);
2480
	atomic_long_add(user_extra, &user->locked_vm);
2481
	vma->vm_mm->locked_vm += extra;
2482
	event->data->nr_locked = extra;
2483
	if (vma->vm_flags & VM_WRITE)
2484
		event->data->writable = 1;
2485

2486
unlock:
2487
	mutex_unlock(&event->mmap_mutex);
2488 2489 2490

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
2491 2492

	return ret;
2493 2494
}

P
Peter Zijlstra 已提交
2495 2496 2497
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
2498
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
2499 2500 2501
	int retval;

	mutex_lock(&inode->i_mutex);
2502
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
2503 2504 2505 2506 2507 2508 2509 2510
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
2511 2512 2513 2514
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
2515 2516
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
2517
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
2518
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
2519 2520
};

2521
/*
2522
 * Perf event wakeup
2523 2524 2525 2526 2527
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

2528
void perf_event_wakeup(struct perf_event *event)
2529
{
2530
	wake_up_all(&event->waitq);
2531

2532 2533 2534
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
2535
	}
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

2547
static void perf_pending_event(struct perf_pending_entry *entry)
2548
{
2549 2550
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
2551

2552 2553 2554
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
2555 2556
	}

2557 2558 2559
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
2560 2561 2562
	}
}

2563
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2564

2565
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2566 2567 2568
	PENDING_TAIL,
};

2569 2570
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
2571
{
2572
	struct perf_pending_entry **head;
2573

2574
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2575 2576
		return;

2577 2578 2579
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
2580 2581

	do {
2582 2583
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
2584

2585
	set_perf_event_pending();
2586

2587
	put_cpu_var(perf_pending_head);
2588 2589 2590 2591
}

static int __perf_pending_run(void)
{
2592
	struct perf_pending_entry *list;
2593 2594
	int nr = 0;

2595
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2596
	while (list != PENDING_TAIL) {
2597 2598
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
2599 2600 2601

		list = list->next;

2602 2603
		func = entry->func;
		entry->next = NULL;
2604 2605 2606 2607 2608 2609 2610
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

2611
		func(entry);
2612 2613 2614 2615 2616 2617
		nr++;
	}

	return nr;
}

2618
static inline int perf_not_pending(struct perf_event *event)
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
2633
	return event->pending.next == NULL;
2634 2635
}

2636
static void perf_pending_sync(struct perf_event *event)
2637
{
2638
	wait_event(event->waitq, perf_not_pending(event));
2639 2640
}

2641
void perf_event_do_pending(void)
2642 2643 2644 2645
{
	__perf_pending_run();
}

2646 2647 2648 2649
/*
 * Callchain support -- arch specific
 */

2650
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2651 2652 2653 2654
{
	return NULL;
}

2655 2656 2657
/*
 * Output
 */
2658 2659
static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
			      unsigned long offset, unsigned long head)
2660 2661 2662 2663 2664 2665
{
	unsigned long mask;

	if (!data->writable)
		return true;

2666
	mask = perf_data_size(data) - 1;
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

2677
static void perf_output_wakeup(struct perf_output_handle *handle)
2678
{
2679 2680
	atomic_set(&handle->data->poll, POLL_IN);

2681
	if (handle->nmi) {
2682 2683 2684
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
2685
	} else
2686
		perf_event_wakeup(handle->event);
2687 2688
}

2689 2690 2691
/*
 * Curious locking construct.
 *
2692 2693
 * We need to ensure a later event_id doesn't publish a head when a former
 * event_id isn't done writing. However since we need to deal with NMIs we
2694 2695 2696 2697 2698 2699
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
2700
 * event_id completes.
2701 2702 2703 2704
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2705
	int cur, cpu = get_cpu();
2706 2707 2708

	handle->locked = 0;

2709 2710 2711 2712 2713 2714 2715 2716
	for (;;) {
		cur = atomic_cmpxchg(&data->lock, -1, cpu);
		if (cur == -1) {
			handle->locked = 1;
			break;
		}
		if (cur == cpu)
			break;
2717 2718

		cpu_relax();
2719
	}
2720 2721 2722 2723 2724
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2725 2726
	unsigned long head;
	int cpu;
2727

2728
	data->done_head = data->head;
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
2739
	while ((head = atomic_long_xchg(&data->done_head, 0)))
2740 2741 2742
		data->user_page->data_head = head;

	/*
2743
	 * NMI can happen here, which means we can miss a done_head update.
2744 2745
	 */

2746
	cpu = atomic_xchg(&data->lock, -1);
2747 2748 2749 2750 2751
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
2752
	if (unlikely(atomic_long_read(&data->done_head))) {
2753 2754 2755
		/*
		 * Since we had it locked, we can lock it again.
		 */
2756
		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2757 2758 2759 2760 2761
			cpu_relax();

		goto again;
	}

2762
	if (atomic_xchg(&data->wakeup, 0))
2763 2764
		perf_output_wakeup(handle);
out:
2765
	put_cpu();
2766 2767
}

2768 2769
void perf_output_copy(struct perf_output_handle *handle,
		      const void *buf, unsigned int len)
2770 2771
{
	unsigned int pages_mask;
2772
	unsigned long offset;
2773 2774 2775 2776 2777 2778 2779 2780
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
2781 2782
		unsigned long page_offset;
		unsigned long page_size;
2783 2784 2785
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
2786 2787 2788
		page_size   = 1UL << (handle->data->data_order + PAGE_SHIFT);
		page_offset = offset & (page_size - 1);
		size	    = min_t(unsigned int, page_size - page_offset, len);
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;

	/*
	 * Check we didn't copy past our reservation window, taking the
	 * possible unsigned int wrap into account.
	 */
	WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
}

2806
int perf_output_begin(struct perf_output_handle *handle,
2807
		      struct perf_event *event, unsigned int size,
2808
		      int nmi, int sample)
2809
{
2810
	struct perf_event *output_event;
2811
	struct perf_mmap_data *data;
2812
	unsigned long tail, offset, head;
2813 2814 2815 2816 2817 2818
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
2819

2820
	rcu_read_lock();
2821
	/*
2822
	 * For inherited events we send all the output towards the parent.
2823
	 */
2824 2825
	if (event->parent)
		event = event->parent;
2826

2827 2828 2829
	output_event = rcu_dereference(event->output);
	if (output_event)
		event = output_event;
2830

2831
	data = rcu_dereference(event->data);
2832 2833 2834
	if (!data)
		goto out;

2835
	handle->data	= data;
2836
	handle->event	= event;
2837 2838
	handle->nmi	= nmi;
	handle->sample	= sample;
2839

2840
	if (!data->nr_pages)
2841
		goto fail;
2842

2843 2844 2845 2846
	have_lost = atomic_read(&data->lost);
	if (have_lost)
		size += sizeof(lost_event);

2847 2848
	perf_output_lock(handle);

2849
	do {
2850 2851 2852 2853 2854 2855 2856
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
		tail = ACCESS_ONCE(data->user_page->data_tail);
		smp_rmb();
2857
		offset = head = atomic_long_read(&data->head);
P
Peter Zijlstra 已提交
2858
		head += size;
2859
		if (unlikely(!perf_output_space(data, tail, offset, head)))
2860
			goto fail;
2861
	} while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2862

2863
	handle->offset	= offset;
2864
	handle->head	= head;
2865

2866
	if (head - tail > data->watermark)
2867
		atomic_set(&data->wakeup, 1);
2868

2869
	if (have_lost) {
2870
		lost_event.header.type = PERF_RECORD_LOST;
2871 2872
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
2873
		lost_event.id          = event->id;
2874 2875 2876 2877 2878
		lost_event.lost        = atomic_xchg(&data->lost, 0);

		perf_output_put(handle, lost_event);
	}

2879
	return 0;
2880

2881
fail:
2882 2883
	atomic_inc(&data->lost);
	perf_output_unlock(handle);
2884 2885
out:
	rcu_read_unlock();
2886

2887 2888
	return -ENOSPC;
}
2889

2890
void perf_output_end(struct perf_output_handle *handle)
2891
{
2892
	struct perf_event *event = handle->event;
2893 2894
	struct perf_mmap_data *data = handle->data;

2895
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
2896

2897
	if (handle->sample && wakeup_events) {
2898
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
2899
		if (events >= wakeup_events) {
2900
			atomic_sub(wakeup_events, &data->events);
2901
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
2902
		}
2903 2904 2905
	}

	perf_output_unlock(handle);
2906
	rcu_read_unlock();
2907 2908
}

2909
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2910 2911
{
	/*
2912
	 * only top level events have the pid namespace they were created in
2913
	 */
2914 2915
	if (event->parent)
		event = event->parent;
2916

2917
	return task_tgid_nr_ns(p, event->ns);
2918 2919
}

2920
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2921 2922
{
	/*
2923
	 * only top level events have the pid namespace they were created in
2924
	 */
2925 2926
	if (event->parent)
		event = event->parent;
2927

2928
	return task_pid_nr_ns(p, event->ns);
2929 2930
}

2931
static void perf_output_read_one(struct perf_output_handle *handle,
2932
				 struct perf_event *event)
2933
{
2934
	u64 read_format = event->attr.read_format;
2935 2936 2937
	u64 values[4];
	int n = 0;

2938
	values[n++] = atomic64_read(&event->count);
2939
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2940 2941
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2942 2943
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2944 2945
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2946 2947
	}
	if (read_format & PERF_FORMAT_ID)
2948
		values[n++] = primary_event_id(event);
2949 2950 2951 2952 2953

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
2954
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2955 2956
 */
static void perf_output_read_group(struct perf_output_handle *handle,
2957
			    struct perf_event *event)
2958
{
2959 2960
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

2972
	if (leader != event)
2973 2974 2975 2976
		leader->pmu->read(leader);

	values[n++] = atomic64_read(&leader->count);
	if (read_format & PERF_FORMAT_ID)
2977
		values[n++] = primary_event_id(leader);
2978 2979 2980

	perf_output_copy(handle, values, n * sizeof(u64));

2981
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2982 2983
		n = 0;

2984
		if (sub != event)
2985 2986 2987 2988
			sub->pmu->read(sub);

		values[n++] = atomic64_read(&sub->count);
		if (read_format & PERF_FORMAT_ID)
2989
			values[n++] = primary_event_id(sub);
2990 2991 2992 2993 2994 2995

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
2996
			     struct perf_event *event)
2997
{
2998 2999
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
3000
	else
3001
		perf_output_read_one(handle, event);
3002 3003
}

3004 3005 3006
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3007
			struct perf_event *event)
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3038
		perf_output_read(handle, event);
3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3076
			 struct perf_event *event,
3077
			 struct pt_regs *regs)
3078
{
3079
	u64 sample_type = event->attr.sample_type;
3080

3081
	data->type = sample_type;
3082

3083
	header->type = PERF_RECORD_SAMPLE;
3084 3085 3086 3087
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3088

3089
	if (sample_type & PERF_SAMPLE_IP) {
3090 3091 3092
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3093
	}
3094

3095
	if (sample_type & PERF_SAMPLE_TID) {
3096
		/* namespace issues */
3097 3098
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3099

3100
		header->size += sizeof(data->tid_entry);
3101 3102
	}

3103
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3104
		data->time = perf_clock();
3105

3106
		header->size += sizeof(data->time);
3107 3108
	}

3109
	if (sample_type & PERF_SAMPLE_ADDR)
3110
		header->size += sizeof(data->addr);
3111

3112
	if (sample_type & PERF_SAMPLE_ID) {
3113
		data->id = primary_event_id(event);
3114

3115 3116 3117 3118
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3119
		data->stream_id = event->id;
3120 3121 3122

		header->size += sizeof(data->stream_id);
	}
3123

3124
	if (sample_type & PERF_SAMPLE_CPU) {
3125 3126
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3127

3128
		header->size += sizeof(data->cpu_entry);
3129 3130
	}

3131
	if (sample_type & PERF_SAMPLE_PERIOD)
3132
		header->size += sizeof(data->period);
3133

3134
	if (sample_type & PERF_SAMPLE_READ)
3135
		header->size += perf_event_read_size(event);
3136

3137
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3138
		int size = 1;
3139

3140 3141 3142 3143 3144 3145
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3146 3147
	}

3148
	if (sample_type & PERF_SAMPLE_RAW) {
3149 3150 3151 3152 3153 3154 3155 3156
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3157
		header->size += size;
3158
	}
3159
}
3160

3161
static void perf_event_output(struct perf_event *event, int nmi,
3162 3163 3164 3165 3166
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3167

3168
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3169

3170
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3171
		return;
3172

3173
	perf_output_sample(&handle, &header, data, event);
3174

3175
	perf_output_end(&handle);
3176 3177
}

3178
/*
3179
 * read event_id
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3190
perf_event_read_event(struct perf_event *event,
3191 3192 3193
			struct task_struct *task)
{
	struct perf_output_handle handle;
3194
	struct perf_read_event read_event = {
3195
		.header = {
3196
			.type = PERF_RECORD_READ,
3197
			.misc = 0,
3198
			.size = sizeof(read_event) + perf_event_read_size(event),
3199
		},
3200 3201
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3202
	};
3203
	int ret;
3204

3205
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3206 3207 3208
	if (ret)
		return;

3209
	perf_output_put(&handle, read_event);
3210
	perf_output_read(&handle, event);
3211

3212 3213 3214
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3215
/*
P
Peter Zijlstra 已提交
3216 3217 3218
 * task tracking -- fork/exit
 *
 * enabled by: attr.comm | attr.mmap | attr.task
P
Peter Zijlstra 已提交
3219 3220
 */

P
Peter Zijlstra 已提交
3221
struct perf_task_event {
3222
	struct task_struct		*task;
3223
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3224 3225 3226 3227 3228 3229

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3230 3231
		u32				tid;
		u32				ptid;
3232
		u64				time;
3233
	} event_id;
P
Peter Zijlstra 已提交
3234 3235
};

3236
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3237
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3238 3239
{
	struct perf_output_handle handle;
3240
	int size;
P
Peter Zijlstra 已提交
3241
	struct task_struct *task = task_event->task;
3242 3243
	int ret;

3244 3245
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3246 3247 3248 3249

	if (ret)
		return;

3250 3251
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3252

3253 3254
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3255

3256
	task_event->event_id.time = perf_clock();
3257

3258
	perf_output_put(&handle, task_event->event_id);
3259

P
Peter Zijlstra 已提交
3260 3261 3262
	perf_output_end(&handle);
}

3263
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3264
{
3265
	if (event->attr.comm || event->attr.mmap || event->attr.task)
P
Peter Zijlstra 已提交
3266 3267 3268 3269 3270
		return 1;

	return 0;
}

3271
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3272
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3273
{
3274
	struct perf_event *event;
P
Peter Zijlstra 已提交
3275

3276 3277 3278
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3279 3280 3281
	}
}

3282
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3283 3284
{
	struct perf_cpu_context *cpuctx;
3285
	struct perf_event_context *ctx = task_event->task_ctx;
P
Peter Zijlstra 已提交
3286

3287
	rcu_read_lock();
P
Peter Zijlstra 已提交
3288
	cpuctx = &get_cpu_var(perf_cpu_context);
3289
	perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
3290 3291
	put_cpu_var(perf_cpu_context);

3292
	if (!ctx)
3293
		ctx = rcu_dereference(task_event->task->perf_event_ctxp);
P
Peter Zijlstra 已提交
3294
	if (ctx)
3295
		perf_event_task_ctx(ctx, task_event);
P
Peter Zijlstra 已提交
3296 3297 3298
	rcu_read_unlock();
}

3299 3300
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3301
			      int new)
P
Peter Zijlstra 已提交
3302
{
P
Peter Zijlstra 已提交
3303
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3304

3305 3306 3307
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3308 3309
		return;

P
Peter Zijlstra 已提交
3310
	task_event = (struct perf_task_event){
3311 3312
		.task	  = task,
		.task_ctx = task_ctx,
3313
		.event_id    = {
P
Peter Zijlstra 已提交
3314
			.header = {
3315
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3316
				.misc = 0,
3317
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3318
			},
3319 3320
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3321 3322
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3323 3324 3325
		},
	};

3326
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3327 3328
}

3329
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3330
{
3331
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3332 3333
}

3334 3335 3336 3337 3338
/*
 * comm tracking
 */

struct perf_comm_event {
3339 3340
	struct task_struct	*task;
	char			*comm;
3341 3342 3343 3344 3345 3346 3347
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3348
	} event_id;
3349 3350
};

3351
static void perf_event_comm_output(struct perf_event *event,
3352 3353 3354
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3355 3356
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3357 3358 3359 3360

	if (ret)
		return;

3361 3362
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3363

3364
	perf_output_put(&handle, comm_event->event_id);
3365 3366 3367 3368 3369
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3370
static int perf_event_comm_match(struct perf_event *event)
3371
{
3372
	if (event->attr.comm)
3373 3374 3375 3376 3377
		return 1;

	return 0;
}

3378
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3379 3380
				  struct perf_comm_event *comm_event)
{
3381
	struct perf_event *event;
3382

3383 3384 3385
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3386 3387 3388
	}
}

3389
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3390 3391
{
	struct perf_cpu_context *cpuctx;
3392
	struct perf_event_context *ctx;
3393
	unsigned int size;
3394
	char comm[TASK_COMM_LEN];
3395

3396
	memset(comm, 0, sizeof(comm));
3397
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
3398
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3399 3400 3401 3402

	comm_event->comm = comm;
	comm_event->comm_size = size;

3403
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3404

3405
	rcu_read_lock();
3406
	cpuctx = &get_cpu_var(perf_cpu_context);
3407
	perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3408
	put_cpu_var(perf_cpu_context);
3409 3410 3411 3412 3413

	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
3414
	ctx = rcu_dereference(current->perf_event_ctxp);
3415
	if (ctx)
3416
		perf_event_comm_ctx(ctx, comm_event);
3417
	rcu_read_unlock();
3418 3419
}

3420
void perf_event_comm(struct task_struct *task)
3421
{
3422 3423
	struct perf_comm_event comm_event;

3424 3425
	if (task->perf_event_ctxp)
		perf_event_enable_on_exec(task);
3426

3427
	if (!atomic_read(&nr_comm_events))
3428
		return;
3429

3430
	comm_event = (struct perf_comm_event){
3431
		.task	= task,
3432 3433
		/* .comm      */
		/* .comm_size */
3434
		.event_id  = {
3435
			.header = {
3436
				.type = PERF_RECORD_COMM,
3437 3438 3439 3440 3441
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3442 3443 3444
		},
	};

3445
	perf_event_comm_event(&comm_event);
3446 3447
}

3448 3449 3450 3451 3452
/*
 * mmap tracking
 */

struct perf_mmap_event {
3453 3454 3455 3456
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3457 3458 3459 3460 3461 3462 3463 3464 3465

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
3466
	} event_id;
3467 3468
};

3469
static void perf_event_mmap_output(struct perf_event *event,
3470 3471 3472
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
3473 3474
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3475 3476 3477 3478

	if (ret)
		return;

3479 3480
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
3481

3482
	perf_output_put(&handle, mmap_event->event_id);
3483 3484
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3485
	perf_output_end(&handle);
3486 3487
}

3488
static int perf_event_mmap_match(struct perf_event *event,
3489 3490
				   struct perf_mmap_event *mmap_event)
{
3491
	if (event->attr.mmap)
3492 3493 3494 3495 3496
		return 1;

	return 0;
}

3497
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3498 3499
				  struct perf_mmap_event *mmap_event)
{
3500
	struct perf_event *event;
3501

3502 3503 3504
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_mmap_match(event, mmap_event))
			perf_event_mmap_output(event, mmap_event);
3505 3506 3507
	}
}

3508
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3509 3510
{
	struct perf_cpu_context *cpuctx;
3511
	struct perf_event_context *ctx;
3512 3513
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
3514 3515 3516
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
3517
	const char *name;
3518

3519 3520
	memset(tmp, 0, sizeof(tmp));

3521
	if (file) {
3522 3523 3524 3525 3526 3527
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3528 3529 3530 3531
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
3532
		name = d_path(&file->f_path, buf, PATH_MAX);
3533 3534 3535 3536 3537
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
3538 3539 3540
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
3541
			goto got_name;
3542
		}
3543 3544 3545 3546 3547 3548

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
		}

3549 3550 3551 3552 3553
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
3554
	size = ALIGN(strlen(name)+1, sizeof(u64));
3555 3556 3557 3558

	mmap_event->file_name = name;
	mmap_event->file_size = size;

3559
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3560

3561
	rcu_read_lock();
3562
	cpuctx = &get_cpu_var(perf_cpu_context);
3563
	perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3564 3565
	put_cpu_var(perf_cpu_context);

3566 3567 3568 3569
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
3570
	ctx = rcu_dereference(current->perf_event_ctxp);
3571
	if (ctx)
3572
		perf_event_mmap_ctx(ctx, mmap_event);
3573 3574
	rcu_read_unlock();

3575 3576 3577
	kfree(buf);
}

3578
void __perf_event_mmap(struct vm_area_struct *vma)
3579
{
3580 3581
	struct perf_mmap_event mmap_event;

3582
	if (!atomic_read(&nr_mmap_events))
3583 3584 3585
		return;

	mmap_event = (struct perf_mmap_event){
3586
		.vma	= vma,
3587 3588
		/* .file_name */
		/* .file_size */
3589
		.event_id  = {
3590
			.header = {
3591
				.type = PERF_RECORD_MMAP,
3592 3593 3594 3595 3596
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3597 3598 3599
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
			.pgoff  = vma->vm_pgoff,
3600 3601 3602
		},
	};

3603
	perf_event_mmap_event(&mmap_event);
3604 3605
}

3606 3607 3608 3609
/*
 * IRQ throttle logging
 */

3610
static void perf_log_throttle(struct perf_event *event, int enable)
3611 3612 3613 3614 3615 3616 3617
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
3618
		u64				id;
3619
		u64				stream_id;
3620 3621
	} throttle_event = {
		.header = {
3622
			.type = PERF_RECORD_THROTTLE,
3623 3624 3625
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
3626
		.time		= perf_clock(),
3627 3628
		.id		= primary_event_id(event),
		.stream_id	= event->id,
3629 3630
	};

3631
	if (enable)
3632
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3633

3634
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3635 3636 3637 3638 3639 3640 3641
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

3642
/*
3643
 * Generic event overflow handling, sampling.
3644 3645
 */

3646
static int __perf_event_overflow(struct perf_event *event, int nmi,
3647 3648
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
3649
{
3650 3651
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
3652 3653
	int ret = 0;

3654
	throttle = (throttle && event->pmu->unthrottle != NULL);
3655

3656
	if (!throttle) {
3657
		hwc->interrupts++;
3658
	} else {
3659 3660
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
3661
			if (HZ * hwc->interrupts >
3662
					(u64)sysctl_perf_event_sample_rate) {
3663
				hwc->interrupts = MAX_INTERRUPTS;
3664
				perf_log_throttle(event, 0);
3665 3666 3667 3668
				ret = 1;
			}
		} else {
			/*
3669
			 * Keep re-disabling events even though on the previous
3670
			 * pass we disabled it - just in case we raced with a
3671
			 * sched-in and the event got enabled again:
3672
			 */
3673 3674 3675
			ret = 1;
		}
	}
3676

3677
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
3678
		u64 now = perf_clock();
3679 3680 3681 3682 3683
		s64 delta = now - hwc->freq_stamp;

		hwc->freq_stamp = now;

		if (delta > 0 && delta < TICK_NSEC)
3684
			perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3685 3686
	}

3687 3688
	/*
	 * XXX event_limit might not quite work as expected on inherited
3689
	 * events
3690 3691
	 */

3692 3693
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
3694
		ret = 1;
3695
		event->pending_kill = POLL_HUP;
3696
		if (nmi) {
3697 3698 3699
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
3700
		} else
3701
			perf_event_disable(event);
3702 3703
	}

3704 3705 3706 3707 3708
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

3709
	return ret;
3710 3711
}

3712
int perf_event_overflow(struct perf_event *event, int nmi,
3713 3714
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
3715
{
3716
	return __perf_event_overflow(event, nmi, 1, data, regs);
3717 3718
}

3719
/*
3720
 * Generic software event infrastructure
3721 3722
 */

3723
/*
3724 3725
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
3726 3727 3728 3729
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

3730
static u64 perf_swevent_set_period(struct perf_event *event)
3731
{
3732
	struct hw_perf_event *hwc = &event->hw;
3733 3734 3735 3736 3737
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
3738 3739

again:
3740 3741 3742
	old = val = atomic64_read(&hwc->period_left);
	if (val < 0)
		return 0;
3743

3744 3745 3746 3747 3748
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
	if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
		goto again;
3749

3750
	return nr;
3751 3752
}

3753
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3754 3755
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
3756
{
3757
	struct hw_perf_event *hwc = &event->hw;
3758
	int throttle = 0;
3759

3760
	data->period = event->hw.last_period;
3761 3762
	if (!overflow)
		overflow = perf_swevent_set_period(event);
3763

3764 3765
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
3766

3767
	for (; overflow; overflow--) {
3768
		if (__perf_event_overflow(event, nmi, throttle,
3769
					    data, regs)) {
3770 3771 3772 3773 3774 3775
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
3776
		throttle = 1;
3777
	}
3778 3779
}

3780
static void perf_swevent_unthrottle(struct perf_event *event)
3781 3782
{
	/*
3783
	 * Nothing to do, we already reset hwc->interrupts.
3784
	 */
3785
}
3786

3787
static void perf_swevent_add(struct perf_event *event, u64 nr,
3788 3789
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
3790
{
3791
	struct hw_perf_event *hwc = &event->hw;
3792

3793
	atomic64_add(nr, &event->count);
3794

3795 3796 3797
	if (!regs)
		return;

3798 3799
	if (!hwc->sample_period)
		return;
3800

3801 3802 3803 3804
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

	if (atomic64_add_negative(nr, &hwc->period_left))
3805
		return;
3806

3807
	perf_swevent_overflow(event, 0, nmi, data, regs);
3808 3809
}

3810
static int perf_swevent_is_counting(struct perf_event *event)
3811
{
3812
	/*
3813
	 * The event is active, we're good!
3814
	 */
3815
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3816 3817
		return 1;

3818
	/*
3819
	 * The event is off/error, not counting.
3820
	 */
3821
	if (event->state != PERF_EVENT_STATE_INACTIVE)
3822 3823 3824
		return 0;

	/*
3825
	 * The event is inactive, if the context is active
3826 3827
	 * we're part of a group that didn't make it on the 'pmu',
	 * not counting.
3828
	 */
3829
	if (event->ctx->is_active)
3830 3831 3832 3833 3834 3835 3836 3837
		return 0;

	/*
	 * We're inactive and the context is too, this means the
	 * task is scheduled out, we're counting events that happen
	 * to us, like migration events.
	 */
	return 1;
3838 3839
}

L
Li Zefan 已提交
3840 3841 3842
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data);

3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

3857
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
3858
				enum perf_type_id type,
L
Li Zefan 已提交
3859 3860 3861
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
3862
{
3863
	if (!perf_swevent_is_counting(event))
3864 3865
		return 0;

3866
	if (event->attr.type != type)
3867
		return 0;
3868

3869
	if (event->attr.config != event_id)
3870 3871
		return 0;

3872 3873
	if (perf_exclude_event(event, regs))
		return 0;
3874

L
Li Zefan 已提交
3875 3876 3877 3878
	if (event->attr.type == PERF_TYPE_TRACEPOINT &&
	    !perf_tp_event_match(event, data))
		return 0;

3879 3880 3881
	return 1;
}

3882
static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3883
				     enum perf_type_id type,
3884
				     u32 event_id, u64 nr, int nmi,
3885 3886
				     struct perf_sample_data *data,
				     struct pt_regs *regs)
3887
{
3888
	struct perf_event *event;
3889

3890
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
L
Li Zefan 已提交
3891
		if (perf_swevent_match(event, type, event_id, data, regs))
3892
			perf_swevent_add(event, nr, nmi, data, regs);
3893 3894 3895
	}
}

3896
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
3897
{
3898 3899
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
	int rctx;
3900

P
Peter Zijlstra 已提交
3901
	if (in_nmi())
3902
		rctx = 3;
3903
	else if (in_irq())
3904
		rctx = 2;
3905
	else if (in_softirq())
3906
		rctx = 1;
3907
	else
3908
		rctx = 0;
P
Peter Zijlstra 已提交
3909

3910 3911
	if (cpuctx->recursion[rctx]) {
		put_cpu_var(perf_cpu_context);
3912
		return -1;
3913
	}
P
Peter Zijlstra 已提交
3914

3915 3916
	cpuctx->recursion[rctx]++;
	barrier();
P
Peter Zijlstra 已提交
3917

3918
	return rctx;
P
Peter Zijlstra 已提交
3919
}
I
Ingo Molnar 已提交
3920
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
3921

3922
void perf_swevent_put_recursion_context(int rctx)
3923
{
3924 3925
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	barrier();
3926
	cpuctx->recursion[rctx]--;
3927
	put_cpu_var(perf_cpu_context);
3928
}
I
Ingo Molnar 已提交
3929
EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
P
Peter Zijlstra 已提交
3930

3931 3932 3933 3934
static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
3935
{
3936
	struct perf_cpu_context *cpuctx;
3937
	struct perf_event_context *ctx;
3938

3939
	cpuctx = &__get_cpu_var(perf_cpu_context);
3940
	rcu_read_lock();
3941
	perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3942
				 nr, nmi, data, regs);
3943 3944 3945 3946
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
3947
	ctx = rcu_dereference(current->perf_event_ctxp);
3948
	if (ctx)
3949
		perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3950
	rcu_read_unlock();
3951
}
3952

3953
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3954
			    struct pt_regs *regs, u64 addr)
3955
{
3956
	struct perf_sample_data data;
3957 3958 3959 3960 3961
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
3962 3963 3964

	data.addr = addr;
	data.raw  = NULL;
3965

3966
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
3967 3968

	perf_swevent_put_recursion_context(rctx);
3969 3970
}

3971
static void perf_swevent_read(struct perf_event *event)
3972 3973 3974
{
}

3975
static int perf_swevent_enable(struct perf_event *event)
3976
{
3977
	struct hw_perf_event *hwc = &event->hw;
3978 3979 3980

	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
3981
		perf_swevent_set_period(event);
3982
	}
3983 3984 3985
	return 0;
}

3986
static void perf_swevent_disable(struct perf_event *event)
3987 3988 3989
{
}

3990
static const struct pmu perf_ops_generic = {
3991 3992 3993 3994
	.enable		= perf_swevent_enable,
	.disable	= perf_swevent_disable,
	.read		= perf_swevent_read,
	.unthrottle	= perf_swevent_unthrottle,
3995 3996
};

3997
/*
3998
 * hrtimer based swevent callback
3999 4000
 */

4001
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4002 4003 4004
{
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
4005
	struct pt_regs *regs;
4006
	struct perf_event *event;
4007 4008
	u64 period;

4009 4010
	event	= container_of(hrtimer, struct perf_event, hw.hrtimer);
	event->pmu->read(event);
4011 4012

	data.addr = 0;
4013
	data.period = event->hw.last_period;
4014
	regs = get_irq_regs();
4015 4016 4017 4018
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
4019 4020
	if ((event->attr.exclude_kernel || !regs) &&
			!event->attr.exclude_user)
4021
		regs = task_pt_regs(current);
4022

4023
	if (regs) {
4024 4025 4026
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
4027 4028
	}

4029
	period = max_t(u64, 10000, event->hw.sample_period);
4030 4031 4032 4033 4034
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));

	return ret;
}

4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
static void perf_swevent_start_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
		u64 period;

		if (hwc->remaining) {
			if (hwc->remaining < 0)
				period = 10000;
			else
				period = hwc->remaining;
			hwc->remaining = 0;
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
				HRTIMER_MODE_REL, 0);
	}
}

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
		hwc->remaining = ktime_to_ns(remaining);

		hrtimer_cancel(&hwc->hrtimer);
	}
}

4071
/*
4072
 * Software event: cpu wall time clock
4073 4074
 */

4075
static void cpu_clock_perf_event_update(struct perf_event *event)
4076 4077 4078 4079 4080 4081
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
4082 4083 4084
	prev = atomic64_read(&event->hw.prev_count);
	atomic64_set(&event->hw.prev_count, now);
	atomic64_add(now - prev, &event->count);
4085 4086
}

4087
static int cpu_clock_perf_event_enable(struct perf_event *event)
4088
{
4089
	struct hw_perf_event *hwc = &event->hw;
4090 4091 4092
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4093
	perf_swevent_start_hrtimer(event);
4094 4095 4096 4097

	return 0;
}

4098
static void cpu_clock_perf_event_disable(struct perf_event *event)
4099
{
4100
	perf_swevent_cancel_hrtimer(event);
4101
	cpu_clock_perf_event_update(event);
4102 4103
}

4104
static void cpu_clock_perf_event_read(struct perf_event *event)
4105
{
4106
	cpu_clock_perf_event_update(event);
4107 4108
}

4109
static const struct pmu perf_ops_cpu_clock = {
4110 4111 4112
	.enable		= cpu_clock_perf_event_enable,
	.disable	= cpu_clock_perf_event_disable,
	.read		= cpu_clock_perf_event_read,
4113 4114
};

4115
/*
4116
 * Software event: task time clock
4117 4118
 */

4119
static void task_clock_perf_event_update(struct perf_event *event, u64 now)
I
Ingo Molnar 已提交
4120
{
4121
	u64 prev;
I
Ingo Molnar 已提交
4122 4123
	s64 delta;

4124
	prev = atomic64_xchg(&event->hw.prev_count, now);
I
Ingo Molnar 已提交
4125
	delta = now - prev;
4126
	atomic64_add(delta, &event->count);
4127 4128
}

4129
static int task_clock_perf_event_enable(struct perf_event *event)
I
Ingo Molnar 已提交
4130
{
4131
	struct hw_perf_event *hwc = &event->hw;
4132 4133
	u64 now;

4134
	now = event->ctx->time;
4135

4136
	atomic64_set(&hwc->prev_count, now);
4137 4138

	perf_swevent_start_hrtimer(event);
4139 4140

	return 0;
I
Ingo Molnar 已提交
4141 4142
}

4143
static void task_clock_perf_event_disable(struct perf_event *event)
4144
{
4145
	perf_swevent_cancel_hrtimer(event);
4146
	task_clock_perf_event_update(event, event->ctx->time);
4147

4148
}
I
Ingo Molnar 已提交
4149

4150
static void task_clock_perf_event_read(struct perf_event *event)
4151
{
4152 4153 4154
	u64 time;

	if (!in_nmi()) {
4155 4156
		update_context_time(event->ctx);
		time = event->ctx->time;
4157 4158
	} else {
		u64 now = perf_clock();
4159 4160
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
4161 4162
	}

4163
	task_clock_perf_event_update(event, time);
4164 4165
}

4166
static const struct pmu perf_ops_task_clock = {
4167 4168 4169
	.enable		= task_clock_perf_event_enable,
	.disable	= task_clock_perf_event_disable,
	.read		= task_clock_perf_event_read,
4170 4171
};

4172
#ifdef CONFIG_EVENT_PROFILE
L
Li Zefan 已提交
4173

4174
void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4175
			  int entry_size)
4176
{
4177
	struct perf_raw_record raw = {
4178
		.size = entry_size,
4179
		.data = record,
4180 4181
	};

4182
	struct perf_sample_data data = {
4183
		.addr = addr,
4184
		.raw = &raw,
4185
	};
4186

4187 4188 4189 4190
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);
4191

4192
	/* Trace events already protected against recursion */
4193
	do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4194
				&data, regs);
4195
}
4196
EXPORT_SYMBOL_GPL(perf_tp_event);
4197

L
Li Zefan 已提交
4198 4199 4200 4201 4202 4203 4204 4205 4206
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}
4207

4208
static void tp_perf_event_destroy(struct perf_event *event)
4209
{
4210
	ftrace_profile_disable(event->attr.config);
4211 4212
}

4213
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4214
{
4215 4216 4217 4218
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4219
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4220
			perf_paranoid_tracepoint_raw() &&
4221 4222 4223
			!capable(CAP_SYS_ADMIN))
		return ERR_PTR(-EPERM);

4224
	if (ftrace_profile_enable(event->attr.config))
4225 4226
		return NULL;

4227
	event->destroy = tp_perf_event_destroy;
4228 4229 4230

	return &perf_ops_generic;
}
L
Li Zefan 已提交
4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4255
#else
L
Li Zefan 已提交
4256 4257 4258 4259 4260 4261 4262

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	return 1;
}

4263
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4264 4265 4266
{
	return NULL;
}
L
Li Zefan 已提交
4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

#endif /* CONFIG_EVENT_PROFILE */
4278

4279 4280 4281 4282 4283 4284 4285 4286 4287
#ifdef CONFIG_HAVE_HW_BREAKPOINT
static void bp_perf_event_destroy(struct perf_event *event)
{
	release_bp_slot(event);
}

static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	int err;
4288 4289

	err = register_perf_hw_breakpoint(bp);
4290 4291 4292 4293 4294 4295 4296 4297
	if (err)
		return ERR_PTR(err);

	bp->destroy = bp_perf_event_destroy;

	return &perf_ops_bp;
}

4298
void perf_bp_event(struct perf_event *bp, void *data)
4299
{
4300 4301 4302 4303 4304 4305 4306
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

	sample.addr = bp->attr.bp_addr;

	if (!perf_exclude_event(bp, regs))
		perf_swevent_add(bp, 1, 1, &sample, regs);
4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318
}
#else
static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	return NULL;
}

void perf_bp_event(struct perf_event *bp, void *regs)
{
}
#endif

4319
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4320

4321
static void sw_perf_event_destroy(struct perf_event *event)
4322
{
4323
	u64 event_id = event->attr.config;
4324

4325
	WARN_ON(event->parent);
4326

4327
	atomic_dec(&perf_swevent_enabled[event_id]);
4328 4329
}

4330
static const struct pmu *sw_perf_event_init(struct perf_event *event)
4331
{
4332
	const struct pmu *pmu = NULL;
4333
	u64 event_id = event->attr.config;
4334

4335
	/*
4336
	 * Software events (currently) can't in general distinguish
4337 4338 4339 4340 4341
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
4342
	switch (event_id) {
4343
	case PERF_COUNT_SW_CPU_CLOCK:
4344
		pmu = &perf_ops_cpu_clock;
4345

4346
		break;
4347
	case PERF_COUNT_SW_TASK_CLOCK:
4348
		/*
4349 4350
		 * If the user instantiates this as a per-cpu event,
		 * use the cpu_clock event instead.
4351
		 */
4352
		if (event->ctx->task)
4353
			pmu = &perf_ops_task_clock;
4354
		else
4355
			pmu = &perf_ops_cpu_clock;
4356

4357
		break;
4358 4359 4360 4361 4362
	case PERF_COUNT_SW_PAGE_FAULTS:
	case PERF_COUNT_SW_PAGE_FAULTS_MIN:
	case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
	case PERF_COUNT_SW_CONTEXT_SWITCHES:
	case PERF_COUNT_SW_CPU_MIGRATIONS:
4363 4364
	case PERF_COUNT_SW_ALIGNMENT_FAULTS:
	case PERF_COUNT_SW_EMULATION_FAULTS:
4365 4366 4367
		if (!event->parent) {
			atomic_inc(&perf_swevent_enabled[event_id]);
			event->destroy = sw_perf_event_destroy;
4368
		}
4369
		pmu = &perf_ops_generic;
4370
		break;
4371
	}
4372

4373
	return pmu;
4374 4375
}

T
Thomas Gleixner 已提交
4376
/*
4377
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
4378
 */
4379 4380
static struct perf_event *
perf_event_alloc(struct perf_event_attr *attr,
4381
		   int cpu,
4382 4383 4384
		   struct perf_event_context *ctx,
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
4385
		   perf_overflow_handler_t overflow_handler,
4386
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
4387
{
4388
	const struct pmu *pmu;
4389 4390
	struct perf_event *event;
	struct hw_perf_event *hwc;
4391
	long err;
T
Thomas Gleixner 已提交
4392

4393 4394
	event = kzalloc(sizeof(*event), gfpflags);
	if (!event)
4395
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
4396

4397
	/*
4398
	 * Single events are their own group leaders, with an
4399 4400 4401
	 * empty sibling list:
	 */
	if (!group_leader)
4402
		group_leader = event;
4403

4404 4405
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
4406

4407 4408 4409 4410
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
4411

4412
	mutex_init(&event->mmap_mutex);
4413

4414 4415 4416 4417 4418 4419
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->ctx		= ctx;
	event->oncpu		= -1;
4420

4421
	event->parent		= parent_event;
4422

4423 4424
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
4425

4426
	event->state		= PERF_EVENT_STATE_INACTIVE;
4427

4428 4429
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
4430
	
4431
	event->overflow_handler	= overflow_handler;
4432

4433
	if (attr->disabled)
4434
		event->state = PERF_EVENT_STATE_OFF;
4435

4436
	pmu = NULL;
4437

4438
	hwc = &event->hw;
4439
	hwc->sample_period = attr->sample_period;
4440
	if (attr->freq && attr->sample_freq)
4441
		hwc->sample_period = 1;
4442
	hwc->last_period = hwc->sample_period;
4443 4444

	atomic64_set(&hwc->period_left, hwc->sample_period);
4445

4446
	/*
4447
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
4448
	 */
4449
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4450 4451
		goto done;

4452
	switch (attr->type) {
4453
	case PERF_TYPE_RAW:
4454
	case PERF_TYPE_HARDWARE:
4455
	case PERF_TYPE_HW_CACHE:
4456
		pmu = hw_perf_event_init(event);
4457 4458 4459
		break;

	case PERF_TYPE_SOFTWARE:
4460
		pmu = sw_perf_event_init(event);
4461 4462 4463
		break;

	case PERF_TYPE_TRACEPOINT:
4464
		pmu = tp_perf_event_init(event);
4465
		break;
4466

4467 4468 4469 4470 4471
	case PERF_TYPE_BREAKPOINT:
		pmu = bp_perf_event_init(event);
		break;


4472 4473
	default:
		break;
4474
	}
4475 4476
done:
	err = 0;
4477
	if (!pmu)
4478
		err = -EINVAL;
4479 4480
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
4481

4482
	if (err) {
4483 4484 4485
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
4486
		return ERR_PTR(err);
I
Ingo Molnar 已提交
4487
	}
4488

4489
	event->pmu = pmu;
T
Thomas Gleixner 已提交
4490

4491 4492 4493 4494 4495 4496 4497 4498
	if (!event->parent) {
		atomic_inc(&nr_events);
		if (event->attr.mmap)
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
4499
	}
4500

4501
	return event;
T
Thomas Gleixner 已提交
4502 4503
}

4504 4505
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
4506 4507
{
	u32 size;
4508
	int ret;
4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
4533 4534 4535
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
4536 4537
	 */
	if (size > sizeof(*attr)) {
4538 4539 4540
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
4541

4542 4543
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
4544

4545
		for (; addr < end; addr++) {
4546 4547 4548 4549 4550 4551
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
4552
		size = sizeof(*attr);
4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

L
Li Zefan 已提交
4584
static int perf_event_set_output(struct perf_event *event, int output_fd)
4585
{
4586
	struct perf_event *output_event = NULL;
4587
	struct file *output_file = NULL;
4588
	struct perf_event *old_output;
4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601
	int fput_needed = 0;
	int ret = -EINVAL;

	if (!output_fd)
		goto set;

	output_file = fget_light(output_fd, &fput_needed);
	if (!output_file)
		return -EBADF;

	if (output_file->f_op != &perf_fops)
		goto out;

4602
	output_event = output_file->private_data;
4603 4604

	/* Don't chain output fds */
4605
	if (output_event->output)
4606 4607 4608
		goto out;

	/* Don't set an output fd when we already have an output channel */
4609
	if (event->data)
4610 4611 4612 4613 4614
		goto out;

	atomic_long_inc(&output_file->f_count);

set:
4615 4616 4617 4618
	mutex_lock(&event->mmap_mutex);
	old_output = event->output;
	rcu_assign_pointer(event->output, output_event);
	mutex_unlock(&event->mmap_mutex);
4619 4620 4621 4622

	if (old_output) {
		/*
		 * we need to make sure no existing perf_output_*()
4623
		 * is still referencing this event.
4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
		 */
		synchronize_rcu();
		fput(old_output->filp);
	}

	ret = 0;
out:
	fput_light(output_file, fput_needed);
	return ret;
}

T
Thomas Gleixner 已提交
4635
/**
4636
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
4637
 *
4638
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
4639
 * @pid:		target pid
I
Ingo Molnar 已提交
4640
 * @cpu:		target cpu
4641
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
4642
 */
4643 4644
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
4645
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
4646
{
4647 4648 4649 4650
	struct perf_event *event, *group_leader;
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
4651 4652
	struct file *group_file = NULL;
	int fput_needed = 0;
4653
	int fput_needed2 = 0;
4654
	int err;
T
Thomas Gleixner 已提交
4655

4656
	/* for future expandability... */
4657
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4658 4659
		return -EINVAL;

4660 4661 4662
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
4663

4664 4665 4666 4667 4668
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

4669
	if (attr.freq) {
4670
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
4671 4672 4673
			return -EINVAL;
	}

4674
	/*
I
Ingo Molnar 已提交
4675 4676 4677 4678 4679 4680 4681
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
4682
	 * Look up the group leader (we will attach this event to it):
4683 4684
	 */
	group_leader = NULL;
4685
	if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4686
		err = -EINVAL;
4687 4688
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
4689
			goto err_put_context;
4690
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
4691
			goto err_put_context;
4692 4693 4694

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
4695 4696 4697 4698 4699 4700 4701 4702
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
4703
		 */
I
Ingo Molnar 已提交
4704 4705
		if (group_leader->ctx != ctx)
			goto err_put_context;
4706 4707 4708
		/*
		 * Only a group leader can be exclusive or pinned
		 */
4709
		if (attr.exclusive || attr.pinned)
4710
			goto err_put_context;
4711 4712
	}

4713
	event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4714
				     NULL, NULL, GFP_KERNEL);
4715 4716
	err = PTR_ERR(event);
	if (IS_ERR(event))
T
Thomas Gleixner 已提交
4717 4718
		goto err_put_context;

4719
	err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0);
4720
	if (err < 0)
4721 4722
		goto err_free_put_context;

4723 4724
	event_file = fget_light(err, &fput_needed2);
	if (!event_file)
4725 4726
		goto err_free_put_context;

4727
	if (flags & PERF_FLAG_FD_OUTPUT) {
4728
		err = perf_event_set_output(event, group_fd);
4729 4730
		if (err)
			goto err_fput_free_put_context;
4731 4732
	}

4733
	event->filp = event_file;
4734
	WARN_ON_ONCE(ctx->parent_ctx);
4735
	mutex_lock(&ctx->mutex);
4736
	perf_install_in_context(ctx, event, cpu);
4737
	++ctx->generation;
4738
	mutex_unlock(&ctx->mutex);
4739

4740
	event->owner = current;
4741
	get_task_struct(current);
4742 4743 4744
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
4745

4746
err_fput_free_put_context:
4747
	fput_light(event_file, fput_needed2);
T
Thomas Gleixner 已提交
4748

4749
err_free_put_context:
4750
	if (err < 0)
4751
		kfree(event);
T
Thomas Gleixner 已提交
4752 4753

err_put_context:
4754 4755 4756 4757
	if (err < 0)
		put_ctx(ctx);

	fput_light(group_file, fput_needed);
T
Thomas Gleixner 已提交
4758

4759
	return err;
T
Thomas Gleixner 已提交
4760 4761
}

4762 4763 4764 4765 4766 4767 4768 4769 4770
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
 * @pid: task to profile
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4771 4772
				 pid_t pid,
				 perf_overflow_handler_t overflow_handler)
4773 4774 4775 4776 4777 4778 4779 4780 4781 4782
{
	struct perf_event *event;
	struct perf_event_context *ctx;
	int err;

	/*
	 * Get the target context (task or percpu):
	 */

	ctx = find_get_context(pid, cpu);
4783 4784 4785 4786
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_exit;
	}
4787 4788

	event = perf_event_alloc(attr, cpu, ctx, NULL,
4789
				 NULL, overflow_handler, GFP_KERNEL);
4790 4791
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
4792
		goto err_put_context;
4793
	}
4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

4810 4811 4812 4813
 err_put_context:
	put_ctx(ctx);
 err_exit:
	return ERR_PTR(err);
4814 4815 4816
}
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);

4817
/*
4818
 * inherit a event from parent task to child task:
4819
 */
4820 4821
static struct perf_event *
inherit_event(struct perf_event *parent_event,
4822
	      struct task_struct *parent,
4823
	      struct perf_event_context *parent_ctx,
4824
	      struct task_struct *child,
4825 4826
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
4827
{
4828
	struct perf_event *child_event;
4829

4830
	/*
4831 4832
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
4833 4834 4835
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
4836 4837
	if (parent_event->parent)
		parent_event = parent_event->parent;
4838

4839 4840 4841
	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu, child_ctx,
					   group_leader, parent_event,
4842
					   NULL, GFP_KERNEL);
4843 4844
	if (IS_ERR(child_event))
		return child_event;
4845
	get_ctx(child_ctx);
4846

4847
	/*
4848
	 * Make the child state follow the state of the parent event,
4849
	 * not its attr.disabled bit.  We hold the parent's mutex,
4850
	 * so we won't race with perf_event_{en, dis}able_family.
4851
	 */
4852 4853
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
4854
	else
4855
		child_event->state = PERF_EVENT_STATE_OFF;
4856

4857 4858
	if (parent_event->attr.freq)
		child_event->hw.sample_period = parent_event->hw.sample_period;
4859

4860 4861
	child_event->overflow_handler = parent_event->overflow_handler;

4862 4863 4864
	/*
	 * Link it up in the child's context:
	 */
4865
	add_event_to_ctx(child_event, child_ctx);
4866 4867 4868

	/*
	 * Get a reference to the parent filp - we will fput it
4869
	 * when the child event exits. This is safe to do because
4870 4871 4872
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
4873
	atomic_long_inc(&parent_event->filp->f_count);
4874

4875
	/*
4876
	 * Link this into the parent event's child list
4877
	 */
4878 4879 4880 4881
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
4882

4883
	return child_event;
4884 4885
}

4886
static int inherit_group(struct perf_event *parent_event,
4887
	      struct task_struct *parent,
4888
	      struct perf_event_context *parent_ctx,
4889
	      struct task_struct *child,
4890
	      struct perf_event_context *child_ctx)
4891
{
4892 4893 4894
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;
4895

4896
	leader = inherit_event(parent_event, parent, parent_ctx,
4897
				 child, NULL, child_ctx);
4898 4899
	if (IS_ERR(leader))
		return PTR_ERR(leader);
4900 4901
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
4902 4903 4904
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
4905
	}
4906 4907 4908
	return 0;
}

4909
static void sync_child_event(struct perf_event *child_event,
4910
			       struct task_struct *child)
4911
{
4912
	struct perf_event *parent_event = child_event->parent;
4913
	u64 child_val;
4914

4915 4916
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
4917

4918
	child_val = atomic64_read(&child_event->count);
4919 4920 4921 4922

	/*
	 * Add back the child's count to the parent's count:
	 */
4923 4924 4925 4926 4927
	atomic64_add(child_val, &parent_event->count);
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
4928 4929

	/*
4930
	 * Remove this event from the parent's list
4931
	 */
4932 4933 4934 4935
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
4936 4937

	/*
4938
	 * Release the parent event, if this was the last
4939 4940
	 * reference to it.
	 */
4941
	fput(parent_event->filp);
4942 4943
}

4944
static void
4945 4946
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
4947
			 struct task_struct *child)
4948
{
4949
	struct perf_event *parent_event;
4950

4951
	perf_event_remove_from_context(child_event);
4952

4953
	parent_event = child_event->parent;
4954
	/*
4955
	 * It can happen that parent exits first, and has events
4956
	 * that are still around due to the child reference. These
4957
	 * events need to be zapped - but otherwise linger.
4958
	 */
4959 4960 4961
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
4962
	}
4963 4964 4965
}

/*
4966
 * When a child task exits, feed back event values to parent events.
4967
 */
4968
void perf_event_exit_task(struct task_struct *child)
4969
{
4970 4971
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
4972
	unsigned long flags;
4973

4974 4975
	if (likely(!child->perf_event_ctxp)) {
		perf_event_task(child, NULL, 0);
4976
		return;
P
Peter Zijlstra 已提交
4977
	}
4978

4979
	local_irq_save(flags);
4980 4981 4982 4983 4984 4985
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
4986 4987
	child_ctx = child->perf_event_ctxp;
	__perf_event_task_sched_out(child_ctx);
4988 4989 4990

	/*
	 * Take the context lock here so that if find_get_context is
4991
	 * reading child->perf_event_ctxp, we wait until it has
4992 4993 4994
	 * incremented the context's refcount before we do put_ctx below.
	 */
	spin_lock(&child_ctx->lock);
4995
	child->perf_event_ctxp = NULL;
4996 4997 4998
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
4999
	 * the events from it.
5000 5001
	 */
	unclone_ctx(child_ctx);
5002
	update_context_time(child_ctx);
P
Peter Zijlstra 已提交
5003 5004 5005
	spin_unlock_irqrestore(&child_ctx->lock, flags);

	/*
5006 5007 5008
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
5009
	 */
5010
	perf_event_task(child, child_ctx, 0);
5011

5012 5013 5014
	/*
	 * We can recurse on the same lock type through:
	 *
5015 5016 5017
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
5018 5019 5020 5021 5022 5023
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
	mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5024

5025
again:
5026
	list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
5027
				 group_entry)
5028
		__perf_event_exit_task(child_event, child_ctx, child);
5029 5030

	/*
5031
	 * If the last event was a group event, it will have appended all
5032 5033 5034
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5035
	if (!list_empty(&child_ctx->group_list))
5036
		goto again;
5037 5038 5039 5040

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5041 5042
}

5043 5044 5045 5046
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
5047
void perf_event_free_task(struct task_struct *task)
5048
{
5049 5050
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event *event, *tmp;
5051 5052 5053 5054 5055 5056

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
5057 5058
	list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
		struct perf_event *parent = event->parent;
5059 5060 5061 5062 5063

		if (WARN_ON_ONCE(!parent))
			continue;

		mutex_lock(&parent->child_mutex);
5064
		list_del_init(&event->child_list);
5065 5066 5067 5068
		mutex_unlock(&parent->child_mutex);

		fput(parent->filp);

5069 5070
		list_del_event(event, ctx);
		free_event(event);
5071 5072
	}

5073
	if (!list_empty(&ctx->group_list))
5074 5075 5076 5077 5078 5079 5080
		goto again;

	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

5081
/*
5082
 * Initialize the perf_event context in task_struct
5083
 */
5084
int perf_event_init_task(struct task_struct *child)
5085
{
5086
	struct perf_event_context *child_ctx = NULL, *parent_ctx;
5087 5088
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
5089
	struct task_struct *parent = current;
5090
	int inherited_all = 1;
5091
	int ret = 0;
5092

5093
	child->perf_event_ctxp = NULL;
5094

5095 5096
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
5097

5098
	if (likely(!parent->perf_event_ctxp))
5099 5100
		return 0;

5101
	/*
5102 5103
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
5104
	 */
5105 5106
	parent_ctx = perf_pin_task_context(parent);

5107 5108 5109 5110 5111 5112 5113
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

5114 5115 5116 5117
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
5118
	mutex_lock(&parent_ctx->mutex);
5119 5120 5121 5122 5123

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
5124
	list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
5125

5126
		if (!event->attr.inherit) {
5127
			inherited_all = 0;
5128
			continue;
5129
		}
5130

5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150
		if (!child->perf_event_ctxp) {
			/*
			 * This is executed from the parent task context, so
			 * inherit events that have been marked for cloning.
			 * First allocate and initialize a context for the
			 * child.
			 */

			child_ctx = kzalloc(sizeof(struct perf_event_context),
					    GFP_KERNEL);
			if (!child_ctx) {
				ret = -ENOMEM;
				goto exit;
			}

			__perf_event_init_context(child_ctx, child);
			child->perf_event_ctxp = child_ctx;
			get_task_struct(child);
		}

5151
		ret = inherit_group(event, parent, parent_ctx,
5152 5153
					     child, child_ctx);
		if (ret) {
5154
			inherited_all = 0;
5155
			break;
5156 5157 5158 5159 5160 5161 5162
		}
	}

	if (inherited_all) {
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
5163 5164
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
5165
		 * because the list of events and the generation
5166
		 * count can't have changed since we took the mutex.
5167
		 */
5168 5169 5170
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
5171
			child_ctx->parent_gen = parent_ctx->parent_gen;
5172 5173 5174 5175 5176
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
5177 5178
	}

5179
exit:
5180
	mutex_unlock(&parent_ctx->mutex);
5181

5182
	perf_unpin_context(parent_ctx);
5183

5184
	return ret;
5185 5186
}

5187
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
5188
{
5189
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
5190

5191
	cpuctx = &per_cpu(perf_cpu_context, cpu);
5192
	__perf_event_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
5193

5194
	spin_lock(&perf_resource_lock);
5195
	cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5196
	spin_unlock(&perf_resource_lock);
5197

5198
	hw_perf_event_setup(cpu);
T
Thomas Gleixner 已提交
5199 5200 5201
}

#ifdef CONFIG_HOTPLUG_CPU
5202
static void __perf_event_exit_cpu(void *info)
T
Thomas Gleixner 已提交
5203 5204
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5205 5206
	struct perf_event_context *ctx = &cpuctx->ctx;
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
5207

5208 5209
	list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
5210
}
5211
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
5212
{
5213
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5214
	struct perf_event_context *ctx = &cpuctx->ctx;
5215 5216

	mutex_lock(&ctx->mutex);
5217
	smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5218
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
5219 5220
}
#else
5221
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
5233
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
5234 5235
		break;

5236 5237
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
5238
		hw_perf_event_setup_online(cpu);
5239 5240
		break;

T
Thomas Gleixner 已提交
5241 5242
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
5243
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
5244 5245 5246 5247 5248 5249 5250 5251 5252
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

5253 5254 5255
/*
 * This has to have a higher priority than migration_notifier in sched.c.
 */
T
Thomas Gleixner 已提交
5256 5257
static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
5258
	.priority		= 20,
T
Thomas Gleixner 已提交
5259 5260
};

5261
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
5262 5263 5264
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
5265 5266
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
			(void *)(long)smp_processor_id());
T
Thomas Gleixner 已提交
5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286
	register_cpu_notifier(&perf_cpu_nb);
}

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
5287
	if (val > perf_max_events)
T
Thomas Gleixner 已提交
5288 5289
		return -EINVAL;

5290
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5291 5292 5293 5294
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
5295 5296
		mpt = min(perf_max_events - cpuctx->ctx.nr_events,
			  perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
5297 5298 5299
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
5300
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

5322
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5323
	perf_overcommit = val;
5324
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
5351
	.name			= "perf_events",
T
Thomas Gleixner 已提交
5352 5353
};

5354
static int __init perf_event_sysfs_init(void)
T
Thomas Gleixner 已提交
5355 5356 5357 5358
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
5359
device_initcall(perf_event_sysfs_init);