i915_gem.c 130.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/slab.h>
35
#include <linux/swap.h>
J
Jesse Barnes 已提交
36
#include <linux/pci.h>
37
#include <linux/intel-gtt.h>
38

39
static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
40 41 42

static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
						  bool pipelined);
43 44 45 46 47 48 49 50
static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
					     int write);
static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
						     uint64_t offset,
						     uint64_t size);
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
51
static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
52 53 54
static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
					   unsigned alignment);
static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
55 56 57
static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
				struct drm_i915_gem_pwrite *args,
				struct drm_file *file_priv);
58
static void i915_gem_free_object_tail(struct drm_gem_object *obj);
59

60 61 62
static LIST_HEAD(shrink_list);
static DEFINE_SPINLOCK(shrink_list_lock);

63 64 65 66 67 68 69 70
static inline bool
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->gtt_space &&
		!obj_priv->active &&
		obj_priv->pin_count == 0;
}

J
Jesse Barnes 已提交
71 72
int i915_gem_do_init(struct drm_device *dev, unsigned long start,
		     unsigned long end)
73 74 75
{
	drm_i915_private_t *dev_priv = dev->dev_private;

J
Jesse Barnes 已提交
76 77 78
	if (start >= end ||
	    (start & (PAGE_SIZE - 1)) != 0 ||
	    (end & (PAGE_SIZE - 1)) != 0) {
79 80 81
		return -EINVAL;
	}

J
Jesse Barnes 已提交
82 83
	drm_mm_init(&dev_priv->mm.gtt_space, start,
		    end - start);
84

J
Jesse Barnes 已提交
85 86 87 88
	dev->gtt_total = (uint32_t) (end - start);

	return 0;
}
89

J
Jesse Barnes 已提交
90 91 92 93 94 95 96 97 98
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_init *args = data;
	int ret;

	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
99 100
	mutex_unlock(&dev->struct_mutex);

J
Jesse Barnes 已提交
101
	return ret;
102 103
}

104 105 106 107 108 109 110 111 112 113
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
			    struct drm_file *file_priv)
{
	struct drm_i915_gem_get_aperture *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	args->aper_size = dev->gtt_total;
114 115
	args->aper_available_size = (args->aper_size -
				     atomic_read(&dev->pin_memory));
116 117 118 119

	return 0;
}

120 121 122 123 124 125 126 127 128 129

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_create *args = data;
	struct drm_gem_object *obj;
130 131
	int ret;
	u32 handle;
132 133 134 135

	args->size = roundup(args->size, PAGE_SIZE);

	/* Allocate the new object */
136
	obj = i915_gem_alloc_object(dev, args->size);
137 138 139 140
	if (obj == NULL)
		return -ENOMEM;

	ret = drm_gem_handle_create(file_priv, obj, &handle);
141 142
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
143
		return ret;
144
	}
145

146 147
	/* Sink the floating reference from kref_init(handlecount) */
	drm_gem_object_handle_unreference_unlocked(obj);
148

149
	args->handle = handle;
150 151 152
	return 0;
}

153 154 155 156 157 158 159
static inline int
fast_shmem_read(struct page **pages,
		loff_t page_base, int page_offset,
		char __user *data,
		int length)
{
	char __iomem *vaddr;
160
	int unwritten;
161 162 163 164

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
165
	unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
166 167
	kunmap_atomic(vaddr, KM_USER0);

168 169 170 171
	if (unwritten)
		return -EFAULT;

	return 0;
172 173
}

174 175 176
static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
{
	drm_i915_private_t *dev_priv = obj->dev->dev_private;
177
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
178 179 180 181 182

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
		obj_priv->tiling_mode != I915_TILING_NONE;
}

183
static inline void
184 185 186 187 188 189 190 191
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

192 193
	dst_vaddr = kmap(dst_page);
	src_vaddr = kmap(src_page);
194 195 196

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

197 198
	kunmap(src_page);
	kunmap(dst_page);
199 200
}

201
static inline void
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

221 222
	gpu_vaddr = kmap(gpu_page);
	cpu_vaddr = kmap(cpu_page);
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

246 247
	kunmap(cpu_page);
	kunmap(gpu_page);
248 249
}

250 251 252 253 254 255 256 257 258 259
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
260
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
261 262 263 264 265 266 267 268 269 270 271
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
	int ret;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

	mutex_lock(&dev->struct_mutex);

272
	ret = i915_gem_object_get_pages(obj, 0);
273 274 275 276 277 278 279 280
	if (ret != 0)
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

281
	obj_priv = to_intel_bo(obj);
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_read(obj_priv->pages,
				      page_base, page_offset,
				      user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

316 317 318 319 320
static int
i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
{
	int ret;

321
	ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
322 323 324 325 326 327 328

	/* If we've insufficient memory to map in the pages, attempt
	 * to make some space by throwing out some old buffers.
	 */
	if (ret == -ENOMEM) {
		struct drm_device *dev = obj->dev;

329 330
		ret = i915_gem_evict_something(dev, obj->size,
					       i915_gem_get_gtt_alignment(obj));
331 332 333
		if (ret)
			return ret;

334
		ret = i915_gem_object_get_pages(obj, 0);
335 336 337 338 339
	}

	return ret;
}

340 341 342 343 344 345 346 347 348 349 350
/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
351
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
352 353 354 355 356 357 358 359 360 361
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
362
	int do_bit17_swizzling;
363 364 365 366 367 368 369 370 371 372 373

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

374
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
375 376 377 378 379
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
380
				      num_pages, 1, 0, user_pages, NULL);
381 382 383 384 385 386
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
	}

387 388
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

389 390
	mutex_lock(&dev->struct_mutex);

391 392
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
393 394 395 396 397 398 399
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

400
	obj_priv = to_intel_bo(obj);
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

423
		if (do_bit17_swizzling) {
424
			slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
425
					      shmem_page_offset,
426 427 428 429 430 431 432 433 434 435
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length,
					      1);
		} else {
			slow_shmem_copy(user_pages[data_page_index],
					data_page_offset,
					obj_priv->pages[shmem_page_index],
					shmem_page_offset,
					page_length);
436
		}
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
		page_cache_release(user_pages[i]);
	}
452
	drm_free_large(user_pages);
453 454 455 456

	return ret;
}

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pread *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
473
		return -ENOENT;
474
	obj_priv = to_intel_bo(obj);
475 476 477 478 479 480 481

	/* Bounds check source.
	 *
	 * XXX: This could use review for overflow issues...
	 */
	if (args->offset > obj->size || args->size > obj->size ||
	    args->offset + args->size > obj->size) {
482
		drm_gem_object_unreference_unlocked(obj);
483 484 485
		return -EINVAL;
	}

486
	if (i915_gem_object_needs_bit17_swizzle(obj)) {
487
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
488 489 490 491 492 493
	} else {
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
		if (ret != 0)
			ret = i915_gem_shmem_pread_slow(dev, obj, args,
							file_priv);
	}
494

495
	drm_gem_object_unreference_unlocked(obj);
496

497
	return ret;
498 499
}

500 501
/* This is the fast write path which cannot handle
 * page faults in the source data
502
 */
503 504 505 506 507 508

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
509 510
{
	char *vaddr_atomic;
511
	unsigned long unwritten;
512

513
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
514 515
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
516
	io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
517 518 519 520 521 522 523 524 525
	if (unwritten)
		return -EFAULT;
	return 0;
}

/* Here's the write path which can sleep for
 * page faults
 */

526
static inline void
527 528 529 530
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
531
{
532 533
	char __iomem *dst_vaddr;
	char *src_vaddr;
534

535 536 537 538 539 540 541 542 543
	dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
	src_vaddr = kmap(user_page);

	memcpy_toio(dst_vaddr + gtt_offset,
		    src_vaddr + user_offset,
		    length);

	kunmap(user_page);
	io_mapping_unmap(dst_vaddr);
544 545
}

546 547 548 549 550 551 552
static inline int
fast_shmem_write(struct page **pages,
		 loff_t page_base, int page_offset,
		 char __user *data,
		 int length)
{
	char __iomem *vaddr;
553
	unsigned long unwritten;
554 555 556 557

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
558
	unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
559 560
	kunmap_atomic(vaddr, KM_USER0);

561 562
	if (unwritten)
		return -EFAULT;
563 564 565
	return 0;
}

566 567 568 569
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
570
static int
571 572 573
i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
574
{
575
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
576
	drm_i915_private_t *dev_priv = dev->dev_private;
577
	ssize_t remain;
578
	loff_t offset, page_base;
579
	char __user *user_data;
580 581
	int page_offset, page_length;
	int ret;
582 583 584 585 586 587 588 589 590 591 592 593 594

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
	if (!access_ok(VERIFY_READ, user_data, remain))
		return -EFAULT;


	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_object_pin(obj, 0);
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
		return ret;
	}
595
	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
596 597 598
	if (ret)
		goto fail;

599
	obj_priv = to_intel_bo(obj);
600 601 602 603 604
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
605 606 607
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
608
		 */
609 610 611 612 613 614 615 616 617 618
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
				       page_offset, user_data, page_length);

		/* If we get a fault while copying data, then (presumably) our
619 620
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
621
		 */
622 623
		if (ret)
			goto fail;
624

625 626 627
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
628 629 630 631 632 633 634 635 636
	}

fail:
	i915_gem_object_unpin(obj);
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

637 638 639 640 641 642 643
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
644
static int
645 646 647
i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
648
{
649
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
650 651 652 653 654 655 656 657
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
658
	int ret;
659 660 661 662 663 664 665 666 667 668 669 670
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

671
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
672 673 674 675 676 677 678 679 680 681 682
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
683 684

	mutex_lock(&dev->struct_mutex);
685 686 687 688 689 690 691 692
	ret = i915_gem_object_pin(obj, 0);
	if (ret)
		goto out_unlock;

	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
	if (ret)
		goto out_unpin_object;

693
	obj_priv = to_intel_bo(obj);
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
		gtt_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

716 717 718 719 720
		slow_kernel_write(dev_priv->mm.gtt_mapping,
				  gtt_page_base, gtt_page_offset,
				  user_pages[data_page_index],
				  data_page_offset,
				  page_length);
721 722 723 724 725 726 727 728 729 730 731 732 733

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_object:
	i915_gem_object_unpin(obj);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
734
	drm_free_large(user_pages);
735 736 737 738

	return ret;
}

739 740 741 742
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
743
static int
744 745 746
i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
747
{
748
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
749 750 751 752
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
753
	int ret;
754 755 756

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
757 758 759

	mutex_lock(&dev->struct_mutex);

760
	ret = i915_gem_object_get_pages(obj, 0);
761 762
	if (ret != 0)
		goto fail_unlock;
763

764
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
765 766 767
	if (ret != 0)
		goto fail_put_pages;

768
	obj_priv = to_intel_bo(obj);
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
	offset = args->offset;
	obj_priv->dirty = 1;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_write(obj_priv->pages,
				       page_base, page_offset,
				       user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
{
816
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
817 818 819 820 821 822 823 824 825 826
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
827
	int do_bit17_swizzling;
828 829 830 831 832 833 834 835 836 837 838

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

839
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
840 841 842 843 844 845 846 847 848 849
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
850 851
	}

852 853
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

854 855
	mutex_lock(&dev->struct_mutex);

856 857
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
858 859 860 861 862 863
		goto fail_unlock;

	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
	if (ret != 0)
		goto fail_put_pages;

864
	obj_priv = to_intel_bo(obj);
865
	offset = args->offset;
866
	obj_priv->dirty = 1;
867

868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

888
		if (do_bit17_swizzling) {
889
			slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
890 891 892
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
893 894 895 896 897 898 899 900
					      page_length,
					      0);
		} else {
			slow_shmem_copy(obj_priv->pages[shmem_page_index],
					shmem_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);
901
		}
902 903 904 905

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
906 907
	}

908 909 910
fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
911
	mutex_unlock(&dev->struct_mutex);
912 913 914
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
915
	drm_free_large(user_pages);
916

917
	return ret;
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_pwrite *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
936
		return -ENOENT;
937
	obj_priv = to_intel_bo(obj);
938 939 940 941 942 943 944

	/* Bounds check destination.
	 *
	 * XXX: This could use review for overflow issues...
	 */
	if (args->offset > obj->size || args->size > obj->size ||
	    args->offset + args->size > obj->size) {
945
		drm_gem_object_unreference_unlocked(obj);
946 947 948 949 950 951 952 953 954
		return -EINVAL;
	}

	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
955 956 957
	if (obj_priv->phys_obj)
		ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
	else if (obj_priv->tiling_mode == I915_TILING_NONE &&
958 959
		 dev->gtt_total != 0 &&
		 obj->write_domain != I915_GEM_DOMAIN_CPU) {
960 961 962 963 964
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
						       file_priv);
		}
965 966
	} else if (i915_gem_object_needs_bit17_swizzle(obj)) {
		ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
967 968 969 970 971 972 973
	} else {
		ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
							 file_priv);
		}
	}
974 975 976 977 978 979

#if WATCH_PWRITE
	if (ret)
		DRM_INFO("pwrite failed %d\n", ret);
#endif

980
	drm_gem_object_unreference_unlocked(obj);
981 982 983 984 985

	return ret;
}

/**
986 987
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
988 989 990 991 992
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file_priv)
{
993
	struct drm_i915_private *dev_priv = dev->dev_private;
994 995
	struct drm_i915_gem_set_domain *args = data;
	struct drm_gem_object *obj;
996
	struct drm_i915_gem_object *obj_priv;
997 998
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
999 1000 1001 1002 1003
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1004
	/* Only handle setting domains to types used by the CPU. */
1005
	if (write_domain & I915_GEM_GPU_DOMAINS)
1006 1007
		return -EINVAL;

1008
	if (read_domains & I915_GEM_GPU_DOMAINS)
1009 1010 1011 1012 1013 1014 1015 1016
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1017 1018
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1019
		return -ENOENT;
1020
	obj_priv = to_intel_bo(obj);
1021 1022

	mutex_lock(&dev->struct_mutex);
1023 1024 1025

	intel_mark_busy(dev, obj);

1026
#if WATCH_BUF
1027
	DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1028
		 obj, obj->size, read_domains, write_domain);
1029
#endif
1030 1031
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1032

1033 1034 1035 1036
		/* Update the LRU on the fence for the CPU access that's
		 * about to occur.
		 */
		if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1037 1038 1039
			struct drm_i915_fence_reg *reg =
				&dev_priv->fence_regs[obj_priv->fence_reg];
			list_move_tail(&reg->lru_list,
1040 1041 1042
				       &dev_priv->mm.fence_list);
		}

1043 1044 1045 1046 1047 1048
		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1049
	} else {
1050
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1051 1052
	}

1053 1054 1055 1056 1057
	
	/* Maintain LRU order of "inactive" objects */
	if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_sw_finish *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	mutex_lock(&dev->struct_mutex);
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		mutex_unlock(&dev->struct_mutex);
1082
		return -ENOENT;
1083 1084 1085
	}

#if WATCH_BUF
1086
	DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1087 1088
		 __func__, args->handle, obj, obj->size);
#endif
1089
	obj_priv = to_intel_bo(obj);
1090 1091

	/* Pinned buffers may be scanout, so flush the cache */
1092 1093 1094
	if (obj_priv->pin_count)
		i915_gem_object_flush_cpu_write_domain(obj);

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	loff_t offset;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1121
		return -ENOENT;
1122 1123 1124 1125 1126 1127 1128 1129

	offset = args->offset;

	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1130
	drm_gem_object_unreference_unlocked(obj);
1131 1132 1133 1134 1135 1136 1137 1138
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct drm_gem_object *obj = vma->vm_private_data;
	struct drm_device *dev = obj->dev;
1159
	drm_i915_private_t *dev_priv = dev->dev_private;
1160
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1161 1162 1163
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1164
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1165 1166 1167 1168 1169 1170 1171 1172

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

	/* Now bind it into the GTT if needed */
	mutex_lock(&dev->struct_mutex);
	if (!obj_priv->gtt_space) {
1173
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1174 1175
		if (ret)
			goto unlock;
1176 1177

		ret = i915_gem_object_set_to_gtt_domain(obj, write);
1178 1179
		if (ret)
			goto unlock;
1180 1181 1182
	}

	/* Need a new fence register? */
1183
	if (obj_priv->tiling_mode != I915_TILING_NONE) {
1184
		ret = i915_gem_object_get_fence_reg(obj);
1185 1186
		if (ret)
			goto unlock;
1187
	}
1188

1189 1190 1191
	if (i915_gem_object_is_inactive(obj_priv))
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1192 1193 1194 1195 1196
	pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1197
unlock:
1198 1199 1200
	mutex_unlock(&dev->struct_mutex);

	switch (ret) {
1201 1202 1203
	case 0:
	case -ERESTARTSYS:
		return VM_FAULT_NOPAGE;
1204 1205 1206 1207
	case -ENOMEM:
	case -EAGAIN:
		return VM_FAULT_OOM;
	default:
1208
		return VM_FAULT_SIGBUS;
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
	}
}

/**
 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
 * @obj: obj in question
 *
 * GEM memory mapping works by handing back to userspace a fake mmap offset
 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
 * up the object based on the offset and sets up the various memory mapping
 * structures.
 *
 * This routine allocates and attaches a fake offset for @obj.
 */
static int
i915_gem_create_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_gem_mm *mm = dev->mm_private;
1228
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1229
	struct drm_map_list *list;
1230
	struct drm_local_map *map;
1231 1232 1233 1234
	int ret = 0;

	/* Set the object up for mmap'ing */
	list = &obj->map_list;
1235
	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
	if (!list->map)
		return -ENOMEM;

	map = list->map;
	map->type = _DRM_GEM;
	map->size = obj->size;
	map->handle = obj;

	/* Get a DRM GEM mmap offset allocated... */
	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
						    obj->size / PAGE_SIZE, 0, 0);
	if (!list->file_offset_node) {
		DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
						  obj->size / PAGE_SIZE, 0);
	if (!list->file_offset_node) {
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->hash.key = list->file_offset_node->start;
	if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
		DRM_ERROR("failed to add to map hash\n");
1263
		ret = -ENOMEM;
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
		goto out_free_mm;
	}

	/* By now we should be all set, any drm_mmap request on the offset
	 * below will get to our mmap & fault handler */
	obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;

	return 0;

out_free_mm:
	drm_mm_put_block(list->file_offset_node);
out_free_list:
1276
	kfree(list->map);
1277 1278 1279 1280

	return ret;
}

1281 1282 1283 1284
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1285
 * Preserve the reservation of the mmapping with the DRM core code, but
1286 1287 1288 1289 1290 1291 1292 1293 1294
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1295
void
1296 1297 1298
i915_gem_release_mmap(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1299
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1300 1301 1302 1303 1304 1305

	if (dev->dev_mapping)
		unmap_mapping_range(dev->dev_mapping,
				    obj_priv->mmap_offset, obj->size, 1);
}

1306 1307 1308 1309
static void
i915_gem_free_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1310
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_map_list *list;

	list = &obj->map_list;
	drm_ht_remove_item(&mm->offset_hash, &list->hash);

	if (list->file_offset_node) {
		drm_mm_put_block(list->file_offset_node);
		list->file_offset_node = NULL;
	}

	if (list->map) {
1323
		kfree(list->map);
1324 1325 1326 1327 1328 1329
		list->map = NULL;
	}

	obj_priv->mmap_offset = 0;
}

1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
 * potential fence register mapping if needed.
 */
static uint32_t
i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1341
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
	int start, i;

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
	if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
		return 4096;

	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
	if (IS_I9XX(dev))
		start = 1024*1024;
	else
		start = 512*1024;

	for (i = start; i < obj->size; i <<= 1)
		;

	return i;
}

/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file_priv: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap_gtt *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1395
		return -ENOENT;
1396 1397 1398

	mutex_lock(&dev->struct_mutex);

1399
	obj_priv = to_intel_bo(obj);
1400

1401 1402 1403 1404 1405 1406 1407 1408
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}


1409 1410
	if (!obj_priv->mmap_offset) {
		ret = i915_gem_create_mmap_offset(obj);
1411 1412 1413
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
1414
			return ret;
1415
		}
1416 1417 1418 1419 1420 1421 1422 1423 1424
	}

	args->offset = obj_priv->mmap_offset;

	/*
	 * Pull it into the GTT so that we have a page list (makes the
	 * initial fault faster and any subsequent flushing possible).
	 */
	if (!obj_priv->agp_mem) {
1425
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

1439
void
1440
i915_gem_object_put_pages(struct drm_gem_object *obj)
1441
{
1442
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1443 1444 1445
	int page_count = obj->size / PAGE_SIZE;
	int i;

1446
	BUG_ON(obj_priv->pages_refcount == 0);
C
Chris Wilson 已提交
1447
	BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1448

1449 1450
	if (--obj_priv->pages_refcount != 0)
		return;
1451

1452 1453 1454
	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_save_bit_17_swizzle(obj);

1455
	if (obj_priv->madv == I915_MADV_DONTNEED)
1456
		obj_priv->dirty = 0;
1457 1458 1459 1460 1461 1462

	for (i = 0; i < page_count; i++) {
		if (obj_priv->dirty)
			set_page_dirty(obj_priv->pages[i]);

		if (obj_priv->madv == I915_MADV_WILLNEED)
1463
			mark_page_accessed(obj_priv->pages[i]);
1464 1465 1466

		page_cache_release(obj_priv->pages[i]);
	}
1467 1468
	obj_priv->dirty = 0;

1469
	drm_free_large(obj_priv->pages);
1470
	obj_priv->pages = NULL;
1471 1472
}

1473
static uint32_t
1474 1475
i915_gem_next_request_seqno(struct drm_device *dev,
			    struct intel_ring_buffer *ring)
1476 1477 1478
{
	drm_i915_private_t *dev_priv = dev->dev_private;

1479 1480
	ring->outstanding_lazy_request = true;

1481 1482 1483
	return dev_priv->next_seqno;
}

1484
static void
1485
i915_gem_object_move_to_active(struct drm_gem_object *obj,
1486
			       struct intel_ring_buffer *ring)
1487 1488 1489
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1490
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1491 1492
	uint32_t seqno = i915_gem_next_request_seqno(dev, ring);

1493 1494
	BUG_ON(ring == NULL);
	obj_priv->ring = ring;
1495 1496 1497 1498 1499 1500

	/* Add a reference if we're newly entering the active list. */
	if (!obj_priv->active) {
		drm_gem_object_reference(obj);
		obj_priv->active = 1;
	}
1501

1502
	/* Move from whatever list we were on to the tail of execution. */
1503
	spin_lock(&dev_priv->mm.active_list_lock);
1504
	list_move_tail(&obj_priv->list, &ring->active_list);
1505
	spin_unlock(&dev_priv->mm.active_list_lock);
1506
	obj_priv->last_rendering_seqno = seqno;
1507 1508
}

1509 1510 1511 1512 1513
static void
i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1514
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1515 1516 1517 1518 1519

	BUG_ON(!obj_priv->active);
	list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
	obj_priv->last_rendering_seqno = 0;
}
1520

1521 1522 1523 1524
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_gem_object *obj)
{
1525
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
1526
	struct inode *inode;
1527

1528 1529 1530 1531 1532 1533
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*. Here we mirror the actions taken
	 * when by shmem_delete_inode() to release the backing store.
	 */
C
Chris Wilson 已提交
1534
	inode = obj->filp->f_path.dentry->d_inode;
1535 1536 1537
	truncate_inode_pages(inode->i_mapping, 0);
	if (inode->i_op->truncate_range)
		inode->i_op->truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1538 1539

	obj_priv->madv = __I915_MADV_PURGED;
1540 1541 1542 1543 1544 1545 1546 1547
}

static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->madv == I915_MADV_DONTNEED;
}

1548 1549 1550 1551 1552
static void
i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1553
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1554 1555 1556 1557 1558 1559 1560

	i915_verify_inactive(dev, __FILE__, __LINE__);
	if (obj_priv->pin_count != 0)
		list_del_init(&obj_priv->list);
	else
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1561 1562
	BUG_ON(!list_empty(&obj_priv->gpu_write_list));

1563
	obj_priv->last_rendering_seqno = 0;
1564
	obj_priv->ring = NULL;
1565 1566 1567 1568 1569 1570 1571
	if (obj_priv->active) {
		obj_priv->active = 0;
		drm_gem_object_unreference(obj);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);
}

1572
void
1573
i915_gem_process_flushing_list(struct drm_device *dev,
1574
			       uint32_t flush_domains,
1575
			       struct intel_ring_buffer *ring)
1576 1577 1578 1579 1580 1581 1582
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv, *next;

	list_for_each_entry_safe(obj_priv, next,
				 &dev_priv->mm.gpu_write_list,
				 gpu_write_list) {
1583
		struct drm_gem_object *obj = &obj_priv->base;
1584 1585

		if ((obj->write_domain & flush_domains) ==
1586 1587
		    obj->write_domain &&
		    obj_priv->ring->ring_flag == ring->ring_flag) {
1588 1589 1590 1591
			uint32_t old_write_domain = obj->write_domain;

			obj->write_domain = 0;
			list_del_init(&obj_priv->gpu_write_list);
1592
			i915_gem_object_move_to_active(obj, ring);
1593 1594

			/* update the fence lru list */
1595 1596 1597 1598
			if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
				struct drm_i915_fence_reg *reg =
					&dev_priv->fence_regs[obj_priv->fence_reg];
				list_move_tail(&reg->lru_list,
1599
						&dev_priv->mm.fence_list);
1600
			}
1601 1602 1603 1604 1605 1606 1607

			trace_i915_gem_object_change_domain(obj,
							    obj->read_domains,
							    old_write_domain);
		}
	}
}
1608

1609
uint32_t
1610 1611 1612
i915_add_request(struct drm_device *dev,
		 struct drm_file *file_priv,
		 struct intel_ring_buffer *ring)
1613 1614
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1615
	struct drm_i915_file_private *i915_file_priv = NULL;
1616 1617 1618 1619
	struct drm_i915_gem_request *request;
	uint32_t seqno;
	int was_empty;

1620 1621 1622
	if (file_priv != NULL)
		i915_file_priv = file_priv->driver_priv;

1623
	request = kzalloc(sizeof(*request), GFP_KERNEL);
1624 1625 1626
	if (request == NULL)
		return 0;

1627
	seqno = ring->add_request(dev, ring, file_priv, 0);
1628 1629

	request->seqno = seqno;
1630
	request->ring = ring;
1631
	request->emitted_jiffies = jiffies;
1632 1633 1634
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

1635 1636 1637 1638 1639 1640
	if (i915_file_priv) {
		list_add_tail(&request->client_list,
			      &i915_file_priv->mm.request_list);
	} else {
		INIT_LIST_HEAD(&request->client_list);
	}
1641

B
Ben Gamari 已提交
1642 1643 1644 1645 1646
	if (!dev_priv->mm.suspended) {
		mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
		if (was_empty)
			queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
	}
1647 1648 1649 1650 1651 1652 1653 1654 1655
	return seqno;
}

/**
 * Command execution barrier
 *
 * Ensures that all commands in the ring are finished
 * before signalling the CPU
 */
1656
static void
1657
i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1658 1659 1660 1661 1662 1663
{
	uint32_t flush_domains = 0;

	/* The sampler always gets flushed on i965 (sigh) */
	if (IS_I965G(dev))
		flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1664 1665 1666

	ring->flush(dev, ring,
			I915_GEM_DOMAIN_COMMAND, flush_domains);
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
}

/**
 * Moves buffers associated only with the given active seqno from the active
 * to inactive list, potentially freeing them.
 */
static void
i915_gem_retire_request(struct drm_device *dev,
			struct drm_i915_gem_request *request)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

C
Chris Wilson 已提交
1679 1680
	trace_i915_gem_request_retire(dev, request->seqno);

1681 1682 1683
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
1684
	spin_lock(&dev_priv->mm.active_list_lock);
1685
	while (!list_empty(&request->ring->active_list)) {
1686 1687 1688
		struct drm_gem_object *obj;
		struct drm_i915_gem_object *obj_priv;

1689
		obj_priv = list_first_entry(&request->ring->active_list,
1690 1691
					    struct drm_i915_gem_object,
					    list);
1692
		obj = &obj_priv->base;
1693 1694 1695 1696 1697 1698

		/* If the seqno being retired doesn't match the oldest in the
		 * list, then the oldest in the list must still be newer than
		 * this seqno.
		 */
		if (obj_priv->last_rendering_seqno != request->seqno)
1699
			goto out;
1700

1701 1702 1703 1704 1705
#if WATCH_LRU
		DRM_INFO("%s: retire %d moves to inactive list %p\n",
			 __func__, request->seqno, obj);
#endif

1706 1707
		if (obj->write_domain != 0)
			i915_gem_object_move_to_flushing(obj);
1708 1709 1710 1711 1712 1713 1714 1715
		else {
			/* Take a reference on the object so it won't be
			 * freed while the spinlock is held.  The list
			 * protection for this spinlock is safe when breaking
			 * the lock like this since the next thing we do
			 * is just get the head of the list again.
			 */
			drm_gem_object_reference(obj);
1716
			i915_gem_object_move_to_inactive(obj);
1717 1718 1719 1720
			spin_unlock(&dev_priv->mm.active_list_lock);
			drm_gem_object_unreference(obj);
			spin_lock(&dev_priv->mm.active_list_lock);
		}
1721
	}
1722 1723
out:
	spin_unlock(&dev_priv->mm.active_list_lock);
1724 1725 1726 1727 1728
}

/**
 * Returns true if seq1 is later than seq2.
 */
1729
bool
1730 1731 1732 1733 1734 1735
i915_seqno_passed(uint32_t seq1, uint32_t seq2)
{
	return (int32_t)(seq1 - seq2) >= 0;
}

uint32_t
1736
i915_get_gem_seqno(struct drm_device *dev,
1737
		   struct intel_ring_buffer *ring)
1738
{
1739
	return ring->get_gem_seqno(dev, ring);
1740 1741 1742 1743 1744
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
1745 1746 1747
static void
i915_gem_retire_requests_ring(struct drm_device *dev,
			      struct intel_ring_buffer *ring)
1748 1749 1750 1751
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno;

1752
	if (!ring->status_page.page_addr
1753
			|| list_empty(&ring->request_list))
1754 1755
		return;

1756
	seqno = i915_get_gem_seqno(dev, ring);
1757

1758
	while (!list_empty(&ring->request_list)) {
1759 1760 1761
		struct drm_i915_gem_request *request;
		uint32_t retiring_seqno;

1762
		request = list_first_entry(&ring->request_list,
1763 1764 1765 1766 1767
					   struct drm_i915_gem_request,
					   list);
		retiring_seqno = request->seqno;

		if (i915_seqno_passed(seqno, retiring_seqno) ||
1768
		    atomic_read(&dev_priv->mm.wedged)) {
1769 1770 1771
			i915_gem_retire_request(dev, request);

			list_del(&request->list);
1772
			list_del(&request->client_list);
1773
			kfree(request);
1774 1775 1776
		} else
			break;
	}
1777 1778 1779

	if (unlikely (dev_priv->trace_irq_seqno &&
		      i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1780 1781

		ring->user_irq_put(dev, ring);
1782 1783
		dev_priv->trace_irq_seqno = 0;
	}
1784 1785
}

1786 1787 1788 1789 1790
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
	    struct drm_i915_gem_object *obj_priv, *tmp;

	    /* We must be careful that during unbind() we do not
	     * accidentally infinitely recurse into retire requests.
	     * Currently:
	     *   retire -> free -> unbind -> wait -> retire_ring
	     */
	    list_for_each_entry_safe(obj_priv, tmp,
				     &dev_priv->mm.deferred_free_list,
				     list)
		    i915_gem_free_object_tail(&obj_priv->base);
	}

1805 1806 1807 1808 1809
	i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
	if (HAS_BSD(dev))
		i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
}

1810
static void
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

	mutex_lock(&dev->struct_mutex);
1821
	i915_gem_retire_requests(dev);
1822

1823
	if (!dev_priv->mm.suspended &&
1824 1825 1826
		(!list_empty(&dev_priv->render_ring.request_list) ||
			(HAS_BSD(dev) &&
			 !list_empty(&dev_priv->bsd_ring.request_list))))
1827
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1828 1829 1830
	mutex_unlock(&dev->struct_mutex);
}

1831
int
1832
i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1833
		     bool interruptible, struct intel_ring_buffer *ring)
1834 1835
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1836
	u32 ier;
1837 1838 1839 1840
	int ret = 0;

	BUG_ON(seqno == 0);

1841
	if (seqno == dev_priv->next_seqno) {
1842
		seqno = i915_add_request(dev, NULL, ring);
1843 1844 1845 1846
		if (seqno == 0)
			return -ENOMEM;
	}

1847
	if (atomic_read(&dev_priv->mm.wedged))
1848 1849
		return -EIO;

1850
	if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
1851
		if (HAS_PCH_SPLIT(dev))
1852 1853 1854
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
1855 1856 1857 1858 1859 1860 1861
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
			i915_driver_irq_preinstall(dev);
			i915_driver_irq_postinstall(dev);
		}

C
Chris Wilson 已提交
1862 1863
		trace_i915_gem_request_wait_begin(dev, seqno);

1864
		ring->waiting_gem_seqno = seqno;
1865
		ring->user_irq_get(dev, ring);
1866
		if (interruptible)
1867 1868 1869 1870
			ret = wait_event_interruptible(ring->irq_queue,
				i915_seqno_passed(
					ring->get_gem_seqno(dev, ring), seqno)
				|| atomic_read(&dev_priv->mm.wedged));
1871
		else
1872 1873 1874 1875
			wait_event(ring->irq_queue,
				i915_seqno_passed(
					ring->get_gem_seqno(dev, ring), seqno)
				|| atomic_read(&dev_priv->mm.wedged));
1876

1877
		ring->user_irq_put(dev, ring);
1878
		ring->waiting_gem_seqno = 0;
C
Chris Wilson 已提交
1879 1880

		trace_i915_gem_request_wait_end(dev, seqno);
1881
	}
1882
	if (atomic_read(&dev_priv->mm.wedged))
1883 1884 1885
		ret = -EIO;

	if (ret && ret != -ERESTARTSYS)
1886 1887 1888
		DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
			  __func__, ret, seqno, ring->get_gem_seqno(dev, ring),
			  dev_priv->next_seqno);
1889 1890 1891 1892 1893 1894 1895

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
	if (ret == 0)
1896
		i915_gem_retire_requests_ring(dev, ring);
1897 1898 1899 1900

	return ret;
}

1901 1902 1903 1904 1905
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
static int
1906 1907
i915_wait_request(struct drm_device *dev, uint32_t seqno,
		struct intel_ring_buffer *ring)
1908
{
1909
	return i915_do_wait_request(dev, seqno, 1, ring);
1910 1911
}

1912 1913 1914 1915 1916 1917
static void
i915_gem_flush(struct drm_device *dev,
	       uint32_t invalidate_domains,
	       uint32_t flush_domains)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1918

1919 1920
	if (flush_domains & I915_GEM_DOMAIN_CPU)
		drm_agp_chipset_flush(dev);
1921

1922 1923 1924
	dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
			invalidate_domains,
			flush_domains);
1925 1926 1927 1928 1929

	if (HAS_BSD(dev))
		dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring,
				invalidate_domains,
				flush_domains);
1930 1931
}

1932 1933 1934 1935 1936
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static int
1937
i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1938 1939
{
	struct drm_device *dev = obj->dev;
1940
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1941 1942
	int ret;

1943 1944
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
1945
	 */
1946
	BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1947 1948 1949 1950 1951 1952 1953 1954 1955

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
	if (obj_priv->active) {
#if WATCH_BUF
		DRM_INFO("%s: object %p wait for seqno %08x\n",
			  __func__, obj, obj_priv->last_rendering_seqno);
#endif
1956 1957 1958
		ret = i915_wait_request(dev,
					obj_priv->last_rendering_seqno,
					obj_priv->ring);
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
		if (ret != 0)
			return ret;
	}

	return 0;
}

/**
 * Unbinds an object from the GTT aperture.
 */
1969
int
1970 1971 1972
i915_gem_object_unbind(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1973
	drm_i915_private_t *dev_priv = dev->dev_private;
1974
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
	int ret = 0;

#if WATCH_BUF
	DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
	DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
#endif
	if (obj_priv->gtt_space == NULL)
		return 0;

	if (obj_priv->pin_count != 0) {
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

1989 1990 1991
	/* blow away mappings if mapped through GTT */
	i915_gem_release_mmap(obj);

1992 1993 1994 1995 1996 1997
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
	 * are flushed when we go to remap it. This will
	 * also ensure that all pending GPU writes are finished
	 * before we unbind.
	 */
1998
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1999
	if (ret == -ERESTARTSYS)
2000
		return ret;
2001 2002 2003 2004
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */
2005

2006 2007 2008 2009
	/* release the fence reg _after_ flushing */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
		i915_gem_clear_fence_reg(obj);

2010 2011 2012 2013 2014 2015
	if (obj_priv->agp_mem != NULL) {
		drm_unbind_agp(obj_priv->agp_mem);
		drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
		obj_priv->agp_mem = NULL;
	}

2016
	i915_gem_object_put_pages(obj);
2017
	BUG_ON(obj_priv->pages_refcount);
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027

	if (obj_priv->gtt_space) {
		atomic_dec(&dev->gtt_count);
		atomic_sub(obj->size, &dev->gtt_memory);

		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
	}

	/* Remove ourselves from the LRU list if present. */
2028
	spin_lock(&dev_priv->mm.active_list_lock);
2029 2030
	if (!list_empty(&obj_priv->list))
		list_del_init(&obj_priv->list);
2031
	spin_unlock(&dev_priv->mm.active_list_lock);
2032

2033 2034 2035
	if (i915_gem_object_is_purgeable(obj_priv))
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
2036 2037
	trace_i915_gem_object_unbind(obj);

2038
	return ret;
2039 2040
}

2041
int
2042 2043 2044 2045
i915_gpu_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	bool lists_empty;
2046
	uint32_t seqno1, seqno2;
2047
	int ret;
2048 2049

	spin_lock(&dev_priv->mm.active_list_lock);
2050 2051 2052 2053
	lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
		       list_empty(&dev_priv->render_ring.active_list) &&
		       (!HAS_BSD(dev) ||
			list_empty(&dev_priv->bsd_ring.active_list)));
2054 2055 2056 2057 2058 2059 2060
	spin_unlock(&dev_priv->mm.active_list_lock);

	if (lists_empty)
		return 0;

	/* Flush everything onto the inactive list. */
	i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2061
	seqno1 = i915_add_request(dev, NULL, &dev_priv->render_ring);
2062
	if (seqno1 == 0)
2063
		return -ENOMEM;
2064
	ret = i915_wait_request(dev, seqno1, &dev_priv->render_ring);
2065 2066
	if (ret)
		return ret;
2067 2068

	if (HAS_BSD(dev)) {
2069
		seqno2 = i915_add_request(dev, NULL, &dev_priv->bsd_ring);
2070 2071 2072 2073 2074 2075 2076
		if (seqno2 == 0)
			return -ENOMEM;
		ret = i915_wait_request(dev, seqno2, &dev_priv->bsd_ring);
		if (ret)
			return ret;
	}

2077
	return 0;
2078 2079
}

2080
int
2081 2082
i915_gem_object_get_pages(struct drm_gem_object *obj,
			  gfp_t gfpmask)
2083
{
2084
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2085 2086 2087 2088 2089
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

2090 2091 2092
	BUG_ON(obj_priv->pages_refcount
			== DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);

2093
	if (obj_priv->pages_refcount++ != 0)
2094 2095 2096 2097 2098 2099
		return 0;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
	page_count = obj->size / PAGE_SIZE;
2100
	BUG_ON(obj_priv->pages != NULL);
2101
	obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2102 2103
	if (obj_priv->pages == NULL) {
		obj_priv->pages_refcount--;
2104 2105 2106 2107 2108 2109
		return -ENOMEM;
	}

	inode = obj->filp->f_path.dentry->d_inode;
	mapping = inode->i_mapping;
	for (i = 0; i < page_count; i++) {
2110
		page = read_cache_page_gfp(mapping, i,
2111
					   GFP_HIGHUSER |
2112
					   __GFP_COLD |
2113
					   __GFP_RECLAIMABLE |
2114
					   gfpmask);
2115 2116 2117
		if (IS_ERR(page))
			goto err_pages;

2118
		obj_priv->pages[i] = page;
2119
	}
2120 2121 2122 2123

	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_do_bit_17_swizzle(obj);

2124
	return 0;
2125 2126 2127 2128 2129 2130 2131 2132 2133

err_pages:
	while (i--)
		page_cache_release(obj_priv->pages[i]);

	drm_free_large(obj_priv->pages);
	obj_priv->pages = NULL;
	obj_priv->pages_refcount--;
	return PTR_ERR(page);
2134 2135
}

2136 2137 2138 2139 2140
static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2141
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
		SANDYBRIDGE_FENCE_PITCH_SHIFT;

	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
}

2158 2159 2160 2161 2162
static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2163
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
}

static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2183
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2184
	int regnum = obj_priv->fence_reg;
2185
	int tile_width;
2186
	uint32_t fence_reg, val;
2187 2188 2189 2190
	uint32_t pitch_val;

	if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2191
		WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2192
		     __func__, obj_priv->gtt_offset, obj->size);
2193 2194 2195
		return;
	}

2196 2197 2198
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		tile_width = 128;
2199
	else
2200 2201 2202 2203 2204
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
	pitch_val = obj_priv->stride / tile_width;
	pitch_val = ffs(pitch_val) - 1;
2205

2206 2207 2208 2209 2210 2211
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
	else
		WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);

2212 2213 2214 2215 2216 2217 2218
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
	val |= I915_FENCE_SIZE_BITS(obj->size);
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2219 2220 2221 2222 2223
	if (regnum < 8)
		fence_reg = FENCE_REG_830_0 + (regnum * 4);
	else
		fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
	I915_WRITE(fence_reg, val);
2224 2225 2226 2227 2228 2229 2230
}

static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2231
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2232 2233 2234
	int regnum = obj_priv->fence_reg;
	uint32_t val;
	uint32_t pitch_val;
2235
	uint32_t fence_size_bits;
2236

2237
	if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2238
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2239
		WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2240
		     __func__, obj_priv->gtt_offset);
2241 2242 2243
		return;
	}

2244 2245 2246 2247
	pitch_val = obj_priv->stride / 128;
	pitch_val = ffs(pitch_val) - 1;
	WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);

2248 2249 2250
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2251 2252 2253
	fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
	WARN_ON(fence_size_bits & ~0x00000f00);
	val |= fence_size_bits;
2254 2255 2256 2257 2258 2259
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

	I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
}

2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
static int i915_find_fence_reg(struct drm_device *dev)
{
	struct drm_i915_fence_reg *reg = NULL;
	struct drm_i915_gem_object *obj_priv = NULL;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_gem_object *obj = NULL;
	int i, avail, ret;

	/* First try to find a free reg */
	avail = 0;
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			return i;

2275
		obj_priv = to_intel_bo(reg->obj);
2276 2277 2278 2279 2280 2281 2282 2283 2284
		if (!obj_priv->pin_count)
		    avail++;
	}

	if (avail == 0)
		return -ENOSPC;

	/* None available, try to steal one or wait for a user to finish */
	i = I915_FENCE_REG_NONE;
2285 2286 2287 2288
	list_for_each_entry(reg, &dev_priv->mm.fence_list,
			    lru_list) {
		obj = reg->obj;
		obj_priv = to_intel_bo(obj);
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312

		if (obj_priv->pin_count)
			continue;

		/* found one! */
		i = obj_priv->fence_reg;
		break;
	}

	BUG_ON(i == I915_FENCE_REG_NONE);

	/* We only have a reference on obj from the active list. put_fence_reg
	 * might drop that one, causing a use-after-free in it. So hold a
	 * private reference to obj like the other callers of put_fence_reg
	 * (set_tiling ioctl) do. */
	drm_gem_object_reference(obj);
	ret = i915_gem_object_put_fence_reg(obj);
	drm_gem_object_unreference(obj);
	if (ret != 0)
		return ret;

	return i;
}

2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
/**
 * i915_gem_object_get_fence_reg - set up a fence reg for an object
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2326 2327
int
i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2328 2329
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2330
	struct drm_i915_private *dev_priv = dev->dev_private;
2331
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2332
	struct drm_i915_fence_reg *reg = NULL;
2333
	int ret;
2334

2335 2336
	/* Just update our place in the LRU if our fence is getting used. */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2337 2338
		reg = &dev_priv->fence_regs[obj_priv->fence_reg];
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2339 2340 2341
		return 0;
	}

2342 2343 2344 2345 2346
	switch (obj_priv->tiling_mode) {
	case I915_TILING_NONE:
		WARN(1, "allocating a fence for non-tiled object?\n");
		break;
	case I915_TILING_X:
2347 2348 2349 2350 2351
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (512 - 1)),
		     "object 0x%08x is X tiled but has non-512B pitch\n",
		     obj_priv->gtt_offset);
2352 2353
		break;
	case I915_TILING_Y:
2354 2355 2356 2357 2358
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (128 - 1)),
		     "object 0x%08x is Y tiled but has non-128B pitch\n",
		     obj_priv->gtt_offset);
2359 2360 2361
		break;
	}

2362 2363 2364
	ret = i915_find_fence_reg(dev);
	if (ret < 0)
		return ret;
2365

2366 2367
	obj_priv->fence_reg = ret;
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2368
	list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2369

2370 2371
	reg->obj = obj;

2372 2373 2374
	if (IS_GEN6(dev))
		sandybridge_write_fence_reg(reg);
	else if (IS_I965G(dev))
2375 2376 2377 2378 2379
		i965_write_fence_reg(reg);
	else if (IS_I9XX(dev))
		i915_write_fence_reg(reg);
	else
		i830_write_fence_reg(reg);
2380

2381 2382
	trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
			obj_priv->tiling_mode);
C
Chris Wilson 已提交
2383

2384
	return 0;
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
static void
i915_gem_clear_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2398
	drm_i915_private_t *dev_priv = dev->dev_private;
2399
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2400 2401
	struct drm_i915_fence_reg *reg =
		&dev_priv->fence_regs[obj_priv->fence_reg];
2402

2403 2404 2405 2406
	if (IS_GEN6(dev)) {
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
			     (obj_priv->fence_reg * 8), 0);
	} else if (IS_I965G(dev)) {
2407
		I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2408
	} else {
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
		uint32_t fence_reg;

		if (obj_priv->fence_reg < 8)
			fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
		else
			fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
						       8) * 4;

		I915_WRITE(fence_reg, 0);
	}
2419

2420
	reg->obj = NULL;
2421
	obj_priv->fence_reg = I915_FENCE_REG_NONE;
2422
	list_del_init(&reg->lru_list);
2423 2424
}

2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
/**
 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
 * to the buffer to finish, and then resets the fence register.
 * @obj: tiled object holding a fence register.
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
int
i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
2437
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2438 2439 2440 2441

	if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
		return 0;

2442 2443 2444 2445 2446 2447
	/* If we've changed tiling, GTT-mappings of the object
	 * need to re-fault to ensure that the correct fence register
	 * setup is in place.
	 */
	i915_gem_release_mmap(obj);

2448 2449 2450 2451 2452 2453 2454
	/* On the i915, GPU access to tiled buffers is via a fence,
	 * therefore we must wait for any outstanding access to complete
	 * before clearing the fence.
	 */
	if (!IS_I965G(dev)) {
		int ret;

2455
		ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2456 2457 2458 2459
		if (ret != 0)
			return ret;
	}

2460
	i915_gem_object_flush_gtt_write_domain(obj);
2461 2462 2463 2464 2465
	i915_gem_clear_fence_reg (obj);

	return 0;
}

2466 2467 2468 2469 2470 2471 2472 2473
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2474
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2475
	struct drm_mm_node *free_space;
2476
	gfp_t gfpmask =  __GFP_NORETRY | __GFP_NOWARN;
2477
	int ret;
2478

C
Chris Wilson 已提交
2479
	if (obj_priv->madv != I915_MADV_WILLNEED) {
2480 2481 2482 2483
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2484
	if (alignment == 0)
2485
		alignment = i915_gem_get_gtt_alignment(obj);
2486
	if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2487 2488 2489 2490
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2491 2492 2493 2494 2495 2496 2497 2498
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
	if (obj->size > dev->gtt_total) {
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2499 2500 2501 2502 2503 2504
 search_free:
	free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
					obj->size, alignment, 0);
	if (free_space != NULL) {
		obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
						       alignment);
D
Daniel Vetter 已提交
2505
		if (obj_priv->gtt_space != NULL)
2506 2507 2508 2509 2510 2511 2512 2513 2514
			obj_priv->gtt_offset = obj_priv->gtt_space->start;
	}
	if (obj_priv->gtt_space == NULL) {
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
#if WATCH_LRU
		DRM_INFO("%s: GTT full, evicting something\n", __func__);
#endif
2515
		ret = i915_gem_evict_something(dev, obj->size, alignment);
2516
		if (ret)
2517
			return ret;
2518

2519 2520 2521 2522
		goto search_free;
	}

#if WATCH_BUF
2523
	DRM_INFO("Binding object of size %zd at 0x%08x\n",
2524 2525
		 obj->size, obj_priv->gtt_offset);
#endif
2526
	ret = i915_gem_object_get_pages(obj, gfpmask);
2527 2528 2529
	if (ret) {
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2530 2531 2532

		if (ret == -ENOMEM) {
			/* first try to clear up some space from the GTT */
2533 2534
			ret = i915_gem_evict_something(dev, obj->size,
						       alignment);
2535 2536
			if (ret) {
				/* now try to shrink everyone else */
2537 2538 2539
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2540 2541 2542 2543 2544 2545 2546 2547
				}

				return ret;
			}

			goto search_free;
		}

2548 2549 2550 2551 2552 2553 2554
		return ret;
	}

	/* Create an AGP memory structure pointing at our pages, and bind it
	 * into the GTT.
	 */
	obj_priv->agp_mem = drm_agp_bind_pages(dev,
2555
					       obj_priv->pages,
2556
					       obj->size >> PAGE_SHIFT,
2557 2558
					       obj_priv->gtt_offset,
					       obj_priv->agp_type);
2559
	if (obj_priv->agp_mem == NULL) {
2560
		i915_gem_object_put_pages(obj);
2561 2562
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2563

2564
		ret = i915_gem_evict_something(dev, obj->size, alignment);
2565
		if (ret)
2566 2567 2568
			return ret;

		goto search_free;
2569 2570 2571 2572
	}
	atomic_inc(&dev->gtt_count);
	atomic_add(obj->size, &dev->gtt_memory);

2573 2574 2575
	/* keep track of bounds object by adding it to the inactive list */
	list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

2576 2577 2578 2579
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2580 2581
	BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2582

C
Chris Wilson 已提交
2583 2584
	trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);

2585 2586 2587 2588 2589 2590
	return 0;
}

void
i915_gem_clflush_object(struct drm_gem_object *obj)
{
2591
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
2592 2593 2594 2595 2596

	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2597
	if (obj_priv->pages == NULL)
2598 2599
		return;

C
Chris Wilson 已提交
2600
	trace_i915_gem_object_clflush(obj);
2601

2602
	drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2603 2604
}

2605
/** Flushes any GPU write domain for the object if it's dirty. */
2606
static int
2607 2608
i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
				       bool pipelined)
2609 2610
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2611
	uint32_t old_write_domain;
2612 2613

	if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2614
		return 0;
2615 2616

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2617
	old_write_domain = obj->write_domain;
2618
	i915_gem_flush(dev, 0, obj->write_domain);
C
Chris Wilson 已提交
2619 2620 2621 2622

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2623 2624 2625 2626 2627

	if (pipelined)
		return 0;

	return i915_gem_object_wait_rendering(obj);
2628 2629 2630 2631 2632 2633
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
{
C
Chris Wilson 已提交
2634 2635
	uint32_t old_write_domain;

2636 2637 2638 2639 2640 2641 2642
	if (obj->write_domain != I915_GEM_DOMAIN_GTT)
		return;

	/* No actual flushing is required for the GTT write domain.   Writes
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 */
C
Chris Wilson 已提交
2643
	old_write_domain = obj->write_domain;
2644
	obj->write_domain = 0;
C
Chris Wilson 已提交
2645 2646 2647 2648

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2649 2650 2651 2652 2653 2654 2655
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2656
	uint32_t old_write_domain;
2657 2658 2659 2660 2661 2662

	if (obj->write_domain != I915_GEM_DOMAIN_CPU)
		return;

	i915_gem_clflush_object(obj);
	drm_agp_chipset_flush(dev);
C
Chris Wilson 已提交
2663
	old_write_domain = obj->write_domain;
2664
	obj->write_domain = 0;
C
Chris Wilson 已提交
2665 2666 2667 2668

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2669 2670
}

2671
int
2672 2673
i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
{
2674 2675
	int ret = 0;

2676 2677 2678 2679 2680 2681 2682 2683
	switch (obj->write_domain) {
	case I915_GEM_DOMAIN_GTT:
		i915_gem_object_flush_gtt_write_domain(obj);
		break;
	case I915_GEM_DOMAIN_CPU:
		i915_gem_object_flush_cpu_write_domain(obj);
		break;
	default:
2684
		ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2685 2686
		break;
	}
2687 2688

	return ret;
2689 2690
}

2691 2692 2693 2694 2695 2696
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2697
int
2698 2699
i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
{
2700
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2701
	uint32_t old_write_domain, old_read_domains;
2702
	int ret;
2703

2704 2705 2706 2707
	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2708
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2709 2710 2711
	if (ret != 0)
		return ret;

C
Chris Wilson 已提交
2712 2713 2714
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

2715 2716
	/* If we're writing through the GTT domain, then CPU and GPU caches
	 * will need to be invalidated at next use.
2717
	 */
2718 2719 2720 2721 2722
	if (write) {
		ret = i915_gem_object_wait_rendering(obj);
		if (ret)
			return ret;

2723
		obj->read_domains &= I915_GEM_DOMAIN_GTT;
2724
	}
2725

2726
	i915_gem_object_flush_cpu_write_domain(obj);
2727

2728 2729 2730 2731 2732 2733 2734 2735
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
	if (write) {
		obj->write_domain = I915_GEM_DOMAIN_GTT;
		obj_priv->dirty = 1;
2736 2737
	}

C
Chris Wilson 已提交
2738 2739 2740 2741
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2742 2743 2744
	return 0;
}

2745 2746 2747 2748 2749 2750 2751
/*
 * Prepare buffer for display plane. Use uninterruptible for possible flush
 * wait, as in modesetting process we're not supposed to be interrupted.
 */
int
i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
{
2752
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2753
	uint32_t old_read_domains;
2754 2755 2756 2757 2758 2759
	int ret;

	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2760
	ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2761 2762
	if (ret != 0)
		return ret;
2763

2764 2765
	i915_gem_object_flush_cpu_write_domain(obj);

2766
	old_read_domains = obj->read_domains;
2767
	obj->read_domains = I915_GEM_DOMAIN_GTT;
2768 2769 2770

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
2771
					    obj->write_domain);
2772 2773 2774 2775

	return 0;
}

2776 2777 2778 2779 2780 2781 2782 2783 2784
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
{
C
Chris Wilson 已提交
2785
	uint32_t old_write_domain, old_read_domains;
2786 2787
	int ret;

2788
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2789 2790
	if (ret != 0)
		return ret;
2791

2792
	i915_gem_object_flush_gtt_write_domain(obj);
2793

2794 2795
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
2796
	 */
2797
	i915_gem_object_set_to_full_cpu_read_domain(obj);
2798

C
Chris Wilson 已提交
2799 2800 2801
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

2802 2803
	/* Flush the CPU cache if it's still invalid. */
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2804 2805
		i915_gem_clflush_object(obj);

2806
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
2807 2808 2809 2810 2811
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2812 2813 2814 2815 2816 2817
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
2818 2819 2820 2821
		ret = i915_gem_object_wait_rendering(obj);
		if (ret)
			return ret;

2822 2823 2824
		obj->read_domains &= I915_GEM_DOMAIN_CPU;
		obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
2825

C
Chris Wilson 已提交
2826 2827 2828 2829
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2830 2831 2832
	return 0;
}

2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
2944
static void
2945
i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2946 2947
{
	struct drm_device		*dev = obj->dev;
2948
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
2949 2950
	uint32_t			invalidate_domains = 0;
	uint32_t			flush_domains = 0;
C
Chris Wilson 已提交
2951
	uint32_t			old_read_domains;
2952

2953 2954
	BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
	BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2955

2956 2957
	intel_mark_busy(dev, obj);

2958 2959 2960
#if WATCH_BUF
	DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
		 __func__, obj,
2961 2962
		 obj->read_domains, obj->pending_read_domains,
		 obj->write_domain, obj->pending_write_domain);
2963 2964 2965 2966 2967
#endif
	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
2968 2969
	if (obj->pending_write_domain == 0)
		obj->pending_read_domains |= obj->read_domains;
2970 2971 2972 2973 2974 2975 2976 2977 2978
	else
		obj_priv->dirty = 1;

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
2979 2980
	if (obj->write_domain &&
	    obj->write_domain != obj->pending_read_domains) {
2981
		flush_domains |= obj->write_domain;
2982 2983
		invalidate_domains |=
			obj->pending_read_domains & ~obj->write_domain;
2984 2985 2986 2987 2988
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
2989
	invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
2990 2991 2992 2993 2994 2995 2996 2997
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
#if WATCH_BUF
		DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
			 __func__, flush_domains, invalidate_domains);
#endif
		i915_gem_clflush_object(obj);
	}

C
Chris Wilson 已提交
2998 2999
	old_read_domains = obj->read_domains;

3000 3001 3002 3003 3004 3005 3006 3007
	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->pending_write_domain == 0)
		obj->pending_write_domain = obj->write_domain;
3008
	obj->read_domains = obj->pending_read_domains;
3009 3010 3011 3012 3013 3014 3015 3016 3017

	dev->invalidate_domains |= invalidate_domains;
	dev->flush_domains |= flush_domains;
#if WATCH_BUF
	DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
		 __func__,
		 obj->read_domains, obj->write_domain,
		 dev->invalidate_domains, dev->flush_domains);
#endif
C
Chris Wilson 已提交
3018 3019 3020 3021

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);
3022 3023 3024
}

/**
3025
 * Moves the object from a partially CPU read to a full one.
3026
 *
3027 3028
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3029
 */
3030 3031
static void
i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3032
{
3033
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3034

3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
	if (!obj_priv->page_cpu_valid)
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
	if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
		int i;

		for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
			if (obj_priv->page_cpu_valid[i])
				continue;
3046
			drm_clflush_pages(obj_priv->pages + i, 1);
3047 3048 3049 3050 3051 3052
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
3053
	kfree(obj_priv->page_cpu_valid);
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
	obj_priv->page_cpu_valid = NULL;
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
					  uint64_t offset, uint64_t size)
{
3073
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3074
	uint32_t old_read_domains;
3075
	int i, ret;
3076

3077 3078
	if (offset == 0 && size == obj->size)
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3079

3080
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3081
	if (ret != 0)
3082
		return ret;
3083 3084 3085 3086 3087 3088
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
	if (obj_priv->page_cpu_valid == NULL &&
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
		return 0;
3089

3090 3091 3092
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3093
	if (obj_priv->page_cpu_valid == NULL) {
3094 3095
		obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
						   GFP_KERNEL);
3096 3097 3098 3099
		if (obj_priv->page_cpu_valid == NULL)
			return -ENOMEM;
	} else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3100 3101 3102 3103

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3104 3105
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3106 3107 3108
		if (obj_priv->page_cpu_valid[i])
			continue;

3109
		drm_clflush_pages(obj_priv->pages + i, 1);
3110 3111 3112 3113

		obj_priv->page_cpu_valid[i] = 1;
	}

3114 3115 3116 3117 3118
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

C
Chris Wilson 已提交
3119
	old_read_domains = obj->read_domains;
3120 3121
	obj->read_domains |= I915_GEM_DOMAIN_CPU;

C
Chris Wilson 已提交
3122 3123 3124 3125
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);

3126 3127 3128 3129 3130 3131 3132 3133 3134
	return 0;
}

/**
 * Pin an object to the GTT and evaluate the relocations landing in it.
 */
static int
i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
				 struct drm_file *file_priv,
J
Jesse Barnes 已提交
3135
				 struct drm_i915_gem_exec_object2 *entry,
3136
				 struct drm_i915_gem_relocation_entry *relocs)
3137 3138
{
	struct drm_device *dev = obj->dev;
3139
	drm_i915_private_t *dev_priv = dev->dev_private;
3140
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3141
	int i, ret;
3142
	void __iomem *reloc_page;
J
Jesse Barnes 已提交
3143 3144 3145 3146 3147 3148
	bool need_fence;

	need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
	             obj_priv->tiling_mode != I915_TILING_NONE;

	/* Check fence reg constraints and rebind if necessary */
3149 3150 3151 3152 3153 3154 3155
	if (need_fence &&
	    !i915_gem_object_fence_offset_ok(obj,
					     obj_priv->tiling_mode)) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			return ret;
	}
3156 3157 3158 3159 3160 3161

	/* Choose the GTT offset for our buffer and put it there. */
	ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
	if (ret)
		return ret;

J
Jesse Barnes 已提交
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
	/*
	 * Pre-965 chips need a fence register set up in order to
	 * properly handle blits to/from tiled surfaces.
	 */
	if (need_fence) {
		ret = i915_gem_object_get_fence_reg(obj);
		if (ret != 0) {
			i915_gem_object_unpin(obj);
			return ret;
		}
	}

3174 3175 3176 3177 3178 3179
	entry->offset = obj_priv->gtt_offset;

	/* Apply the relocations, using the GTT aperture to avoid cache
	 * flushing requirements.
	 */
	for (i = 0; i < entry->relocation_count; i++) {
3180
		struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3181 3182
		struct drm_gem_object *target_obj;
		struct drm_i915_gem_object *target_obj_priv;
3183 3184
		uint32_t reloc_val, reloc_offset;
		uint32_t __iomem *reloc_entry;
3185 3186

		target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3187
						   reloc->target_handle);
3188 3189
		if (target_obj == NULL) {
			i915_gem_object_unpin(obj);
3190
			return -ENOENT;
3191
		}
3192
		target_obj_priv = to_intel_bo(target_obj);
3193

3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
#if WATCH_RELOC
		DRM_INFO("%s: obj %p offset %08x target %d "
			 "read %08x write %08x gtt %08x "
			 "presumed %08x delta %08x\n",
			 __func__,
			 obj,
			 (int) reloc->offset,
			 (int) reloc->target_handle,
			 (int) reloc->read_domains,
			 (int) reloc->write_domain,
			 (int) target_obj_priv->gtt_offset,
			 (int) reloc->presumed_offset,
			 reloc->delta);
#endif

3209 3210 3211 3212 3213
		/* The target buffer should have appeared before us in the
		 * exec_object list, so it should have a GTT space bound by now.
		 */
		if (target_obj_priv->gtt_space == NULL) {
			DRM_ERROR("No GTT space found for object %d\n",
3214
				  reloc->target_handle);
3215 3216 3217 3218 3219
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3220
		/* Validate that the target is in a valid r/w GPU domain */
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
		if (reloc->write_domain & (reloc->write_domain - 1)) {
			DRM_ERROR("reloc with multiple write domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->read_domains,
				  reloc->write_domain);
			return -EINVAL;
		}
3231 3232
		if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
		    reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3233 3234 3235
			DRM_ERROR("reloc with read/write CPU domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
3236 3237 3238 3239
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->read_domains,
				  reloc->write_domain);
3240 3241
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
3242 3243
			return -EINVAL;
		}
3244 3245
		if (reloc->write_domain && target_obj->pending_write_domain &&
		    reloc->write_domain != target_obj->pending_write_domain) {
3246 3247 3248
			DRM_ERROR("Write domain conflict: "
				  "obj %p target %d offset %d "
				  "new %08x old %08x\n",
3249 3250 3251
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->write_domain,
3252 3253 3254 3255 3256 3257
				  target_obj->pending_write_domain);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3258 3259
		target_obj->pending_read_domains |= reloc->read_domains;
		target_obj->pending_write_domain |= reloc->write_domain;
3260 3261 3262 3263

		/* If the relocation already has the right value in it, no
		 * more work needs to be done.
		 */
3264
		if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3265 3266 3267 3268
			drm_gem_object_unreference(target_obj);
			continue;
		}

3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
		/* Check that the relocation address is valid... */
		if (reloc->offset > obj->size - 4) {
			DRM_ERROR("Relocation beyond object bounds: "
				  "obj %p target %d offset %d size %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->offset, (int) obj->size);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}
		if (reloc->offset & 3) {
			DRM_ERROR("Relocation not 4-byte aligned: "
				  "obj %p target %d offset %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->offset);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

		/* and points to somewhere within the target object. */
		if (reloc->delta >= target_obj->size) {
			DRM_ERROR("Relocation beyond target object bounds: "
				  "obj %p target %d delta %d size %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->delta, (int) target_obj->size);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3300 3301 3302 3303 3304
		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
		if (ret != 0) {
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
3305 3306 3307 3308 3309
		}

		/* Map the page containing the relocation we're going to
		 * perform.
		 */
3310
		reloc_offset = obj_priv->gtt_offset + reloc->offset;
3311 3312
		reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
						      (reloc_offset &
3313 3314
						       ~(PAGE_SIZE - 1)),
						      KM_USER0);
3315
		reloc_entry = (uint32_t __iomem *)(reloc_page +
3316
						   (reloc_offset & (PAGE_SIZE - 1)));
3317
		reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3318 3319 3320

#if WATCH_BUF
		DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3321
			  obj, (unsigned int) reloc->offset,
3322 3323 3324
			  readl(reloc_entry), reloc_val);
#endif
		writel(reloc_val, reloc_entry);
3325
		io_mapping_unmap_atomic(reloc_page, KM_USER0);
3326

3327 3328
		/* The updated presumed offset for this entry will be
		 * copied back out to the user.
3329
		 */
3330
		reloc->presumed_offset = target_obj_priv->gtt_offset;
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344

		drm_gem_object_unreference(target_obj);
	}

#if WATCH_BUF
	if (0)
		i915_gem_dump_object(obj, 128, __func__, ~0);
#endif
	return 0;
}

/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3345 3346 3347 3348
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3349 3350 3351 3352 3353 3354 3355 3356
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
static int
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
{
	struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
	int ret = 0;
3357
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3358 3359

	mutex_lock(&dev->struct_mutex);
3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
	while (!list_empty(&i915_file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&i915_file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);

		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;

3370
		ret = i915_wait_request(dev, request->seqno, request->ring);
3371 3372 3373
		if (ret != 0)
			break;
	}
3374
	mutex_unlock(&dev->struct_mutex);
3375

3376 3377 3378
	return ret;
}

3379
static int
J
Jesse Barnes 已提交
3380
i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
			      uint32_t buffer_count,
			      struct drm_i915_gem_relocation_entry **relocs)
{
	uint32_t reloc_count = 0, reloc_index = 0, i;
	int ret;

	*relocs = NULL;
	for (i = 0; i < buffer_count; i++) {
		if (reloc_count + exec_list[i].relocation_count < reloc_count)
			return -EINVAL;
		reloc_count += exec_list[i].relocation_count;
	}

3394
	*relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
J
Jesse Barnes 已提交
3395 3396
	if (*relocs == NULL) {
		DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3397
		return -ENOMEM;
J
Jesse Barnes 已提交
3398
	}
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409

	for (i = 0; i < buffer_count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;

		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;

		ret = copy_from_user(&(*relocs)[reloc_index],
				     user_relocs,
				     exec_list[i].relocation_count *
				     sizeof(**relocs));
		if (ret != 0) {
3410
			drm_free_large(*relocs);
3411
			*relocs = NULL;
3412
			return -EFAULT;
3413 3414 3415 3416 3417
		}

		reloc_index += exec_list[i].relocation_count;
	}

3418
	return 0;
3419 3420 3421
}

static int
J
Jesse Barnes 已提交
3422
i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3423 3424 3425 3426
			    uint32_t buffer_count,
			    struct drm_i915_gem_relocation_entry *relocs)
{
	uint32_t reloc_count = 0, i;
3427
	int ret = 0;
3428

3429 3430 3431
	if (relocs == NULL)
	    return 0;

3432 3433
	for (i = 0; i < buffer_count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;
3434
		int unwritten;
3435 3436 3437

		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;

3438 3439 3440 3441 3442 3443 3444 3445
		unwritten = copy_to_user(user_relocs,
					 &relocs[reloc_count],
					 exec_list[i].relocation_count *
					 sizeof(*relocs));

		if (unwritten) {
			ret = -EFAULT;
			goto err;
3446 3447 3448 3449 3450
		}

		reloc_count += exec_list[i].relocation_count;
	}

3451
err:
3452
	drm_free_large(relocs);
3453 3454 3455 3456

	return ret;
}

3457
static int
J
Jesse Barnes 已提交
3458
i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474
			   uint64_t exec_offset)
{
	uint32_t exec_start, exec_len;

	exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
	exec_len = (uint32_t) exec->batch_len;

	if ((exec_start | exec_len) & 0x7)
		return -EINVAL;

	if (!exec_start)
		return -EINVAL;

	return 0;
}

3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
static int
i915_gem_wait_for_pending_flip(struct drm_device *dev,
			       struct drm_gem_object **object_list,
			       int count)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	DEFINE_WAIT(wait);
	int i, ret = 0;

	for (;;) {
		prepare_to_wait(&dev_priv->pending_flip_queue,
				&wait, TASK_INTERRUPTIBLE);
		for (i = 0; i < count; i++) {
3489
			obj_priv = to_intel_bo(object_list[i]);
3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509
			if (atomic_read(&obj_priv->pending_flip) > 0)
				break;
		}
		if (i == count)
			break;

		if (!signal_pending(current)) {
			mutex_unlock(&dev->struct_mutex);
			schedule();
			mutex_lock(&dev->struct_mutex);
			continue;
		}
		ret = -ERESTARTSYS;
		break;
	}
	finish_wait(&dev_priv->pending_flip_queue, &wait);

	return ret;
}

3510

3511
int
J
Jesse Barnes 已提交
3512 3513 3514 3515
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
		       struct drm_file *file_priv,
		       struct drm_i915_gem_execbuffer2 *args,
		       struct drm_i915_gem_exec_object2 *exec_list)
3516 3517 3518 3519
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object **object_list = NULL;
	struct drm_gem_object *batch_obj;
3520
	struct drm_i915_gem_object *obj_priv;
3521
	struct drm_clip_rect *cliprects = NULL;
3522
	struct drm_i915_gem_relocation_entry *relocs = NULL;
J
Jesse Barnes 已提交
3523
	int ret = 0, ret2, i, pinned = 0;
3524
	uint64_t exec_offset;
3525
	uint32_t seqno, reloc_index;
3526
	int pin_tries, flips;
3527

3528 3529
	struct intel_ring_buffer *ring = NULL;

3530 3531 3532 3533
#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
	if (args->flags & I915_EXEC_BSD) {
		if (!HAS_BSD(dev)) {
			DRM_ERROR("execbuf with wrong flag\n");
			return -EINVAL;
		}
		ring = &dev_priv->bsd_ring;
	} else {
		ring = &dev_priv->render_ring;
	}

3544 3545 3546 3547
	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}
3548
	object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
J
Jesse Barnes 已提交
3549 3550
	if (object_list == NULL) {
		DRM_ERROR("Failed to allocate object list for %d buffers\n",
3551 3552 3553 3554 3555
			  args->buffer_count);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

3556
	if (args->num_cliprects != 0) {
3557 3558
		cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
				    GFP_KERNEL);
3559 3560
		if (cliprects == NULL) {
			ret = -ENOMEM;
3561
			goto pre_mutex_err;
3562
		}
3563 3564 3565 3566 3567 3568 3569 3570

		ret = copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)
				     (uintptr_t) args->cliprects_ptr,
				     sizeof(*cliprects) * args->num_cliprects);
		if (ret != 0) {
			DRM_ERROR("copy %d cliprects failed: %d\n",
				  args->num_cliprects, ret);
3571
			ret = -EFAULT;
3572 3573 3574 3575
			goto pre_mutex_err;
		}
	}

3576 3577 3578 3579 3580
	ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
					    &relocs);
	if (ret != 0)
		goto pre_mutex_err;

3581 3582 3583 3584
	mutex_lock(&dev->struct_mutex);

	i915_verify_inactive(dev, __FILE__, __LINE__);

3585
	if (atomic_read(&dev_priv->mm.wedged)) {
3586
		mutex_unlock(&dev->struct_mutex);
3587 3588
		ret = -EIO;
		goto pre_mutex_err;
3589 3590 3591 3592
	}

	if (dev_priv->mm.suspended) {
		mutex_unlock(&dev->struct_mutex);
3593 3594
		ret = -EBUSY;
		goto pre_mutex_err;
3595 3596
	}

3597
	/* Look up object handles */
3598
	flips = 0;
3599 3600 3601 3602 3603 3604
	for (i = 0; i < args->buffer_count; i++) {
		object_list[i] = drm_gem_object_lookup(dev, file_priv,
						       exec_list[i].handle);
		if (object_list[i] == NULL) {
			DRM_ERROR("Invalid object handle %d at index %d\n",
				   exec_list[i].handle, i);
3605 3606
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3607
			ret = -ENOENT;
3608 3609
			goto err;
		}
3610

3611
		obj_priv = to_intel_bo(object_list[i]);
3612 3613 3614
		if (obj_priv->in_execbuffer) {
			DRM_ERROR("Object %p appears more than once in object list\n",
				   object_list[i]);
3615 3616
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3617
			ret = -EINVAL;
3618 3619 3620
			goto err;
		}
		obj_priv->in_execbuffer = true;
3621 3622 3623 3624 3625 3626 3627 3628
		flips += atomic_read(&obj_priv->pending_flip);
	}

	if (flips > 0) {
		ret = i915_gem_wait_for_pending_flip(dev, object_list,
						     args->buffer_count);
		if (ret)
			goto err;
3629
	}
3630

3631 3632 3633
	/* Pin and relocate */
	for (pin_tries = 0; ; pin_tries++) {
		ret = 0;
3634 3635
		reloc_index = 0;

3636 3637 3638 3639 3640
		for (i = 0; i < args->buffer_count; i++) {
			object_list[i]->pending_read_domains = 0;
			object_list[i]->pending_write_domain = 0;
			ret = i915_gem_object_pin_and_relocate(object_list[i],
							       file_priv,
3641 3642
							       &exec_list[i],
							       &relocs[reloc_index]);
3643 3644 3645
			if (ret)
				break;
			pinned = i + 1;
3646
			reloc_index += exec_list[i].relocation_count;
3647 3648 3649 3650 3651 3652
		}
		/* success */
		if (ret == 0)
			break;

		/* error other than GTT full, or we've already tried again */
C
Chris Wilson 已提交
3653
		if (ret != -ENOSPC || pin_tries >= 1) {
3654 3655
			if (ret != -ERESTARTSYS) {
				unsigned long long total_size = 0;
3656 3657
				int num_fences = 0;
				for (i = 0; i < args->buffer_count; i++) {
3658
					obj_priv = to_intel_bo(object_list[i]);
3659

3660
					total_size += object_list[i]->size;
3661 3662 3663 3664 3665
					num_fences +=
						exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
						obj_priv->tiling_mode != I915_TILING_NONE;
				}
				DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
3666
					  pinned+1, args->buffer_count,
3667 3668
					  total_size, num_fences,
					  ret);
3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
				DRM_ERROR("%d objects [%d pinned], "
					  "%d object bytes [%d pinned], "
					  "%d/%d gtt bytes\n",
					  atomic_read(&dev->object_count),
					  atomic_read(&dev->pin_count),
					  atomic_read(&dev->object_memory),
					  atomic_read(&dev->pin_memory),
					  atomic_read(&dev->gtt_memory),
					  dev->gtt_total);
			}
3679 3680
			goto err;
		}
3681 3682 3683 3684

		/* unpin all of our buffers */
		for (i = 0; i < pinned; i++)
			i915_gem_object_unpin(object_list[i]);
3685
		pinned = 0;
3686 3687 3688

		/* evict everyone we can from the aperture */
		ret = i915_gem_evict_everything(dev);
3689
		if (ret && ret != -ENOSPC)
3690
			goto err;
3691 3692 3693 3694
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
	batch_obj = object_list[args->buffer_count-1];
3695 3696 3697 3698 3699 3700
	if (batch_obj->pending_write_domain) {
		DRM_ERROR("Attempting to use self-modifying batch buffer\n");
		ret = -EINVAL;
		goto err;
	}
	batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3701

3702 3703 3704 3705 3706 3707 3708 3709
	/* Sanity check the batch buffer, prior to moving objects */
	exec_offset = exec_list[args->buffer_count - 1].offset;
	ret = i915_gem_check_execbuffer (args, exec_offset);
	if (ret != 0) {
		DRM_ERROR("execbuf with invalid offset/length\n");
		goto err;
	}

3710 3711
	i915_verify_inactive(dev, __FILE__, __LINE__);

3712 3713 3714 3715 3716 3717 3718
	/* Zero the global flush/invalidate flags. These
	 * will be modified as new domains are computed
	 * for each object
	 */
	dev->invalidate_domains = 0;
	dev->flush_domains = 0;

3719 3720 3721
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];

3722
		/* Compute new gpu domains and update invalidate/flush */
3723
		i915_gem_object_set_to_gpu_domain(obj);
3724 3725 3726 3727
	}

	i915_verify_inactive(dev, __FILE__, __LINE__);

3728 3729 3730 3731 3732 3733 3734 3735 3736 3737
	if (dev->invalidate_domains | dev->flush_domains) {
#if WATCH_EXEC
		DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
			  __func__,
			 dev->invalidate_domains,
			 dev->flush_domains);
#endif
		i915_gem_flush(dev,
			       dev->invalidate_domains,
			       dev->flush_domains);
3738 3739 3740
	}

	if (dev_priv->render_ring.outstanding_lazy_request) {
3741
		(void)i915_add_request(dev, file_priv, &dev_priv->render_ring);
3742 3743 3744
		dev_priv->render_ring.outstanding_lazy_request = false;
	}
	if (dev_priv->bsd_ring.outstanding_lazy_request) {
3745
		(void)i915_add_request(dev, file_priv, &dev_priv->bsd_ring);
3746
		dev_priv->bsd_ring.outstanding_lazy_request = false;
3747
	}
3748

3749 3750
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];
3751
		struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3752
		uint32_t old_write_domain = obj->write_domain;
3753 3754

		obj->write_domain = obj->pending_write_domain;
3755 3756 3757 3758 3759 3760
		if (obj->write_domain)
			list_move_tail(&obj_priv->gpu_write_list,
				       &dev_priv->mm.gpu_write_list);
		else
			list_del_init(&obj_priv->gpu_write_list);

C
Chris Wilson 已提交
3761 3762 3763
		trace_i915_gem_object_change_domain(obj,
						    obj->read_domains,
						    old_write_domain);
3764 3765
	}

3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
	i915_verify_inactive(dev, __FILE__, __LINE__);

#if WATCH_COHERENCY
	for (i = 0; i < args->buffer_count; i++) {
		i915_gem_object_check_coherency(object_list[i],
						exec_list[i].handle);
	}
#endif

#if WATCH_EXEC
3776
	i915_gem_dump_object(batch_obj,
3777 3778 3779 3780 3781 3782
			      args->batch_len,
			      __func__,
			      ~0);
#endif

	/* Exec the batchbuffer */
3783 3784
	ret = ring->dispatch_gem_execbuffer(dev, ring, args,
			cliprects, exec_offset);
3785 3786 3787 3788 3789 3790 3791 3792 3793
	if (ret) {
		DRM_ERROR("dispatch failed %d\n", ret);
		goto err;
	}

	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires
	 */
3794
	i915_retire_commands(dev, ring);
3795 3796 3797

	i915_verify_inactive(dev, __FILE__, __LINE__);

3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];
		obj_priv = to_intel_bo(obj);

		i915_gem_object_move_to_active(obj, ring);
#if WATCH_LRU
		DRM_INFO("%s: move to exec list %p\n", __func__, obj);
#endif
	}

3808 3809 3810 3811 3812 3813 3814
	/*
	 * Get a seqno representing the execution of the current buffer,
	 * which we can wait on.  We would like to mitigate these interrupts,
	 * likely by only creating seqnos occasionally (so that we have
	 * *some* interrupts representing completion of buffers that we can
	 * wait on when trying to clear up gtt space).
	 */
3815
	seqno = i915_add_request(dev, file_priv, ring);
3816 3817 3818 3819 3820 3821 3822 3823

#if WATCH_LRU
	i915_dump_lru(dev, __func__);
#endif

	i915_verify_inactive(dev, __FILE__, __LINE__);

err:
3824 3825 3826
	for (i = 0; i < pinned; i++)
		i915_gem_object_unpin(object_list[i]);

3827 3828
	for (i = 0; i < args->buffer_count; i++) {
		if (object_list[i]) {
3829
			obj_priv = to_intel_bo(object_list[i]);
3830 3831
			obj_priv->in_execbuffer = false;
		}
3832
		drm_gem_object_unreference(object_list[i]);
3833
	}
3834 3835 3836

	mutex_unlock(&dev->struct_mutex);

3837
pre_mutex_err:
3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851
	/* Copy the updated relocations out regardless of current error
	 * state.  Failure to update the relocs would mean that the next
	 * time userland calls execbuf, it would do so with presumed offset
	 * state that didn't match the actual object state.
	 */
	ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
					   relocs);
	if (ret2 != 0) {
		DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);

		if (ret == 0)
			ret = ret2;
	}

3852
	drm_free_large(object_list);
3853
	kfree(cliprects);
3854 3855 3856 3857

	return ret;
}

J
Jesse Barnes 已提交
3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret, i;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	/* Copy in the exec list from userland */
	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec_list == NULL || exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -ENOMEM;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
		if (!IS_I965G(dev))
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
3924
	exec2.flags = I915_EXEC_RENDER;
J
Jesse Barnes 已提交
3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002

	ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		for (i = 0; i < args->buffer_count; i++)
			exec_list[i].offset = exec2_list[i].offset;
		/* ... and back out to userspace */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec_list);
	drm_free_large(exec2_list);
	return ret;
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer2 *args = data;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		return -ENOMEM;
	}
	ret = copy_from_user(exec2_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec2_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec2_list,
				   sizeof(*exec2_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec2_list);
	return ret;
}

4003 4004 4005 4006
int
i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
{
	struct drm_device *dev = obj->dev;
4007
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4008 4009
	int ret;

4010 4011
	BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);

4012
	i915_verify_inactive(dev, __FILE__, __LINE__);
4013 4014 4015 4016 4017

	if (obj_priv->gtt_space != NULL) {
		if (alignment == 0)
			alignment = i915_gem_get_gtt_alignment(obj);
		if (obj_priv->gtt_offset & (alignment - 1)) {
4018 4019 4020 4021
			WARN(obj_priv->pin_count,
			     "bo is already pinned with incorrect alignment:"
			     " offset=%x, req.alignment=%x\n",
			     obj_priv->gtt_offset, alignment);
4022 4023 4024 4025 4026 4027
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

4028 4029
	if (obj_priv->gtt_space == NULL) {
		ret = i915_gem_object_bind_to_gtt(obj, alignment);
4030
		if (ret)
4031
			return ret;
4032
	}
J
Jesse Barnes 已提交
4033

4034 4035 4036 4037 4038 4039 4040 4041 4042
	obj_priv->pin_count++;

	/* If the object is not active and not pending a flush,
	 * remove it from the inactive list
	 */
	if (obj_priv->pin_count == 1) {
		atomic_inc(&dev->pin_count);
		atomic_add(obj->size, &dev->pin_memory);
		if (!obj_priv->active &&
4043
		    (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
			list_del_init(&obj_priv->list);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);

	return 0;
}

void
i915_gem_object_unpin(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
4056
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068

	i915_verify_inactive(dev, __FILE__, __LINE__);
	obj_priv->pin_count--;
	BUG_ON(obj_priv->pin_count < 0);
	BUG_ON(obj_priv->gtt_space == NULL);

	/* If the object is no longer pinned, and is
	 * neither active nor being flushed, then stick it on
	 * the inactive list
	 */
	if (obj_priv->pin_count == 0) {
		if (!obj_priv->active &&
4069
		    (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093
			list_move_tail(&obj_priv->list,
				       &dev_priv->mm.inactive_list);
		atomic_dec(&dev->pin_count);
		atomic_sub(obj->size, &dev->pin_memory);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	mutex_lock(&dev->struct_mutex);

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
		mutex_unlock(&dev->struct_mutex);
4094
		return -ENOENT;
4095
	}
4096
	obj_priv = to_intel_bo(obj);
4097

C
Chris Wilson 已提交
4098 4099
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
4100 4101 4102 4103 4104
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}

J
Jesse Barnes 已提交
4105 4106 4107
	if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4108
		drm_gem_object_unreference(obj);
4109
		mutex_unlock(&dev->struct_mutex);
J
Jesse Barnes 已提交
4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121
		return -EINVAL;
	}

	obj_priv->user_pin_count++;
	obj_priv->pin_filp = file_priv;
	if (obj_priv->user_pin_count == 1) {
		ret = i915_gem_object_pin(obj, args->alignment);
		if (ret != 0) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
4122 4123 4124 4125 4126
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
4127
	i915_gem_object_flush_cpu_write_domain(obj);
4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
	args->offset = obj_priv->gtt_offset;
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
J
Jesse Barnes 已提交
4141
	struct drm_i915_gem_object *obj_priv;
4142 4143 4144 4145 4146 4147 4148 4149

	mutex_lock(&dev->struct_mutex);

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
			  args->handle);
		mutex_unlock(&dev->struct_mutex);
4150
		return -ENOENT;
4151 4152
	}

4153
	obj_priv = to_intel_bo(obj);
J
Jesse Barnes 已提交
4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165
	if (obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}
	obj_priv->user_pin_count--;
	if (obj_priv->user_pin_count == 0) {
		obj_priv->pin_filp = NULL;
		i915_gem_object_unpin(obj);
	}
4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return 0;
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_busy *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
			  args->handle);
4184
		return -ENOENT;
4185 4186
	}

4187
	mutex_lock(&dev->struct_mutex);
4188

4189 4190 4191 4192
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4193
	 */
4194 4195 4196 4197 4198 4199 4200 4201 4202 4203
	obj_priv = to_intel_bo(obj);
	args->busy = obj_priv->active;
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
		if (obj->write_domain) {
			i915_gem_flush(dev, 0, obj->write_domain);
4204
			(void)i915_add_request(dev, file_priv, obj_priv->ring);
4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215
		}

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
		i915_gem_retire_requests_ring(dev, obj_priv->ring);

		args->busy = obj_priv->active;
	}
4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return 0;
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
    return i915_gem_ring_throttle(dev, file_priv);
}

4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
			  args->handle);
4249
		return -ENOENT;
4250 4251 4252
	}

	mutex_lock(&dev->struct_mutex);
4253
	obj_priv = to_intel_bo(obj);
4254 4255 4256 4257 4258 4259 4260 4261 4262

	if (obj_priv->pin_count) {
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);

		DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
		return -EINVAL;
	}

C
Chris Wilson 已提交
4263 4264
	if (obj_priv->madv != __I915_MADV_PURGED)
		obj_priv->madv = args->madv;
4265

4266 4267 4268 4269 4270
	/* if the object is no longer bound, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj_priv) &&
	    obj_priv->gtt_space == NULL)
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4271 4272
	args->retained = obj_priv->madv != __I915_MADV_PURGED;

4273 4274 4275 4276 4277 4278
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

4279 4280 4281
struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
					      size_t size)
{
4282
	struct drm_i915_gem_object *obj;
4283

4284 4285 4286
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
4287

4288 4289 4290 4291
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
4292

4293 4294
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4295

4296
	obj->agp_type = AGP_USER_MEMORY;
4297
	obj->base.driver_private = NULL;
4298 4299 4300 4301
	obj->fence_reg = I915_FENCE_REG_NONE;
	INIT_LIST_HEAD(&obj->list);
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
4302

4303 4304 4305 4306 4307 4308 4309 4310
	trace_i915_gem_object_create(&obj->base);

	return &obj->base;
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
4311

4312 4313 4314
	return 0;
}

4315
static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4316
{
4317
	struct drm_device *dev = obj->dev;
4318
	drm_i915_private_t *dev_priv = dev->dev_private;
4319
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4320
	int ret;
4321

4322 4323 4324 4325 4326 4327
	ret = i915_gem_object_unbind(obj);
	if (ret == -ERESTARTSYS) {
		list_move(&obj_priv->list,
			  &dev_priv->mm.deferred_free_list);
		return;
	}
4328

4329 4330
	if (obj_priv->mmap_offset)
		i915_gem_free_mmap_offset(obj);
4331

4332 4333
	drm_gem_object_release(obj);

4334
	kfree(obj_priv->page_cpu_valid);
4335
	kfree(obj_priv->bit_17);
4336
	kfree(obj_priv);
4337 4338
}

4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354
void i915_gem_free_object(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);

	trace_i915_gem_object_destroy(obj);

	while (obj_priv->pin_count > 0)
		i915_gem_object_unpin(obj);

	if (obj_priv->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

	i915_gem_free_object_tail(obj);
}

4355 4356 4357 4358 4359
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4360

4361
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
4362

4363
	if (dev_priv->mm.suspended ||
4364 4365 4366
			(dev_priv->render_ring.gem_object == NULL) ||
			(HAS_BSD(dev) &&
			 dev_priv->bsd_ring.gem_object == NULL)) {
4367 4368
		mutex_unlock(&dev->struct_mutex);
		return 0;
4369 4370
	}

4371
	ret = i915_gpu_idle(dev);
4372 4373
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
4374
		return ret;
4375
	}
4376

4377 4378
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4379
		ret = i915_gem_evict_inactive(dev);
4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
4391
	del_timer_sync(&dev_priv->hangcheck_timer);
4392 4393

	i915_kernel_lost_context(dev);
4394
	i915_gem_cleanup_ringbuffer(dev);
4395

4396 4397
	mutex_unlock(&dev->struct_mutex);

4398 4399 4400
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

4401 4402 4403
	return 0;
}

4404 4405 4406 4407
/*
 * 965+ support PIPE_CONTROL commands, which provide finer grained control
 * over cache flushing.
 */
4408
static int
4409 4410 4411 4412 4413 4414 4415
i915_gem_init_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

4416
	obj = i915_gem_alloc_object(dev, 4096);
4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate seqno page\n");
		ret = -ENOMEM;
		goto err;
	}
	obj_priv = to_intel_bo(obj);
	obj_priv->agp_type = AGP_USER_CACHED_MEMORY;

	ret = i915_gem_object_pin(obj, 4096);
	if (ret)
		goto err_unref;

	dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
	dev_priv->seqno_page =  kmap(obj_priv->pages[0]);
	if (dev_priv->seqno_page == NULL)
		goto err_unpin;

	dev_priv->seqno_obj = obj;
	memset(dev_priv->seqno_page, 0, PAGE_SIZE);

	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
err_unref:
	drm_gem_object_unreference(obj);
err:
	return ret;
}

4447 4448

static void
4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462
i915_gem_cleanup_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	obj = dev_priv->seqno_obj;
	obj_priv = to_intel_bo(obj);
	kunmap(obj_priv->pages[0]);
	i915_gem_object_unpin(obj);
	drm_gem_object_unreference(obj);
	dev_priv->seqno_obj = NULL;

	dev_priv->seqno_page = NULL;
4463 4464
}

4465 4466 4467 4468 4469
int
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4470

4471
	dev_priv->render_ring = render_ring;
4472

4473 4474 4475 4476 4477 4478
	if (!I915_NEED_GFX_HWS(dev)) {
		dev_priv->render_ring.status_page.page_addr
			= dev_priv->status_page_dmah->vaddr;
		memset(dev_priv->render_ring.status_page.page_addr,
				0, PAGE_SIZE);
	}
4479

4480 4481 4482 4483 4484
	if (HAS_PIPE_CONTROL(dev)) {
		ret = i915_gem_init_pipe_control(dev);
		if (ret)
			return ret;
	}
4485

4486
	ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
4487 4488 4489 4490
	if (ret)
		goto cleanup_pipe_control;

	if (HAS_BSD(dev)) {
4491 4492
		dev_priv->bsd_ring = bsd_ring;
		ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
4493 4494
		if (ret)
			goto cleanup_render_ring;
4495
	}
4496

4497 4498
	dev_priv->next_seqno = 1;

4499 4500 4501 4502 4503 4504 4505
	return 0;

cleanup_render_ring:
	intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
cleanup_pipe_control:
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
4506 4507 4508 4509 4510 4511 4512 4513 4514
	return ret;
}

void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4515 4516
	if (HAS_BSD(dev))
		intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4517 4518 4519 4520
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
}

4521 4522 4523 4524 4525 4526 4527
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;

J
Jesse Barnes 已提交
4528 4529 4530
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4531
	if (atomic_read(&dev_priv->mm.wedged)) {
4532
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4533
		atomic_set(&dev_priv->mm.wedged, 0);
4534 4535 4536
	}

	mutex_lock(&dev->struct_mutex);
4537 4538 4539
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
4540 4541
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
4542
		return ret;
4543
	}
4544

4545
	spin_lock(&dev_priv->mm.active_list_lock);
4546
	BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4547
	BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
4548 4549
	spin_unlock(&dev_priv->mm.active_list_lock);

4550 4551
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4552
	BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4553
	BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
4554
	mutex_unlock(&dev->struct_mutex);
4555

4556 4557 4558
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
4559

4560
	return 0;
4561 4562 4563 4564 4565 4566 4567 4568

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
4569 4570 4571 4572 4573 4574
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
4575 4576 4577
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4578
	drm_irq_uninstall(dev);
4579
	return i915_gem_idle(dev);
4580 4581 4582 4583 4584 4585 4586
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

4587 4588 4589
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

4590 4591 4592
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4593 4594 4595 4596 4597
}

void
i915_gem_load(struct drm_device *dev)
{
4598
	int i;
4599 4600
	drm_i915_private_t *dev_priv = dev->dev_private;

4601
	spin_lock_init(&dev_priv->mm.active_list_lock);
4602
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4603
	INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4604
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4605
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4606
	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4607 4608
	INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
	INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
4609 4610 4611 4612
	if (HAS_BSD(dev)) {
		INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
		INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
	}
4613 4614
	for (i = 0; i < 16; i++)
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4615 4616
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4617 4618 4619 4620
	spin_lock(&shrink_list_lock);
	list_add(&dev_priv->mm.shrink_list, &shrink_list);
	spin_unlock(&shrink_list_lock);

4621 4622 4623 4624 4625 4626 4627 4628 4629 4630
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
		u32 tmp = I915_READ(MI_ARB_STATE);
		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
			/* arb state is a masked write, so set bit + bit in mask */
			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
			I915_WRITE(MI_ARB_STATE, tmp);
		}
	}

4631
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4632 4633
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4634

4635
	if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4636 4637 4638 4639
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
	/* Initialize fence registers to zero */
	if (IS_I965G(dev)) {
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
	} else {
		for (i = 0; i < 8; i++)
			I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
			for (i = 0; i < 8; i++)
				I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
	}
4651
	i915_gem_detect_bit_6_swizzle(dev);
4652
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4653
}
4654 4655 4656 4657 4658 4659

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
int i915_gem_init_phys_object(struct drm_device *dev,
4660
			      int id, int size, int align)
4661 4662 4663 4664 4665 4666 4667 4668
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

4669
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4670 4671 4672 4673 4674
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

4675
	phys_obj->handle = drm_pci_alloc(dev, size, align);
4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
4688
	kfree(phys_obj);
4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716
	return ret;
}

void i915_gem_free_phys_object(struct drm_device *dev, int id)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

4717
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
				 struct drm_gem_object *obj)
{
	struct drm_i915_gem_object *obj_priv;
	int i;
	int ret;
	int page_count;

4729
	obj_priv = to_intel_bo(obj);
4730 4731 4732
	if (!obj_priv->phys_obj)
		return;

4733
	ret = i915_gem_object_get_pages(obj, 0);
4734 4735 4736 4737 4738 4739
	if (ret)
		goto out;

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4740
		char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4741 4742 4743 4744 4745
		char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(dst, KM_USER0);
	}
4746
	drm_clflush_pages(obj_priv->pages, page_count);
4747
	drm_agp_chipset_flush(dev);
4748 4749

	i915_gem_object_put_pages(obj);
4750 4751 4752 4753 4754 4755 4756
out:
	obj_priv->phys_obj->cur_obj = NULL;
	obj_priv->phys_obj = NULL;
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
4757 4758 4759
			    struct drm_gem_object *obj,
			    int id,
			    int align)
4760 4761 4762 4763 4764 4765 4766 4767 4768 4769
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

4770
	obj_priv = to_intel_bo(obj);
4771 4772 4773 4774 4775 4776 4777 4778 4779 4780

	if (obj_priv->phys_obj) {
		if (obj_priv->phys_obj->id == id)
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
4781
						obj->size, align);
4782
		if (ret) {
4783
			DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4784 4785 4786 4787 4788 4789 4790 4791
			goto out;
		}
	}

	/* bind to the object */
	obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj_priv->phys_obj->cur_obj = obj;

4792
	ret = i915_gem_object_get_pages(obj, 0);
4793 4794 4795 4796 4797 4798 4799 4800
	if (ret) {
		DRM_ERROR("failed to get page list\n");
		goto out;
	}

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4801
		char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4802 4803 4804 4805 4806 4807
		char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(src, KM_USER0);
	}

4808 4809
	i915_gem_object_put_pages(obj);

4810 4811 4812 4813 4814 4815 4816 4817 4818 4819
	return 0;
out:
	return ret;
}

static int
i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4820
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4821 4822 4823 4824 4825 4826 4827
	void *obj_addr;
	int ret;
	char __user *user_data;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;

4828
	DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4829 4830 4831 4832 4833 4834 4835
	ret = copy_from_user(obj_addr, user_data, args->size);
	if (ret)
		return -EFAULT;

	drm_agp_chipset_flush(dev);
	return 0;
}
4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849

void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
{
	struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
	mutex_lock(&dev->struct_mutex);
	while (!list_empty(&i915_file_priv->mm.request_list))
		list_del_init(i915_file_priv->mm.request_list.next);
	mutex_unlock(&dev->struct_mutex);
}
4850

4851 4852 4853 4854 4855 4856 4857 4858
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	spin_lock(&dev_priv->mm.active_list_lock);
	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4859
		      list_empty(&dev_priv->render_ring.active_list);
4860 4861
	if (HAS_BSD(dev))
		lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
4862 4863 4864 4865 4866
	spin_unlock(&dev_priv->mm.active_list_lock);

	return !lists_empty;
}

4867
static int
4868
i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895
{
	drm_i915_private_t *dev_priv, *next_dev;
	struct drm_i915_gem_object *obj_priv, *next_obj;
	int cnt = 0;
	int would_deadlock = 1;

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
		spin_lock(&shrink_list_lock);
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (mutex_trylock(&dev->struct_mutex)) {
				list_for_each_entry(obj_priv,
						    &dev_priv->mm.inactive_list,
						    list)
					cnt++;
				mutex_unlock(&dev->struct_mutex);
			}
		}
		spin_unlock(&shrink_list_lock);

		return (cnt / 100) * sysctl_vfs_cache_pressure;
	}

	spin_lock(&shrink_list_lock);

4896
rescan:
4897 4898 4899 4900 4901 4902 4903 4904 4905
	/* first scan for clean buffers */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);
4906
		i915_gem_retire_requests(dev);
4907 4908 4909 4910 4911

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (i915_gem_object_is_purgeable(obj_priv)) {
4912
				i915_gem_object_unbind(&obj_priv->base);
4913 4914 4915 4916 4917 4918 4919 4920
				if (--nr_to_scan <= 0)
					break;
			}
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

4921 4922
		would_deadlock = 0;

4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940
		if (nr_to_scan <= 0)
			break;
	}

	/* second pass, evict/count anything still on the inactive list */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (nr_to_scan > 0) {
4941
				i915_gem_object_unbind(&obj_priv->base);
4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952
				nr_to_scan--;
			} else
				cnt++;
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

		would_deadlock = 0;
	}

4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982
	if (nr_to_scan) {
		int active = 0;

		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (!mutex_trylock(&dev->struct_mutex))
				continue;

			spin_unlock(&shrink_list_lock);

			if (i915_gpu_is_active(dev)) {
				i915_gpu_idle(dev);
				active++;
			}

			spin_lock(&shrink_list_lock);
			mutex_unlock(&dev->struct_mutex);
		}

		if (active)
			goto rescan;
	}

4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008
	spin_unlock(&shrink_list_lock);

	if (would_deadlock)
		return -1;
	else if (cnt > 0)
		return (cnt / 100) * sysctl_vfs_cache_pressure;
	else
		return 0;
}

static struct shrinker shrinker = {
	.shrink = i915_gem_shrink,
	.seeks = DEFAULT_SEEKS,
};

__init void
i915_gem_shrinker_init(void)
{
    register_shrinker(&shrinker);
}

__exit void
i915_gem_shrinker_exit(void)
{
    unregister_shrinker(&shrinker);
}