inode.c 155.3 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38 39
#include <linux/uio.h>
#include <linux/bio.h>
40
#include "ext4_jbd2.h"
41 42
#include "xattr.h"
#include "acl.h"
43
#include "ext4_extents.h"
44

45 46
#define MPAGE_DA_EXTENT_TAIL 0x01

47 48 49
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
50 51 52 53
	return jbd2_journal_begin_ordered_truncate(
					EXT4_SB(inode->i_sb)->s_journal,
					&EXT4_I(inode)->jinode,
					new_size);
54 55
}

56 57
static void ext4_invalidatepage(struct page *page, unsigned long offset);

58 59 60
/*
 * Test whether an inode is a fast symlink.
 */
61
static int ext4_inode_is_fast_symlink(struct inode *inode)
62
{
63
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
64 65 66 67 68 69
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
70
 * The ext4 forget function must perform a revoke if we are freeing data
71 72 73 74 75 76
 * which has been journaled.  Metadata (eg. indirect blocks) must be
 * revoked in all cases.
 *
 * "bh" may be NULL: a metadata block may have been freed from memory
 * but there may still be a record of it in the journal, and that record
 * still needs to be revoked.
77 78
 *
 * If the handle isn't valid we're not journaling so there's nothing to do.
79
 */
80 81
int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
			struct buffer_head *bh, ext4_fsblk_t blocknr)
82 83 84
{
	int err;

85 86 87
	if (!ext4_handle_valid(handle))
		return 0;

88 89 90 91 92 93 94 95 96 97 98 99 100 101
	might_sleep();

	BUFFER_TRACE(bh, "enter");

	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
		  "data mode %lx\n",
		  bh, is_metadata, inode->i_mode,
		  test_opt(inode->i_sb, DATA_FLAGS));

	/* Never use the revoke function if we are doing full data
	 * journaling: there is no need to, and a V1 superblock won't
	 * support it.  Otherwise, only skip the revoke on un-journaled
	 * data blocks. */

102 103
	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
	    (!is_metadata && !ext4_should_journal_data(inode))) {
104
		if (bh) {
105
			BUFFER_TRACE(bh, "call jbd2_journal_forget");
106
			return ext4_journal_forget(handle, bh);
107 108 109 110 111 112 113
		}
		return 0;
	}

	/*
	 * data!=journal && (is_metadata || should_journal_data(inode))
	 */
114 115
	BUFFER_TRACE(bh, "call ext4_journal_revoke");
	err = ext4_journal_revoke(handle, blocknr, bh);
116
	if (err)
117
		ext4_abort(inode->i_sb, __func__,
118 119 120 121 122 123 124 125 126 127 128
			   "error %d when attempting revoke", err);
	BUFFER_TRACE(bh, "exit");
	return err;
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
129
	ext4_lblk_t needed;
130 131 132 133 134 135

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
136
	 * like a regular file for ext4 to try to delete it.  Things
137 138 139 140 141 142 143
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
144 145
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
146

147
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

164
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
165 166 167
	if (!IS_ERR(result))
		return result;

168
	ext4_std_error(inode->i_sb, PTR_ERR(result));
169 170 171 172 173 174 175 176 177 178 179
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
180 181 182
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
183
		return 0;
184
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
185 186 187 188 189 190 191 192 193
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
194
static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
195
{
196
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
197
	jbd_debug(2, "restarting handle %p\n", handle);
198
	return ext4_journal_restart(handle, blocks_for_truncate(inode));
199 200 201 202 203
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
204
void ext4_delete_inode(struct inode *inode)
205 206
{
	handle_t *handle;
207
	int err;
208

209 210
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
211 212 213 214 215
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

216
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
217
	if (IS_ERR(handle)) {
218
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
219 220 221 222 223
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
224
		ext4_orphan_del(NULL, inode);
225 226 227 228
		goto no_delete;
	}

	if (IS_SYNC(inode))
229
		ext4_handle_sync(handle);
230
	inode->i_size = 0;
231 232 233 234 235 236
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
		ext4_warning(inode->i_sb, __func__,
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
237
	if (inode->i_blocks)
238
		ext4_truncate(inode);
239 240 241 242 243 244 245

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
246
	if (!ext4_handle_has_enough_credits(handle, 3)) {
247 248 249 250 251 252 253 254 255 256 257 258
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
			ext4_warning(inode->i_sb, __func__,
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
			goto no_delete;
		}
	}

259
	/*
260
	 * Kill off the orphan record which ext4_truncate created.
261
	 * AKPM: I think this can be inside the above `if'.
262
	 * Note that ext4_orphan_del() has to be able to cope with the
263
	 * deletion of a non-existent orphan - this is because we don't
264
	 * know if ext4_truncate() actually created an orphan record.
265 266
	 * (Well, we could do this if we need to, but heck - it works)
	 */
267 268
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
269 270 271 272 273 274 275 276

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
277
	if (ext4_mark_inode_dirty(handle, inode))
278 279 280
		/* If that failed, just do the required in-core inode clear. */
		clear_inode(inode);
	else
281 282
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
	return;
no_delete:
	clear_inode(inode);	/* We must guarantee clearing of inode... */
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
301
 *	ext4_block_to_path - parse the block number into array of offsets
302 303 304
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
305 306
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
307
 *
308
 *	To store the locations of file's data ext4 uses a data structure common
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

331
static int ext4_block_to_path(struct inode *inode,
A
Aneesh Kumar K.V 已提交
332 333
			ext4_lblk_t i_block,
			ext4_lblk_t offsets[4], int *boundary)
334
{
335 336 337
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
338 339 340 341 342 343
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

	if (i_block < 0) {
344
		ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
345 346 347
	} else if (i_block < direct_blocks) {
		offsets[n++] = i_block;
		final = direct_blocks;
348
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
349
		offsets[n++] = EXT4_IND_BLOCK;
350 351 352
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
353
		offsets[n++] = EXT4_DIND_BLOCK;
354 355 356 357
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
358
		offsets[n++] = EXT4_TIND_BLOCK;
359 360 361 362 363
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
364
		ext4_warning(inode->i_sb, "ext4_block_to_path",
365
				"block %lu > max in inode %lu",
366
				i_block + direct_blocks +
367
				indirect_blocks + double_blocks, inode->i_ino);
368 369 370 371 372 373
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

374
static int __ext4_check_blockref(const char *function, struct inode *inode,
375
				 __le32 *p, unsigned int max) {
376 377

	unsigned int maxblocks = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es);
378
	__le32 *bref = p;
379
	while (bref < p+max) {
380
		if (unlikely(le32_to_cpu(*bref) >= maxblocks)) {
381 382 383
			ext4_error(inode->i_sb, function,
				   "block reference %u >= max (%u) "
				   "in inode #%lu, offset=%d",
384
				   le32_to_cpu(*bref), maxblocks,
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
				   inode->i_ino, (int)(bref-p));
 			return -EIO;
 		}
		bref++;
 	}
 	return 0;
}


#define ext4_check_indirect_blockref(inode, bh)                         \
        __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))

#define ext4_check_inode_blockref(inode)                                \
        __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
			      EXT4_NDIR_BLOCKS)

402
/**
403
 *	ext4_get_branch - read the chain of indirect blocks leading to data
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
428 429
 *
 *      Need to be called with
430
 *      down_read(&EXT4_I(inode)->i_data_sem)
431
 */
A
Aneesh Kumar K.V 已提交
432 433
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
434 435 436 437 438 439 440 441
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
442
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
443 444 445
	if (!p->key)
		goto no_block;
	while (--depth) {
446 447
		bh = sb_getblk(sb, le32_to_cpu(p->key));
		if (unlikely(!bh))
448
			goto failure;
449 450 451 452 453 454 455 456 457 458 459 460 461
                  
		if (!bh_uptodate_or_lock(bh)) {
			if (bh_submit_read(bh) < 0) {
				put_bh(bh);
				goto failure;
			}
			/* validate block references */
			if (ext4_check_indirect_blockref(inode, bh)) {
				put_bh(bh);
				goto failure;
			}
		}
		
462
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
463 464 465 466 467 468 469 470 471 472 473 474 475
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
476
 *	ext4_find_near - find a place for allocation with sufficient locality
477 478 479
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
480
 *	This function returns the preferred place for block allocation.
481 482 483 484 485 486 487 488 489 490 491 492 493 494
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
495
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
496
{
497
	struct ext4_inode_info *ei = EXT4_I(inode);
498
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
499
	__le32 *p;
500
	ext4_fsblk_t bg_start;
501
	ext4_fsblk_t last_block;
502
	ext4_grpblk_t colour;
503 504
	ext4_group_t block_group;
	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
520 521 522 523 524 525 526
	block_group = ei->i_block_group;
	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
		block_group &= ~(flex_size-1);
		if (S_ISREG(inode->i_mode))
			block_group++;
	}
	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
527 528
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

529 530 531 532 533 534 535
	/*
	 * If we are doing delayed allocation, we don't need take
	 * colour into account.
	 */
	if (test_opt(inode->i_sb, DELALLOC))
		return bg_start;

536 537
	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
538
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
539 540
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
541 542 543 544
	return bg_start + colour;
}

/**
545
 *	ext4_find_goal - find a preferred place for allocation.
546 547 548 549
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
550
 *	Normally this function find the preferred place for block allocation,
551
 *	returns it.
552
 */
A
Aneesh Kumar K.V 已提交
553
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
554
		Indirect *partial)
555 556
{
	/*
557
	 * XXX need to get goal block from mballoc's data structures
558 559
	 */

560
	return ext4_find_near(inode, partial);
561 562 563
}

/**
564
 *	ext4_blks_to_allocate: Look up the block map and count the number
565 566 567 568 569 570 571 572 573 574
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
575
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
576 577
		int blocks_to_boundary)
{
578
	unsigned int count = 0;
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
602
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
603 604 605 606 607 608 609 610
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
611
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
612 613 614
				ext4_lblk_t iblock, ext4_fsblk_t goal,
				int indirect_blks, int blks,
				ext4_fsblk_t new_blocks[4], int *err)
615
{
616
	struct ext4_allocation_request ar;
617
	int target, i;
618
	unsigned long count = 0, blk_allocated = 0;
619
	int index = 0;
620
	ext4_fsblk_t current_block = 0;
621 622 623 624 625 626 627 628 629 630
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
631 632 633
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
634 635
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
636 637
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
638 639 640 641 642 643 644 645 646
		if (*err)
			goto failed_out;

		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
647 648 649 650 651 652 653 654 655
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
656
			break;
657
		}
658 659
	}

660 661 662 663 664
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
665 666 667 668 669 670 671 672 673 674 675
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
		/*
		 * save the new block number
		 * for the first direct block
		 */
			new_blocks[index] = current_block;
		}
691
		blk_allocated += ar.len;
692 693
	}
allocated:
694
	/* total number of blocks allocated for direct blocks */
695
	ret = blk_allocated;
696 697 698
	*err = 0;
	return ret;
failed_out:
699
	for (i = 0; i < index; i++)
700
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
701 702 703 704
	return ret;
}

/**
705
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
706 707 708 709 710 711 712 713 714 715
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
716
 *	the same format as ext4_get_branch() would do. We are calling it after
717 718
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
719
 *	picture as after the successful ext4_get_block(), except that in one
720 721 722 723 724 725
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
726
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
727 728
 *	as described above and return 0.
 */
729
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
730 731 732
				ext4_lblk_t iblock, int indirect_blks,
				int *blks, ext4_fsblk_t goal,
				ext4_lblk_t *offsets, Indirect *branch)
733 734 735 736 737 738
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
739 740
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
741

742
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
761
		err = ext4_journal_get_create_access(handle, bh);
762 763 764 765 766 767 768 769 770 771
		if (err) {
			unlock_buffer(bh);
			brelse(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
772
		if (n == indirect_blks) {
773 774 775 776 777 778 779 780 781 782 783 784 785
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
			for (i=1; i < num; i++)
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

786 787
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
788 789 790 791 792 793 794 795
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
	for (i = 1; i <= n ; i++) {
796
		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
797
		ext4_journal_forget(handle, branch[i].bh);
798
	}
799
	for (i = 0; i < indirect_blks; i++)
800
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
801

802
	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
803 804 805 806 807

	return err;
}

/**
808
 * ext4_splice_branch - splice the allocated branch onto inode.
809 810 811
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
812
 *	ext4_alloc_branch)
813 814 815 816 817 818 819 820
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
821
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
822
			ext4_lblk_t block, Indirect *where, int num, int blks)
823 824 825
{
	int i;
	int err = 0;
826
	ext4_fsblk_t current_block;
827 828 829 830 831 832 833 834

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
835
		err = ext4_journal_get_write_access(handle, where->bh);
836 837 838 839 840 841 842 843 844 845 846 847 848 849
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
850
			*(where->p + i) = cpu_to_le32(current_block++);
851 852 853 854
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */

K
Kalpak Shah 已提交
855
	inode->i_ctime = ext4_current_time(inode);
856
	ext4_mark_inode_dirty(handle, inode);
857 858 859 860 861 862 863 864 865

	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
866
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
867 868
		 */
		jbd_debug(5, "splicing indirect only\n");
869 870
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
871 872 873 874 875 876 877 878 879 880 881 882 883
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 * Inode was dirtied above.
		 */
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
884
		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
885
		ext4_journal_forget(handle, where[i].bh);
886 887
		ext4_free_blocks(handle, inode,
					le32_to_cpu(where[i-1].key), 1, 0);
888
	}
889
	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910

	return err;
}

/*
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
911 912 913
 *
 *
 * Need to be called with
914 915
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
916
 */
917 918 919 920
static int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
				  ext4_lblk_t iblock, unsigned int maxblocks,
				  struct buffer_head *bh_result,
				  int create, int extend_disksize)
921 922
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
923
	ext4_lblk_t offsets[4];
924 925
	Indirect chain[4];
	Indirect *partial;
926
	ext4_fsblk_t goal;
927 928 929
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
930
	struct ext4_inode_info *ei = EXT4_I(inode);
931
	int count = 0;
932
	ext4_fsblk_t first_block = 0;
933
	loff_t disksize;
934 935


A
Alex Tomas 已提交
936
	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
937
	J_ASSERT(handle != NULL || create == 0);
A
Aneesh Kumar K.V 已提交
938 939
	depth = ext4_block_to_path(inode, iblock, offsets,
					&blocks_to_boundary);
940 941 942 943

	if (depth == 0)
		goto out;

944
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
945 946 947 948 949 950 951 952

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		clear_buffer_new(bh_result);
		count++;
		/*map more blocks*/
		while (count < maxblocks && count <= blocks_to_boundary) {
953
			ext4_fsblk_t blk;
954 955 956 957 958 959 960 961

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
962
		goto got_it;
963 964 965 966 967 968 969
	}

	/* Next simple case - plain lookup or failed read of indirect block */
	if (!create || err == -EIO)
		goto cleanup;

	/*
970
	 * Okay, we need to do block allocation.
971
	*/
972
	goal = ext4_find_goal(inode, iblock, partial);
973 974 975 976 977 978 979 980

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
981
	count = ext4_blks_to_allocate(partial, indirect_blks,
982 983
					maxblocks, blocks_to_boundary);
	/*
984
	 * Block out ext4_truncate while we alter the tree
985
	 */
986 987 988
	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
					&count, goal,
					offsets + (partial - chain), partial);
989 990

	/*
991
	 * The ext4_splice_branch call will free and forget any buffers
992 993 994 995 996 997
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
998
		err = ext4_splice_branch(handle, inode, iblock,
999 1000
					partial, indirect_blks, count);
	/*
1001
	 * i_disksize growing is protected by i_data_sem.  Don't forget to
1002
	 * protect it if you're about to implement concurrent
1003
	 * ext4_get_block() -bzzz
1004
	*/
1005 1006 1007 1008 1009 1010 1011
	if (!err && extend_disksize) {
		disksize = ((loff_t) iblock + count) << inode->i_blkbits;
		if (disksize > i_size_read(inode))
			disksize = i_size_read(inode);
		if (disksize > ei->i_disksize)
			ei->i_disksize = disksize;
	}
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
	if (err)
		goto cleanup;

	set_buffer_new(bh_result);
got_it:
	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
	if (count > blocks_to_boundary)
		set_buffer_boundary(bh_result);
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
	BUFFER_TRACE(bh_result, "returned");
out:
	return err;
}

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
qsize_t ext4_get_reserved_space(struct inode *inode)
{
	unsigned long long total;

	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	total = EXT4_I(inode)->i_reserved_data_blocks +
		EXT4_I(inode)->i_reserved_meta_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	return total;
}
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
/*
 * Calculate the number of metadata blocks need to reserve
 * to allocate @blocks for non extent file based file
 */
static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
{
	int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ind_blks, dind_blks, tind_blks;

	/* number of new indirect blocks needed */
	ind_blks = (blocks + icap - 1) / icap;

	dind_blks = (ind_blks + icap - 1) / icap;

	tind_blks = 1;

	return ind_blks + dind_blks + tind_blks;
}

/*
 * Calculate the number of metadata blocks need to reserve
 * to allocate given number of blocks
 */
static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
{
1070 1071 1072
	if (!blocks)
		return 0;

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
		return ext4_ext_calc_metadata_amount(inode, blocks);

	return ext4_indirect_calc_metadata_amount(inode, blocks);
}

static void ext4_da_update_reserve_space(struct inode *inode, int used)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int total, mdb, mdb_free;

	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	/* recalculate the number of metablocks still need to be reserved */
	total = EXT4_I(inode)->i_reserved_data_blocks - used;
	mdb = ext4_calc_metadata_amount(inode, total);

	/* figure out how many metablocks to release */
	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;

1093 1094 1095 1096 1097 1098 1099 1100 1101
	if (mdb_free) {
		/* Account for allocated meta_blocks */
		mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;

		/* update fs dirty blocks counter */
		percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
		EXT4_I(inode)->i_allocated_meta_blocks = 0;
		EXT4_I(inode)->i_reserved_meta_blocks = mdb;
	}
1102 1103 1104 1105 1106

	/* update per-inode reservations */
	BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
	EXT4_I(inode)->i_reserved_data_blocks -= used;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1107 1108 1109 1110 1111 1112

	/*
	 * free those over-booking quota for metadata blocks
	 */
	if (mdb_free)
		vfs_dq_release_reservation_block(inode, mdb_free);
1113 1114 1115 1116 1117 1118 1119 1120

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
	if (!total && (atomic_read(&inode->i_writecount) == 0))
		ext4_discard_preallocations(inode);
1121 1122
}

1123
/*
1124 1125
 * The ext4_get_blocks_wrap() function try to look up the requested blocks,
 * and returns if the blocks are already mapped.
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
 * If file type is extents based, it will call ext4_ext_get_blocks(),
 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
1145
int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1146
			unsigned int max_blocks, struct buffer_head *bh,
1147
			int create, int extend_disksize, int flag)
1148 1149
{
	int retval;
1150 1151

	clear_buffer_mapped(bh);
1152
	clear_buffer_unwritten(bh);
1153

1154 1155 1156 1157 1158 1159 1160 1161
	/*
	 * Try to see if we can get  the block without requesting
	 * for new file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
				bh, 0, 0);
1162
	} else {
1163 1164
		retval = ext4_get_blocks_handle(handle,
				inode, block, max_blocks, bh, 0, 0);
1165
	}
1166
	up_read((&EXT4_I(inode)->i_data_sem));
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179

	/* If it is only a block(s) look up */
	if (!create)
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
	if (retval > 0 && buffer_mapped(bh))
1180 1181
		return retval;

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
	clear_buffer_unwritten(bh);

1194
	/*
1195 1196 1197 1198
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
1199 1200
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
1201 1202 1203 1204 1205 1206 1207 1208 1209

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
	if (flag)
		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1210 1211 1212 1213
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
1214 1215 1216 1217 1218 1219
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
				bh, create, extend_disksize);
	} else {
		retval = ext4_get_blocks_handle(handle, inode, block,
				max_blocks, bh, create, extend_disksize);
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229

		if (retval > 0 && buffer_new(bh)) {
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
			EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
							~EXT4_EXT_MIGRATE;
		}
1230
	}
1231 1232 1233 1234 1235 1236 1237 1238 1239

	if (flag) {
		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
		/*
		 * Update reserved blocks/metadata blocks
		 * after successful block allocation
		 * which were deferred till now
		 */
		if ((retval > 0) && buffer_delay(bh))
1240
			ext4_da_update_reserve_space(inode, retval);
1241 1242
	}

1243
	up_write((&EXT4_I(inode)->i_data_sem));
1244 1245 1246
	return retval;
}

1247 1248 1249
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

1250 1251
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create)
1252
{
1253
	handle_t *handle = ext4_journal_current_handle();
J
Jan Kara 已提交
1254
	int ret = 0, started = 0;
1255
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1256
	int dio_credits;
1257

J
Jan Kara 已提交
1258 1259 1260 1261
	if (create && !handle) {
		/* Direct IO write... */
		if (max_blocks > DIO_MAX_BLOCKS)
			max_blocks = DIO_MAX_BLOCKS;
1262 1263
		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
1264
		if (IS_ERR(handle)) {
1265
			ret = PTR_ERR(handle);
J
Jan Kara 已提交
1266
			goto out;
1267
		}
J
Jan Kara 已提交
1268
		started = 1;
1269 1270
	}

J
Jan Kara 已提交
1271
	ret = ext4_get_blocks_wrap(handle, inode, iblock,
1272
					max_blocks, bh_result, create, 0, 0);
J
Jan Kara 已提交
1273 1274 1275
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
1276
	}
J
Jan Kara 已提交
1277 1278 1279
	if (started)
		ext4_journal_stop(handle);
out:
1280 1281 1282 1283 1284 1285
	return ret;
}

/*
 * `handle' can be NULL if create is zero
 */
1286
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1287
				ext4_lblk_t block, int create, int *errp)
1288 1289 1290 1291 1292 1293 1294 1295 1296
{
	struct buffer_head dummy;
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

	dummy.b_state = 0;
	dummy.b_blocknr = -1000;
	buffer_trace_init(&dummy.b_history);
A
Alex Tomas 已提交
1297
	err = ext4_get_blocks_wrap(handle, inode, block, 1,
1298
					&dummy, create, 1, 0);
1299
	/*
1300
	 * ext4_get_blocks_handle() returns number of blocks
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
	 * mapped. 0 in case of a HOLE.
	 */
	if (err > 0) {
		if (err > 1)
			WARN_ON(1);
		err = 0;
	}
	*errp = err;
	if (!err && buffer_mapped(&dummy)) {
		struct buffer_head *bh;
		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
		if (!bh) {
			*errp = -EIO;
			goto err;
		}
		if (buffer_new(&dummy)) {
			J_ASSERT(create != 0);
A
Aneesh Kumar K.V 已提交
1318
			J_ASSERT(handle != NULL);
1319 1320 1321 1322 1323

			/*
			 * Now that we do not always journal data, we should
			 * keep in mind whether this should always journal the
			 * new buffer as metadata.  For now, regular file
1324
			 * writes use ext4_get_block instead, so it's not a
1325 1326 1327 1328
			 * problem.
			 */
			lock_buffer(bh);
			BUFFER_TRACE(bh, "call get_create_access");
1329
			fatal = ext4_journal_get_create_access(handle, bh);
1330
			if (!fatal && !buffer_uptodate(bh)) {
1331
				memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1332 1333 1334
				set_buffer_uptodate(bh);
			}
			unlock_buffer(bh);
1335 1336
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			err = ext4_handle_dirty_metadata(handle, inode, bh);
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
			if (!fatal)
				fatal = err;
		} else {
			BUFFER_TRACE(bh, "not a new buffer");
		}
		if (fatal) {
			*errp = fatal;
			brelse(bh);
			bh = NULL;
		}
		return bh;
	}
err:
	return NULL;
}

1353
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1354
			       ext4_lblk_t block, int create, int *err)
1355
{
1356
	struct buffer_head *bh;
1357

1358
	bh = ext4_getblk(handle, inode, block, create, err);
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

1372 1373 1374 1375 1376 1377 1378
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
1379 1380 1381 1382 1383 1384 1385
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

1386 1387 1388
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
	     block_start = block_end, bh = next)
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	{
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1407
 * close off a transaction and start a new one between the ext4_get_block()
1408
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1409 1410
 * prepare_write() is the right place.
 *
1411 1412
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1413 1414 1415 1416
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1417
 * By accident, ext4 can be reentered when a transaction is open via
1418 1419 1420 1421 1422 1423
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1424
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1425 1426 1427 1428 1429 1430 1431 1432 1433
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
					struct buffer_head *bh)
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1434
	return ext4_journal_get_write_access(handle, bh);
1435 1436
}

N
Nick Piggin 已提交
1437 1438 1439
static int ext4_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
1440
{
1441
	struct inode *inode = mapping->host;
1442
	int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1443 1444
	handle_t *handle;
	int retries = 0;
1445
	struct page *page;
N
Nick Piggin 已提交
1446
 	pgoff_t index;
1447
	unsigned from, to;
N
Nick Piggin 已提交
1448

1449 1450 1451 1452
	trace_mark(ext4_write_begin,
		   "dev %s ino %lu pos %llu len %u flags %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, flags);
N
Nick Piggin 已提交
1453
 	index = pos >> PAGE_CACHE_SHIFT;
1454 1455
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
1456 1457

retry:
1458 1459 1460 1461
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
1462
	}
1463

1464 1465 1466 1467
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

1468
	page = grab_cache_page_write_begin(mapping, index, flags);
1469 1470 1471 1472 1473 1474 1475
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

N
Nick Piggin 已提交
1476
	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1477
				ext4_get_block);
N
Nick Piggin 已提交
1478 1479

	if (!ret && ext4_should_journal_data(inode)) {
1480 1481 1482
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1483 1484

	if (ret) {
1485
		unlock_page(page);
1486
		ext4_journal_stop(handle);
1487
		page_cache_release(page);
1488 1489 1490 1491 1492 1493 1494
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
			vmtruncate(inode, inode->i_size);
N
Nick Piggin 已提交
1495 1496
	}

1497
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1498
		goto retry;
1499
out:
1500 1501 1502
	return ret;
}

N
Nick Piggin 已提交
1503 1504
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1505 1506 1507 1508
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1509
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1510 1511 1512 1513 1514 1515
}

/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1516
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1517 1518
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1519 1520 1521 1522
static int ext4_ordered_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1523
{
1524
	handle_t *handle = ext4_journal_current_handle();
1525
	struct inode *inode = mapping->host;
1526 1527
	int ret = 0, ret2;

1528 1529 1530 1531
	trace_mark(ext4_ordered_write_end,
		   "dev %s ino %lu pos %llu len %u copied %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, copied);
1532
	ret = ext4_jbd2_file_inode(handle, inode);
1533 1534 1535 1536

	if (ret == 0) {
		loff_t new_i_size;

N
Nick Piggin 已提交
1537
		new_i_size = pos + copied;
1538 1539 1540 1541 1542 1543 1544 1545 1546
		if (new_i_size > EXT4_I(inode)->i_disksize) {
			ext4_update_i_disksize(inode, new_i_size);
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
		}

1547
		ret2 = generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1548
							page, fsdata);
1549 1550 1551
		copied = ret2;
		if (ret2 < 0)
			ret = ret2;
1552
	}
1553
	ret2 = ext4_journal_stop(handle);
1554 1555
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1556 1557

	return ret ? ret : copied;
1558 1559
}

N
Nick Piggin 已提交
1560 1561 1562 1563
static int ext4_writeback_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1564
{
1565
	handle_t *handle = ext4_journal_current_handle();
1566
	struct inode *inode = mapping->host;
1567 1568 1569
	int ret = 0, ret2;
	loff_t new_i_size;

1570 1571 1572 1573
	trace_mark(ext4_writeback_write_end,
		   "dev %s ino %lu pos %llu len %u copied %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, copied);
N
Nick Piggin 已提交
1574
	new_i_size = pos + copied;
1575 1576 1577 1578 1579 1580 1581 1582
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_mark_inode_dirty(handle, inode);
	}
1583

1584
	ret2 = generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1585
							page, fsdata);
1586 1587 1588
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
1589

1590
	ret2 = ext4_journal_stop(handle);
1591 1592
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1593 1594

	return ret ? ret : copied;
1595 1596
}

N
Nick Piggin 已提交
1597 1598 1599 1600
static int ext4_journalled_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1601
{
1602
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1603
	struct inode *inode = mapping->host;
1604 1605
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1606
	unsigned from, to;
1607
	loff_t new_i_size;
1608

1609 1610 1611 1612
	trace_mark(ext4_journalled_write_end,
		   "dev %s ino %lu pos %llu len %u copied %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, copied);
N
Nick Piggin 已提交
1613 1614 1615 1616 1617 1618 1619 1620
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1621 1622

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1623
				to, &partial, write_end_fn);
1624 1625
	if (!partial)
		SetPageUptodate(page);
1626 1627
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1628
		i_size_write(inode, pos+copied);
1629
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1630 1631
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1632
		ret2 = ext4_mark_inode_dirty(handle, inode);
1633 1634 1635
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1636

1637
	unlock_page(page);
1638
	ret2 = ext4_journal_stop(handle);
1639 1640
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1641 1642 1643
	page_cache_release(page);

	return ret ? ret : copied;
1644
}
1645 1646 1647

static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
{
A
Aneesh Kumar K.V 已提交
1648
	int retries = 0;
1649 1650
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	unsigned long md_needed, mdblocks, total = 0;
1651 1652 1653 1654 1655 1656

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1657
repeat:
1658 1659 1660 1661 1662 1663 1664 1665
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
	mdblocks = ext4_calc_metadata_amount(inode, total);
	BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);

	md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
	total = md_needed + nrblocks;

1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
	/*
	 * Make quota reservation here to prevent quota overflow
	 * later. Real quota accounting is done at pages writeout
	 * time.
	 */
	if (vfs_dq_reserve_block(inode, total)) {
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
		return -EDQUOT;
	}

1676
	if (ext4_claim_free_blocks(sbi, total)) {
1677
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
A
Aneesh Kumar K.V 已提交
1678 1679 1680 1681
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1682
		vfs_dq_release_reservation_block(inode, total);
1683 1684 1685 1686 1687 1688 1689 1690 1691
		return -ENOSPC;
	}
	EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
	EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
	return 0;       /* success */
}

1692
static void ext4_da_release_space(struct inode *inode, int to_free)
1693 1694 1695 1696
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int total, mdb, mdb_free, release;

1697 1698 1699
	if (!to_free)
		return;		/* Nothing to release, exit */

1700
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715

	if (!EXT4_I(inode)->i_reserved_data_blocks) {
		/*
		 * if there is no reserved blocks, but we try to free some
		 * then the counter is messed up somewhere.
		 * but since this function is called from invalidate
		 * page, it's harmless to return without any action
		 */
		printk(KERN_INFO "ext4 delalloc try to release %d reserved "
			    "blocks for inode %lu, but there is no reserved "
			    "data blocks\n", to_free, inode->i_ino);
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
		return;
	}

1716
	/* recalculate the number of metablocks still need to be reserved */
1717
	total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1718 1719 1720 1721 1722 1723 1724 1725
	mdb = ext4_calc_metadata_amount(inode, total);

	/* figure out how many metablocks to release */
	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;

	release = to_free + mdb_free;

1726 1727
	/* update fs dirty blocks counter for truncate case */
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1728 1729

	/* update per-inode reservations */
1730 1731
	BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
	EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1732 1733 1734 1735

	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	EXT4_I(inode)->i_reserved_meta_blocks = mdb;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1736 1737

	vfs_dq_release_reservation_block(inode, release);
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
}

static void ext4_da_page_release_reservation(struct page *page,
						unsigned long offset)
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1758
	ext4_da_release_space(page->mapping->host, to_release);
1759
}
1760

1761 1762 1763 1764 1765 1766
/*
 * Delayed allocation stuff
 */

struct mpage_da_data {
	struct inode *inode;
1767 1768 1769
	sector_t b_blocknr;		/* start block number of extent */
	size_t b_size;			/* size of extent */
	unsigned long b_state;		/* state of the extent */
1770 1771
	unsigned long first_page, next_page;	/* extent of pages */
	struct writeback_control *wbc;
1772
	int io_done;
1773
	int pages_written;
1774
	int retval;
1775 1776 1777 1778
};

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1779
 * them with writepage() call back
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
static int mpage_da_submit_io(struct mpage_da_data *mpd)
{
1792
	long pages_skipped;
1793 1794 1795 1796 1797
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1798 1799

	BUG_ON(mpd->next_page <= mpd->first_page);
1800 1801 1802
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1803
	 * If we look at mpd->b_blocknr we would only be looking
1804 1805
	 * at the currently mapped buffer_heads.
	 */
1806 1807 1808
	index = mpd->first_page;
	end = mpd->next_page - 1;

1809
	pagevec_init(&pvec, 0);
1810
	while (index <= end) {
1811
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1812 1813 1814 1815 1816
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

1817 1818 1819 1820 1821 1822 1823 1824
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1825
			pages_skipped = mpd->wbc->pages_skipped;
1826
			err = mapping->a_ops->writepage(page, mpd->wbc);
1827 1828 1829 1830 1831
			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
				/*
				 * have successfully written the page
				 * without skipping the same
				 */
1832
				mpd->pages_written++;
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 * XXX: unlock and re-dirty them?
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
	return ret;
}

/*
 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
 *
 * @mpd->inode - inode to walk through
 * @exbh->b_blocknr - first block on a disk
 * @exbh->b_size - amount of space in bytes
 * @logical - first logical block to start assignment with
 *
 * the function goes through all passed space and put actual disk
1855
 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1856 1857 1858 1859 1860 1861 1862 1863 1864
 */
static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
				 struct buffer_head *exbh)
{
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
	int blocks = exbh->b_size >> inode->i_blkbits;
	sector_t pblock = exbh->b_blocknr, cur_logical;
	struct buffer_head *head, *bh;
1865
	pgoff_t index, end;
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
	struct pagevec pvec;
	int nr_pages, i;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);

	pagevec_init(&pvec, 0);

	while (index <= end) {
		/* XXX: optimize tail */
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			BUG_ON(!page_has_buffers(page));

			bh = page_buffers(page);
			head = bh;

			/* skip blocks out of the range */
			do {
				if (cur_logical >= logical)
					break;
				cur_logical++;
			} while ((bh = bh->b_this_page) != head);

			do {
				if (cur_logical >= logical + blocks)
					break;
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922

				if (buffer_delay(bh) ||
						buffer_unwritten(bh)) {

					BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);

					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					} else {
						/*
						 * unwritten already should have
						 * blocknr assigned. Verify that
						 */
						clear_buffer_unwritten(bh);
						BUG_ON(bh->b_blocknr != pblock);
					}

1923
				} else if (buffer_mapped(bh))
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
					BUG_ON(bh->b_blocknr != pblock);

				cur_logical++;
				pblock++;
			} while ((bh = bh->b_this_page) != head);
		}
		pagevec_release(&pvec);
	}
}


/*
 * __unmap_underlying_blocks - just a helper function to unmap
 * set of blocks described by @bh
 */
static inline void __unmap_underlying_blocks(struct inode *inode,
					     struct buffer_head *bh)
{
	struct block_device *bdev = inode->i_sb->s_bdev;
	int blocks, i;

	blocks = bh->b_size >> inode->i_blkbits;
	for (i = 0; i < blocks; i++)
		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
}

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
					sector_t logical, long blk_cnt)
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end   = (logical + blk_cnt - 1) >>
				(PAGE_CACHE_SHIFT - inode->i_blkbits);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
	}
	return;
}

1983 1984 1985 1986 1987 1988 1989
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	printk(KERN_EMERG "Total free blocks count %lld\n",
			ext4_count_free_blocks(inode->i_sb));
	printk(KERN_EMERG "Free/Dirty block details\n");
	printk(KERN_EMERG "free_blocks=%lld\n",
1990
			(long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
1991
	printk(KERN_EMERG "dirty_blocks=%lld\n",
1992
			(long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1993
	printk(KERN_EMERG "Block reservation details\n");
1994
	printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
1995
			EXT4_I(inode)->i_reserved_data_blocks);
1996
	printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
1997 1998 1999 2000
			EXT4_I(inode)->i_reserved_meta_blocks);
	return;
}

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
#define		EXT4_DELALLOC_RSVED	1
static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create)
{
	int ret;
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
	loff_t disksize = EXT4_I(inode)->i_disksize;
	handle_t *handle = NULL;

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);
	ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
				   bh_result, create, 0, EXT4_DELALLOC_RSVED);
	if (ret <= 0)
		return ret;

	bh_result->b_size = (ret << inode->i_blkbits);

	if (ext4_should_order_data(inode)) {
		int retval;
		retval = ext4_jbd2_file_inode(handle, inode);
		if (retval)
			/*
			 * Failed to add inode for ordered mode. Don't
			 * update file size
			 */
			return retval;
	}

	/*
	 * Update on-disk size along with block allocation we don't
	 * use 'extend_disksize' as size may change within already
	 * allocated block -bzzz
	 */
	disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
	if (disksize > i_size_read(inode))
		disksize = i_size_read(inode);
	if (disksize > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, disksize);
		ret = ext4_mark_inode_dirty(handle, inode);
		return ret;
	}
	return 0;
}

2046 2047 2048
/*
 * mpage_da_map_blocks - go through given space
 *
2049
 * @mpd - bh describing space
2050 2051 2052 2053
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
2054
static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2055
{
2056
	int err = 0;
A
Aneesh Kumar K.V 已提交
2057
	struct buffer_head new;
2058
	sector_t next;
2059 2060 2061 2062

	/*
	 * We consider only non-mapped and non-allocated blocks
	 */
2063
	if ((mpd->b_state  & (1 << BH_Mapped)) &&
2064 2065
		!(mpd->b_state & (1 << BH_Delay)) &&
		!(mpd->b_state & (1 << BH_Unwritten)))
2066
		return 0;
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
	/*
	 * We need to make sure the BH_Delay flag is passed down to
	 * ext4_da_get_block_write(), since it calls
	 * ext4_get_blocks_wrap() with the EXT4_DELALLOC_RSVED flag.
	 * This flag causes ext4_get_blocks_wrap() to call
	 * ext4_da_update_reserve_space() if the passed buffer head
	 * has the BH_Delay flag set.  In the future, once we clean up
	 * the interfaces to ext4_get_blocks_wrap(), we should pass in
	 * a separate flag which requests that the delayed allocation
	 * statistics should be updated, instead of depending on the
	 * state information getting passed down via the map_bh's
	 * state bitmasks plus the magic EXT4_DELALLOC_RSVED flag.
	 */
	new.b_state = mpd->b_state & (1 << BH_Delay);
2081
	new.b_blocknr = 0;
2082 2083
	new.b_size = mpd->b_size;
	next = mpd->b_blocknr;
2084 2085 2086 2087 2088
	/*
	 * If we didn't accumulate anything
	 * to write simply return
	 */
	if (!new.b_size)
2089 2090
		return 0;

2091 2092 2093 2094 2095 2096
	err = ext4_da_get_block_write(mpd->inode, next, &new, 1);
	if (err) {
		/*
		 * If get block returns with error we simply
		 * return. Later writepage will redirty the page and
		 * writepages will find the dirty page again
2097 2098 2099
		 */
		if (err == -EAGAIN)
			return 0;
2100 2101

		if (err == -ENOSPC &&
2102
		    ext4_count_free_blocks(mpd->inode->i_sb)) {
2103 2104 2105 2106
			mpd->retval = err;
			return 0;
		}

2107
		/*
2108 2109 2110 2111 2112
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
2113 2114 2115 2116 2117 2118
		 */
		printk(KERN_EMERG "%s block allocation failed for inode %lu "
				  "at logical offset %llu with max blocks "
				  "%zd with error %d\n",
				  __func__, mpd->inode->i_ino,
				  (unsigned long long)next,
2119
				  mpd->b_size >> mpd->inode->i_blkbits, err);
2120 2121
		printk(KERN_EMERG "This should not happen.!! "
					"Data will be lost\n");
A
Aneesh Kumar K.V 已提交
2122
		if (err == -ENOSPC) {
2123
			ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
2124
		}
2125 2126
		/* invlaidate all the pages */
		ext4_da_block_invalidatepages(mpd, next,
2127
				mpd->b_size >> mpd->inode->i_blkbits);
2128 2129
		return err;
	}
2130
	BUG_ON(new.b_size == 0);
2131

2132 2133
	if (buffer_new(&new))
		__unmap_underlying_blocks(mpd->inode, &new);
2134

2135 2136 2137 2138
	/*
	 * If blocks are delayed marked, we need to
	 * put actual blocknr and drop delayed bit
	 */
2139 2140
	if ((mpd->b_state & (1 << BH_Delay)) ||
	    (mpd->b_state & (1 << BH_Unwritten)))
2141
		mpage_put_bnr_to_bhs(mpd, next, &new);
2142

2143
	return 0;
2144 2145
}

2146 2147
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2159 2160
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
2161 2162
{
	sector_t next;
2163
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2164

2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
	/* check if thereserved journal credits might overflow */
	if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
2187 2188 2189
	/*
	 * First block in the extent
	 */
2190 2191 2192 2193
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
2194 2195 2196
		return;
	}

2197
	next = mpd->b_blocknr + nrblocks;
2198 2199 2200
	/*
	 * Can we merge the block to our big extent?
	 */
2201 2202
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
2203 2204 2205
		return;
	}

2206
flush_it:
2207 2208 2209 2210
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
2211 2212
	if (mpage_da_map_blocks(mpd) == 0)
		mpage_da_submit_io(mpd);
2213 2214
	mpd->io_done = 1;
	return;
2215 2216
}

2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
{
	/*
	 * unmapped buffer is possible for holes.
	 * delay buffer is possible with delayed allocation.
	 * We also need to consider unwritten buffer as unmapped.
	 */
	return (!buffer_mapped(bh) || buffer_delay(bh) ||
				buffer_unwritten(bh)) && buffer_dirty(bh);
}

2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
/*
 * __mpage_da_writepage - finds extent of pages and blocks
 *
 * @page: page to consider
 * @wbc: not used, we just follow rules
 * @data: context
 *
 * The function finds extents of pages and scan them for all blocks.
 */
static int __mpage_da_writepage(struct page *page,
				struct writeback_control *wbc, void *data)
{
	struct mpage_da_data *mpd = data;
	struct inode *inode = mpd->inode;
2242
	struct buffer_head *bh, *head;
2243 2244
	sector_t logical;

2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
	if (mpd->io_done) {
		/*
		 * Rest of the page in the page_vec
		 * redirty then and skip then. We will
		 * try to to write them again after
		 * starting a new transaction
		 */
		redirty_page_for_writepage(wbc, page);
		unlock_page(page);
		return MPAGE_DA_EXTENT_TAIL;
	}
2256 2257 2258 2259 2260 2261
	/*
	 * Can we merge this page to current extent?
	 */
	if (mpd->next_page != page->index) {
		/*
		 * Nope, we can't. So, we map non-allocated blocks
2262
		 * and start IO on them using writepage()
2263 2264
		 */
		if (mpd->next_page != mpd->first_page) {
2265 2266
			if (mpage_da_map_blocks(mpd) == 0)
				mpage_da_submit_io(mpd);
2267 2268 2269 2270 2271 2272 2273
			/*
			 * skip rest of the page in the page_vec
			 */
			mpd->io_done = 1;
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return MPAGE_DA_EXTENT_TAIL;
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
		}

		/*
		 * Start next extent of pages ...
		 */
		mpd->first_page = page->index;

		/*
		 * ... and blocks
		 */
2284 2285 2286
		mpd->b_size = 0;
		mpd->b_state = 0;
		mpd->b_blocknr = 0;
2287 2288 2289 2290 2291 2292 2293
	}

	mpd->next_page = page->index + 1;
	logical = (sector_t) page->index <<
		  (PAGE_CACHE_SHIFT - inode->i_blkbits);

	if (!page_has_buffers(page)) {
2294 2295
		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2296 2297
		if (mpd->io_done)
			return MPAGE_DA_EXTENT_TAIL;
2298 2299 2300 2301 2302 2303 2304 2305
	} else {
		/*
		 * Page with regular buffer heads, just add all dirty ones
		 */
		head = page_buffers(page);
		bh = head;
		do {
			BUG_ON(buffer_locked(bh));
2306 2307 2308 2309 2310 2311
			/*
			 * We need to try to allocate
			 * unmapped blocks in the same page.
			 * Otherwise we won't make progress
			 * with the page in ext4_da_writepage
			 */
2312
			if (ext4_bh_unmapped_or_delay(NULL, bh)) {
2313 2314 2315
				mpage_add_bh_to_extent(mpd, logical,
						       bh->b_size,
						       bh->b_state);
2316 2317
				if (mpd->io_done)
					return MPAGE_DA_EXTENT_TAIL;
2318 2319 2320 2321 2322 2323 2324 2325 2326
			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
				/*
				 * mapped dirty buffer. We need to update
				 * the b_state because we look at
				 * b_state in mpage_da_map_blocks. We don't
				 * update b_size because if we find an
				 * unmapped buffer_head later we need to
				 * use the b_state flag of that buffer_head.
				 */
2327 2328
				if (mpd->b_size == 0)
					mpd->b_state = bh->b_state & BH_FLAGS;
2329
			}
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
			logical++;
		} while ((bh = bh->b_this_page) != head);
	}

	return 0;
}

/*
 * this is a special callback for ->write_begin() only
 * it's intention is to return mapped block or reserve space
2340 2341 2342 2343 2344 2345 2346 2347
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
 *
2348 2349 2350 2351 2352
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
				  struct buffer_head *bh_result, int create)
{
	int ret = 0;
2353 2354 2355 2356
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;
2357 2358 2359 2360 2361 2362 2363 2364 2365

	BUG_ON(create == 0);
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2366 2367 2368
	ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
	if ((ret == 0) && !buffer_delay(bh_result)) {
		/* the block isn't (pre)allocated yet, let's reserve space */
2369 2370 2371 2372
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
2373 2374 2375 2376 2377
		ret = ext4_da_reserve_space(inode, 1);
		if (ret)
			/* not enough space to reserve */
			return ret;

2378
		map_bh(bh_result, inode->i_sb, invalid_block);
2379 2380 2381 2382
		set_buffer_new(bh_result);
		set_buffer_delay(bh_result);
	} else if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
2383 2384 2385 2386 2387 2388 2389 2390
		if (buffer_unwritten(bh_result)) {
			/* A delayed write to unwritten bh should
			 * be marked new and mapped.  Mapped ensures
			 * that we don't do get_block multiple times
			 * when we write to the same offset and new
			 * ensures that we do proper zero out for
			 * partial write.
			 */
2391
			set_buffer_new(bh_result);
2392 2393
			set_buffer_mapped(bh_result);
		}
2394 2395 2396 2397 2398
		ret = 0;
	}

	return ret;
}
2399

2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create)
{
	int ret = 0;
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;

	/*
	 * we don't want to do block allocation in writepage
	 * so call get_block_wrap with create = 0
	 */
	ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
				   bh_result, 0, 0, 0);
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
	}
	return ret;
2417 2418 2419
}

/*
2420 2421 2422 2423
 * get called vi ext4_da_writepages after taking page lock (have journal handle)
 * get called via journal_submit_inode_data_buffers (no journal handle)
 * get called via shrink_page_list via pdflush (no journal handle)
 * or grab_page_cache when doing write_begin (have journal handle)
2424
 */
2425 2426 2427 2428
static int ext4_da_writepage(struct page *page,
				struct writeback_control *wbc)
{
	int ret = 0;
2429
	loff_t size;
2430
	unsigned int len;
2431 2432 2433
	struct buffer_head *page_bufs;
	struct inode *inode = page->mapping->host;

2434 2435 2436
	trace_mark(ext4_da_writepage,
		   "dev %s ino %lu page_index %lu",
		   inode->i_sb->s_id, inode->i_ino, page->index);
2437 2438 2439 2440 2441
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2442

2443
	if (page_has_buffers(page)) {
2444
		page_bufs = page_buffers(page);
2445 2446
		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
					ext4_bh_unmapped_or_delay)) {
2447
			/*
2448 2449
			 * We don't want to do  block allocation
			 * So redirty the page and return
2450 2451 2452
			 * We may reach here when we do a journal commit
			 * via journal_submit_inode_data_buffers.
			 * If we don't have mapping block we just ignore
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
			 * them. We can also reach here via shrink_page_list
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
	} else {
		/*
		 * The test for page_has_buffers() is subtle:
		 * We know the page is dirty but it lost buffers. That means
		 * that at some moment in time after write_begin()/write_end()
		 * has been called all buffers have been clean and thus they
		 * must have been written at least once. So they are all
		 * mapped and we can happily proceed with mapping them
		 * and writing the page.
		 *
		 * Try to initialize the buffer_heads and check whether
		 * all are mapped and non delay. We don't want to
		 * do block allocation here.
		 */
		ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
						ext4_normal_get_block_write);
		if (!ret) {
			page_bufs = page_buffers(page);
			/* check whether all are mapped and non delay */
			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
						ext4_bh_unmapped_or_delay)) {
				redirty_page_for_writepage(wbc, page);
				unlock_page(page);
				return 0;
			}
		} else {
			/*
			 * We can't do block allocation here
			 * so just redity the page and unlock
			 * and return
2489 2490 2491 2492 2493
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
2494 2495
		/* now mark the buffer_heads as dirty and uptodate */
		block_commit_write(page, 0, PAGE_CACHE_SIZE);
2496 2497 2498
	}

	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2499
		ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2500
	else
2501 2502 2503
		ret = block_write_full_page(page,
						ext4_normal_get_block_write,
						wbc);
2504 2505 2506 2507

	return ret;
}

2508
/*
2509 2510 2511 2512 2513
 * This is called via ext4_da_writepages() to
 * calulate the total number of credits to reserve to fit
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2514
 */
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
	if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2532

2533
static int ext4_da_writepages(struct address_space *mapping,
2534
			      struct writeback_control *wbc)
2535
{
2536 2537
	pgoff_t	index;
	int range_whole = 0;
2538
	handle_t *handle = NULL;
2539
	struct mpage_da_data mpd;
2540
	struct inode *inode = mapping->host;
2541
	int no_nrwrite_index_update;
2542 2543
	int pages_written = 0;
	long pages_skipped;
2544
	int range_cyclic, cycled = 1, io_done = 0;
2545 2546
	int needed_blocks, ret = 0, nr_to_writebump = 0;
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2547

2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
	trace_mark(ext4_da_writepages,
		   "dev %s ino %lu nr_t_write %ld "
		   "pages_skipped %ld range_start %llu "
		   "range_end %llu nonblocking %d "
		   "for_kupdate %d for_reclaim %d "
		   "for_writepages %d range_cyclic %d",
		   inode->i_sb->s_id, inode->i_ino,
		   wbc->nr_to_write, wbc->pages_skipped,
		   (unsigned long long) wbc->range_start,
		   (unsigned long long) wbc->range_end,
		   wbc->nonblocking, wbc->for_kupdate,
		   wbc->for_reclaim, wbc->for_writepages,
		   wbc->range_cyclic);

2562 2563 2564 2565 2566
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2567
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2568
		return 0;
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
	 * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
	if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
		return -EROFS;

2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
	/*
	 * Make sure nr_to_write is >= sbi->s_mb_stream_request
	 * This make sure small files blocks are allocated in
	 * single attempt. This ensure that small files
	 * get less fragmented.
	 */
	if (wbc->nr_to_write < sbi->s_mb_stream_request) {
		nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
		wbc->nr_to_write = sbi->s_mb_stream_request;
	}
2593 2594
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2595

2596 2597
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2598
		index = mapping->writeback_index;
2599 2600 2601 2602 2603 2604
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
	} else
2605
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2606

2607 2608 2609
	mpd.wbc = wbc;
	mpd.inode = mapping->host;

2610 2611 2612 2613 2614 2615 2616 2617
	/*
	 * we don't want write_cache_pages to update
	 * nr_to_write and writeback_index
	 */
	no_nrwrite_index_update = wbc->no_nrwrite_index_update;
	wbc->no_nrwrite_index_update = 1;
	pages_skipped = wbc->pages_skipped;

2618
retry:
2619
	while (!ret && wbc->nr_to_write > 0) {
2620 2621 2622 2623 2624 2625 2626 2627

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2628
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2629

2630 2631 2632 2633
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2634
			printk(KERN_CRIT "%s: jbd2_start: "
2635 2636 2637
			       "%ld pages, ino %lu; err %d\n", __func__,
				wbc->nr_to_write, inode->i_ino, ret);
			dump_stack();
2638 2639
			goto out_writepages;
		}
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671

		/*
		 * Now call __mpage_da_writepage to find the next
		 * contiguous region of logical blocks that need
		 * blocks to be allocated by ext4.  We don't actually
		 * submit the blocks for I/O here, even though
		 * write_cache_pages thinks it will, and will set the
		 * pages as clean for write before calling
		 * __mpage_da_writepage().
		 */
		mpd.b_size = 0;
		mpd.b_state = 0;
		mpd.b_blocknr = 0;
		mpd.first_page = 0;
		mpd.next_page = 0;
		mpd.io_done = 0;
		mpd.pages_written = 0;
		mpd.retval = 0;
		ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
					&mpd);
		/*
		 * If we have a contigous extent of pages and we
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
			if (mpage_da_map_blocks(&mpd) == 0)
				mpage_da_submit_io(&mpd);
			mpd.io_done = 1;
			ret = MPAGE_DA_EXTENT_TAIL;
		}
		wbc->nr_to_write -= mpd.pages_written;
2672

2673
		ext4_journal_stop(handle);
2674

2675
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2676 2677 2678 2679
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2680
			jbd2_journal_force_commit_nested(sbi->s_journal);
2681 2682 2683
			wbc->pages_skipped = pages_skipped;
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2684 2685 2686 2687
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
2688 2689
			pages_written += mpd.pages_written;
			wbc->pages_skipped = pages_skipped;
2690
			ret = 0;
2691
			io_done = 1;
2692
		} else if (wbc->nr_to_write)
2693 2694 2695 2696 2697 2698
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2699
	}
2700 2701 2702 2703 2704 2705 2706
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2707 2708 2709 2710 2711 2712 2713
	if (pages_skipped != wbc->pages_skipped)
		printk(KERN_EMERG "This should not happen leaving %s "
				"with nr_to_write = %ld ret = %d\n",
				__func__, wbc->nr_to_write, ret);

	/* Update index */
	index += pages_written;
2714
	wbc->range_cyclic = range_cyclic;
2715 2716 2717 2718 2719 2720
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
		mapping->writeback_index = index;
2721

2722
out_writepages:
2723 2724 2725
	if (!no_nrwrite_index_update)
		wbc->no_nrwrite_index_update = 0;
	wbc->nr_to_write -= nr_to_writebump;
2726 2727 2728 2729 2730 2731 2732 2733
	trace_mark(ext4_da_writepage_result,
		   "dev %s ino %lu ret %d pages_written %d "
		   "pages_skipped %ld congestion %d "
		   "more_io %d no_nrwrite_index_update %d",
		   inode->i_sb->s_id, inode->i_ino, ret,
		   pages_written, wbc->pages_skipped,
		   wbc->encountered_congestion, wbc->more_io,
		   wbc->no_nrwrite_index_update);
2734
	return ret;
2735 2736
}

2737 2738 2739 2740 2741 2742 2743 2744 2745
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2746
	 * counters can get slightly wrong with percpu_counter_batch getting
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
	if (2 * free_blocks < 3 * dirty_blocks ||
		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
		/*
		 * free block count is less that 150% of dirty blocks
		 * or free blocks is less that watermark
		 */
		return 1;
	}
	return 0;
}

2764 2765 2766 2767
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
{
2768
	int ret, retries = 0;
2769 2770 2771 2772 2773 2774 2775 2776 2777
	struct page *page;
	pgoff_t index;
	unsigned from, to;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
2778 2779 2780 2781 2782 2783 2784

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2785 2786 2787 2788 2789

	trace_mark(ext4_da_write_begin,
		   "dev %s ino %lu pos %llu len %u flags %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, flags);
2790
retry:
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
2802 2803 2804
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
2805

2806
	page = grab_cache_page_write_begin(mapping, index, flags);
2807 2808 2809 2810 2811
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
2812 2813 2814 2815 2816 2817 2818 2819
	*pagep = page;

	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
							ext4_da_get_block_prep);
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
2820 2821 2822 2823 2824 2825 2826
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
			vmtruncate(inode, inode->i_size);
2827 2828
	}

2829 2830
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
2831 2832 2833 2834
out:
	return ret;
}

2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
					 unsigned long offset)
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2850
	for (i = 0; i < idx; i++)
2851 2852
		bh = bh->b_this_page;

2853
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2854 2855 2856 2857
		return 0;
	return 1;
}

2858 2859 2860 2861 2862 2863 2864 2865 2866
static int ext4_da_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2867
	unsigned long start, end;
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
2881

2882 2883 2884 2885
	trace_mark(ext4_da_write_end,
		   "dev %s ino %lu pos %llu len %u copied %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, copied);
2886
	start = pos & (PAGE_CACHE_SIZE - 1);
2887
	end = start + copied - 1;
2888 2889 2890 2891 2892 2893 2894 2895

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
2907

2908 2909 2910
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
2911 2912 2913 2914 2915
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2916
		}
2917
	}
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2939
	ext4_da_page_release_reservation(page, offset);
2940 2941 2942 2943 2944 2945 2946

out:
	ext4_invalidatepage(page, offset);

	return;
}

2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
	 * 
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
	 * the pages by calling redirty_page_for_writeback() but that
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
	 * simplifying them becuase we wouldn't actually intend to
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
	 * 
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
2989

2990 2991 2992 2993 2994
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2995
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2996 2997 2998 2999 3000 3001 3002 3003
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
3004
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3005 3006 3007 3008 3009
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

3020
	if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
3032
		 * NB. EXT4_STATE_JDATA is not set on files other than
3033 3034 3035 3036 3037 3038
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

3039 3040
		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
		journal = EXT4_JOURNAL(inode);
3041 3042 3043
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
3044 3045 3046 3047 3048

		if (err)
			return 0;
	}

3049
	return generic_block_bmap(mapping, block, ext4_get_block);
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
}

static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

/*
3065 3066 3067 3068 3069 3070 3071 3072
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
 * we are writing back data modified via mmap(), noone guarantees in which
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
3073
 *
3074
 * In all journaling modes block_write_full_page() will start the I/O.
3075 3076 3077
 *
 * Problem:
 *
3078 3079
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
3080 3081 3082
 *
 * Similar for:
 *
3083
 *	ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
3084
 *
3085
 * Same applies to ext4_get_block().  We will deadlock on various things like
3086
 * lock_journal and i_data_sem
3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
 *
 * Setting PF_MEMALLOC here doesn't work - too many internal memory
 * allocations fail.
 *
 * 16May01: If we're reentered then journal_current_handle() will be
 *	    non-zero. We simply *return*.
 *
 * 1 July 2001: @@@ FIXME:
 *   In journalled data mode, a data buffer may be metadata against the
 *   current transaction.  But the same file is part of a shared mapping
 *   and someone does a writepage() on it.
 *
 *   We will move the buffer onto the async_data list, but *after* it has
 *   been dirtied. So there's a small window where we have dirty data on
 *   BJ_Metadata.
 *
 *   Note that this only applies to the last partial page in the file.  The
 *   bit which block_write_full_page() uses prepare/commit for.  (That's
 *   broken code anyway: it's wrong for msync()).
 *
 *   It's a rare case: affects the final partial page, for journalled data
 *   where the file is subject to bith write() and writepage() in the same
 *   transction.  To fix it we'll need a custom block_write_full_page().
 *   We'll probably need that anyway for journalling writepage() output.
 *
 * We don't honour synchronous mounts for writepage().  That would be
 * disastrous.  Any write() or metadata operation will sync the fs for
 * us.
 *
 */
3117
static int __ext4_normal_writepage(struct page *page,
3118 3119 3120 3121 3122
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;

	if (test_opt(inode->i_sb, NOBH))
3123 3124
		return nobh_writepage(page,
					ext4_normal_get_block_write, wbc);
3125
	else
3126 3127 3128
		return block_write_full_page(page,
						ext4_normal_get_block_write,
						wbc);
3129 3130
}

3131
static int ext4_normal_writepage(struct page *page,
3132 3133 3134
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
3135 3136 3137
	loff_t size = i_size_read(inode);
	loff_t len;

3138 3139 3140
	trace_mark(ext4_normal_writepage,
		   "dev %s ino %lu page_index %lu",
		   inode->i_sb->s_id, inode->i_ino, page->index);
3141 3142 3143 3144 3145
	J_ASSERT(PageLocked(page));
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159

	if (page_has_buffers(page)) {
		/* if page has buffers it should all be mapped
		 * and allocated. If there are not buffers attached
		 * to the page we know the page is dirty but it lost
		 * buffers. That means that at some moment in time
		 * after write_begin() / write_end() has been called
		 * all buffers have been clean and thus they must have been
		 * written at least once. So they are all mapped and we can
		 * happily proceed with mapping them and writing the page.
		 */
		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
					ext4_bh_unmapped_or_delay));
	}
3160 3161

	if (!ext4_journal_current_handle())
3162
		return __ext4_normal_writepage(page, wbc);
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174

	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				struct writeback_control *wbc)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
3175 3176 3177 3178
	handle_t *handle = NULL;
	int ret = 0;
	int err;

3179 3180
	ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
					ext4_normal_get_block_write);
3181 3182 3183 3184 3185 3186 3187 3188 3189
	if (ret != 0)
		goto out_unlock;

	page_bufs = page_buffers(page);
	walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
								bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);
3190

3191
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
3192 3193
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
3194
		goto out;
3195 3196
	}

3197 3198
	ret = walk_page_buffers(handle, page_bufs, 0,
			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
3199

3200 3201 3202 3203
	err = walk_page_buffers(handle, page_bufs, 0,
				PAGE_CACHE_SIZE, NULL, write_end_fn);
	if (ret == 0)
		ret = err;
3204
	err = ext4_journal_stop(handle);
3205 3206 3207
	if (!ret)
		ret = err;

3208 3209 3210 3211 3212 3213
	walk_page_buffers(handle, page_bufs, 0,
				PAGE_CACHE_SIZE, NULL, bput_one);
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
	goto out;

out_unlock:
3214
	unlock_page(page);
3215
out:
3216 3217 3218
	return ret;
}

3219
static int ext4_journalled_writepage(struct page *page,
3220 3221 3222
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
3223 3224
	loff_t size = i_size_read(inode);
	loff_t len;
3225

3226 3227 3228
	trace_mark(ext4_journalled_writepage,
		   "dev %s ino %lu page_index %lu",
		   inode->i_sb->s_id, inode->i_ino, page->index);
3229 3230 3231 3232 3233
	J_ASSERT(PageLocked(page));
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247

	if (page_has_buffers(page)) {
		/* if page has buffers it should all be mapped
		 * and allocated. If there are not buffers attached
		 * to the page we know the page is dirty but it lost
		 * buffers. That means that at some moment in time
		 * after write_begin() / write_end() has been called
		 * all buffers have been clean and thus they must have been
		 * written at least once. So they are all mapped and we can
		 * happily proceed with mapping them and writing the page.
		 */
		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
					ext4_bh_unmapped_or_delay));
	}
3248

3249
	if (ext4_journal_current_handle())
3250 3251
		goto no_write;

3252
	if (PageChecked(page)) {
3253 3254 3255 3256 3257
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
		ClearPageChecked(page);
3258
		return __ext4_journalled_writepage(page, wbc);
3259 3260 3261 3262 3263 3264
	} else {
		/*
		 * It may be a page full of checkpoint-mode buffers.  We don't
		 * really know unless we go poke around in the buffer_heads.
		 * But block_write_full_page will do the right thing.
		 */
3265 3266 3267
		return block_write_full_page(page,
						ext4_normal_get_block_write,
						wbc);
3268 3269 3270 3271
	}
no_write:
	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
3272
	return 0;
3273 3274
}

3275
static int ext4_readpage(struct file *file, struct page *page)
3276
{
3277
	return mpage_readpage(page, ext4_get_block);
3278 3279 3280
}

static int
3281
ext4_readpages(struct file *file, struct address_space *mapping,
3282 3283
		struct list_head *pages, unsigned nr_pages)
{
3284
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3285 3286
}

3287
static void ext4_invalidatepage(struct page *page, unsigned long offset)
3288
{
3289
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3290 3291 3292 3293 3294 3295 3296

	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

3297 3298 3299 3300
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
3301 3302
}

3303
static int ext4_releasepage(struct page *page, gfp_t wait)
3304
{
3305
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3306 3307 3308 3309

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
3310 3311 3312 3313
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3314 3315 3316 3317 3318 3319 3320 3321
}

/*
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
3322 3323
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
3324
 */
3325
static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3326 3327 3328 3329 3330
			const struct iovec *iov, loff_t offset,
			unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3331
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
3332
	handle_t *handle;
3333 3334 3335 3336 3337 3338 3339 3340
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
3341 3342 3343 3344 3345 3346
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
3347
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
3348 3349 3350 3351
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
3352 3353
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
3354
			ext4_journal_stop(handle);
3355 3356 3357 3358 3359
		}
	}

	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
3360
				 ext4_get_block, NULL);
3361

J
Jan Kara 已提交
3362
	if (orphan) {
3363 3364
		int err;

J
Jan Kara 已提交
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
			goto out;
		}
		if (inode->i_nlink)
3375
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
3376
		if (ret > 0) {
3377 3378 3379 3380 3381 3382 3383 3384
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
3385
				 * ext4_mark_inode_dirty() to userspace.  So
3386 3387
				 * ignore it.
				 */
3388
				ext4_mark_inode_dirty(handle, inode);
3389 3390
			}
		}
3391
		err = ext4_journal_stop(handle);
3392 3393 3394 3395 3396 3397 3398 3399
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

/*
3400
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3412
static int ext4_journalled_set_page_dirty(struct page *page)
3413 3414 3415 3416 3417
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3418
static const struct address_space_operations ext4_ordered_aops = {
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_normal_writepage,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3431 3432
};

3433
static const struct address_space_operations ext4_writeback_aops = {
3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_normal_writepage,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3446 3447
};

3448
static const struct address_space_operations ext4_journalled_aops = {
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_journalled_writepage,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.is_partially_uptodate  = block_is_partially_uptodate,
3460 3461
};

3462
static const struct address_space_operations ext4_da_aops = {
3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_da_writepage,
	.writepages		= ext4_da_writepages,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3476 3477
};

3478
void ext4_set_aops(struct inode *inode)
3479
{
3480 3481 3482 3483
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
3484
		inode->i_mapping->a_ops = &ext4_ordered_aops;
3485 3486 3487
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
3488 3489
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
3490
	else
3491
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3492 3493 3494
}

/*
3495
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3496 3497 3498 3499
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
3500
int ext4_block_truncate_page(handle_t *handle,
3501 3502
		struct address_space *mapping, loff_t from)
{
3503
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3504
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
3505 3506
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
3507 3508
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
3509
	struct page *page;
3510 3511
	int err = 0;

3512 3513 3514 3515
	page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
	if (!page)
		return -EINVAL;

3516 3517 3518 3519 3520 3521 3522 3523 3524
	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	/*
	 * For "nobh" option,  we can only work if we don't need to
	 * read-in the page - otherwise we create buffers to do the IO.
	 */
	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3525
	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
3526
		zero_user(page, offset, length);
3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
		set_page_dirty(page);
		goto unlock;
	}

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
3551
		ext4_get_block(inode, iblock, bh, 0);
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

3572
	if (ext4_should_journal_data(inode)) {
3573
		BUFFER_TRACE(bh, "get write access");
3574
		err = ext4_journal_get_write_access(handle, bh);
3575 3576 3577 3578
		if (err)
			goto unlock;
	}

3579
	zero_user(page, offset, length);
3580 3581 3582 3583

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
3584
	if (ext4_should_journal_data(inode)) {
3585
		err = ext4_handle_dirty_metadata(handle, inode, bh);
3586
	} else {
3587
		if (ext4_should_order_data(inode))
3588
			err = ext4_jbd2_file_inode(handle, inode);
3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
3612
 *	ext4_find_shared - find the indirect blocks for partial truncation.
3613 3614
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
3615
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
3616 3617 3618
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
3619
 *	This is a helper function used by ext4_truncate().
3620 3621 3622 3623 3624 3625 3626
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
3627
 *	past the truncation point is possible until ext4_truncate()
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

3646
static Indirect *ext4_find_shared(struct inode *inode, int depth,
A
Aneesh Kumar K.V 已提交
3647
			ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3648 3649 3650 3651 3652 3653 3654 3655
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
	/* Make k index the deepest non-null offest + 1 */
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
3656
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
3657 3658 3659 3660 3661 3662 3663 3664 3665 3666
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
3667
	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
3679
		/* Nope, don't do this in ext4.  Must leave the tree intact */
3680 3681 3682 3683 3684 3685
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

3686
	while (partial > p) {
3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
3702 3703
static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
		struct buffer_head *bh, ext4_fsblk_t block_to_free,
3704 3705 3706 3707 3708
		unsigned long count, __le32 *first, __le32 *last)
{
	__le32 *p;
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
3709 3710
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			ext4_handle_dirty_metadata(handle, inode, bh);
3711
		}
3712 3713
		ext4_mark_inode_dirty(handle, inode);
		ext4_journal_test_restart(handle, inode);
3714 3715
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
3716
			ext4_journal_get_write_access(handle, bh);
3717 3718 3719 3720 3721
		}
	}

	/*
	 * Any buffers which are on the journal will be in memory. We find
3722
	 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3723
	 * on them.  We've already detached each block from the file, so
3724
	 * bforget() in jbd2_journal_forget() should be safe.
3725
	 *
3726
	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3727 3728 3729 3730
	 */
	for (p = first; p < last; p++) {
		u32 nr = le32_to_cpu(*p);
		if (nr) {
A
Aneesh Kumar K.V 已提交
3731
			struct buffer_head *tbh;
3732 3733

			*p = 0;
A
Aneesh Kumar K.V 已提交
3734 3735
			tbh = sb_find_get_block(inode->i_sb, nr);
			ext4_forget(handle, 0, inode, tbh, nr);
3736 3737 3738
		}
	}

3739
	ext4_free_blocks(handle, inode, block_to_free, count, 0);
3740 3741 3742
}

/**
3743
 * ext4_free_data - free a list of data blocks
3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
3761
static void ext4_free_data(handle_t *handle, struct inode *inode,
3762 3763 3764
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
3765
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3766 3767 3768 3769
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
3770
	ext4_fsblk_t nr;		    /* Current block # */
3771 3772 3773 3774 3775 3776
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
3777
		err = ext4_journal_get_write_access(handle, this_bh);
3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
3795
				ext4_clear_blocks(handle, inode, this_bh,
3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
						  block_to_free,
						  count, block_to_free_p, p);
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
3806
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3807 3808 3809
				  count, block_to_free_p, p);

	if (this_bh) {
3810
		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3811 3812 3813 3814 3815 3816 3817

		/*
		 * The buffer head should have an attached journal head at this
		 * point. However, if the data is corrupted and an indirect
		 * block pointed to itself, it would have been detached when
		 * the block was cleared. Check for this instead of OOPSing.
		 */
3818
		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3819
			ext4_handle_dirty_metadata(handle, inode, this_bh);
3820 3821 3822 3823 3824 3825
		else
			ext4_error(inode->i_sb, __func__,
				   "circular indirect block detected, "
				   "inode=%lu, block=%llu",
				   inode->i_ino,
				   (unsigned long long) this_bh->b_blocknr);
3826 3827 3828 3829
	}
}

/**
3830
 *	ext4_free_branches - free an array of branches
3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
3842
static void ext4_free_branches(handle_t *handle, struct inode *inode,
3843 3844 3845
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
3846
	ext4_fsblk_t nr;
3847 3848
	__le32 *p;

3849
	if (ext4_handle_is_aborted(handle))
3850 3851 3852 3853
		return;

	if (depth--) {
		struct buffer_head *bh;
3854
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
3869
				ext4_error(inode->i_sb, "ext4_free_branches",
3870
					   "Read failure, inode=%lu, block=%llu",
3871 3872 3873 3874 3875 3876
					   inode->i_ino, nr);
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
3877
			ext4_free_branches(handle, inode, bh,
3878 3879 3880
					(__le32 *) bh->b_data,
					(__le32 *) bh->b_data + addr_per_block,
					depth);
3881 3882 3883 3884 3885

			/*
			 * We've probably journalled the indirect block several
			 * times during the truncate.  But it's no longer
			 * needed and we now drop it from the transaction via
3886
			 * jbd2_journal_revoke().
3887 3888 3889
			 *
			 * That's easy if it's exclusively part of this
			 * transaction.  But if it's part of the committing
3890
			 * transaction then jbd2_journal_forget() will simply
3891
			 * brelse() it.  That means that if the underlying
3892
			 * block is reallocated in ext4_get_block(),
3893 3894 3895 3896 3897 3898 3899 3900
			 * unmap_underlying_metadata() will find this block
			 * and will try to get rid of it.  damn, damn.
			 *
			 * If this block has already been committed to the
			 * journal, a revoke record will be written.  And
			 * revoke records must be emitted *before* clearing
			 * this block's bit in the bitmaps.
			 */
3901
			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
3919
			if (ext4_handle_is_aborted(handle))
3920 3921
				return;
			if (try_to_extend_transaction(handle, inode)) {
3922 3923
				ext4_mark_inode_dirty(handle, inode);
				ext4_journal_test_restart(handle, inode);
3924 3925
			}

3926
			ext4_free_blocks(handle, inode, nr, 1, 1);
3927 3928 3929 3930 3931 3932 3933

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
3934
				if (!ext4_journal_get_write_access(handle,
3935 3936 3937
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
3938 3939 3940 3941
					"call ext4_handle_dirty_metadata");
					ext4_handle_dirty_metadata(handle,
								   inode,
								   parent_bh);
3942 3943 3944 3945 3946 3947
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
3948
		ext4_free_data(handle, inode, parent_bh, first, last);
3949 3950 3951
	}
}

3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964
int ext4_can_truncate(struct inode *inode)
{
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return 0;
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3965
/*
3966
 * ext4_truncate()
3967
 *
3968 3969
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3986
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3987
 * that this inode's truncate did not complete and it will again call
3988 3989
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3990
 * that's fine - as long as they are linked from the inode, the post-crash
3991
 * ext4_truncate() run will find them and release them.
3992
 */
3993
void ext4_truncate(struct inode *inode)
3994 3995
{
	handle_t *handle;
3996
	struct ext4_inode_info *ei = EXT4_I(inode);
3997
	__le32 *i_data = ei->i_data;
3998
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3999
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
4000
	ext4_lblk_t offsets[4];
4001 4002 4003 4004
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
4005
	ext4_lblk_t last_block;
4006 4007
	unsigned blocksize = inode->i_sb->s_blocksize;

4008
	if (!ext4_can_truncate(inode))
4009 4010
		return;

4011
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4012 4013
		ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;

A
Aneesh Kumar K.V 已提交
4014
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4015
		ext4_ext_truncate(inode);
A
Aneesh Kumar K.V 已提交
4016 4017
		return;
	}
A
Alex Tomas 已提交
4018

4019
	handle = start_transaction(inode);
4020
	if (IS_ERR(handle))
4021 4022 4023
		return;		/* AKPM: return what? */

	last_block = (inode->i_size + blocksize-1)
4024
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4025

4026 4027 4028
	if (inode->i_size & (blocksize - 1))
		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
			goto out_stop;
4029

4030
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
4043
	if (ext4_orphan_add(handle, inode))
4044 4045
		goto out_stop;

4046 4047 4048 4049 4050
	/*
	 * From here we block out all ext4_get_block() callers who want to
	 * modify the block allocation tree.
	 */
	down_write(&ei->i_data_sem);
4051

4052
	ext4_discard_preallocations(inode);
4053

4054 4055 4056 4057 4058
	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
4059
	 * ext4 *really* writes onto the disk inode.
4060 4061 4062 4063
	 */
	ei->i_disksize = inode->i_size;

	if (n == 1) {		/* direct blocks */
4064 4065
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
4066 4067 4068
		goto do_indirects;
	}

4069
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4070 4071 4072 4073
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
4074
			ext4_free_branches(handle, inode, NULL,
4075 4076 4077 4078 4079 4080 4081 4082 4083
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
4084
			ext4_free_branches(handle, inode, partial->bh,
4085 4086 4087 4088 4089 4090
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
4091
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse (partial->bh);
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
4102
		nr = i_data[EXT4_IND_BLOCK];
4103
		if (nr) {
4104 4105
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
4106
		}
4107 4108
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
4109
		if (nr) {
4110 4111
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
4112
		}
4113 4114
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
4115
		if (nr) {
4116 4117
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
4118
		}
4119
	case EXT4_TIND_BLOCK:
4120 4121 4122
		;
	}

4123
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
4124
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4125
	ext4_mark_inode_dirty(handle, inode);
4126 4127 4128 4129 4130 4131

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
4132
		ext4_handle_sync(handle);
4133 4134 4135 4136 4137
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
4138
	 * ext4_delete_inode(), and we allow that function to clean up the
4139 4140 4141
	 * orphan info for us.
	 */
	if (inode->i_nlink)
4142
		ext4_orphan_del(handle, inode);
4143

4144
	ext4_journal_stop(handle);
4145 4146 4147
}

/*
4148
 * ext4_get_inode_loc returns with an extra refcount against the inode's
4149 4150 4151 4152
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
4153 4154
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
4155
{
4156 4157 4158 4159 4160 4161
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
4162
	iloc->bh = NULL;
4163 4164
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
4165

4166 4167 4168
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
4169 4170
		return -EIO;

4171 4172 4173 4174 4175 4176 4177 4178 4179 4180
	/*
	 * Figure out the offset within the block group inode table
	 */
	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
4181
	if (!bh) {
4182 4183 4184
		ext4_error(sb, "ext4_get_inode_loc", "unable to read "
			   "inode block - inode=%lu, block=%llu",
			   inode->i_ino, block);
4185 4186 4187 4188
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
4189 4190 4191 4192 4193 4194 4195 4196 4197 4198

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
4212
			int i, start;
4213

4214
			start = inode_offset & ~(inodes_per_block - 1);
4215

4216 4217
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
4230
			for (i = start; i < start + inodes_per_block; i++) {
4231 4232
				if (i == inode_offset)
					continue;
4233
				if (ext4_test_bit(i, bitmap_bh->b_data))
4234 4235 4236
					break;
			}
			brelse(bitmap_bh);
4237
			if (i == start + inodes_per_block) {
4238 4239 4240 4241 4242 4243 4244 4245 4246
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
4247 4248 4249 4250 4251 4252 4253 4254 4255
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
4256
			/* s_inode_readahead_blks is always a power of 2 */
4257 4258 4259 4260 4261 4262 4263
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4264
				num -= ext4_itable_unused_count(sb, gdp);
4265 4266 4267 4268 4269 4270 4271
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

4272 4273 4274 4275 4276 4277 4278 4279 4280 4281
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
4282 4283 4284
			ext4_error(sb, __func__,
				   "unable to read inode block - inode=%lu, "
				   "block=%llu", inode->i_ino, block);
4285 4286 4287 4288 4289 4290 4291 4292 4293
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

4294
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4295 4296
{
	/* We have all inode data except xattrs in memory here. */
4297 4298
	return __ext4_get_inode_loc(inode, iloc,
		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4299 4300
}

4301
void ext4_set_inode_flags(struct inode *inode)
4302
{
4303
	unsigned int flags = EXT4_I(inode)->i_flags;
4304 4305

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4306
	if (flags & EXT4_SYNC_FL)
4307
		inode->i_flags |= S_SYNC;
4308
	if (flags & EXT4_APPEND_FL)
4309
		inode->i_flags |= S_APPEND;
4310
	if (flags & EXT4_IMMUTABLE_FL)
4311
		inode->i_flags |= S_IMMUTABLE;
4312
	if (flags & EXT4_NOATIME_FL)
4313
		inode->i_flags |= S_NOATIME;
4314
	if (flags & EXT4_DIRSYNC_FL)
4315 4316 4317
		inode->i_flags |= S_DIRSYNC;
}

4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
	unsigned int flags = ei->vfs_inode.i_flags;

	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
	if (flags & S_SYNC)
		ei->i_flags |= EXT4_SYNC_FL;
	if (flags & S_APPEND)
		ei->i_flags |= EXT4_APPEND_FL;
	if (flags & S_IMMUTABLE)
		ei->i_flags |= EXT4_IMMUTABLE_FL;
	if (flags & S_NOATIME)
		ei->i_flags |= EXT4_NOATIME_FL;
	if (flags & S_DIRSYNC)
		ei->i_flags |= EXT4_DIRSYNC_FL;
}
4336 4337 4338 4339
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
					struct ext4_inode_info *ei)
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
4340 4341
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
4342 4343 4344 4345 4346 4347

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
A
Aneesh Kumar K.V 已提交
4348 4349 4350 4351 4352 4353
		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
4354 4355 4356 4357
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
4358

4359
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4360
{
4361 4362
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
4363
	struct ext4_inode_info *ei;
4364
	struct buffer_head *bh;
4365 4366
	struct inode *inode;
	long ret;
4367 4368
	int block;

4369 4370 4371 4372 4373 4374 4375
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
T
Theodore Ts'o 已提交
4376
#ifdef CONFIG_EXT4_FS_POSIX_ACL
4377 4378
	ei->i_acl = EXT4_ACL_NOT_CACHED;
	ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4379 4380
#endif

4381 4382
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
4383 4384
		goto bad_inode;
	bh = iloc.bh;
4385
	raw_inode = ext4_raw_inode(&iloc);
4386 4387 4388
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4389
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

	ei->i_state = 0;
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
4405
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4406
			/* this inode is deleted */
4407
			brelse(bh);
4408
			ret = -ESTALE;
4409 4410 4411 4412 4413 4414 4415 4416
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4417
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4418
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4419
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
4420 4421
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4422
	inode->i_size = ext4_isize(raw_inode);
4423 4424 4425
	ei->i_disksize = inode->i_size;
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
4426
	ei->i_last_alloc_group = ~0;
4427 4428 4429 4430
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
4431
	for (block = 0; block < EXT4_N_BLOCKS; block++)
4432 4433 4434
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

4435
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4436
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4437
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4438
		    EXT4_INODE_SIZE(inode->i_sb)) {
4439
			brelse(bh);
4440
			ret = -EIO;
4441
			goto bad_inode;
4442
		}
4443 4444
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
4445 4446
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
4447 4448
		} else {
			__le32 *magic = (void *)raw_inode +
4449
					EXT4_GOOD_OLD_INODE_SIZE +
4450
					ei->i_extra_isize;
4451 4452
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
				 ei->i_state |= EXT4_STATE_XATTR;
4453 4454 4455 4456
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
4457 4458 4459 4460 4461
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

4462 4463 4464 4465 4466 4467 4468
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

4469
	ret = 0;
4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
	if (ei->i_file_acl &&
	    ((ei->i_file_acl < 
	      (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
	       EXT4_SB(sb)->s_gdb_count)) ||
	     (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
		ext4_error(sb, __func__,
			   "bad extended attribute block %llu in inode #%lu",
			   ei->i_file_acl, inode->i_ino);
		ret = -EIO;
		goto bad_inode;
	} else if (ei->i_flags & EXT4_EXTENTS_FL) {
4481 4482 4483 4484 4485
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
4486 4487 4488 4489 4490 4491 4492 4493 4494
 	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
	 	/* Validate block references which are part of inode */
		ret = ext4_check_inode_blockref(inode);
	}
	if (ret) {
 		brelse(bh);
 		goto bad_inode;
4495 4496
	}

4497
	if (S_ISREG(inode->i_mode)) {
4498 4499 4500
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
4501
	} else if (S_ISDIR(inode->i_mode)) {
4502 4503
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
4504
	} else if (S_ISLNK(inode->i_mode)) {
4505
		if (ext4_inode_is_fast_symlink(inode)) {
4506
			inode->i_op = &ext4_fast_symlink_inode_operations;
4507 4508 4509
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
4510 4511
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
4512
		}
4513 4514
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4515
		inode->i_op = &ext4_special_inode_operations;
4516 4517 4518 4519 4520 4521
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4522 4523 4524 4525 4526 4527 4528
	} else {
		brelse(bh);
		ret = -EIO;
		ext4_error(inode->i_sb, __func__, 
			   "bogus i_mode (%o) for inode=%lu",
			   inode->i_mode, inode->i_ino);
		goto bad_inode;
4529
	}
4530
	brelse(iloc.bh);
4531
	ext4_set_inode_flags(inode);
4532 4533
	unlock_new_inode(inode);
	return inode;
4534 4535

bad_inode:
4536 4537
	iget_failed(inode);
	return ERR_PTR(ret);
4538 4539
}

4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4553
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4554
		raw_inode->i_blocks_high = 0;
A
Aneesh Kumar K.V 已提交
4555
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4556 4557 4558 4559 4560 4561
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
4562 4563 4564 4565
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4566
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4567
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
A
Aneesh Kumar K.V 已提交
4568
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4569
	} else {
A
Aneesh Kumar K.V 已提交
4570 4571 4572 4573 4574
		ei->i_flags |= EXT4_HUGE_FILE_FL;
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4575
	}
4576
	return 0;
4577 4578
}

4579 4580 4581 4582 4583 4584 4585
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
4586
static int ext4_do_update_inode(handle_t *handle,
4587
				struct inode *inode,
4588
				struct ext4_iloc *iloc)
4589
{
4590 4591
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
4592 4593 4594 4595 4596
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
4597 4598
	if (ei->i_state & EXT4_STATE_NEW)
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4599

4600
	ext4_get_inode_flags(ei);
4601
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4602
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4603 4604 4605 4606 4607 4608
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
4609
		if (!ei->i_dtime) {
4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
4627 4628 4629 4630 4631 4632

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4633 4634
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4635
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4636 4637
	/* clear the migrate flag in the raw_inode */
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4638 4639
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4640 4641
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4642
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4659
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4660
			sb->s_dirt = 1;
4661 4662
			ext4_handle_sync(handle);
			err = ext4_handle_dirty_metadata(handle, inode,
4663
					EXT4_SB(sb)->s_sbh);
4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4678
	} else for (block = 0; block < EXT4_N_BLOCKS; block++)
4679 4680
		raw_inode->i_block[block] = ei->i_data[block];

4681 4682 4683 4684 4685
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4686
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4687 4688
	}

4689 4690
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
	rc = ext4_handle_dirty_metadata(handle, inode, bh);
4691 4692
	if (!err)
		err = rc;
4693
	ei->i_state &= ~EXT4_STATE_NEW;
4694 4695

out_brelse:
4696
	brelse(bh);
4697
	ext4_std_error(inode->i_sb, err);
4698 4699 4700 4701
	return err;
}

/*
4702
 * ext4_write_inode()
4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4719
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4736
int ext4_write_inode(struct inode *inode, int wait)
4737 4738 4739 4740
{
	if (current->flags & PF_MEMALLOC)
		return 0;

4741
	if (ext4_journal_current_handle()) {
M
Mingming Cao 已提交
4742
		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4743 4744 4745 4746 4747 4748 4749
		dump_stack();
		return -EIO;
	}

	if (!wait)
		return 0;

4750
	return ext4_force_commit(inode->i_sb);
4751 4752
}

4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771
int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh)
{
	int err = 0;

	mark_buffer_dirty(bh);
	if (inode && inode_needs_sync(inode)) {
		sync_dirty_buffer(bh);
		if (buffer_req(bh) && !buffer_uptodate(bh)) {
			ext4_error(inode->i_sb, __func__,
				   "IO error syncing inode, "
				   "inode=%lu, block=%llu",
				   inode->i_ino,
				   (unsigned long long)bh->b_blocknr);
			err = -EIO;
		}
	}
	return err;
}

4772
/*
4773
 * ext4_setattr()
4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4787 4788 4789 4790 4791 4792 4793 4794
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4795
 */
4796
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
4812 4813
		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4814 4815 4816 4817
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4818
		error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4819
		if (error) {
4820
			ext4_journal_stop(handle);
4821 4822 4823 4824 4825 4826 4827 4828
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4829 4830
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4831 4832
	}

4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843
	if (attr->ia_valid & ATTR_SIZE) {
		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
				error = -EFBIG;
				goto err_out;
			}
		}
	}

4844 4845 4846 4847
	if (S_ISREG(inode->i_mode) &&
	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
		handle_t *handle;

4848
		handle = ext4_journal_start(inode, 3);
4849 4850 4851 4852 4853
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}

4854 4855 4856
		error = ext4_orphan_add(handle, inode);
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4857 4858
		if (!error)
			error = rc;
4859
		ext4_journal_stop(handle);
4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4876 4877 4878 4879
	}

	rc = inode_setattr(inode, attr);

4880
	/* If inode_setattr's call to ext4_truncate failed to get a
4881 4882 4883
	 * transaction handle at all, we need to clean up the in-core
	 * orphan list manually. */
	if (inode->i_nlink)
4884
		ext4_orphan_del(NULL, inode);
4885 4886

	if (!rc && (ia_valid & ATTR_MODE))
4887
		rc = ext4_acl_chmod(inode);
4888 4889

err_out:
4890
	ext4_std_error(inode->i_sb, error);
4891 4892 4893 4894 4895
	if (!error)
		error = rc;
	return error;
}

4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4922

4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950
static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
				      int chunk)
{
	int indirects;

	/* if nrblocks are contiguous */
	if (chunk) {
		/*
		 * With N contiguous data blocks, it need at most
		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
		 * 2 dindirect blocks
		 * 1 tindirect block
		 */
		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
		return indirects + 3;
	}
	/*
	 * if nrblocks are not contiguous, worse case, each block touch
	 * a indirect block, and each indirect block touch a double indirect
	 * block, plus a triple indirect block
	 */
	indirects = nrblocks * 2 + 1;
	return indirects;
}

static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4951 4952
		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4953
}
4954

4955
/*
4956 4957 4958
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4959
 *
4960 4961 4962
 * If datablocks are discontiguous, they are possible to spread over
 * different block groups too. If they are contiugous, with flexbg,
 * they could still across block group boundary.
4963
 *
4964 4965 4966 4967
 * Also account for superblock, inode, quota and xattr blocks
 */
int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
4968 4969
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
4996 4997
	if (groups > ngroups)
		groups = ngroups;
4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
 * Calulate the total number of credits to reserve to fit
5012 5013
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
5014
 *
5015
 * This could be called via ext4_write_begin()
5016
 *
5017
 * We need to consider the worse case, when
5018
 * one new block per extent.
5019
 */
A
Alex Tomas 已提交
5020
int ext4_writepage_trans_blocks(struct inode *inode)
5021
{
5022
	int bpp = ext4_journal_blocks_per_page(inode);
5023 5024
	int ret;

5025
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
5026

5027
	/* Account for data blocks for journalled mode */
5028
	if (ext4_should_journal_data(inode))
5029
		ret += bpp;
5030 5031
	return ret;
}
5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

5047
/*
5048
 * The caller must have previously called ext4_reserve_inode_write().
5049 5050
 * Give this, we know that the caller already has write access to iloc->bh.
 */
5051 5052
int ext4_mark_iloc_dirty(handle_t *handle,
		struct inode *inode, struct ext4_iloc *iloc)
5053 5054 5055
{
	int err = 0;

5056 5057 5058
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

5059 5060 5061
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

5062
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5063
	err = ext4_do_update_inode(handle, inode, iloc);
5064 5065 5066 5067 5068 5069 5070 5071 5072 5073
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
5074 5075
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
5076
{
5077 5078 5079 5080 5081 5082 5083 5084 5085
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
5086 5087
		}
	}
5088
	ext4_std_error(inode->i_sb, err);
5089 5090 5091
	return err;
}

5092 5093 5094 5095
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
5096 5097 5098 5099
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;
	struct ext4_xattr_entry *entry;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);
	entry = IFIRST(header);

	/* No extended attributes present */
	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
5148
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5149
{
5150
	struct ext4_iloc iloc;
5151 5152 5153
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
5154 5155

	might_sleep();
5156
	err = ext4_reserve_inode_write(handle, inode, &iloc);
5157 5158
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173
	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
A
Aneesh Kumar K.V 已提交
5174 5175
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5176
					ext4_warning(inode->i_sb, __func__,
5177 5178 5179
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
5180 5181
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
5182 5183 5184 5185
				}
			}
		}
	}
5186
	if (!err)
5187
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5188 5189 5190 5191
	return err;
}

/*
5192
 * ext4_dirty_inode() is called from __mark_inode_dirty()
5193 5194 5195 5196 5197
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
5198
 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5199 5200 5201 5202 5203 5204
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
5205
void ext4_dirty_inode(struct inode *inode)
5206
{
5207
	handle_t *current_handle = ext4_journal_current_handle();
5208 5209
	handle_t *handle;

5210 5211 5212 5213 5214
	if (!ext4_handle_valid(current_handle)) {
		ext4_mark_inode_dirty(current_handle, inode);
		return;
	}

5215
	handle = ext4_journal_start(inode, 2);
5216 5217 5218 5219 5220 5221
	if (IS_ERR(handle))
		goto out;
	if (current_handle &&
		current_handle->h_transaction != handle->h_transaction) {
		/* This task has a transaction open against a different fs */
		printk(KERN_EMERG "%s: transactions do not match!\n",
5222
		       __func__);
5223 5224 5225
	} else {
		jbd_debug(5, "marking dirty.  outer handle=%p\n",
				current_handle);
5226
		ext4_mark_inode_dirty(handle, inode);
5227
	}
5228
	ext4_journal_stop(handle);
5229 5230 5231 5232 5233 5234 5235 5236
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
5237
 * ext4_reserve_inode_write, this leaves behind no bh reference and
5238 5239 5240
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
5241
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5242
{
5243
	struct ext4_iloc iloc;
5244 5245 5246

	int err = 0;
	if (handle) {
5247
		err = ext4_get_inode_loc(inode, &iloc);
5248 5249
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
5250
			err = jbd2_journal_get_write_access(handle, iloc.bh);
5251
			if (!err)
5252 5253 5254
				err = ext4_handle_dirty_metadata(handle,
								 inode,
								 iloc.bh);
5255 5256 5257
			brelse(iloc.bh);
		}
	}
5258
	ext4_std_error(inode->i_sb, err);
5259 5260 5261 5262
	return err;
}
#endif

5263
int ext4_change_inode_journal_flag(struct inode *inode, int val)
5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

5279
	journal = EXT4_JOURNAL(inode);
5280 5281
	if (!journal)
		return 0;
5282
	if (is_journal_aborted(journal))
5283 5284
		return -EROFS;

5285 5286
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
5287 5288 5289 5290 5291 5292 5293 5294 5295 5296

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
5297
		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5298
	else
5299 5300
		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
	ext4_set_aops(inode);
5301

5302
	jbd2_journal_unlock_updates(journal);
5303 5304 5305

	/* Finally we can mark the inode as dirty. */

5306
	handle = ext4_journal_start(inode, 1);
5307 5308 5309
	if (IS_ERR(handle))
		return PTR_ERR(handle);

5310
	err = ext4_mark_inode_dirty(handle, inode);
5311
	ext4_handle_sync(handle);
5312 5313
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
5314 5315 5316

	return err;
}
5317 5318 5319 5320 5321 5322

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

5323
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5324
{
5325
	struct page *page = vmf->page;
5326 5327 5328
	loff_t size;
	unsigned long len;
	int ret = -EINVAL;
5329
	void *fsdata;
5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;

	/*
	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
	 * get i_mutex because we are already holding mmap_sem.
	 */
	down_read(&inode->i_alloc_sem);
	size = i_size_read(inode);
	if (page->mapping != mapping || size <= page_offset(page)
	    || !PageUptodate(page)) {
		/* page got truncated from under us? */
		goto out_unlock;
	}
	ret = 0;
	if (PageMappedToDisk(page))
		goto out_unlock;

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;

	if (page_has_buffers(page)) {
		/* return if we have all the buffers mapped */
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
				       ext4_bh_unmapped))
			goto out_unlock;
	}
	/*
	 * OK, we need to fill the hole... Do write_begin write_end
	 * to do block allocation/reservation.We are not holding
	 * inode.i__mutex here. That allow * parallel write_begin,
	 * write_end call. lock_page prevent this from happening
	 * on the same page though
	 */
	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5368
			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5369 5370 5371
	if (ret < 0)
		goto out_unlock;
	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5372
			len, len, page, fsdata);
5373 5374 5375 5376
	if (ret < 0)
		goto out_unlock;
	ret = 0;
out_unlock:
5377 5378
	if (ret)
		ret = VM_FAULT_SIGBUS;
5379 5380 5381
	up_read(&inode->i_alloc_sem);
	return ret;
}