inode.c 147.7 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38 39
#include <linux/uio.h>
#include <linux/bio.h>
40
#include "ext4_jbd2.h"
41 42
#include "xattr.h"
#include "acl.h"
43
#include "ext4_extents.h"
44

45 46
#define MPAGE_DA_EXTENT_TAIL 0x01

47 48 49 50 51 52 53
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
	return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
						   new_size);
}

54 55
static void ext4_invalidatepage(struct page *page, unsigned long offset);

56 57 58
/*
 * Test whether an inode is a fast symlink.
 */
59
static int ext4_inode_is_fast_symlink(struct inode *inode)
60
{
61
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
62 63 64 65 66 67
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
68
 * The ext4 forget function must perform a revoke if we are freeing data
69 70 71 72 73 74
 * which has been journaled.  Metadata (eg. indirect blocks) must be
 * revoked in all cases.
 *
 * "bh" may be NULL: a metadata block may have been freed from memory
 * but there may still be a record of it in the journal, and that record
 * still needs to be revoked.
75 76
 *
 * If the handle isn't valid we're not journaling so there's nothing to do.
77
 */
78 79
int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
			struct buffer_head *bh, ext4_fsblk_t blocknr)
80 81 82
{
	int err;

83 84 85
	if (!ext4_handle_valid(handle))
		return 0;

86 87 88 89 90 91 92 93 94 95 96 97 98 99
	might_sleep();

	BUFFER_TRACE(bh, "enter");

	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
		  "data mode %lx\n",
		  bh, is_metadata, inode->i_mode,
		  test_opt(inode->i_sb, DATA_FLAGS));

	/* Never use the revoke function if we are doing full data
	 * journaling: there is no need to, and a V1 superblock won't
	 * support it.  Otherwise, only skip the revoke on un-journaled
	 * data blocks. */

100 101
	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
	    (!is_metadata && !ext4_should_journal_data(inode))) {
102
		if (bh) {
103
			BUFFER_TRACE(bh, "call jbd2_journal_forget");
104
			return ext4_journal_forget(handle, bh);
105 106 107 108 109 110 111
		}
		return 0;
	}

	/*
	 * data!=journal && (is_metadata || should_journal_data(inode))
	 */
112 113
	BUFFER_TRACE(bh, "call ext4_journal_revoke");
	err = ext4_journal_revoke(handle, blocknr, bh);
114
	if (err)
115
		ext4_abort(inode->i_sb, __func__,
116 117 118 119 120 121 122 123 124 125 126
			   "error %d when attempting revoke", err);
	BUFFER_TRACE(bh, "exit");
	return err;
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
127
	ext4_lblk_t needed;
128 129 130 131 132 133

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
134
	 * like a regular file for ext4 to try to delete it.  Things
135 136 137 138 139 140 141
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
142 143
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
144

145
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

162
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
163 164 165
	if (!IS_ERR(result))
		return result;

166
	ext4_std_error(inode->i_sb, PTR_ERR(result));
167 168 169 170 171 172 173 174 175 176 177
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
178 179 180
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
181
		return 0;
182
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
183 184 185 186 187 188 189 190 191
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
192
static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
193
{
194
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
195
	jbd_debug(2, "restarting handle %p\n", handle);
196
	return ext4_journal_restart(handle, blocks_for_truncate(inode));
197 198 199 200 201
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
202
void ext4_delete_inode(struct inode *inode)
203 204
{
	handle_t *handle;
205
	int err;
206

207 208
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
209 210 211 212 213
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

214
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
215
	if (IS_ERR(handle)) {
216
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
217 218 219 220 221
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
222
		ext4_orphan_del(NULL, inode);
223 224 225 226
		goto no_delete;
	}

	if (IS_SYNC(inode))
227
		ext4_handle_sync(handle);
228
	inode->i_size = 0;
229 230 231 232 233 234
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
		ext4_warning(inode->i_sb, __func__,
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
235
	if (inode->i_blocks)
236
		ext4_truncate(inode);
237 238 239 240 241 242 243

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
244
	if (!ext4_handle_has_enough_credits(handle, 3)) {
245 246 247 248 249 250 251 252 253 254 255 256
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
			ext4_warning(inode->i_sb, __func__,
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
			goto no_delete;
		}
	}

257
	/*
258
	 * Kill off the orphan record which ext4_truncate created.
259
	 * AKPM: I think this can be inside the above `if'.
260
	 * Note that ext4_orphan_del() has to be able to cope with the
261
	 * deletion of a non-existent orphan - this is because we don't
262
	 * know if ext4_truncate() actually created an orphan record.
263 264
	 * (Well, we could do this if we need to, but heck - it works)
	 */
265 266
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
267 268 269 270 271 272 273 274

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
275
	if (ext4_mark_inode_dirty(handle, inode))
276 277 278
		/* If that failed, just do the required in-core inode clear. */
		clear_inode(inode);
	else
279 280
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
	return;
no_delete:
	clear_inode(inode);	/* We must guarantee clearing of inode... */
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
299
 *	ext4_block_to_path - parse the block number into array of offsets
300 301 302
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
303 304
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
305
 *
306
 *	To store the locations of file's data ext4 uses a data structure common
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

329
static int ext4_block_to_path(struct inode *inode,
A
Aneesh Kumar K.V 已提交
330 331
			ext4_lblk_t i_block,
			ext4_lblk_t offsets[4], int *boundary)
332
{
333 334 335
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
336 337 338 339 340 341
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

	if (i_block < 0) {
342
		ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
343 344 345
	} else if (i_block < direct_blocks) {
		offsets[n++] = i_block;
		final = direct_blocks;
346
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
347
		offsets[n++] = EXT4_IND_BLOCK;
348 349 350
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
351
		offsets[n++] = EXT4_DIND_BLOCK;
352 353 354 355
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
356
		offsets[n++] = EXT4_TIND_BLOCK;
357 358 359 360 361
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
362
		ext4_warning(inode->i_sb, "ext4_block_to_path",
363
				"block %lu > max",
364 365
				i_block + direct_blocks +
				indirect_blocks + double_blocks);
366 367 368 369 370 371 372
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

/**
373
 *	ext4_get_branch - read the chain of indirect blocks leading to data
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
398 399
 *
 *      Need to be called with
400
 *      down_read(&EXT4_I(inode)->i_data_sem)
401
 */
A
Aneesh Kumar K.V 已提交
402 403
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
404 405 406 407 408 409 410 411
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
412
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
413 414 415 416 417 418
	if (!p->key)
		goto no_block;
	while (--depth) {
		bh = sb_bread(sb, le32_to_cpu(p->key));
		if (!bh)
			goto failure;
419
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
420 421 422 423 424 425 426 427 428 429 430 431 432
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
433
 *	ext4_find_near - find a place for allocation with sufficient locality
434 435 436
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
437
 *	This function returns the preferred place for block allocation.
438 439 440 441 442 443 444 445 446 447 448 449 450 451
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
452
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
453
{
454
	struct ext4_inode_info *ei = EXT4_I(inode);
455
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
456
	__le32 *p;
457
	ext4_fsblk_t bg_start;
458
	ext4_fsblk_t last_block;
459
	ext4_grpblk_t colour;
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
475
	bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
476 477 478 479
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
480
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
481 482
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
483 484 485 486
	return bg_start + colour;
}

/**
487
 *	ext4_find_goal - find a preferred place for allocation.
488 489 490 491
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
492
 *	Normally this function find the preferred place for block allocation,
493
 *	returns it.
494
 */
A
Aneesh Kumar K.V 已提交
495
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
496
		Indirect *partial)
497 498
{
	/*
499
	 * XXX need to get goal block from mballoc's data structures
500 501
	 */

502
	return ext4_find_near(inode, partial);
503 504 505
}

/**
506
 *	ext4_blks_to_allocate: Look up the block map and count the number
507 508 509 510 511 512 513 514 515 516
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
517
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
518 519
		int blocks_to_boundary)
{
520
	unsigned int count = 0;
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
544
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
545 546 547 548 549 550 551 552
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
553
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
554 555 556
				ext4_lblk_t iblock, ext4_fsblk_t goal,
				int indirect_blks, int blks,
				ext4_fsblk_t new_blocks[4], int *err)
557
{
558
	struct ext4_allocation_request ar;
559
	int target, i;
560
	unsigned long count = 0, blk_allocated = 0;
561
	int index = 0;
562
	ext4_fsblk_t current_block = 0;
563 564 565 566 567 568 569 570 571 572
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
573 574 575
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
576 577
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
578 579
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
580 581 582 583 584 585 586 587 588
		if (*err)
			goto failed_out;

		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
589 590 591 592 593 594 595 596 597
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
598
			break;
599
		}
600 601
	}

602 603 604 605 606
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
607 608 609 610 611 612 613 614 615 616 617
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);

618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
		/*
		 * save the new block number
		 * for the first direct block
		 */
			new_blocks[index] = current_block;
		}
633
		blk_allocated += ar.len;
634 635
	}
allocated:
636
	/* total number of blocks allocated for direct blocks */
637
	ret = blk_allocated;
638 639 640
	*err = 0;
	return ret;
failed_out:
641
	for (i = 0; i < index; i++)
642
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
643 644 645 646
	return ret;
}

/**
647
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
648 649 650 651 652 653 654 655 656 657
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
658
 *	the same format as ext4_get_branch() would do. We are calling it after
659 660
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
661
 *	picture as after the successful ext4_get_block(), except that in one
662 663 664 665 666 667
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
668
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
669 670
 *	as described above and return 0.
 */
671
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
672 673 674
				ext4_lblk_t iblock, int indirect_blks,
				int *blks, ext4_fsblk_t goal,
				ext4_lblk_t *offsets, Indirect *branch)
675 676 677 678 679 680
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
681 682
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
683

684
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
703
		err = ext4_journal_get_create_access(handle, bh);
704 705 706 707 708 709 710 711 712 713
		if (err) {
			unlock_buffer(bh);
			brelse(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
714
		if (n == indirect_blks) {
715 716 717 718 719 720 721 722 723 724 725 726 727
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
			for (i=1; i < num; i++)
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

728 729
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
730 731 732 733 734 735 736 737
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
	for (i = 1; i <= n ; i++) {
738
		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
739
		ext4_journal_forget(handle, branch[i].bh);
740
	}
741
	for (i = 0; i < indirect_blks; i++)
742
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
743

744
	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
745 746 747 748 749

	return err;
}

/**
750
 * ext4_splice_branch - splice the allocated branch onto inode.
751 752 753
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
754
 *	ext4_alloc_branch)
755 756 757 758 759 760 761 762
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
763
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
764
			ext4_lblk_t block, Indirect *where, int num, int blks)
765 766 767
{
	int i;
	int err = 0;
768
	ext4_fsblk_t current_block;
769 770 771 772 773 774 775 776

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
777
		err = ext4_journal_get_write_access(handle, where->bh);
778 779 780 781 782 783 784 785 786 787 788 789 790 791
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
792
			*(where->p + i) = cpu_to_le32(current_block++);
793 794 795 796
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */

K
Kalpak Shah 已提交
797
	inode->i_ctime = ext4_current_time(inode);
798
	ext4_mark_inode_dirty(handle, inode);
799 800 801 802 803 804 805 806 807

	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
808
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
809 810
		 */
		jbd_debug(5, "splicing indirect only\n");
811 812
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
813 814 815 816 817 818 819 820 821 822 823 824 825
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 * Inode was dirtied above.
		 */
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
826
		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
827
		ext4_journal_forget(handle, where[i].bh);
828 829
		ext4_free_blocks(handle, inode,
					le32_to_cpu(where[i-1].key), 1, 0);
830
	}
831
	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852

	return err;
}

/*
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
853 854 855
 *
 *
 * Need to be called with
856 857
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
858
 */
859 860 861 862
static int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
				  ext4_lblk_t iblock, unsigned int maxblocks,
				  struct buffer_head *bh_result,
				  int create, int extend_disksize)
863 864
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
865
	ext4_lblk_t offsets[4];
866 867
	Indirect chain[4];
	Indirect *partial;
868
	ext4_fsblk_t goal;
869 870 871
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
872
	struct ext4_inode_info *ei = EXT4_I(inode);
873
	int count = 0;
874
	ext4_fsblk_t first_block = 0;
875
	loff_t disksize;
876 877


A
Alex Tomas 已提交
878
	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
879
	J_ASSERT(handle != NULL || create == 0);
A
Aneesh Kumar K.V 已提交
880 881
	depth = ext4_block_to_path(inode, iblock, offsets,
					&blocks_to_boundary);
882 883 884 885

	if (depth == 0)
		goto out;

886
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
887 888 889 890 891 892 893 894

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		clear_buffer_new(bh_result);
		count++;
		/*map more blocks*/
		while (count < maxblocks && count <= blocks_to_boundary) {
895
			ext4_fsblk_t blk;
896 897 898 899 900 901 902 903

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
904
		goto got_it;
905 906 907 908 909 910 911
	}

	/* Next simple case - plain lookup or failed read of indirect block */
	if (!create || err == -EIO)
		goto cleanup;

	/*
912
	 * Okay, we need to do block allocation.
913
	*/
914
	goal = ext4_find_goal(inode, iblock, partial);
915 916 917 918 919 920 921 922

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
923
	count = ext4_blks_to_allocate(partial, indirect_blks,
924 925
					maxblocks, blocks_to_boundary);
	/*
926
	 * Block out ext4_truncate while we alter the tree
927
	 */
928 929 930
	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
					&count, goal,
					offsets + (partial - chain), partial);
931 932

	/*
933
	 * The ext4_splice_branch call will free and forget any buffers
934 935 936 937 938 939
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
940
		err = ext4_splice_branch(handle, inode, iblock,
941 942
					partial, indirect_blks, count);
	/*
943
	 * i_disksize growing is protected by i_data_sem.  Don't forget to
944
	 * protect it if you're about to implement concurrent
945
	 * ext4_get_block() -bzzz
946
	*/
947 948 949 950 951 952 953
	if (!err && extend_disksize) {
		disksize = ((loff_t) iblock + count) << inode->i_blkbits;
		if (disksize > i_size_read(inode))
			disksize = i_size_read(inode);
		if (disksize > ei->i_disksize)
			ei->i_disksize = disksize;
	}
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
	if (err)
		goto cleanup;

	set_buffer_new(bh_result);
got_it:
	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
	if (count > blocks_to_boundary)
		set_buffer_boundary(bh_result);
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
	BUFFER_TRACE(bh_result, "returned");
out:
	return err;
}

976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
/*
 * Calculate the number of metadata blocks need to reserve
 * to allocate @blocks for non extent file based file
 */
static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
{
	int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ind_blks, dind_blks, tind_blks;

	/* number of new indirect blocks needed */
	ind_blks = (blocks + icap - 1) / icap;

	dind_blks = (ind_blks + icap - 1) / icap;

	tind_blks = 1;

	return ind_blks + dind_blks + tind_blks;
}

/*
 * Calculate the number of metadata blocks need to reserve
 * to allocate given number of blocks
 */
static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
{
1001 1002 1003
	if (!blocks)
		return 0;

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
		return ext4_ext_calc_metadata_amount(inode, blocks);

	return ext4_indirect_calc_metadata_amount(inode, blocks);
}

static void ext4_da_update_reserve_space(struct inode *inode, int used)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int total, mdb, mdb_free;

	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	/* recalculate the number of metablocks still need to be reserved */
	total = EXT4_I(inode)->i_reserved_data_blocks - used;
	mdb = ext4_calc_metadata_amount(inode, total);

	/* figure out how many metablocks to release */
	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;

1024 1025 1026 1027 1028 1029 1030 1031 1032
	if (mdb_free) {
		/* Account for allocated meta_blocks */
		mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;

		/* update fs dirty blocks counter */
		percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
		EXT4_I(inode)->i_allocated_meta_blocks = 0;
		EXT4_I(inode)->i_reserved_meta_blocks = mdb;
	}
1033 1034 1035 1036 1037 1038 1039 1040

	/* update per-inode reservations */
	BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
	EXT4_I(inode)->i_reserved_data_blocks -= used;

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
}

1041
/*
1042 1043
 * The ext4_get_blocks_wrap() function try to look up the requested blocks,
 * and returns if the blocks are already mapped.
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
 * If file type is extents based, it will call ext4_ext_get_blocks(),
 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
1063
int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1064
			unsigned int max_blocks, struct buffer_head *bh,
1065
			int create, int extend_disksize, int flag)
1066 1067
{
	int retval;
1068 1069 1070

	clear_buffer_mapped(bh);

1071 1072 1073 1074 1075 1076 1077 1078
	/*
	 * Try to see if we can get  the block without requesting
	 * for new file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
				bh, 0, 0);
1079
	} else {
1080 1081
		retval = ext4_get_blocks_handle(handle,
				inode, block, max_blocks, bh, 0, 0);
1082
	}
1083
	up_read((&EXT4_I(inode)->i_data_sem));
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096

	/* If it is only a block(s) look up */
	if (!create)
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
	if (retval > 0 && buffer_mapped(bh))
1097 1098 1099
		return retval;

	/*
1100 1101 1102 1103
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
1104 1105
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
1106 1107 1108 1109 1110 1111 1112 1113 1114

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
	if (flag)
		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1115 1116 1117 1118
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
1119 1120 1121 1122 1123 1124
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
				bh, create, extend_disksize);
	} else {
		retval = ext4_get_blocks_handle(handle, inode, block,
				max_blocks, bh, create, extend_disksize);
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134

		if (retval > 0 && buffer_new(bh)) {
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
			EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
							~EXT4_EXT_MIGRATE;
		}
1135
	}
1136 1137 1138 1139 1140 1141 1142 1143 1144

	if (flag) {
		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
		/*
		 * Update reserved blocks/metadata blocks
		 * after successful block allocation
		 * which were deferred till now
		 */
		if ((retval > 0) && buffer_delay(bh))
1145
			ext4_da_update_reserve_space(inode, retval);
1146 1147
	}

1148
	up_write((&EXT4_I(inode)->i_data_sem));
1149 1150 1151
	return retval;
}

1152 1153 1154
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

1155 1156
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create)
1157
{
1158
	handle_t *handle = ext4_journal_current_handle();
J
Jan Kara 已提交
1159
	int ret = 0, started = 0;
1160
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1161
	int dio_credits;
1162

J
Jan Kara 已提交
1163 1164 1165 1166
	if (create && !handle) {
		/* Direct IO write... */
		if (max_blocks > DIO_MAX_BLOCKS)
			max_blocks = DIO_MAX_BLOCKS;
1167 1168
		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
1169
		if (IS_ERR(handle)) {
1170
			ret = PTR_ERR(handle);
J
Jan Kara 已提交
1171
			goto out;
1172
		}
J
Jan Kara 已提交
1173
		started = 1;
1174 1175
	}

J
Jan Kara 已提交
1176
	ret = ext4_get_blocks_wrap(handle, inode, iblock,
1177
					max_blocks, bh_result, create, 0, 0);
J
Jan Kara 已提交
1178 1179 1180
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
1181
	}
J
Jan Kara 已提交
1182 1183 1184
	if (started)
		ext4_journal_stop(handle);
out:
1185 1186 1187 1188 1189 1190
	return ret;
}

/*
 * `handle' can be NULL if create is zero
 */
1191
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1192
				ext4_lblk_t block, int create, int *errp)
1193 1194 1195 1196 1197 1198 1199 1200 1201
{
	struct buffer_head dummy;
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

	dummy.b_state = 0;
	dummy.b_blocknr = -1000;
	buffer_trace_init(&dummy.b_history);
A
Alex Tomas 已提交
1202
	err = ext4_get_blocks_wrap(handle, inode, block, 1,
1203
					&dummy, create, 1, 0);
1204
	/*
1205
	 * ext4_get_blocks_handle() returns number of blocks
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
	 * mapped. 0 in case of a HOLE.
	 */
	if (err > 0) {
		if (err > 1)
			WARN_ON(1);
		err = 0;
	}
	*errp = err;
	if (!err && buffer_mapped(&dummy)) {
		struct buffer_head *bh;
		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
		if (!bh) {
			*errp = -EIO;
			goto err;
		}
		if (buffer_new(&dummy)) {
			J_ASSERT(create != 0);
A
Aneesh Kumar K.V 已提交
1223
			J_ASSERT(handle != NULL);
1224 1225 1226 1227 1228

			/*
			 * Now that we do not always journal data, we should
			 * keep in mind whether this should always journal the
			 * new buffer as metadata.  For now, regular file
1229
			 * writes use ext4_get_block instead, so it's not a
1230 1231 1232 1233
			 * problem.
			 */
			lock_buffer(bh);
			BUFFER_TRACE(bh, "call get_create_access");
1234
			fatal = ext4_journal_get_create_access(handle, bh);
1235
			if (!fatal && !buffer_uptodate(bh)) {
1236
				memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1237 1238 1239
				set_buffer_uptodate(bh);
			}
			unlock_buffer(bh);
1240 1241
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			err = ext4_handle_dirty_metadata(handle, inode, bh);
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
			if (!fatal)
				fatal = err;
		} else {
			BUFFER_TRACE(bh, "not a new buffer");
		}
		if (fatal) {
			*errp = fatal;
			brelse(bh);
			bh = NULL;
		}
		return bh;
	}
err:
	return NULL;
}

1258
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1259
			       ext4_lblk_t block, int create, int *err)
1260
{
1261
	struct buffer_head *bh;
1262

1263
	bh = ext4_getblk(handle, inode, block, create, err);
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

1277 1278 1279 1280 1281 1282 1283
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
1284 1285 1286 1287 1288 1289 1290
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

1291 1292 1293
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
	     block_start = block_end, bh = next)
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	{
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1312
 * close off a transaction and start a new one between the ext4_get_block()
1313
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1314 1315
 * prepare_write() is the right place.
 *
1316 1317
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1318 1319 1320 1321
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1322
 * By accident, ext4 can be reentered when a transaction is open via
1323 1324 1325 1326 1327 1328
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1329
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1330 1331 1332 1333 1334 1335 1336 1337 1338
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
					struct buffer_head *bh)
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1339
	return ext4_journal_get_write_access(handle, bh);
1340 1341
}

N
Nick Piggin 已提交
1342 1343 1344
static int ext4_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
1345
{
1346
	struct inode *inode = mapping->host;
1347
	int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1348 1349
	handle_t *handle;
	int retries = 0;
1350
	struct page *page;
N
Nick Piggin 已提交
1351
 	pgoff_t index;
1352
	unsigned from, to;
N
Nick Piggin 已提交
1353

1354 1355 1356 1357
	trace_mark(ext4_write_begin,
		   "dev %s ino %lu pos %llu len %u flags %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, flags);
N
Nick Piggin 已提交
1358
 	index = pos >> PAGE_CACHE_SHIFT;
1359 1360
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
1361 1362

retry:
1363 1364 1365 1366
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
1367
	}
1368

1369
	page = grab_cache_page_write_begin(mapping, index, flags);
1370 1371 1372 1373 1374 1375 1376
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

N
Nick Piggin 已提交
1377 1378 1379 1380
	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
							ext4_get_block);

	if (!ret && ext4_should_journal_data(inode)) {
1381 1382 1383
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1384 1385

	if (ret) {
1386
		unlock_page(page);
1387
		ext4_journal_stop(handle);
1388
		page_cache_release(page);
1389 1390 1391 1392 1393 1394 1395
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
			vmtruncate(inode, inode->i_size);
N
Nick Piggin 已提交
1396 1397
	}

1398
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1399
		goto retry;
1400
out:
1401 1402 1403
	return ret;
}

N
Nick Piggin 已提交
1404 1405
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1406 1407 1408 1409
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1410
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1411 1412 1413 1414 1415 1416
}

/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1417
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1418 1419
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1420 1421 1422 1423
static int ext4_ordered_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1424
{
1425
	handle_t *handle = ext4_journal_current_handle();
1426
	struct inode *inode = mapping->host;
1427 1428
	int ret = 0, ret2;

1429 1430 1431 1432
	trace_mark(ext4_ordered_write_end,
		   "dev %s ino %lu pos %llu len %u copied %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, copied);
1433
	ret = ext4_jbd2_file_inode(handle, inode);
1434 1435 1436 1437

	if (ret == 0) {
		loff_t new_i_size;

N
Nick Piggin 已提交
1438
		new_i_size = pos + copied;
1439 1440 1441 1442 1443 1444 1445 1446 1447
		if (new_i_size > EXT4_I(inode)->i_disksize) {
			ext4_update_i_disksize(inode, new_i_size);
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
		}

1448
		ret2 = generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1449
							page, fsdata);
1450 1451 1452
		copied = ret2;
		if (ret2 < 0)
			ret = ret2;
1453
	}
1454
	ret2 = ext4_journal_stop(handle);
1455 1456
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1457 1458

	return ret ? ret : copied;
1459 1460
}

N
Nick Piggin 已提交
1461 1462 1463 1464
static int ext4_writeback_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1465
{
1466
	handle_t *handle = ext4_journal_current_handle();
1467
	struct inode *inode = mapping->host;
1468 1469 1470
	int ret = 0, ret2;
	loff_t new_i_size;

1471 1472 1473 1474
	trace_mark(ext4_writeback_write_end,
		   "dev %s ino %lu pos %llu len %u copied %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, copied);
N
Nick Piggin 已提交
1475
	new_i_size = pos + copied;
1476 1477 1478 1479 1480 1481 1482 1483
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_mark_inode_dirty(handle, inode);
	}
1484

1485
	ret2 = generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1486
							page, fsdata);
1487 1488 1489
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
1490

1491
	ret2 = ext4_journal_stop(handle);
1492 1493
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1494 1495

	return ret ? ret : copied;
1496 1497
}

N
Nick Piggin 已提交
1498 1499 1500 1501
static int ext4_journalled_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1502
{
1503
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1504
	struct inode *inode = mapping->host;
1505 1506
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1507
	unsigned from, to;
1508
	loff_t new_i_size;
1509

1510 1511 1512 1513
	trace_mark(ext4_journalled_write_end,
		   "dev %s ino %lu pos %llu len %u copied %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, copied);
N
Nick Piggin 已提交
1514 1515 1516 1517 1518 1519 1520 1521
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1522 1523

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1524
				to, &partial, write_end_fn);
1525 1526
	if (!partial)
		SetPageUptodate(page);
1527 1528
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1529
		i_size_write(inode, pos+copied);
1530
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1531 1532
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1533
		ret2 = ext4_mark_inode_dirty(handle, inode);
1534 1535 1536
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1537

1538
	unlock_page(page);
1539
	ret2 = ext4_journal_stop(handle);
1540 1541
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1542 1543 1544
	page_cache_release(page);

	return ret ? ret : copied;
1545
}
1546 1547 1548

static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
{
A
Aneesh Kumar K.V 已提交
1549
	int retries = 0;
1550 1551 1552 1553 1554 1555 1556 1557
       struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
       unsigned long md_needed, mdblocks, total = 0;

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1558
repeat:
1559 1560 1561 1562 1563 1564 1565 1566
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
	mdblocks = ext4_calc_metadata_amount(inode, total);
	BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);

	md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
	total = md_needed + nrblocks;

1567
	if (ext4_claim_free_blocks(sbi, total)) {
1568
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
A
Aneesh Kumar K.V 已提交
1569 1570 1571 1572
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1573 1574 1575 1576 1577 1578 1579 1580 1581
		return -ENOSPC;
	}
	EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
	EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
	return 0;       /* success */
}

1582
static void ext4_da_release_space(struct inode *inode, int to_free)
1583 1584 1585 1586
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int total, mdb, mdb_free, release;

1587 1588 1589
	if (!to_free)
		return;		/* Nothing to release, exit */

1590
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605

	if (!EXT4_I(inode)->i_reserved_data_blocks) {
		/*
		 * if there is no reserved blocks, but we try to free some
		 * then the counter is messed up somewhere.
		 * but since this function is called from invalidate
		 * page, it's harmless to return without any action
		 */
		printk(KERN_INFO "ext4 delalloc try to release %d reserved "
			    "blocks for inode %lu, but there is no reserved "
			    "data blocks\n", to_free, inode->i_ino);
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
		return;
	}

1606
	/* recalculate the number of metablocks still need to be reserved */
1607
	total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1608 1609 1610 1611 1612 1613 1614 1615
	mdb = ext4_calc_metadata_amount(inode, total);

	/* figure out how many metablocks to release */
	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;

	release = to_free + mdb_free;

1616 1617
	/* update fs dirty blocks counter for truncate case */
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1618 1619

	/* update per-inode reservations */
1620 1621
	BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
	EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645

	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	EXT4_I(inode)->i_reserved_meta_blocks = mdb;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
}

static void ext4_da_page_release_reservation(struct page *page,
						unsigned long offset)
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1646
	ext4_da_release_space(page->mapping->host, to_release);
1647
}
1648

1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
/*
 * Delayed allocation stuff
 */

struct mpage_da_data {
	struct inode *inode;
	struct buffer_head lbh;			/* extent of blocks */
	unsigned long first_page, next_page;	/* extent of pages */
	get_block_t *get_block;
	struct writeback_control *wbc;
1659
	int io_done;
1660
	int pages_written;
1661
	int retval;
1662 1663 1664 1665
};

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1666
 * them with writepage() call back
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 * @mpd->get_block: the filesystem's block mapper function
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
static int mpage_da_submit_io(struct mpage_da_data *mpd)
{
1680
	long pages_skipped;
1681 1682 1683 1684 1685
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1686 1687

	BUG_ON(mpd->next_page <= mpd->first_page);
1688 1689 1690 1691 1692 1693
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
	 * If we look at mpd->lbh.b_blocknr we would only be looking
	 * at the currently mapped buffer_heads.
	 */
1694 1695 1696
	index = mpd->first_page;
	end = mpd->next_page - 1;

1697
	pagevec_init(&pvec, 0);
1698
	while (index <= end) {
1699
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1700 1701 1702 1703 1704
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

1705 1706 1707 1708 1709 1710 1711 1712
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1713
			pages_skipped = mpd->wbc->pages_skipped;
1714
			err = mapping->a_ops->writepage(page, mpd->wbc);
1715 1716 1717 1718 1719
			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
				/*
				 * have successfully written the page
				 * without skipping the same
				 */
1720
				mpd->pages_written++;
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 * XXX: unlock and re-dirty them?
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
	return ret;
}

/*
 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
 *
 * @mpd->inode - inode to walk through
 * @exbh->b_blocknr - first block on a disk
 * @exbh->b_size - amount of space in bytes
 * @logical - first logical block to start assignment with
 *
 * the function goes through all passed space and put actual disk
 * block numbers into buffer heads, dropping BH_Delay
 */
static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
				 struct buffer_head *exbh)
{
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
	int blocks = exbh->b_size >> inode->i_blkbits;
	sector_t pblock = exbh->b_blocknr, cur_logical;
	struct buffer_head *head, *bh;
1753
	pgoff_t index, end;
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
	struct pagevec pvec;
	int nr_pages, i;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);

	pagevec_init(&pvec, 0);

	while (index <= end) {
		/* XXX: optimize tail */
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			BUG_ON(!page_has_buffers(page));

			bh = page_buffers(page);
			head = bh;

			/* skip blocks out of the range */
			do {
				if (cur_logical >= logical)
					break;
				cur_logical++;
			} while ((bh = bh->b_this_page) != head);

			do {
				if (cur_logical >= logical + blocks)
					break;
				if (buffer_delay(bh)) {
					bh->b_blocknr = pblock;
					clear_buffer_delay(bh);
1796 1797 1798 1799 1800 1801 1802
					bh->b_bdev = inode->i_sb->s_bdev;
				} else if (buffer_unwritten(bh)) {
					bh->b_blocknr = pblock;
					clear_buffer_unwritten(bh);
					set_buffer_mapped(bh);
					set_buffer_new(bh);
					bh->b_bdev = inode->i_sb->s_bdev;
1803
				} else if (buffer_mapped(bh))
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
					BUG_ON(bh->b_blocknr != pblock);

				cur_logical++;
				pblock++;
			} while ((bh = bh->b_this_page) != head);
		}
		pagevec_release(&pvec);
	}
}


/*
 * __unmap_underlying_blocks - just a helper function to unmap
 * set of blocks described by @bh
 */
static inline void __unmap_underlying_blocks(struct inode *inode,
					     struct buffer_head *bh)
{
	struct block_device *bdev = inode->i_sb->s_bdev;
	int blocks, i;

	blocks = bh->b_size >> inode->i_blkbits;
	for (i = 0; i < blocks; i++)
		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
}

1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
					sector_t logical, long blk_cnt)
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end   = (logical + blk_cnt - 1) >>
				(PAGE_CACHE_SHIFT - inode->i_blkbits);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
	}
	return;
}

1863 1864 1865 1866 1867 1868 1869
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	printk(KERN_EMERG "Total free blocks count %lld\n",
			ext4_count_free_blocks(inode->i_sb));
	printk(KERN_EMERG "Free/Dirty block details\n");
	printk(KERN_EMERG "free_blocks=%lld\n",
1870
			(long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
1871
	printk(KERN_EMERG "dirty_blocks=%lld\n",
1872
			(long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1873
	printk(KERN_EMERG "Block reservation details\n");
1874
	printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
1875
			EXT4_I(inode)->i_reserved_data_blocks);
1876
	printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
1877 1878 1879 1880
			EXT4_I(inode)->i_reserved_meta_blocks);
	return;
}

1881 1882 1883 1884 1885 1886 1887 1888 1889
/*
 * mpage_da_map_blocks - go through given space
 *
 * @mpd->lbh - bh describing space
 * @mpd->get_block - the filesystem's block mapper function
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
1890
static int  mpage_da_map_blocks(struct mpage_da_data *mpd)
1891
{
1892
	int err = 0;
A
Aneesh Kumar K.V 已提交
1893
	struct buffer_head new;
1894
	struct buffer_head *lbh = &mpd->lbh;
1895
	sector_t next;
1896 1897 1898 1899 1900

	/*
	 * We consider only non-mapped and non-allocated blocks
	 */
	if (buffer_mapped(lbh) && !buffer_delay(lbh))
1901
		return 0;
1902 1903 1904
	new.b_state = lbh->b_state;
	new.b_blocknr = 0;
	new.b_size = lbh->b_size;
1905
	next = lbh->b_blocknr;
1906 1907 1908 1909 1910
	/*
	 * If we didn't accumulate anything
	 * to write simply return
	 */
	if (!new.b_size)
1911
		return 0;
1912
	err = mpd->get_block(mpd->inode, next, &new, 1);
1913 1914 1915 1916 1917 1918 1919 1920 1921
	if (err) {

		/* If get block returns with error
		 * we simply return. Later writepage
		 * will redirty the page and writepages
		 * will find the dirty page again
		 */
		if (err == -EAGAIN)
			return 0;
1922 1923 1924 1925 1926 1927 1928

		if (err == -ENOSPC &&
				ext4_count_free_blocks(mpd->inode->i_sb)) {
			mpd->retval = err;
			return 0;
		}

1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
		/*
		 * get block failure will cause us
		 * to loop in writepages. Because
		 * a_ops->writepage won't be able to
		 * make progress. The page will be redirtied
		 * by writepage and writepages will again
		 * try to write the same.
		 */
		printk(KERN_EMERG "%s block allocation failed for inode %lu "
				  "at logical offset %llu with max blocks "
				  "%zd with error %d\n",
				  __func__, mpd->inode->i_ino,
				  (unsigned long long)next,
				  lbh->b_size >> mpd->inode->i_blkbits, err);
		printk(KERN_EMERG "This should not happen.!! "
					"Data will be lost\n");
A
Aneesh Kumar K.V 已提交
1945
		if (err == -ENOSPC) {
1946
			ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
1947
		}
1948 1949 1950 1951 1952
		/* invlaidate all the pages */
		ext4_da_block_invalidatepages(mpd, next,
				lbh->b_size >> mpd->inode->i_blkbits);
		return err;
	}
1953
	BUG_ON(new.b_size == 0);
1954

1955 1956
	if (buffer_new(&new))
		__unmap_underlying_blocks(mpd->inode, &new);
1957

1958 1959 1960 1961 1962 1963
	/*
	 * If blocks are delayed marked, we need to
	 * put actual blocknr and drop delayed bit
	 */
	if (buffer_delay(lbh) || buffer_unwritten(lbh))
		mpage_put_bnr_to_bhs(mpd, next, &new);
1964

1965
	return 0;
1966 1967
}

1968 1969
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
				   sector_t logical, struct buffer_head *bh)
{
	sector_t next;
1984 1985 1986
	size_t b_size = bh->b_size;
	struct buffer_head *lbh = &mpd->lbh;
	int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
1987

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
	/* check if thereserved journal credits might overflow */
	if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
2010 2011 2012 2013 2014
	/*
	 * First block in the extent
	 */
	if (lbh->b_size == 0) {
		lbh->b_blocknr = logical;
2015
		lbh->b_size = b_size;
2016 2017 2018 2019
		lbh->b_state = bh->b_state & BH_FLAGS;
		return;
	}

2020
	next = lbh->b_blocknr + nrblocks;
2021 2022 2023 2024
	/*
	 * Can we merge the block to our big extent?
	 */
	if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
2025
		lbh->b_size += b_size;
2026 2027 2028
		return;
	}

2029
flush_it:
2030 2031 2032 2033
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
2034 2035
	if (mpage_da_map_blocks(mpd) == 0)
		mpage_da_submit_io(mpd);
2036 2037
	mpd->io_done = 1;
	return;
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
}

/*
 * __mpage_da_writepage - finds extent of pages and blocks
 *
 * @page: page to consider
 * @wbc: not used, we just follow rules
 * @data: context
 *
 * The function finds extents of pages and scan them for all blocks.
 */
static int __mpage_da_writepage(struct page *page,
				struct writeback_control *wbc, void *data)
{
	struct mpage_da_data *mpd = data;
	struct inode *inode = mpd->inode;
	struct buffer_head *bh, *head, fake;
	sector_t logical;

2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
	if (mpd->io_done) {
		/*
		 * Rest of the page in the page_vec
		 * redirty then and skip then. We will
		 * try to to write them again after
		 * starting a new transaction
		 */
		redirty_page_for_writepage(wbc, page);
		unlock_page(page);
		return MPAGE_DA_EXTENT_TAIL;
	}
2068 2069 2070 2071 2072 2073
	/*
	 * Can we merge this page to current extent?
	 */
	if (mpd->next_page != page->index) {
		/*
		 * Nope, we can't. So, we map non-allocated blocks
2074
		 * and start IO on them using writepage()
2075 2076
		 */
		if (mpd->next_page != mpd->first_page) {
2077 2078
			if (mpage_da_map_blocks(mpd) == 0)
				mpage_da_submit_io(mpd);
2079 2080 2081 2082 2083 2084 2085
			/*
			 * skip rest of the page in the page_vec
			 */
			mpd->io_done = 1;
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return MPAGE_DA_EXTENT_TAIL;
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
		}

		/*
		 * Start next extent of pages ...
		 */
		mpd->first_page = page->index;

		/*
		 * ... and blocks
		 */
		mpd->lbh.b_size = 0;
		mpd->lbh.b_state = 0;
		mpd->lbh.b_blocknr = 0;
	}

	mpd->next_page = page->index + 1;
	logical = (sector_t) page->index <<
		  (PAGE_CACHE_SHIFT - inode->i_blkbits);

	if (!page_has_buffers(page)) {
		/*
		 * There is no attached buffer heads yet (mmap?)
		 * we treat the page asfull of dirty blocks
		 */
		bh = &fake;
		bh->b_size = PAGE_CACHE_SIZE;
		bh->b_state = 0;
		set_buffer_dirty(bh);
		set_buffer_uptodate(bh);
		mpage_add_bh_to_extent(mpd, logical, bh);
2116 2117
		if (mpd->io_done)
			return MPAGE_DA_EXTENT_TAIL;
2118 2119 2120 2121 2122 2123 2124 2125
	} else {
		/*
		 * Page with regular buffer heads, just add all dirty ones
		 */
		head = page_buffers(page);
		bh = head;
		do {
			BUG_ON(buffer_locked(bh));
2126 2127 2128 2129 2130 2131
			/*
			 * We need to try to allocate
			 * unmapped blocks in the same page.
			 * Otherwise we won't make progress
			 * with the page in ext4_da_writepage
			 */
2132 2133
			if (buffer_dirty(bh) &&
				(!buffer_mapped(bh) || buffer_delay(bh))) {
2134
				mpage_add_bh_to_extent(mpd, logical, bh);
2135 2136
				if (mpd->io_done)
					return MPAGE_DA_EXTENT_TAIL;
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
				/*
				 * mapped dirty buffer. We need to update
				 * the b_state because we look at
				 * b_state in mpage_da_map_blocks. We don't
				 * update b_size because if we find an
				 * unmapped buffer_head later we need to
				 * use the b_state flag of that buffer_head.
				 */
				if (mpd->lbh.b_size == 0)
					mpd->lbh.b_state =
						bh->b_state & BH_FLAGS;
2149
			}
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
			logical++;
		} while ((bh = bh->b_this_page) != head);
	}

	return 0;
}

/*
 * mpage_da_writepages - walk the list of dirty pages of the given
 * address space, allocates non-allocated blocks, maps newly-allocated
 * blocks to existing bhs and issue IO them
 *
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 * @get_block: the filesystem's block mapper function.
 *
 * This is a library function, which implements the writepages()
 * address_space_operation.
 */
static int mpage_da_writepages(struct address_space *mapping,
			       struct writeback_control *wbc,
2171
			       struct mpage_da_data *mpd)
2172 2173 2174
{
	int ret;

2175
	if (!mpd->get_block)
2176 2177
		return generic_writepages(mapping, wbc);

2178 2179 2180 2181 2182 2183 2184 2185
	mpd->lbh.b_size = 0;
	mpd->lbh.b_state = 0;
	mpd->lbh.b_blocknr = 0;
	mpd->first_page = 0;
	mpd->next_page = 0;
	mpd->io_done = 0;
	mpd->pages_written = 0;
	mpd->retval = 0;
2186

2187
	ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, mpd);
2188 2189 2190
	/*
	 * Handle last extent of pages
	 */
2191 2192 2193
	if (!mpd->io_done && mpd->next_page != mpd->first_page) {
		if (mpage_da_map_blocks(mpd) == 0)
			mpage_da_submit_io(mpd);
2194

2195 2196 2197 2198
		mpd->io_done = 1;
		ret = MPAGE_DA_EXTENT_TAIL;
	}
	wbc->nr_to_write -= mpd->pages_written;
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
	return ret;
}

/*
 * this is a special callback for ->write_begin() only
 * it's intention is to return mapped block or reserve space
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
				  struct buffer_head *bh_result, int create)
{
	int ret = 0;

	BUG_ON(create == 0);
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2219 2220 2221
	ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
	if ((ret == 0) && !buffer_delay(bh_result)) {
		/* the block isn't (pre)allocated yet, let's reserve space */
2222 2223 2224 2225
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
2226 2227 2228 2229 2230
		ret = ext4_da_reserve_space(inode, 1);
		if (ret)
			/* not enough space to reserve */
			return ret;

2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
		map_bh(bh_result, inode->i_sb, 0);
		set_buffer_new(bh_result);
		set_buffer_delay(bh_result);
	} else if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
	}

	return ret;
}
2241
#define		EXT4_DELALLOC_RSVED	1
2242 2243 2244
static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create)
{
2245
	int ret;
2246 2247 2248 2249
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
	loff_t disksize = EXT4_I(inode)->i_disksize;
	handle_t *handle = NULL;

2250
	handle = ext4_journal_current_handle();
2251 2252 2253
	BUG_ON(!handle);
	ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
			bh_result, create, 0, EXT4_DELALLOC_RSVED);
2254
	if (ret > 0) {
2255

2256 2257
		bh_result->b_size = (ret << inode->i_blkbits);

2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
		if (ext4_should_order_data(inode)) {
			int retval;
			retval = ext4_jbd2_file_inode(handle, inode);
			if (retval)
				/*
				 * Failed to add inode for ordered
				 * mode. Don't update file size
				 */
				return retval;
		}

2269 2270 2271 2272 2273 2274 2275 2276 2277
		/*
		 * Update on-disk size along with block allocation
		 * we don't use 'extend_disksize' as size may change
		 * within already allocated block -bzzz
		 */
		disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
		if (disksize > i_size_read(inode))
			disksize = i_size_read(inode);
		if (disksize > EXT4_I(inode)->i_disksize) {
2278 2279 2280
			ext4_update_i_disksize(inode, disksize);
			ret = ext4_mark_inode_dirty(handle, inode);
			return ret;
2281 2282 2283 2284 2285
		}
		ret = 0;
	}
	return ret;
}
2286 2287 2288

static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
{
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
	/*
	 * unmapped buffer is possible for holes.
	 * delay buffer is possible with delayed allocation
	 */
	return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
}

static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create)
{
	int ret = 0;
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;

	/*
	 * we don't want to do block allocation in writepage
	 * so call get_block_wrap with create = 0
	 */
	ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
				   bh_result, 0, 0, 0);
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
	}
	return ret;
2313 2314 2315
}

/*
2316 2317 2318 2319
 * get called vi ext4_da_writepages after taking page lock (have journal handle)
 * get called via journal_submit_inode_data_buffers (no journal handle)
 * get called via shrink_page_list via pdflush (no journal handle)
 * or grab_page_cache when doing write_begin (have journal handle)
2320
 */
2321 2322 2323 2324
static int ext4_da_writepage(struct page *page,
				struct writeback_control *wbc)
{
	int ret = 0;
2325
	loff_t size;
2326
	unsigned int len;
2327 2328 2329
	struct buffer_head *page_bufs;
	struct inode *inode = page->mapping->host;

2330 2331 2332
	trace_mark(ext4_da_writepage,
		   "dev %s ino %lu page_index %lu",
		   inode->i_sb->s_id, inode->i_ino, page->index);
2333 2334 2335 2336 2337
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2338

2339
	if (page_has_buffers(page)) {
2340
		page_bufs = page_buffers(page);
2341 2342
		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
					ext4_bh_unmapped_or_delay)) {
2343
			/*
2344 2345
			 * We don't want to do  block allocation
			 * So redirty the page and return
2346 2347 2348
			 * We may reach here when we do a journal commit
			 * via journal_submit_inode_data_buffers.
			 * If we don't have mapping block we just ignore
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
			 * them. We can also reach here via shrink_page_list
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
	} else {
		/*
		 * The test for page_has_buffers() is subtle:
		 * We know the page is dirty but it lost buffers. That means
		 * that at some moment in time after write_begin()/write_end()
		 * has been called all buffers have been clean and thus they
		 * must have been written at least once. So they are all
		 * mapped and we can happily proceed with mapping them
		 * and writing the page.
		 *
		 * Try to initialize the buffer_heads and check whether
		 * all are mapped and non delay. We don't want to
		 * do block allocation here.
		 */
		ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
						ext4_normal_get_block_write);
		if (!ret) {
			page_bufs = page_buffers(page);
			/* check whether all are mapped and non delay */
			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
						ext4_bh_unmapped_or_delay)) {
				redirty_page_for_writepage(wbc, page);
				unlock_page(page);
				return 0;
			}
		} else {
			/*
			 * We can't do block allocation here
			 * so just redity the page and unlock
			 * and return
2385 2386 2387 2388 2389
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
2390 2391
		/* now mark the buffer_heads as dirty and uptodate */
		block_commit_write(page, 0, PAGE_CACHE_SIZE);
2392 2393 2394
	}

	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2395
		ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2396
	else
2397 2398 2399
		ret = block_write_full_page(page,
						ext4_normal_get_block_write,
						wbc);
2400 2401 2402 2403

	return ret;
}

2404
/*
2405 2406 2407 2408 2409
 * This is called via ext4_da_writepages() to
 * calulate the total number of credits to reserve to fit
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2410
 */
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
	if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2428

2429
static int ext4_da_writepages(struct address_space *mapping,
2430
			      struct writeback_control *wbc)
2431
{
2432 2433
	pgoff_t	index;
	int range_whole = 0;
2434
	handle_t *handle = NULL;
2435
	struct mpage_da_data mpd;
2436
	struct inode *inode = mapping->host;
2437
	int no_nrwrite_index_update;
2438 2439
	int pages_written = 0;
	long pages_skipped;
2440 2441
	int needed_blocks, ret = 0, nr_to_writebump = 0;
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2442

2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
	trace_mark(ext4_da_writepages,
		   "dev %s ino %lu nr_t_write %ld "
		   "pages_skipped %ld range_start %llu "
		   "range_end %llu nonblocking %d "
		   "for_kupdate %d for_reclaim %d "
		   "for_writepages %d range_cyclic %d",
		   inode->i_sb->s_id, inode->i_ino,
		   wbc->nr_to_write, wbc->pages_skipped,
		   (unsigned long long) wbc->range_start,
		   (unsigned long long) wbc->range_end,
		   wbc->nonblocking, wbc->for_kupdate,
		   wbc->for_reclaim, wbc->for_writepages,
		   wbc->range_cyclic);

2457 2458 2459 2460 2461
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2462
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2463
		return 0;
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
	 * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
	if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
		return -EROFS;

2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
	/*
	 * Make sure nr_to_write is >= sbi->s_mb_stream_request
	 * This make sure small files blocks are allocated in
	 * single attempt. This ensure that small files
	 * get less fragmented.
	 */
	if (wbc->nr_to_write < sbi->s_mb_stream_request) {
		nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
		wbc->nr_to_write = sbi->s_mb_stream_request;
	}
2488 2489
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2490

2491 2492 2493 2494
	if (wbc->range_cyclic)
		index = mapping->writeback_index;
	else
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2495

2496 2497 2498
	mpd.wbc = wbc;
	mpd.inode = mapping->host;

2499 2500 2501 2502 2503 2504 2505 2506 2507
	/*
	 * we don't want write_cache_pages to update
	 * nr_to_write and writeback_index
	 */
	no_nrwrite_index_update = wbc->no_nrwrite_index_update;
	wbc->no_nrwrite_index_update = 1;
	pages_skipped = wbc->pages_skipped;

	while (!ret && wbc->nr_to_write > 0) {
2508 2509 2510 2511 2512 2513 2514 2515

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2516
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2517

2518 2519 2520 2521
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2522
			printk(KERN_CRIT "%s: jbd2_start: "
2523 2524 2525
			       "%ld pages, ino %lu; err %d\n", __func__,
				wbc->nr_to_write, inode->i_ino, ret);
			dump_stack();
2526 2527
			goto out_writepages;
		}
2528 2529 2530
		mpd.get_block = ext4_da_get_block_write;
		ret = mpage_da_writepages(mapping, wbc, &mpd);

2531
		ext4_journal_stop(handle);
2532

2533 2534 2535 2536 2537
		if (mpd.retval == -ENOSPC) {
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2538
			jbd2_journal_force_commit_nested(sbi->s_journal);
2539 2540 2541
			wbc->pages_skipped = pages_skipped;
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2542 2543 2544 2545
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
2546 2547
			pages_written += mpd.pages_written;
			wbc->pages_skipped = pages_skipped;
2548
			ret = 0;
2549
		} else if (wbc->nr_to_write)
2550 2551 2552 2553 2554 2555
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2556
	}
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
	if (pages_skipped != wbc->pages_skipped)
		printk(KERN_EMERG "This should not happen leaving %s "
				"with nr_to_write = %ld ret = %d\n",
				__func__, wbc->nr_to_write, ret);

	/* Update index */
	index += pages_written;
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
		mapping->writeback_index = index;
2570

2571
out_writepages:
2572 2573 2574
	if (!no_nrwrite_index_update)
		wbc->no_nrwrite_index_update = 0;
	wbc->nr_to_write -= nr_to_writebump;
2575 2576 2577 2578 2579 2580 2581 2582
	trace_mark(ext4_da_writepage_result,
		   "dev %s ino %lu ret %d pages_written %d "
		   "pages_skipped %ld congestion %d "
		   "more_io %d no_nrwrite_index_update %d",
		   inode->i_sb->s_id, inode->i_ino, ret,
		   pages_written, wbc->pages_skipped,
		   wbc->encountered_congestion, wbc->more_io,
		   wbc->no_nrwrite_index_update);
2583
	return ret;
2584 2585
}

2586 2587 2588 2589 2590 2591 2592 2593 2594
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2595
	 * counters can get slightly wrong with percpu_counter_batch getting
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
	if (2 * free_blocks < 3 * dirty_blocks ||
		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
		/*
		 * free block count is less that 150% of dirty blocks
		 * or free blocks is less that watermark
		 */
		return 1;
	}
	return 0;
}

2613 2614 2615 2616
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
{
2617
	int ret, retries = 0;
2618 2619 2620 2621 2622 2623 2624 2625 2626
	struct page *page;
	pgoff_t index;
	unsigned from, to;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
2627 2628 2629 2630 2631 2632 2633

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2634 2635 2636 2637 2638

	trace_mark(ext4_da_write_begin,
		   "dev %s ino %lu pos %llu len %u flags %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, flags);
2639
retry:
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

2652
	page = grab_cache_page_write_begin(mapping, index, flags);
2653 2654 2655 2656 2657
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
2658 2659 2660 2661 2662 2663 2664 2665
	*pagep = page;

	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
							ext4_da_get_block_prep);
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
2666 2667 2668 2669 2670 2671 2672
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
			vmtruncate(inode, inode->i_size);
2673 2674
	}

2675 2676
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
2677 2678 2679 2680
out:
	return ret;
}

2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
					 unsigned long offset)
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2696
	for (i = 0; i < idx; i++)
2697 2698 2699 2700 2701 2702 2703
		bh = bh->b_this_page;

	if (!buffer_mapped(bh) || (buffer_delay(bh)))
		return 0;
	return 1;
}

2704 2705 2706 2707 2708 2709 2710 2711 2712
static int ext4_da_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2713
	unsigned long start, end;
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
2727

2728 2729 2730 2731
	trace_mark(ext4_da_write_end,
		   "dev %s ino %lu pos %llu len %u copied %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, copied);
2732
	start = pos & (PAGE_CACHE_SIZE - 1);
2733
	end = start + copied - 1;
2734 2735 2736 2737 2738 2739 2740 2741

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
2753

2754 2755 2756
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
2757 2758 2759 2760 2761
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2762
		}
2763
	}
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2785
	ext4_da_page_release_reservation(page, offset);
2786 2787 2788 2789 2790 2791 2792 2793

out:
	ext4_invalidatepage(page, offset);

	return;
}


2794 2795 2796 2797 2798
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2799
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2800 2801 2802 2803 2804 2805 2806 2807
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2808
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2809 2810 2811 2812 2813
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2824 2825 2826 2827
	BUG_ON(!EXT4_JOURNAL(inode) &&
	       EXT4_I(inode)->i_state & EXT4_STATE_JDATA);

	if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2839
		 * NB. EXT4_STATE_JDATA is not set on files other than
2840 2841 2842 2843 2844 2845
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2846 2847
		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
		journal = EXT4_JOURNAL(inode);
2848 2849 2850
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
2851 2852 2853 2854 2855

		if (err)
			return 0;
	}

2856
	return generic_block_bmap(mapping, block, ext4_get_block);
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
}

static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

/*
2872 2873 2874 2875 2876 2877 2878 2879
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
 * we are writing back data modified via mmap(), noone guarantees in which
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
2880
 *
2881
 * In all journaling modes block_write_full_page() will start the I/O.
2882 2883 2884
 *
 * Problem:
 *
2885 2886
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
2887 2888 2889
 *
 * Similar for:
 *
2890
 *	ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2891
 *
2892
 * Same applies to ext4_get_block().  We will deadlock on various things like
2893
 * lock_journal and i_data_sem
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
 *
 * Setting PF_MEMALLOC here doesn't work - too many internal memory
 * allocations fail.
 *
 * 16May01: If we're reentered then journal_current_handle() will be
 *	    non-zero. We simply *return*.
 *
 * 1 July 2001: @@@ FIXME:
 *   In journalled data mode, a data buffer may be metadata against the
 *   current transaction.  But the same file is part of a shared mapping
 *   and someone does a writepage() on it.
 *
 *   We will move the buffer onto the async_data list, but *after* it has
 *   been dirtied. So there's a small window where we have dirty data on
 *   BJ_Metadata.
 *
 *   Note that this only applies to the last partial page in the file.  The
 *   bit which block_write_full_page() uses prepare/commit for.  (That's
 *   broken code anyway: it's wrong for msync()).
 *
 *   It's a rare case: affects the final partial page, for journalled data
 *   where the file is subject to bith write() and writepage() in the same
 *   transction.  To fix it we'll need a custom block_write_full_page().
 *   We'll probably need that anyway for journalling writepage() output.
 *
 * We don't honour synchronous mounts for writepage().  That would be
 * disastrous.  Any write() or metadata operation will sync the fs for
 * us.
 *
 */
2924
static int __ext4_normal_writepage(struct page *page,
2925 2926 2927 2928 2929
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;

	if (test_opt(inode->i_sb, NOBH))
2930 2931
		return nobh_writepage(page,
					ext4_normal_get_block_write, wbc);
2932
	else
2933 2934 2935
		return block_write_full_page(page,
						ext4_normal_get_block_write,
						wbc);
2936 2937
}

2938
static int ext4_normal_writepage(struct page *page,
2939 2940 2941
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
2942 2943 2944
	loff_t size = i_size_read(inode);
	loff_t len;

2945 2946 2947
	trace_mark(ext4_normal_writepage,
		   "dev %s ino %lu page_index %lu",
		   inode->i_sb->s_id, inode->i_ino, page->index);
2948 2949 2950 2951 2952
	J_ASSERT(PageLocked(page));
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966

	if (page_has_buffers(page)) {
		/* if page has buffers it should all be mapped
		 * and allocated. If there are not buffers attached
		 * to the page we know the page is dirty but it lost
		 * buffers. That means that at some moment in time
		 * after write_begin() / write_end() has been called
		 * all buffers have been clean and thus they must have been
		 * written at least once. So they are all mapped and we can
		 * happily proceed with mapping them and writing the page.
		 */
		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
					ext4_bh_unmapped_or_delay));
	}
2967 2968

	if (!ext4_journal_current_handle())
2969
		return __ext4_normal_writepage(page, wbc);
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981

	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				struct writeback_control *wbc)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
2982 2983 2984 2985
	handle_t *handle = NULL;
	int ret = 0;
	int err;

2986 2987
	ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
					ext4_normal_get_block_write);
2988 2989 2990 2991 2992 2993 2994 2995 2996
	if (ret != 0)
		goto out_unlock;

	page_bufs = page_buffers(page);
	walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
								bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);
2997

2998
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2999 3000
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
3001
		goto out;
3002 3003
	}

3004 3005
	ret = walk_page_buffers(handle, page_bufs, 0,
			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
3006

3007 3008 3009 3010
	err = walk_page_buffers(handle, page_bufs, 0,
				PAGE_CACHE_SIZE, NULL, write_end_fn);
	if (ret == 0)
		ret = err;
3011
	err = ext4_journal_stop(handle);
3012 3013 3014
	if (!ret)
		ret = err;

3015 3016 3017 3018 3019 3020
	walk_page_buffers(handle, page_bufs, 0,
				PAGE_CACHE_SIZE, NULL, bput_one);
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
	goto out;

out_unlock:
3021
	unlock_page(page);
3022
out:
3023 3024 3025
	return ret;
}

3026
static int ext4_journalled_writepage(struct page *page,
3027 3028 3029
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
3030 3031
	loff_t size = i_size_read(inode);
	loff_t len;
3032

3033 3034 3035
	trace_mark(ext4_journalled_writepage,
		   "dev %s ino %lu page_index %lu",
		   inode->i_sb->s_id, inode->i_ino, page->index);
3036 3037 3038 3039 3040
	J_ASSERT(PageLocked(page));
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054

	if (page_has_buffers(page)) {
		/* if page has buffers it should all be mapped
		 * and allocated. If there are not buffers attached
		 * to the page we know the page is dirty but it lost
		 * buffers. That means that at some moment in time
		 * after write_begin() / write_end() has been called
		 * all buffers have been clean and thus they must have been
		 * written at least once. So they are all mapped and we can
		 * happily proceed with mapping them and writing the page.
		 */
		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
					ext4_bh_unmapped_or_delay));
	}
3055

3056
	if (ext4_journal_current_handle())
3057 3058
		goto no_write;

3059
	if (PageChecked(page)) {
3060 3061 3062 3063 3064
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
		ClearPageChecked(page);
3065
		return __ext4_journalled_writepage(page, wbc);
3066 3067 3068 3069 3070 3071
	} else {
		/*
		 * It may be a page full of checkpoint-mode buffers.  We don't
		 * really know unless we go poke around in the buffer_heads.
		 * But block_write_full_page will do the right thing.
		 */
3072 3073 3074
		return block_write_full_page(page,
						ext4_normal_get_block_write,
						wbc);
3075 3076 3077 3078
	}
no_write:
	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
3079
	return 0;
3080 3081
}

3082
static int ext4_readpage(struct file *file, struct page *page)
3083
{
3084
	return mpage_readpage(page, ext4_get_block);
3085 3086 3087
}

static int
3088
ext4_readpages(struct file *file, struct address_space *mapping,
3089 3090
		struct list_head *pages, unsigned nr_pages)
{
3091
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3092 3093
}

3094
static void ext4_invalidatepage(struct page *page, unsigned long offset)
3095
{
3096
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3097 3098 3099 3100 3101 3102 3103

	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

3104 3105 3106 3107
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
3108 3109
}

3110
static int ext4_releasepage(struct page *page, gfp_t wait)
3111
{
3112
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3113 3114 3115 3116

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
3117 3118 3119 3120
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3121 3122 3123 3124 3125 3126 3127 3128
}

/*
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
3129 3130
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
3131
 */
3132
static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3133 3134 3135 3136 3137
			const struct iovec *iov, loff_t offset,
			unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3138
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
3139
	handle_t *handle;
3140 3141 3142 3143 3144 3145 3146 3147
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
3148 3149 3150 3151 3152 3153
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
3154
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
3155 3156 3157 3158
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
3159 3160
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
3161
			ext4_journal_stop(handle);
3162 3163 3164 3165 3166
		}
	}

	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
3167
				 ext4_get_block, NULL);
3168

J
Jan Kara 已提交
3169
	if (orphan) {
3170 3171
		int err;

J
Jan Kara 已提交
3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
			goto out;
		}
		if (inode->i_nlink)
3182
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
3183
		if (ret > 0) {
3184 3185 3186 3187 3188 3189 3190 3191
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
3192
				 * ext4_mark_inode_dirty() to userspace.  So
3193 3194
				 * ignore it.
				 */
3195
				ext4_mark_inode_dirty(handle, inode);
3196 3197
			}
		}
3198
		err = ext4_journal_stop(handle);
3199 3200 3201 3202 3203 3204 3205 3206
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

/*
3207
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3219
static int ext4_journalled_set_page_dirty(struct page *page)
3220 3221 3222 3223 3224
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3225
static const struct address_space_operations ext4_ordered_aops = {
3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_normal_writepage,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3238 3239
};

3240
static const struct address_space_operations ext4_writeback_aops = {
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_normal_writepage,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3253 3254
};

3255
static const struct address_space_operations ext4_journalled_aops = {
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_journalled_writepage,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.is_partially_uptodate  = block_is_partially_uptodate,
3267 3268
};

3269
static const struct address_space_operations ext4_da_aops = {
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_da_writepage,
	.writepages		= ext4_da_writepages,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3283 3284
};

3285
void ext4_set_aops(struct inode *inode)
3286
{
3287 3288 3289 3290
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
3291
		inode->i_mapping->a_ops = &ext4_ordered_aops;
3292 3293 3294
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
3295 3296
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
3297
	else
3298
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3299 3300 3301
}

/*
3302
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3303 3304 3305 3306
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
3307
int ext4_block_truncate_page(handle_t *handle,
3308 3309
		struct address_space *mapping, loff_t from)
{
3310
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3311
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
3312 3313
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
3314 3315
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
3316
	struct page *page;
3317 3318
	int err = 0;

3319 3320 3321 3322
	page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
	if (!page)
		return -EINVAL;

3323 3324 3325 3326 3327 3328 3329 3330 3331
	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	/*
	 * For "nobh" option,  we can only work if we don't need to
	 * read-in the page - otherwise we create buffers to do the IO.
	 */
	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3332
	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
3333
		zero_user(page, offset, length);
3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
		set_page_dirty(page);
		goto unlock;
	}

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
3358
		ext4_get_block(inode, iblock, bh, 0);
3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

3379
	if (ext4_should_journal_data(inode)) {
3380
		BUFFER_TRACE(bh, "get write access");
3381
		err = ext4_journal_get_write_access(handle, bh);
3382 3383 3384 3385
		if (err)
			goto unlock;
	}

3386
	zero_user(page, offset, length);
3387 3388 3389 3390

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
3391
	if (ext4_should_journal_data(inode)) {
3392
		err = ext4_handle_dirty_metadata(handle, inode, bh);
3393
	} else {
3394
		if (ext4_should_order_data(inode))
3395
			err = ext4_jbd2_file_inode(handle, inode);
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
3419
 *	ext4_find_shared - find the indirect blocks for partial truncation.
3420 3421
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
3422
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
3423 3424 3425
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
3426
 *	This is a helper function used by ext4_truncate().
3427 3428 3429 3430 3431 3432 3433
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
3434
 *	past the truncation point is possible until ext4_truncate()
3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

3453
static Indirect *ext4_find_shared(struct inode *inode, int depth,
A
Aneesh Kumar K.V 已提交
3454
			ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3455 3456 3457 3458 3459 3460 3461 3462
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
	/* Make k index the deepest non-null offest + 1 */
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
3463
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
3474
	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
3486
		/* Nope, don't do this in ext4.  Must leave the tree intact */
3487 3488 3489 3490 3491 3492
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

3493
	while (partial > p) {
3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
3509 3510
static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
		struct buffer_head *bh, ext4_fsblk_t block_to_free,
3511 3512 3513 3514 3515
		unsigned long count, __le32 *first, __le32 *last)
{
	__le32 *p;
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
3516 3517
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			ext4_handle_dirty_metadata(handle, inode, bh);
3518
		}
3519 3520
		ext4_mark_inode_dirty(handle, inode);
		ext4_journal_test_restart(handle, inode);
3521 3522
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
3523
			ext4_journal_get_write_access(handle, bh);
3524 3525 3526 3527 3528
		}
	}

	/*
	 * Any buffers which are on the journal will be in memory. We find
3529
	 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3530
	 * on them.  We've already detached each block from the file, so
3531
	 * bforget() in jbd2_journal_forget() should be safe.
3532
	 *
3533
	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3534 3535 3536 3537
	 */
	for (p = first; p < last; p++) {
		u32 nr = le32_to_cpu(*p);
		if (nr) {
A
Aneesh Kumar K.V 已提交
3538
			struct buffer_head *tbh;
3539 3540

			*p = 0;
A
Aneesh Kumar K.V 已提交
3541 3542
			tbh = sb_find_get_block(inode->i_sb, nr);
			ext4_forget(handle, 0, inode, tbh, nr);
3543 3544 3545
		}
	}

3546
	ext4_free_blocks(handle, inode, block_to_free, count, 0);
3547 3548 3549
}

/**
3550
 * ext4_free_data - free a list of data blocks
3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
3568
static void ext4_free_data(handle_t *handle, struct inode *inode,
3569 3570 3571
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
3572
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3573 3574 3575 3576
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
3577
	ext4_fsblk_t nr;		    /* Current block # */
3578 3579 3580 3581 3582 3583
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
3584
		err = ext4_journal_get_write_access(handle, this_bh);
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
3602
				ext4_clear_blocks(handle, inode, this_bh,
3603 3604 3605 3606 3607 3608 3609 3610 3611 3612
						  block_to_free,
						  count, block_to_free_p, p);
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
3613
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3614 3615 3616
				  count, block_to_free_p, p);

	if (this_bh) {
3617
		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3618 3619 3620 3621 3622 3623 3624 3625

		/*
		 * The buffer head should have an attached journal head at this
		 * point. However, if the data is corrupted and an indirect
		 * block pointed to itself, it would have been detached when
		 * the block was cleared. Check for this instead of OOPSing.
		 */
		if (bh2jh(this_bh))
3626
			ext4_handle_dirty_metadata(handle, inode, this_bh);
3627 3628 3629 3630 3631 3632
		else
			ext4_error(inode->i_sb, __func__,
				   "circular indirect block detected, "
				   "inode=%lu, block=%llu",
				   inode->i_ino,
				   (unsigned long long) this_bh->b_blocknr);
3633 3634 3635 3636
	}
}

/**
3637
 *	ext4_free_branches - free an array of branches
3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
3649
static void ext4_free_branches(handle_t *handle, struct inode *inode,
3650 3651 3652
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
3653
	ext4_fsblk_t nr;
3654 3655
	__le32 *p;

3656
	if (ext4_handle_is_aborted(handle))
3657 3658 3659 3660
		return;

	if (depth--) {
		struct buffer_head *bh;
3661
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
3676
				ext4_error(inode->i_sb, "ext4_free_branches",
3677
					   "Read failure, inode=%lu, block=%llu",
3678 3679 3680 3681 3682 3683
					   inode->i_ino, nr);
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
3684
			ext4_free_branches(handle, inode, bh,
3685 3686 3687
					(__le32 *) bh->b_data,
					(__le32 *) bh->b_data + addr_per_block,
					depth);
3688 3689 3690 3691 3692

			/*
			 * We've probably journalled the indirect block several
			 * times during the truncate.  But it's no longer
			 * needed and we now drop it from the transaction via
3693
			 * jbd2_journal_revoke().
3694 3695 3696
			 *
			 * That's easy if it's exclusively part of this
			 * transaction.  But if it's part of the committing
3697
			 * transaction then jbd2_journal_forget() will simply
3698
			 * brelse() it.  That means that if the underlying
3699
			 * block is reallocated in ext4_get_block(),
3700 3701 3702 3703 3704 3705 3706 3707
			 * unmap_underlying_metadata() will find this block
			 * and will try to get rid of it.  damn, damn.
			 *
			 * If this block has already been committed to the
			 * journal, a revoke record will be written.  And
			 * revoke records must be emitted *before* clearing
			 * this block's bit in the bitmaps.
			 */
3708
			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
3726
			if (ext4_handle_is_aborted(handle))
3727 3728
				return;
			if (try_to_extend_transaction(handle, inode)) {
3729 3730
				ext4_mark_inode_dirty(handle, inode);
				ext4_journal_test_restart(handle, inode);
3731 3732
			}

3733
			ext4_free_blocks(handle, inode, nr, 1, 1);
3734 3735 3736 3737 3738 3739 3740

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
3741
				if (!ext4_journal_get_write_access(handle,
3742 3743 3744
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
3745 3746 3747 3748
					"call ext4_handle_dirty_metadata");
					ext4_handle_dirty_metadata(handle,
								   inode,
								   parent_bh);
3749 3750 3751 3752 3753 3754
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
3755
		ext4_free_data(handle, inode, parent_bh, first, last);
3756 3757 3758
	}
}

3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771
int ext4_can_truncate(struct inode *inode)
{
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return 0;
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3772
/*
3773
 * ext4_truncate()
3774
 *
3775 3776
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3793
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3794
 * that this inode's truncate did not complete and it will again call
3795 3796
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3797
 * that's fine - as long as they are linked from the inode, the post-crash
3798
 * ext4_truncate() run will find them and release them.
3799
 */
3800
void ext4_truncate(struct inode *inode)
3801 3802
{
	handle_t *handle;
3803
	struct ext4_inode_info *ei = EXT4_I(inode);
3804
	__le32 *i_data = ei->i_data;
3805
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3806
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
3807
	ext4_lblk_t offsets[4];
3808 3809 3810 3811
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
3812
	ext4_lblk_t last_block;
3813 3814
	unsigned blocksize = inode->i_sb->s_blocksize;

3815
	if (!ext4_can_truncate(inode))
3816 3817
		return;

A
Aneesh Kumar K.V 已提交
3818
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3819
		ext4_ext_truncate(inode);
A
Aneesh Kumar K.V 已提交
3820 3821
		return;
	}
A
Alex Tomas 已提交
3822

3823
	handle = start_transaction(inode);
3824
	if (IS_ERR(handle))
3825 3826 3827
		return;		/* AKPM: return what? */

	last_block = (inode->i_size + blocksize-1)
3828
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3829

3830 3831 3832
	if (inode->i_size & (blocksize - 1))
		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
			goto out_stop;
3833

3834
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
3847
	if (ext4_orphan_add(handle, inode))
3848 3849
		goto out_stop;

3850 3851 3852 3853 3854
	/*
	 * From here we block out all ext4_get_block() callers who want to
	 * modify the block allocation tree.
	 */
	down_write(&ei->i_data_sem);
3855

3856
	ext4_discard_preallocations(inode);
3857

3858 3859 3860 3861 3862
	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
3863
	 * ext4 *really* writes onto the disk inode.
3864 3865 3866 3867
	 */
	ei->i_disksize = inode->i_size;

	if (n == 1) {		/* direct blocks */
3868 3869
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
3870 3871 3872
		goto do_indirects;
	}

3873
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3874 3875 3876 3877
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
3878
			ext4_free_branches(handle, inode, NULL,
3879 3880 3881 3882 3883 3884 3885 3886 3887
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
3888
			ext4_free_branches(handle, inode, partial->bh,
3889 3890 3891 3892 3893 3894
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
3895
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse (partial->bh);
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
3906
		nr = i_data[EXT4_IND_BLOCK];
3907
		if (nr) {
3908 3909
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
3910
		}
3911 3912
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
3913
		if (nr) {
3914 3915
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
3916
		}
3917 3918
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
3919
		if (nr) {
3920 3921
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
3922
		}
3923
	case EXT4_TIND_BLOCK:
3924 3925 3926
		;
	}

3927
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
3928
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3929
	ext4_mark_inode_dirty(handle, inode);
3930 3931 3932 3933 3934 3935

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
3936
		ext4_handle_sync(handle);
3937 3938 3939 3940 3941
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
3942
	 * ext4_delete_inode(), and we allow that function to clean up the
3943 3944 3945
	 * orphan info for us.
	 */
	if (inode->i_nlink)
3946
		ext4_orphan_del(handle, inode);
3947

3948
	ext4_journal_stop(handle);
3949 3950 3951
}

/*
3952
 * ext4_get_inode_loc returns with an extra refcount against the inode's
3953 3954 3955 3956
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
3957 3958
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
3959
{
3960 3961 3962 3963 3964 3965
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
3966
	iloc->bh = NULL;
3967 3968
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
3969

3970 3971 3972
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
3973 3974
		return -EIO;

3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
	/*
	 * Figure out the offset within the block group inode table
	 */
	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
3985
	if (!bh) {
3986 3987 3988
		ext4_error(sb, "ext4_get_inode_loc", "unable to read "
			   "inode block - inode=%lu, block=%llu",
			   inode->i_ino, block);
3989 3990 3991 3992
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
3993 3994 3995 3996 3997 3998 3999 4000 4001 4002

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
4016
			int i, start;
4017

4018
			start = inode_offset & ~(inodes_per_block - 1);
4019

4020 4021
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
4034
			for (i = start; i < start + inodes_per_block; i++) {
4035 4036
				if (i == inode_offset)
					continue;
4037
				if (ext4_test_bit(i, bitmap_bh->b_data))
4038 4039 4040
					break;
			}
			brelse(bitmap_bh);
4041
			if (i == start + inodes_per_block) {
4042 4043 4044 4045 4046 4047 4048 4049 4050
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
			/* Make sure s_inode_readahead_blks is a power of 2 */
			while (EXT4_SB(sb)->s_inode_readahead_blks &
			       (EXT4_SB(sb)->s_inode_readahead_blks-1))
				EXT4_SB(sb)->s_inode_readahead_blks = 
				   (EXT4_SB(sb)->s_inode_readahead_blks &
				    (EXT4_SB(sb)->s_inode_readahead_blks-1));
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4073
				num -= ext4_itable_unused_count(sb, gdp);
4074 4075 4076 4077 4078 4079 4080
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
4091 4092 4093
			ext4_error(sb, __func__,
				   "unable to read inode block - inode=%lu, "
				   "block=%llu", inode->i_ino, block);
4094 4095 4096 4097 4098 4099 4100 4101 4102
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

4103
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4104 4105
{
	/* We have all inode data except xattrs in memory here. */
4106 4107
	return __ext4_get_inode_loc(inode, iloc,
		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4108 4109
}

4110
void ext4_set_inode_flags(struct inode *inode)
4111
{
4112
	unsigned int flags = EXT4_I(inode)->i_flags;
4113 4114

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4115
	if (flags & EXT4_SYNC_FL)
4116
		inode->i_flags |= S_SYNC;
4117
	if (flags & EXT4_APPEND_FL)
4118
		inode->i_flags |= S_APPEND;
4119
	if (flags & EXT4_IMMUTABLE_FL)
4120
		inode->i_flags |= S_IMMUTABLE;
4121
	if (flags & EXT4_NOATIME_FL)
4122
		inode->i_flags |= S_NOATIME;
4123
	if (flags & EXT4_DIRSYNC_FL)
4124 4125 4126
		inode->i_flags |= S_DIRSYNC;
}

4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
	unsigned int flags = ei->vfs_inode.i_flags;

	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
	if (flags & S_SYNC)
		ei->i_flags |= EXT4_SYNC_FL;
	if (flags & S_APPEND)
		ei->i_flags |= EXT4_APPEND_FL;
	if (flags & S_IMMUTABLE)
		ei->i_flags |= EXT4_IMMUTABLE_FL;
	if (flags & S_NOATIME)
		ei->i_flags |= EXT4_NOATIME_FL;
	if (flags & S_DIRSYNC)
		ei->i_flags |= EXT4_DIRSYNC_FL;
}
4145 4146 4147 4148
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
					struct ext4_inode_info *ei)
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
4149 4150
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
4151 4152 4153 4154 4155 4156

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
A
Aneesh Kumar K.V 已提交
4157 4158 4159 4160 4161 4162
		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
4163 4164 4165 4166
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
4167

4168
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4169
{
4170 4171
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
4172
	struct ext4_inode_info *ei;
4173
	struct buffer_head *bh;
4174 4175
	struct inode *inode;
	long ret;
4176 4177
	int block;

4178 4179 4180 4181 4182 4183 4184
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
T
Theodore Ts'o 已提交
4185
#ifdef CONFIG_EXT4_FS_POSIX_ACL
4186 4187
	ei->i_acl = EXT4_ACL_NOT_CACHED;
	ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4188 4189
#endif

4190 4191
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
4192 4193
		goto bad_inode;
	bh = iloc.bh;
4194
	raw_inode = ext4_raw_inode(&iloc);
4195 4196 4197
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4198
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

	ei->i_state = 0;
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
4214
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4215
			/* this inode is deleted */
4216
			brelse(bh);
4217
			ret = -ESTALE;
4218 4219 4220 4221 4222 4223 4224 4225
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4226
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4227
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4228
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4229
	    cpu_to_le32(EXT4_OS_HURD)) {
B
Badari Pulavarty 已提交
4230 4231
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4232
	}
4233
	inode->i_size = ext4_isize(raw_inode);
4234 4235 4236 4237 4238 4239 4240
	ei->i_disksize = inode->i_size;
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
4241
	for (block = 0; block < EXT4_N_BLOCKS; block++)
4242 4243 4244
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

4245
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4246
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4247
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4248
		    EXT4_INODE_SIZE(inode->i_sb)) {
4249
			brelse(bh);
4250
			ret = -EIO;
4251
			goto bad_inode;
4252
		}
4253 4254
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
4255 4256
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
4257 4258
		} else {
			__le32 *magic = (void *)raw_inode +
4259
					EXT4_GOOD_OLD_INODE_SIZE +
4260
					ei->i_extra_isize;
4261 4262
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
				 ei->i_state |= EXT4_STATE_XATTR;
4263 4264 4265 4266
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
4267 4268 4269 4270 4271
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

4272 4273 4274 4275 4276 4277 4278
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

4279
	if (S_ISREG(inode->i_mode)) {
4280 4281 4282
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
4283
	} else if (S_ISDIR(inode->i_mode)) {
4284 4285
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
4286
	} else if (S_ISLNK(inode->i_mode)) {
4287
		if (ext4_inode_is_fast_symlink(inode)) {
4288
			inode->i_op = &ext4_fast_symlink_inode_operations;
4289 4290 4291
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
4292 4293
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
4294 4295
		}
	} else {
4296
		inode->i_op = &ext4_special_inode_operations;
4297 4298 4299 4300 4301 4302 4303
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
	}
4304
	brelse(iloc.bh);
4305
	ext4_set_inode_flags(inode);
4306 4307
	unlock_new_inode(inode);
	return inode;
4308 4309

bad_inode:
4310 4311
	iget_failed(inode);
	return ERR_PTR(ret);
4312 4313
}

4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4327
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4328
		raw_inode->i_blocks_high = 0;
A
Aneesh Kumar K.V 已提交
4329
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4330 4331 4332 4333 4334 4335
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
4336 4337 4338 4339
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4340
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4341
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
A
Aneesh Kumar K.V 已提交
4342
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4343
	} else {
A
Aneesh Kumar K.V 已提交
4344 4345 4346 4347 4348
		ei->i_flags |= EXT4_HUGE_FILE_FL;
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4349
	}
4350
	return 0;
4351 4352
}

4353 4354 4355 4356 4357 4358 4359
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
4360
static int ext4_do_update_inode(handle_t *handle,
4361
				struct inode *inode,
4362
				struct ext4_iloc *iloc)
4363
{
4364 4365
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
4366 4367 4368 4369 4370
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
4371 4372
	if (ei->i_state & EXT4_STATE_NEW)
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4373

4374
	ext4_get_inode_flags(ei);
4375
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4376
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4377 4378 4379 4380 4381 4382
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
4383
		if (!ei->i_dtime) {
4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
4401 4402 4403 4404 4405 4406

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4407 4408
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4409
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4410 4411
	/* clear the migrate flag in the raw_inode */
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4412 4413
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4414 4415
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4416
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4433
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4434
			sb->s_dirt = 1;
4435 4436
			ext4_handle_sync(handle);
			err = ext4_handle_dirty_metadata(handle, inode,
4437
					EXT4_SB(sb)->s_sbh);
4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4452
	} else for (block = 0; block < EXT4_N_BLOCKS; block++)
4453 4454
		raw_inode->i_block[block] = ei->i_data[block];

4455 4456 4457 4458 4459
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4460
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4461 4462
	}

4463 4464
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
	rc = ext4_handle_dirty_metadata(handle, inode, bh);
4465 4466
	if (!err)
		err = rc;
4467
	ei->i_state &= ~EXT4_STATE_NEW;
4468 4469

out_brelse:
4470
	brelse(bh);
4471
	ext4_std_error(inode->i_sb, err);
4472 4473 4474 4475
	return err;
}

/*
4476
 * ext4_write_inode()
4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4493
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4510
int ext4_write_inode(struct inode *inode, int wait)
4511 4512 4513 4514
{
	if (current->flags & PF_MEMALLOC)
		return 0;

4515
	if (ext4_journal_current_handle()) {
M
Mingming Cao 已提交
4516
		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4517 4518 4519 4520 4521 4522 4523
		dump_stack();
		return -EIO;
	}

	if (!wait)
		return 0;

4524
	return ext4_force_commit(inode->i_sb);
4525 4526
}

4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545
int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh)
{
	int err = 0;

	mark_buffer_dirty(bh);
	if (inode && inode_needs_sync(inode)) {
		sync_dirty_buffer(bh);
		if (buffer_req(bh) && !buffer_uptodate(bh)) {
			ext4_error(inode->i_sb, __func__,
				   "IO error syncing inode, "
				   "inode=%lu, block=%llu",
				   inode->i_ino,
				   (unsigned long long)bh->b_blocknr);
			err = -EIO;
		}
	}
	return err;
}

4546
/*
4547
 * ext4_setattr()
4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4561 4562 4563 4564 4565 4566 4567 4568
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4569
 */
4570
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
4586 4587
		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4588 4589 4590 4591 4592 4593
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
		error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
		if (error) {
4594
			ext4_journal_stop(handle);
4595 4596 4597 4598 4599 4600 4601 4602
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4603 4604
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4605 4606
	}

4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617
	if (attr->ia_valid & ATTR_SIZE) {
		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
				error = -EFBIG;
				goto err_out;
			}
		}
	}

4618 4619 4620 4621
	if (S_ISREG(inode->i_mode) &&
	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
		handle_t *handle;

4622
		handle = ext4_journal_start(inode, 3);
4623 4624 4625 4626 4627
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}

4628 4629 4630
		error = ext4_orphan_add(handle, inode);
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4631 4632
		if (!error)
			error = rc;
4633
		ext4_journal_stop(handle);
4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4650 4651 4652 4653
	}

	rc = inode_setattr(inode, attr);

4654
	/* If inode_setattr's call to ext4_truncate failed to get a
4655 4656 4657
	 * transaction handle at all, we need to clean up the in-core
	 * orphan list manually. */
	if (inode->i_nlink)
4658
		ext4_orphan_del(NULL, inode);
4659 4660

	if (!rc && (ia_valid & ATTR_MODE))
4661
		rc = ext4_acl_chmod(inode);
4662 4663

err_out:
4664
	ext4_std_error(inode->i_sb, error);
4665 4666 4667 4668 4669
	if (!error)
		error = rc;
	return error;
}

4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4696

4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724
static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
				      int chunk)
{
	int indirects;

	/* if nrblocks are contiguous */
	if (chunk) {
		/*
		 * With N contiguous data blocks, it need at most
		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
		 * 2 dindirect blocks
		 * 1 tindirect block
		 */
		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
		return indirects + 3;
	}
	/*
	 * if nrblocks are not contiguous, worse case, each block touch
	 * a indirect block, and each indirect block touch a double indirect
	 * block, plus a triple indirect block
	 */
	indirects = nrblocks * 2 + 1;
	return indirects;
}

static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4725 4726
		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4727
}
4728

4729
/*
4730 4731 4732
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4733
 *
4734 4735 4736
 * If datablocks are discontiguous, they are possible to spread over
 * different block groups too. If they are contiugous, with flexbg,
 * they could still across block group boundary.
4737
 *
4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784
 * Also account for superblock, inode, quota and xattr blocks
 */
int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
	int groups, gdpblocks;
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
	if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
		groups = EXT4_SB(inode->i_sb)->s_groups_count;
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
 * Calulate the total number of credits to reserve to fit
4785 4786
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4787
 *
4788
 * This could be called via ext4_write_begin()
4789
 *
4790
 * We need to consider the worse case, when
4791
 * one new block per extent.
4792
 */
A
Alex Tomas 已提交
4793
int ext4_writepage_trans_blocks(struct inode *inode)
4794
{
4795
	int bpp = ext4_journal_blocks_per_page(inode);
4796 4797
	int ret;

4798
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
4799

4800
	/* Account for data blocks for journalled mode */
4801
	if (ext4_should_journal_data(inode))
4802
		ret += bpp;
4803 4804
	return ret;
}
4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4820
/*
4821
 * The caller must have previously called ext4_reserve_inode_write().
4822 4823
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4824 4825
int ext4_mark_iloc_dirty(handle_t *handle,
		struct inode *inode, struct ext4_iloc *iloc)
4826 4827 4828
{
	int err = 0;

4829 4830 4831
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

4832 4833 4834
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4835
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4836
	err = ext4_do_update_inode(handle, inode, iloc);
4837 4838 4839 4840 4841 4842 4843 4844 4845 4846
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
4847 4848
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
4849
{
4850 4851 4852 4853 4854 4855 4856 4857 4858
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
4859 4860
		}
	}
4861
	ext4_std_error(inode->i_sb, err);
4862 4863 4864
	return err;
}

4865 4866 4867 4868
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
4869 4870 4871 4872
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;
	struct ext4_xattr_entry *entry;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);
	entry = IFIRST(header);

	/* No extended attributes present */
	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
4921
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4922
{
4923
	struct ext4_iloc iloc;
4924 4925 4926
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
4927 4928

	might_sleep();
4929
	err = ext4_reserve_inode_write(handle, inode, &iloc);
4930 4931
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946
	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
A
Aneesh Kumar K.V 已提交
4947 4948
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4949
					ext4_warning(inode->i_sb, __func__,
4950 4951 4952
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
4953 4954
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
4955 4956 4957 4958
				}
			}
		}
	}
4959
	if (!err)
4960
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4961 4962 4963 4964
	return err;
}

/*
4965
 * ext4_dirty_inode() is called from __mark_inode_dirty()
4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
4978
void ext4_dirty_inode(struct inode *inode)
4979
{
4980
	handle_t *current_handle = ext4_journal_current_handle();
4981 4982
	handle_t *handle;

4983 4984 4985 4986 4987
	if (!ext4_handle_valid(current_handle)) {
		ext4_mark_inode_dirty(current_handle, inode);
		return;
	}

4988
	handle = ext4_journal_start(inode, 2);
4989 4990 4991 4992 4993 4994
	if (IS_ERR(handle))
		goto out;
	if (current_handle &&
		current_handle->h_transaction != handle->h_transaction) {
		/* This task has a transaction open against a different fs */
		printk(KERN_EMERG "%s: transactions do not match!\n",
4995
		       __func__);
4996 4997 4998
	} else {
		jbd_debug(5, "marking dirty.  outer handle=%p\n",
				current_handle);
4999
		ext4_mark_inode_dirty(handle, inode);
5000
	}
5001
	ext4_journal_stop(handle);
5002 5003 5004 5005 5006 5007 5008 5009
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
5010
 * ext4_reserve_inode_write, this leaves behind no bh reference and
5011 5012 5013
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
5014
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5015
{
5016
	struct ext4_iloc iloc;
5017 5018 5019

	int err = 0;
	if (handle) {
5020
		err = ext4_get_inode_loc(inode, &iloc);
5021 5022
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
5023
			err = jbd2_journal_get_write_access(handle, iloc.bh);
5024
			if (!err)
5025 5026 5027
				err = ext4_handle_dirty_metadata(handle,
								 inode,
								 iloc.bh);
5028 5029 5030
			brelse(iloc.bh);
		}
	}
5031
	ext4_std_error(inode->i_sb, err);
5032 5033 5034 5035
	return err;
}
#endif

5036
int ext4_change_inode_journal_flag(struct inode *inode, int val)
5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

5052
	journal = EXT4_JOURNAL(inode);
5053 5054
	if (!journal)
		return 0;
5055
	if (is_journal_aborted(journal))
5056 5057
		return -EROFS;

5058 5059
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
5060 5061 5062 5063 5064 5065 5066 5067 5068 5069

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
5070
		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5071
	else
5072 5073
		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
	ext4_set_aops(inode);
5074

5075
	jbd2_journal_unlock_updates(journal);
5076 5077 5078

	/* Finally we can mark the inode as dirty. */

5079
	handle = ext4_journal_start(inode, 1);
5080 5081 5082
	if (IS_ERR(handle))
		return PTR_ERR(handle);

5083
	err = ext4_mark_inode_dirty(handle, inode);
5084
	ext4_handle_sync(handle);
5085 5086
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
5087 5088 5089

	return err;
}
5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
{
	loff_t size;
	unsigned long len;
	int ret = -EINVAL;
5101
	void *fsdata;
5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;

	/*
	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
	 * get i_mutex because we are already holding mmap_sem.
	 */
	down_read(&inode->i_alloc_sem);
	size = i_size_read(inode);
	if (page->mapping != mapping || size <= page_offset(page)
	    || !PageUptodate(page)) {
		/* page got truncated from under us? */
		goto out_unlock;
	}
	ret = 0;
	if (PageMappedToDisk(page))
		goto out_unlock;

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;

	if (page_has_buffers(page)) {
		/* return if we have all the buffers mapped */
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
				       ext4_bh_unmapped))
			goto out_unlock;
	}
	/*
	 * OK, we need to fill the hole... Do write_begin write_end
	 * to do block allocation/reservation.We are not holding
	 * inode.i__mutex here. That allow * parallel write_begin,
	 * write_end call. lock_page prevent this from happening
	 * on the same page though
	 */
	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5140
			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5141 5142 5143
	if (ret < 0)
		goto out_unlock;
	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5144
			len, len, page, fsdata);
5145 5146 5147 5148 5149 5150 5151
	if (ret < 0)
		goto out_unlock;
	ret = 0;
out_unlock:
	up_read(&inode->i_alloc_sem);
	return ret;
}