spi.c 86.7 KB
Newer Older
1
/*
G
Grant Likely 已提交
2
 * SPI init/core code
3 4
 *
 * Copyright (C) 2005 David Brownell
5
 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/init.h>
#include <linux/cache.h>
22 23
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
24
#include <linux/mutex.h>
25
#include <linux/of_device.h>
26
#include <linux/of_irq.h>
27
#include <linux/clk/clk-conf.h>
28
#include <linux/slab.h>
29
#include <linux/mod_devicetable.h>
30
#include <linux/spi/spi.h>
31
#include <linux/of_gpio.h>
M
Mark Brown 已提交
32
#include <linux/pm_runtime.h>
33
#include <linux/pm_domain.h>
34
#include <linux/export.h>
35
#include <linux/sched/rt.h>
36 37
#include <linux/delay.h>
#include <linux/kthread.h>
38 39
#include <linux/ioport.h>
#include <linux/acpi.h>
40

41 42 43
#define CREATE_TRACE_POINTS
#include <trace/events/spi.h>

44 45
static void spidev_release(struct device *dev)
{
46
	struct spi_device	*spi = to_spi_device(dev);
47 48 49 50 51

	/* spi masters may cleanup for released devices */
	if (spi->master->cleanup)
		spi->master->cleanup(spi);

D
David Brownell 已提交
52
	spi_master_put(spi->master);
53
	kfree(spi);
54 55 56 57 58 59
}

static ssize_t
modalias_show(struct device *dev, struct device_attribute *a, char *buf)
{
	const struct spi_device	*spi = to_spi_device(dev);
60 61 62 63 64
	int len;

	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
	if (len != -ENODEV)
		return len;
65

66
	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
67
}
68
static DEVICE_ATTR_RO(modalias);
69

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
#define SPI_STATISTICS_ATTRS(field, file)				\
static ssize_t spi_master_##field##_show(struct device *dev,		\
					 struct device_attribute *attr,	\
					 char *buf)			\
{									\
	struct spi_master *master = container_of(dev,			\
						 struct spi_master, dev); \
	return spi_statistics_##field##_show(&master->statistics, buf);	\
}									\
static struct device_attribute dev_attr_spi_master_##field = {		\
	.attr = { .name = file, .mode = S_IRUGO },			\
	.show = spi_master_##field##_show,				\
};									\
static ssize_t spi_device_##field##_show(struct device *dev,		\
					 struct device_attribute *attr,	\
					char *buf)			\
{									\
G
Geliang Tang 已提交
87
	struct spi_device *spi = to_spi_device(dev);			\
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
	return spi_statistics_##field##_show(&spi->statistics, buf);	\
}									\
static struct device_attribute dev_attr_spi_device_##field = {		\
	.attr = { .name = file, .mode = S_IRUGO },			\
	.show = spi_device_##field##_show,				\
}

#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
					    char *buf)			\
{									\
	unsigned long flags;						\
	ssize_t len;							\
	spin_lock_irqsave(&stat->lock, flags);				\
	len = sprintf(buf, format_string, stat->field);			\
	spin_unlock_irqrestore(&stat->lock, flags);			\
	return len;							\
}									\
SPI_STATISTICS_ATTRS(name, file)

#define SPI_STATISTICS_SHOW(field, format_string)			\
	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
				 field, format_string)

SPI_STATISTICS_SHOW(messages, "%lu");
SPI_STATISTICS_SHOW(transfers, "%lu");
SPI_STATISTICS_SHOW(errors, "%lu");
SPI_STATISTICS_SHOW(timedout, "%lu");

SPI_STATISTICS_SHOW(spi_sync, "%lu");
SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
SPI_STATISTICS_SHOW(spi_async, "%lu");

SPI_STATISTICS_SHOW(bytes, "%llu");
SPI_STATISTICS_SHOW(bytes_rx, "%llu");
SPI_STATISTICS_SHOW(bytes_tx, "%llu");

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
				 "transfer_bytes_histo_" number,	\
				 transfer_bytes_histo[index],  "%lu")
SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");

147 148
SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");

149 150 151
static struct attribute *spi_dev_attrs[] = {
	&dev_attr_modalias.attr,
	NULL,
152
};
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168

static const struct attribute_group spi_dev_group = {
	.attrs  = spi_dev_attrs,
};

static struct attribute *spi_device_statistics_attrs[] = {
	&dev_attr_spi_device_messages.attr,
	&dev_attr_spi_device_transfers.attr,
	&dev_attr_spi_device_errors.attr,
	&dev_attr_spi_device_timedout.attr,
	&dev_attr_spi_device_spi_sync.attr,
	&dev_attr_spi_device_spi_sync_immediate.attr,
	&dev_attr_spi_device_spi_async.attr,
	&dev_attr_spi_device_bytes.attr,
	&dev_attr_spi_device_bytes_rx.attr,
	&dev_attr_spi_device_bytes_tx.attr,
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
	&dev_attr_spi_device_transfer_bytes_histo0.attr,
	&dev_attr_spi_device_transfer_bytes_histo1.attr,
	&dev_attr_spi_device_transfer_bytes_histo2.attr,
	&dev_attr_spi_device_transfer_bytes_histo3.attr,
	&dev_attr_spi_device_transfer_bytes_histo4.attr,
	&dev_attr_spi_device_transfer_bytes_histo5.attr,
	&dev_attr_spi_device_transfer_bytes_histo6.attr,
	&dev_attr_spi_device_transfer_bytes_histo7.attr,
	&dev_attr_spi_device_transfer_bytes_histo8.attr,
	&dev_attr_spi_device_transfer_bytes_histo9.attr,
	&dev_attr_spi_device_transfer_bytes_histo10.attr,
	&dev_attr_spi_device_transfer_bytes_histo11.attr,
	&dev_attr_spi_device_transfer_bytes_histo12.attr,
	&dev_attr_spi_device_transfer_bytes_histo13.attr,
	&dev_attr_spi_device_transfer_bytes_histo14.attr,
	&dev_attr_spi_device_transfer_bytes_histo15.attr,
	&dev_attr_spi_device_transfer_bytes_histo16.attr,
186
	&dev_attr_spi_device_transfers_split_maxsize.attr,
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
	NULL,
};

static const struct attribute_group spi_device_statistics_group = {
	.name  = "statistics",
	.attrs  = spi_device_statistics_attrs,
};

static const struct attribute_group *spi_dev_groups[] = {
	&spi_dev_group,
	&spi_device_statistics_group,
	NULL,
};

static struct attribute *spi_master_statistics_attrs[] = {
	&dev_attr_spi_master_messages.attr,
	&dev_attr_spi_master_transfers.attr,
	&dev_attr_spi_master_errors.attr,
	&dev_attr_spi_master_timedout.attr,
	&dev_attr_spi_master_spi_sync.attr,
	&dev_attr_spi_master_spi_sync_immediate.attr,
	&dev_attr_spi_master_spi_async.attr,
	&dev_attr_spi_master_bytes.attr,
	&dev_attr_spi_master_bytes_rx.attr,
	&dev_attr_spi_master_bytes_tx.attr,
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
	&dev_attr_spi_master_transfer_bytes_histo0.attr,
	&dev_attr_spi_master_transfer_bytes_histo1.attr,
	&dev_attr_spi_master_transfer_bytes_histo2.attr,
	&dev_attr_spi_master_transfer_bytes_histo3.attr,
	&dev_attr_spi_master_transfer_bytes_histo4.attr,
	&dev_attr_spi_master_transfer_bytes_histo5.attr,
	&dev_attr_spi_master_transfer_bytes_histo6.attr,
	&dev_attr_spi_master_transfer_bytes_histo7.attr,
	&dev_attr_spi_master_transfer_bytes_histo8.attr,
	&dev_attr_spi_master_transfer_bytes_histo9.attr,
	&dev_attr_spi_master_transfer_bytes_histo10.attr,
	&dev_attr_spi_master_transfer_bytes_histo11.attr,
	&dev_attr_spi_master_transfer_bytes_histo12.attr,
	&dev_attr_spi_master_transfer_bytes_histo13.attr,
	&dev_attr_spi_master_transfer_bytes_histo14.attr,
	&dev_attr_spi_master_transfer_bytes_histo15.attr,
	&dev_attr_spi_master_transfer_bytes_histo16.attr,
229
	&dev_attr_spi_master_transfers_split_maxsize.attr,
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
	NULL,
};

static const struct attribute_group spi_master_statistics_group = {
	.name  = "statistics",
	.attrs  = spi_master_statistics_attrs,
};

static const struct attribute_group *spi_master_groups[] = {
	&spi_master_statistics_group,
	NULL,
};

void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
				       struct spi_transfer *xfer,
				       struct spi_master *master)
{
	unsigned long flags;
248 249 250 251
	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;

	if (l2len < 0)
		l2len = 0;
252 253 254 255

	spin_lock_irqsave(&stats->lock, flags);

	stats->transfers++;
256
	stats->transfer_bytes_histo[l2len]++;
257 258 259 260 261 262 263 264 265 266 267 268

	stats->bytes += xfer->len;
	if ((xfer->tx_buf) &&
	    (xfer->tx_buf != master->dummy_tx))
		stats->bytes_tx += xfer->len;
	if ((xfer->rx_buf) &&
	    (xfer->rx_buf != master->dummy_rx))
		stats->bytes_rx += xfer->len;

	spin_unlock_irqrestore(&stats->lock, flags);
}
EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
269 270 271 272 273

/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 * and the sysfs version makes coldplug work too.
 */

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
						const struct spi_device *sdev)
{
	while (id->name[0]) {
		if (!strcmp(sdev->modalias, id->name))
			return id;
		id++;
	}
	return NULL;
}

const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
{
	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);

	return spi_match_id(sdrv->id_table, sdev);
}
EXPORT_SYMBOL_GPL(spi_get_device_id);

293 294 295
static int spi_match_device(struct device *dev, struct device_driver *drv)
{
	const struct spi_device	*spi = to_spi_device(dev);
296 297
	const struct spi_driver	*sdrv = to_spi_driver(drv);

298 299 300 301
	/* Attempt an OF style match */
	if (of_driver_match_device(dev, drv))
		return 1;

302 303 304 305
	/* Then try ACPI */
	if (acpi_driver_match_device(dev, drv))
		return 1;

306 307
	if (sdrv->id_table)
		return !!spi_match_id(sdrv->id_table, spi);
308

309
	return strcmp(spi->modalias, drv->name) == 0;
310 311
}

312
static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
313 314
{
	const struct spi_device		*spi = to_spi_device(dev);
315 316 317 318 319
	int rc;

	rc = acpi_device_uevent_modalias(dev, env);
	if (rc != -ENODEV)
		return rc;
320

321
	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
322 323 324 325 326
	return 0;
}

struct bus_type spi_bus_type = {
	.name		= "spi",
327
	.dev_groups	= spi_dev_groups,
328 329 330 331 332
	.match		= spi_match_device,
	.uevent		= spi_uevent,
};
EXPORT_SYMBOL_GPL(spi_bus_type);

333 334 335 336

static int spi_drv_probe(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
337
	struct spi_device		*spi = to_spi_device(dev);
338 339
	int ret;

340 341 342 343
	ret = of_clk_set_defaults(dev->of_node, false);
	if (ret)
		return ret;

344 345 346 347 348 349 350 351
	if (dev->of_node) {
		spi->irq = of_irq_get(dev->of_node, 0);
		if (spi->irq == -EPROBE_DEFER)
			return -EPROBE_DEFER;
		if (spi->irq < 0)
			spi->irq = 0;
	}

352 353
	ret = dev_pm_domain_attach(dev, true);
	if (ret != -EPROBE_DEFER) {
354
		ret = sdrv->probe(spi);
355 356 357
		if (ret)
			dev_pm_domain_detach(dev, true);
	}
358

359
	return ret;
360 361 362 363 364
}

static int spi_drv_remove(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
365 366
	int ret;

367
	ret = sdrv->remove(to_spi_device(dev));
368
	dev_pm_domain_detach(dev, true);
369

370
	return ret;
371 372 373 374 375 376 377 378 379
}

static void spi_drv_shutdown(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);

	sdrv->shutdown(to_spi_device(dev));
}

D
David Brownell 已提交
380
/**
381
 * __spi_register_driver - register a SPI driver
382
 * @owner: owner module of the driver to register
D
David Brownell 已提交
383 384
 * @sdrv: the driver to register
 * Context: can sleep
385 386
 *
 * Return: zero on success, else a negative error code.
D
David Brownell 已提交
387
 */
388
int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
389
{
390
	sdrv->driver.owner = owner;
391 392 393 394 395 396 397 398 399
	sdrv->driver.bus = &spi_bus_type;
	if (sdrv->probe)
		sdrv->driver.probe = spi_drv_probe;
	if (sdrv->remove)
		sdrv->driver.remove = spi_drv_remove;
	if (sdrv->shutdown)
		sdrv->driver.shutdown = spi_drv_shutdown;
	return driver_register(&sdrv->driver);
}
400
EXPORT_SYMBOL_GPL(__spi_register_driver);
401

402 403 404 405 406 407 408 409 410 411
/*-------------------------------------------------------------------------*/

/* SPI devices should normally not be created by SPI device drivers; that
 * would make them board-specific.  Similarly with SPI master drivers.
 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 * with other readonly (flashable) information about mainboard devices.
 */

struct boardinfo {
	struct list_head	list;
412
	struct spi_board_info	board_info;
413 414 415
};

static LIST_HEAD(board_list);
416 417 418 419 420 421
static LIST_HEAD(spi_master_list);

/*
 * Used to protect add/del opertion for board_info list and
 * spi_master list, and their matching process
 */
422
static DEFINE_MUTEX(board_lock);
423

424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
/**
 * spi_alloc_device - Allocate a new SPI device
 * @master: Controller to which device is connected
 * Context: can sleep
 *
 * Allows a driver to allocate and initialize a spi_device without
 * registering it immediately.  This allows a driver to directly
 * fill the spi_device with device parameters before calling
 * spi_add_device() on it.
 *
 * Caller is responsible to call spi_add_device() on the returned
 * spi_device structure to add it to the SPI master.  If the caller
 * needs to discard the spi_device without adding it, then it should
 * call spi_dev_put() on it.
 *
439
 * Return: a pointer to the new device, or NULL.
440 441 442 443 444 445 446 447
 */
struct spi_device *spi_alloc_device(struct spi_master *master)
{
	struct spi_device	*spi;

	if (!spi_master_get(master))
		return NULL;

J
Jingoo Han 已提交
448
	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
449 450 451 452 453 454
	if (!spi) {
		spi_master_put(master);
		return NULL;
	}

	spi->master = master;
455
	spi->dev.parent = &master->dev;
456 457
	spi->dev.bus = &spi_bus_type;
	spi->dev.release = spidev_release;
458
	spi->cs_gpio = -ENOENT;
459 460 461

	spin_lock_init(&spi->statistics.lock);

462 463 464 465 466
	device_initialize(&spi->dev);
	return spi;
}
EXPORT_SYMBOL_GPL(spi_alloc_device);

467 468 469 470 471 472 473 474 475 476 477 478 479
static void spi_dev_set_name(struct spi_device *spi)
{
	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);

	if (adev) {
		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
		return;
	}

	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
		     spi->chip_select);
}

480 481 482 483 484 485 486 487 488 489 490
static int spi_dev_check(struct device *dev, void *data)
{
	struct spi_device *spi = to_spi_device(dev);
	struct spi_device *new_spi = data;

	if (spi->master == new_spi->master &&
	    spi->chip_select == new_spi->chip_select)
		return -EBUSY;
	return 0;
}

491 492 493 494 495 496 497
/**
 * spi_add_device - Add spi_device allocated with spi_alloc_device
 * @spi: spi_device to register
 *
 * Companion function to spi_alloc_device.  Devices allocated with
 * spi_alloc_device can be added onto the spi bus with this function.
 *
498
 * Return: 0 on success; negative errno on failure
499 500 501
 */
int spi_add_device(struct spi_device *spi)
{
502
	static DEFINE_MUTEX(spi_add_lock);
503 504
	struct spi_master *master = spi->master;
	struct device *dev = master->dev.parent;
505 506 507
	int status;

	/* Chipselects are numbered 0..max; validate. */
508
	if (spi->chip_select >= master->num_chipselect) {
509 510
		dev_err(dev, "cs%d >= max %d\n",
			spi->chip_select,
511
			master->num_chipselect);
512 513 514 515
		return -EINVAL;
	}

	/* Set the bus ID string */
516
	spi_dev_set_name(spi);
517 518 519 520 521 522 523

	/* We need to make sure there's no other device with this
	 * chipselect **BEFORE** we call setup(), else we'll trash
	 * its configuration.  Lock against concurrent add() calls.
	 */
	mutex_lock(&spi_add_lock);

524 525
	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
	if (status) {
526 527 528 529 530
		dev_err(dev, "chipselect %d already in use\n",
				spi->chip_select);
		goto done;
	}

531 532 533
	if (master->cs_gpios)
		spi->cs_gpio = master->cs_gpios[spi->chip_select];

534 535 536 537
	/* Drivers may modify this initial i/o setup, but will
	 * normally rely on the device being setup.  Devices
	 * using SPI_CS_HIGH can't coexist well otherwise...
	 */
538
	status = spi_setup(spi);
539
	if (status < 0) {
540 541
		dev_err(dev, "can't setup %s, status %d\n",
				dev_name(&spi->dev), status);
542
		goto done;
543 544
	}

545
	/* Device may be bound to an active driver when this returns */
546
	status = device_add(&spi->dev);
547
	if (status < 0)
548 549
		dev_err(dev, "can't add %s, status %d\n",
				dev_name(&spi->dev), status);
550
	else
551
		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
552

553 554 555
done:
	mutex_unlock(&spi_add_lock);
	return status;
556 557
}
EXPORT_SYMBOL_GPL(spi_add_device);
558

D
David Brownell 已提交
559 560 561 562 563 564 565
/**
 * spi_new_device - instantiate one new SPI device
 * @master: Controller to which device is connected
 * @chip: Describes the SPI device
 * Context: can sleep
 *
 * On typical mainboards, this is purely internal; and it's not needed
566 567 568 569
 * after board init creates the hard-wired devices.  Some development
 * platforms may not be able to use spi_register_board_info though, and
 * this is exported so that for example a USB or parport based adapter
 * driver could add devices (which it would learn about out-of-band).
570
 *
571
 * Return: the new device, or NULL.
572
 */
573 574
struct spi_device *spi_new_device(struct spi_master *master,
				  struct spi_board_info *chip)
575 576 577 578
{
	struct spi_device	*proxy;
	int			status;

579 580 581 582 583 584 585
	/* NOTE:  caller did any chip->bus_num checks necessary.
	 *
	 * Also, unless we change the return value convention to use
	 * error-or-pointer (not NULL-or-pointer), troubleshootability
	 * suggests syslogged diagnostics are best here (ugh).
	 */

586 587
	proxy = spi_alloc_device(master);
	if (!proxy)
588 589
		return NULL;

590 591
	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));

592 593
	proxy->chip_select = chip->chip_select;
	proxy->max_speed_hz = chip->max_speed_hz;
594
	proxy->mode = chip->mode;
595
	proxy->irq = chip->irq;
596
	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
597 598 599 600
	proxy->dev.platform_data = (void *) chip->platform_data;
	proxy->controller_data = chip->controller_data;
	proxy->controller_state = NULL;

601
	status = spi_add_device(proxy);
602
	if (status < 0) {
603 604
		spi_dev_put(proxy);
		return NULL;
605 606 607 608 609 610
	}

	return proxy;
}
EXPORT_SYMBOL_GPL(spi_new_device);

611 612 613 614 615 616 617 618 619
/**
 * spi_unregister_device - unregister a single SPI device
 * @spi: spi_device to unregister
 *
 * Start making the passed SPI device vanish. Normally this would be handled
 * by spi_unregister_master().
 */
void spi_unregister_device(struct spi_device *spi)
{
620 621 622 623 624
	if (!spi)
		return;

	if (spi->dev.of_node)
		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
625 626
	if (ACPI_COMPANION(&spi->dev))
		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
627
	device_unregister(&spi->dev);
628 629 630
}
EXPORT_SYMBOL_GPL(spi_unregister_device);

631 632 633 634 635 636 637 638 639 640 641 642 643 644
static void spi_match_master_to_boardinfo(struct spi_master *master,
				struct spi_board_info *bi)
{
	struct spi_device *dev;

	if (master->bus_num != bi->bus_num)
		return;

	dev = spi_new_device(master, bi);
	if (!dev)
		dev_err(master->dev.parent, "can't create new device for %s\n",
			bi->modalias);
}

D
David Brownell 已提交
645 646 647 648 649 650
/**
 * spi_register_board_info - register SPI devices for a given board
 * @info: array of chip descriptors
 * @n: how many descriptors are provided
 * Context: can sleep
 *
651 652 653 654 655 656 657 658 659 660 661 662
 * Board-specific early init code calls this (probably during arch_initcall)
 * with segments of the SPI device table.  Any device nodes are created later,
 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 * this table of devices forever, so that reloading a controller driver will
 * not make Linux forget about these hard-wired devices.
 *
 * Other code can also call this, e.g. a particular add-on board might provide
 * SPI devices through its expansion connector, so code initializing that board
 * would naturally declare its SPI devices.
 *
 * The board info passed can safely be __initdata ... but be careful of
 * any embedded pointers (platform_data, etc), they're copied as-is.
663 664
 *
 * Return: zero on success, else a negative error code.
665
 */
666
int spi_register_board_info(struct spi_board_info const *info, unsigned n)
667
{
668 669
	struct boardinfo *bi;
	int i;
670

671 672 673
	if (!n)
		return -EINVAL;

674
	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
675 676 677
	if (!bi)
		return -ENOMEM;

678 679
	for (i = 0; i < n; i++, bi++, info++) {
		struct spi_master *master;
680

681 682 683 684 685 686
		memcpy(&bi->board_info, info, sizeof(*info));
		mutex_lock(&board_lock);
		list_add_tail(&bi->list, &board_list);
		list_for_each_entry(master, &spi_master_list, list)
			spi_match_master_to_boardinfo(master, &bi->board_info);
		mutex_unlock(&board_lock);
687
	}
688 689

	return 0;
690 691 692 693
}

/*-------------------------------------------------------------------------*/

694 695 696 697 698
static void spi_set_cs(struct spi_device *spi, bool enable)
{
	if (spi->mode & SPI_CS_HIGH)
		enable = !enable;

699
	if (gpio_is_valid(spi->cs_gpio))
700 701 702 703 704
		gpio_set_value(spi->cs_gpio, !enable);
	else if (spi->master->set_cs)
		spi->master->set_cs(spi, !enable);
}

705
#ifdef CONFIG_HAS_DMA
706 707 708 709 710
static int spi_map_buf(struct spi_master *master, struct device *dev,
		       struct sg_table *sgt, void *buf, size_t len,
		       enum dma_data_direction dir)
{
	const bool vmalloced_buf = is_vmalloc_addr(buf);
711
	unsigned int max_seg_size = dma_get_max_seg_size(dev);
712 713
	int desc_len;
	int sgs;
714 715 716 717 718
	struct page *vm_page;
	void *sg_buf;
	size_t min;
	int i, ret;

719
	if (vmalloced_buf) {
720
		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
721
		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
722
	} else if (virt_addr_valid(buf)) {
723
		desc_len = min_t(int, max_seg_size, master->max_dma_len);
724
		sgs = DIV_ROUND_UP(len, desc_len);
725 726
	} else {
		return -EINVAL;
727 728
	}

729 730 731 732 733 734 735
	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
	if (ret != 0)
		return ret;

	for (i = 0; i < sgs; i++) {

		if (vmalloced_buf) {
736 737
			min = min_t(size_t,
				    len, desc_len - offset_in_page(buf));
738 739 740 741 742
			vm_page = vmalloc_to_page(buf);
			if (!vm_page) {
				sg_free_table(sgt);
				return -ENOMEM;
			}
743 744
			sg_set_page(&sgt->sgl[i], vm_page,
				    min, offset_in_page(buf));
745
		} else {
746
			min = min_t(size_t, len, desc_len);
747
			sg_buf = buf;
748
			sg_set_buf(&sgt->sgl[i], sg_buf, min);
749 750 751 752 753 754 755
		}

		buf += min;
		len -= min;
	}

	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
756 757
	if (!ret)
		ret = -ENOMEM;
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
	if (ret < 0) {
		sg_free_table(sgt);
		return ret;
	}

	sgt->nents = ret;

	return 0;
}

static void spi_unmap_buf(struct spi_master *master, struct device *dev,
			  struct sg_table *sgt, enum dma_data_direction dir)
{
	if (sgt->orig_nents) {
		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
		sg_free_table(sgt);
	}
}

777
static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
778 779 780
{
	struct device *tx_dev, *rx_dev;
	struct spi_transfer *xfer;
781
	int ret;
782

783
	if (!master->can_dma)
784 785
		return 0;

786 787 788 789 790 791 792 793 794
	if (master->dma_tx)
		tx_dev = master->dma_tx->device->dev;
	else
		tx_dev = &master->dev;

	if (master->dma_rx)
		rx_dev = master->dma_rx->device->dev;
	else
		rx_dev = &master->dev;
795 796 797 798 799 800

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		if (!master->can_dma(master, msg->spi, xfer))
			continue;

		if (xfer->tx_buf != NULL) {
801 802 803 804 805
			ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
					  (void *)xfer->tx_buf, xfer->len,
					  DMA_TO_DEVICE);
			if (ret != 0)
				return ret;
806 807 808
		}

		if (xfer->rx_buf != NULL) {
809 810 811 812 813 814 815
			ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
					  xfer->rx_buf, xfer->len,
					  DMA_FROM_DEVICE);
			if (ret != 0) {
				spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
					      DMA_TO_DEVICE);
				return ret;
816 817 818 819 820 821 822 823 824
			}
		}
	}

	master->cur_msg_mapped = true;

	return 0;
}

825
static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
826 827 828 829
{
	struct spi_transfer *xfer;
	struct device *tx_dev, *rx_dev;

830
	if (!master->cur_msg_mapped || !master->can_dma)
831 832
		return 0;

833 834 835 836 837 838 839 840 841
	if (master->dma_tx)
		tx_dev = master->dma_tx->device->dev;
	else
		tx_dev = &master->dev;

	if (master->dma_rx)
		rx_dev = master->dma_rx->device->dev;
	else
		rx_dev = &master->dev;
842 843 844 845 846

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		if (!master->can_dma(master, msg->spi, xfer))
			continue;

847 848
		spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
		spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
849 850 851 852
	}

	return 0;
}
853 854 855 856 857 858 859
#else /* !CONFIG_HAS_DMA */
static inline int __spi_map_msg(struct spi_master *master,
				struct spi_message *msg)
{
	return 0;
}

860 861
static inline int __spi_unmap_msg(struct spi_master *master,
				  struct spi_message *msg)
862 863 864 865 866
{
	return 0;
}
#endif /* !CONFIG_HAS_DMA */

867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
static inline int spi_unmap_msg(struct spi_master *master,
				struct spi_message *msg)
{
	struct spi_transfer *xfer;

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		/*
		 * Restore the original value of tx_buf or rx_buf if they are
		 * NULL.
		 */
		if (xfer->tx_buf == master->dummy_tx)
			xfer->tx_buf = NULL;
		if (xfer->rx_buf == master->dummy_rx)
			xfer->rx_buf = NULL;
	}

	return __spi_unmap_msg(master, msg);
}

886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
{
	struct spi_transfer *xfer;
	void *tmp;
	unsigned int max_tx, max_rx;

	if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
		max_tx = 0;
		max_rx = 0;

		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
			if ((master->flags & SPI_MASTER_MUST_TX) &&
			    !xfer->tx_buf)
				max_tx = max(xfer->len, max_tx);
			if ((master->flags & SPI_MASTER_MUST_RX) &&
			    !xfer->rx_buf)
				max_rx = max(xfer->len, max_rx);
		}

		if (max_tx) {
			tmp = krealloc(master->dummy_tx, max_tx,
				       GFP_KERNEL | GFP_DMA);
			if (!tmp)
				return -ENOMEM;
			master->dummy_tx = tmp;
			memset(tmp, 0, max_tx);
		}

		if (max_rx) {
			tmp = krealloc(master->dummy_rx, max_rx,
				       GFP_KERNEL | GFP_DMA);
			if (!tmp)
				return -ENOMEM;
			master->dummy_rx = tmp;
		}

		if (max_tx || max_rx) {
			list_for_each_entry(xfer, &msg->transfers,
					    transfer_list) {
				if (!xfer->tx_buf)
					xfer->tx_buf = master->dummy_tx;
				if (!xfer->rx_buf)
					xfer->rx_buf = master->dummy_rx;
			}
		}
	}

	return __spi_map_msg(master, msg);
}
935

936 937 938 939
/*
 * spi_transfer_one_message - Default implementation of transfer_one_message()
 *
 * This is a standard implementation of transfer_one_message() for
940
 * drivers which implement a transfer_one() operation.  It provides
941 942 943 944 945 946 947 948
 * standard handling of delays and chip select management.
 */
static int spi_transfer_one_message(struct spi_master *master,
				    struct spi_message *msg)
{
	struct spi_transfer *xfer;
	bool keep_cs = false;
	int ret = 0;
949
	unsigned long ms = 1;
950 951
	struct spi_statistics *statm = &master->statistics;
	struct spi_statistics *stats = &msg->spi->statistics;
952 953 954

	spi_set_cs(msg->spi, true);

955 956 957
	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);

958 959 960
	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		trace_spi_transfer_start(msg, xfer);

961 962 963
		spi_statistics_add_transfer_stats(statm, xfer, master);
		spi_statistics_add_transfer_stats(stats, xfer, master);

964 965
		if (xfer->tx_buf || xfer->rx_buf) {
			reinit_completion(&master->xfer_completion);
966

967 968
			ret = master->transfer_one(master, msg->spi, xfer);
			if (ret < 0) {
969 970 971 972
				SPI_STATISTICS_INCREMENT_FIELD(statm,
							       errors);
				SPI_STATISTICS_INCREMENT_FIELD(stats,
							       errors);
973 974 975 976
				dev_err(&msg->spi->dev,
					"SPI transfer failed: %d\n", ret);
				goto out;
			}
977

978 979 980 981
			if (ret > 0) {
				ret = 0;
				ms = xfer->len * 8 * 1000 / xfer->speed_hz;
				ms += ms + 100; /* some tolerance */
982

983 984 985
				ms = wait_for_completion_timeout(&master->xfer_completion,
								 msecs_to_jiffies(ms));
			}
986

987
			if (ms == 0) {
988 989 990 991
				SPI_STATISTICS_INCREMENT_FIELD(statm,
							       timedout);
				SPI_STATISTICS_INCREMENT_FIELD(stats,
							       timedout);
992 993 994 995 996 997 998 999 1000
				dev_err(&msg->spi->dev,
					"SPI transfer timed out\n");
				msg->status = -ETIMEDOUT;
			}
		} else {
			if (xfer->len)
				dev_err(&msg->spi->dev,
					"Bufferless transfer has length %u\n",
					xfer->len);
1001
		}
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015

		trace_spi_transfer_stop(msg, xfer);

		if (msg->status != -EINPROGRESS)
			goto out;

		if (xfer->delay_usecs)
			udelay(xfer->delay_usecs);

		if (xfer->cs_change) {
			if (list_is_last(&xfer->transfer_list,
					 &msg->transfers)) {
				keep_cs = true;
			} else {
1016 1017 1018
				spi_set_cs(msg->spi, false);
				udelay(10);
				spi_set_cs(msg->spi, true);
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
			}
		}

		msg->actual_length += xfer->len;
	}

out:
	if (ret != 0 || !keep_cs)
		spi_set_cs(msg->spi, false);

	if (msg->status == -EINPROGRESS)
		msg->status = ret;

1032
	if (msg->status && master->handle_err)
1033 1034
		master->handle_err(master, msg);

1035 1036
	spi_res_release(master, msg);

1037 1038 1039 1040 1041 1042 1043
	spi_finalize_current_message(master);

	return ret;
}

/**
 * spi_finalize_current_transfer - report completion of a transfer
T
Thierry Reding 已提交
1044
 * @master: the master reporting completion
1045 1046 1047
 *
 * Called by SPI drivers using the core transfer_one_message()
 * implementation to notify it that the current interrupt driven
1048
 * transfer has finished and the next one may be scheduled.
1049 1050 1051 1052 1053 1054 1055
 */
void spi_finalize_current_transfer(struct spi_master *master)
{
	complete(&master->xfer_completion);
}
EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);

1056
/**
1057 1058 1059
 * __spi_pump_messages - function which processes spi message queue
 * @master: master to process queue for
 * @in_kthread: true if we are in the context of the message pump thread
1060
 * @bus_locked: true if the bus mutex is held when calling this function
1061 1062 1063 1064 1065
 *
 * This function checks if there is any spi message in the queue that
 * needs processing and if so call out to the driver to initialize hardware
 * and transfer each message.
 *
1066 1067 1068
 * Note that it is called both from the kthread itself and also from
 * inside spi_sync(); the queue extraction handling at the top of the
 * function should deal with this safely.
1069
 */
1070 1071
static void __spi_pump_messages(struct spi_master *master, bool in_kthread,
				bool bus_locked)
1072 1073 1074 1075 1076
{
	unsigned long flags;
	bool was_busy = false;
	int ret;

1077
	/* Lock queue */
1078
	spin_lock_irqsave(&master->queue_lock, flags);
1079 1080 1081 1082 1083 1084 1085

	/* Make sure we are not already running a message */
	if (master->cur_msg) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return;
	}

1086 1087 1088 1089 1090 1091 1092
	/* If another context is idling the device then defer */
	if (master->idling) {
		queue_kthread_work(&master->kworker, &master->pump_messages);
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return;
	}

1093
	/* Check if the queue is idle */
1094
	if (list_empty(&master->queue) || !master->running) {
1095 1096 1097
		if (!master->busy) {
			spin_unlock_irqrestore(&master->queue_lock, flags);
			return;
1098
		}
1099 1100 1101 1102 1103 1104 1105 1106 1107

		/* Only do teardown in the thread */
		if (!in_kthread) {
			queue_kthread_work(&master->kworker,
					   &master->pump_messages);
			spin_unlock_irqrestore(&master->queue_lock, flags);
			return;
		}

1108
		master->busy = false;
1109
		master->idling = true;
1110
		spin_unlock_irqrestore(&master->queue_lock, flags);
1111

1112 1113 1114 1115
		kfree(master->dummy_rx);
		master->dummy_rx = NULL;
		kfree(master->dummy_tx);
		master->dummy_tx = NULL;
1116 1117 1118 1119
		if (master->unprepare_transfer_hardware &&
		    master->unprepare_transfer_hardware(master))
			dev_err(&master->dev,
				"failed to unprepare transfer hardware\n");
1120 1121 1122 1123
		if (master->auto_runtime_pm) {
			pm_runtime_mark_last_busy(master->dev.parent);
			pm_runtime_put_autosuspend(master->dev.parent);
		}
1124
		trace_spi_master_idle(master);
1125

1126 1127
		spin_lock_irqsave(&master->queue_lock, flags);
		master->idling = false;
1128 1129 1130 1131 1132 1133
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return;
	}

	/* Extract head of queue */
	master->cur_msg =
1134
		list_first_entry(&master->queue, struct spi_message, queue);
1135 1136 1137 1138 1139 1140 1141 1142

	list_del_init(&master->cur_msg->queue);
	if (master->busy)
		was_busy = true;
	else
		master->busy = true;
	spin_unlock_irqrestore(&master->queue_lock, flags);

1143 1144 1145 1146 1147 1148 1149 1150 1151
	if (!was_busy && master->auto_runtime_pm) {
		ret = pm_runtime_get_sync(master->dev.parent);
		if (ret < 0) {
			dev_err(&master->dev, "Failed to power device: %d\n",
				ret);
			return;
		}
	}

1152 1153 1154
	if (!was_busy)
		trace_spi_master_busy(master);

1155
	if (!was_busy && master->prepare_transfer_hardware) {
1156 1157 1158 1159
		ret = master->prepare_transfer_hardware(master);
		if (ret) {
			dev_err(&master->dev,
				"failed to prepare transfer hardware\n");
1160 1161 1162

			if (master->auto_runtime_pm)
				pm_runtime_put(master->dev.parent);
1163 1164 1165 1166
			return;
		}
	}

1167 1168 1169
	if (!bus_locked)
		mutex_lock(&master->bus_lock_mutex);

1170 1171
	trace_spi_message_start(master->cur_msg);

1172 1173 1174 1175 1176 1177 1178
	if (master->prepare_message) {
		ret = master->prepare_message(master, master->cur_msg);
		if (ret) {
			dev_err(&master->dev,
				"failed to prepare message: %d\n", ret);
			master->cur_msg->status = ret;
			spi_finalize_current_message(master);
1179
			goto out;
1180 1181 1182 1183
		}
		master->cur_msg_prepared = true;
	}

1184 1185 1186 1187
	ret = spi_map_msg(master, master->cur_msg);
	if (ret) {
		master->cur_msg->status = ret;
		spi_finalize_current_message(master);
1188
		goto out;
1189 1190
	}

1191 1192 1193
	ret = master->transfer_one_message(master, master->cur_msg);
	if (ret) {
		dev_err(&master->dev,
1194
			"failed to transfer one message from queue\n");
1195
		goto out;
1196
	}
1197 1198 1199 1200

out:
	if (!bus_locked)
		mutex_unlock(&master->bus_lock_mutex);
1201 1202

	/* Prod the scheduler in case transfer_one() was busy waiting */
1203 1204
	if (!ret)
		cond_resched();
1205 1206
}

1207 1208 1209 1210 1211 1212 1213 1214 1215
/**
 * spi_pump_messages - kthread work function which processes spi message queue
 * @work: pointer to kthread work struct contained in the master struct
 */
static void spi_pump_messages(struct kthread_work *work)
{
	struct spi_master *master =
		container_of(work, struct spi_master, pump_messages);

1216
	__spi_pump_messages(master, true, master->bus_lock_flag);
1217 1218
}

1219 1220 1221 1222 1223 1224 1225 1226 1227
static int spi_init_queue(struct spi_master *master)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };

	master->running = false;
	master->busy = false;

	init_kthread_worker(&master->kworker);
	master->kworker_task = kthread_run(kthread_worker_fn,
1228
					   &master->kworker, "%s",
1229 1230 1231
					   dev_name(&master->dev));
	if (IS_ERR(master->kworker_task)) {
		dev_err(&master->dev, "failed to create message pump task\n");
1232
		return PTR_ERR(master->kworker_task);
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
	}
	init_kthread_work(&master->pump_messages, spi_pump_messages);

	/*
	 * Master config will indicate if this controller should run the
	 * message pump with high (realtime) priority to reduce the transfer
	 * latency on the bus by minimising the delay between a transfer
	 * request and the scheduling of the message pump thread. Without this
	 * setting the message pump thread will remain at default priority.
	 */
	if (master->rt) {
		dev_info(&master->dev,
			"will run message pump with realtime priority\n");
		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
	}

	return 0;
}

/**
 * spi_get_next_queued_message() - called by driver to check for queued
 * messages
 * @master: the master to check for queued messages
 *
 * If there are more messages in the queue, the next message is returned from
 * this call.
1259 1260
 *
 * Return: the next message in the queue, else NULL if the queue is empty.
1261 1262 1263 1264 1265 1266 1267 1268
 */
struct spi_message *spi_get_next_queued_message(struct spi_master *master)
{
	struct spi_message *next;
	unsigned long flags;

	/* get a pointer to the next message, if any */
	spin_lock_irqsave(&master->queue_lock, flags);
1269 1270
	next = list_first_entry_or_null(&master->queue, struct spi_message,
					queue);
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
	spin_unlock_irqrestore(&master->queue_lock, flags);

	return next;
}
EXPORT_SYMBOL_GPL(spi_get_next_queued_message);

/**
 * spi_finalize_current_message() - the current message is complete
 * @master: the master to return the message to
 *
 * Called by the driver to notify the core that the message in the front of the
 * queue is complete and can be removed from the queue.
 */
void spi_finalize_current_message(struct spi_master *master)
{
	struct spi_message *mesg;
	unsigned long flags;
1288
	int ret;
1289 1290 1291 1292 1293

	spin_lock_irqsave(&master->queue_lock, flags);
	mesg = master->cur_msg;
	spin_unlock_irqrestore(&master->queue_lock, flags);

1294 1295
	spi_unmap_msg(master, mesg);

1296 1297 1298 1299 1300 1301 1302
	if (master->cur_msg_prepared && master->unprepare_message) {
		ret = master->unprepare_message(master, mesg);
		if (ret) {
			dev_err(&master->dev,
				"failed to unprepare message: %d\n", ret);
		}
	}
1303

1304 1305
	spin_lock_irqsave(&master->queue_lock, flags);
	master->cur_msg = NULL;
1306
	master->cur_msg_prepared = false;
1307 1308 1309 1310
	queue_kthread_work(&master->kworker, &master->pump_messages);
	spin_unlock_irqrestore(&master->queue_lock, flags);

	trace_spi_message_done(mesg);
1311

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
	mesg->state = NULL;
	if (mesg->complete)
		mesg->complete(mesg->context);
}
EXPORT_SYMBOL_GPL(spi_finalize_current_message);

static int spi_start_queue(struct spi_master *master)
{
	unsigned long flags;

	spin_lock_irqsave(&master->queue_lock, flags);

	if (master->running || master->busy) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return -EBUSY;
	}

	master->running = true;
	master->cur_msg = NULL;
	spin_unlock_irqrestore(&master->queue_lock, flags);

	queue_kthread_work(&master->kworker, &master->pump_messages);

	return 0;
}

static int spi_stop_queue(struct spi_master *master)
{
	unsigned long flags;
	unsigned limit = 500;
	int ret = 0;

	spin_lock_irqsave(&master->queue_lock, flags);

	/*
	 * This is a bit lame, but is optimized for the common execution path.
	 * A wait_queue on the master->busy could be used, but then the common
	 * execution path (pump_messages) would be required to call wake_up or
	 * friends on every SPI message. Do this instead.
	 */
	while ((!list_empty(&master->queue) || master->busy) && limit--) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
1354
		usleep_range(10000, 11000);
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
		spin_lock_irqsave(&master->queue_lock, flags);
	}

	if (!list_empty(&master->queue) || master->busy)
		ret = -EBUSY;
	else
		master->running = false;

	spin_unlock_irqrestore(&master->queue_lock, flags);

	if (ret) {
		dev_warn(&master->dev,
			 "could not stop message queue\n");
		return ret;
	}
	return ret;
}

static int spi_destroy_queue(struct spi_master *master)
{
	int ret;

	ret = spi_stop_queue(master);

	/*
	 * flush_kthread_worker will block until all work is done.
	 * If the reason that stop_queue timed out is that the work will never
	 * finish, then it does no good to call flush/stop thread, so
	 * return anyway.
	 */
	if (ret) {
		dev_err(&master->dev, "problem destroying queue\n");
		return ret;
	}

	flush_kthread_worker(&master->kworker);
	kthread_stop(master->kworker_task);

	return 0;
}

1396 1397 1398
static int __spi_queued_transfer(struct spi_device *spi,
				 struct spi_message *msg,
				 bool need_pump)
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
{
	struct spi_master *master = spi->master;
	unsigned long flags;

	spin_lock_irqsave(&master->queue_lock, flags);

	if (!master->running) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return -ESHUTDOWN;
	}
	msg->actual_length = 0;
	msg->status = -EINPROGRESS;

	list_add_tail(&msg->queue, &master->queue);
1413
	if (!master->busy && need_pump)
1414 1415 1416 1417 1418 1419
		queue_kthread_work(&master->kworker, &master->pump_messages);

	spin_unlock_irqrestore(&master->queue_lock, flags);
	return 0;
}

1420 1421 1422 1423
/**
 * spi_queued_transfer - transfer function for queued transfers
 * @spi: spi device which is requesting transfer
 * @msg: spi message which is to handled is queued to driver queue
1424 1425
 *
 * Return: zero on success, else a negative error code.
1426 1427 1428 1429 1430 1431
 */
static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
{
	return __spi_queued_transfer(spi, msg, true);
}

1432 1433 1434 1435 1436
static int spi_master_initialize_queue(struct spi_master *master)
{
	int ret;

	master->transfer = spi_queued_transfer;
1437 1438
	if (!master->transfer_one_message)
		master->transfer_one_message = spi_transfer_one_message;
1439 1440 1441 1442 1443 1444 1445

	/* Initialize and start queue */
	ret = spi_init_queue(master);
	if (ret) {
		dev_err(&master->dev, "problem initializing queue\n");
		goto err_init_queue;
	}
1446
	master->queued = true;
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
	ret = spi_start_queue(master);
	if (ret) {
		dev_err(&master->dev, "problem starting queue\n");
		goto err_start_queue;
	}

	return 0;

err_start_queue:
	spi_destroy_queue(master);
1457
err_init_queue:
1458 1459 1460 1461 1462
	return ret;
}

/*-------------------------------------------------------------------------*/

1463
#if defined(CONFIG_OF)
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
static struct spi_device *
of_register_spi_device(struct spi_master *master, struct device_node *nc)
{
	struct spi_device *spi;
	int rc;
	u32 value;

	/* Alloc an spi_device */
	spi = spi_alloc_device(master);
	if (!spi) {
		dev_err(&master->dev, "spi_device alloc error for %s\n",
			nc->full_name);
		rc = -ENOMEM;
		goto err_out;
	}

	/* Select device driver */
	rc = of_modalias_node(nc, spi->modalias,
				sizeof(spi->modalias));
	if (rc < 0) {
		dev_err(&master->dev, "cannot find modalias for %s\n",
			nc->full_name);
		goto err_out;
	}

	/* Device address */
	rc = of_property_read_u32(nc, "reg", &value);
	if (rc) {
		dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
			nc->full_name, rc);
		goto err_out;
	}
	spi->chip_select = value;

	/* Mode (clock phase/polarity/etc.) */
	if (of_find_property(nc, "spi-cpha", NULL))
		spi->mode |= SPI_CPHA;
	if (of_find_property(nc, "spi-cpol", NULL))
		spi->mode |= SPI_CPOL;
	if (of_find_property(nc, "spi-cs-high", NULL))
		spi->mode |= SPI_CS_HIGH;
	if (of_find_property(nc, "spi-3wire", NULL))
		spi->mode |= SPI_3WIRE;
	if (of_find_property(nc, "spi-lsb-first", NULL))
		spi->mode |= SPI_LSB_FIRST;

	/* Device DUAL/QUAD mode */
	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
		switch (value) {
		case 1:
			break;
		case 2:
			spi->mode |= SPI_TX_DUAL;
			break;
		case 4:
			spi->mode |= SPI_TX_QUAD;
			break;
		default:
			dev_warn(&master->dev,
				"spi-tx-bus-width %d not supported\n",
				value);
			break;
		}
	}

	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
		switch (value) {
		case 1:
			break;
		case 2:
			spi->mode |= SPI_RX_DUAL;
			break;
		case 4:
			spi->mode |= SPI_RX_QUAD;
			break;
		default:
			dev_warn(&master->dev,
				"spi-rx-bus-width %d not supported\n",
				value);
			break;
		}
	}

	/* Device speed */
	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
	if (rc) {
		dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
			nc->full_name, rc);
		goto err_out;
	}
	spi->max_speed_hz = value;

	/* Store a pointer to the node in the device structure */
	of_node_get(nc);
	spi->dev.of_node = nc;

	/* Register the new device */
	rc = spi_add_device(spi);
	if (rc) {
		dev_err(&master->dev, "spi_device register error %s\n",
			nc->full_name);
		goto err_out;
	}

	return spi;

err_out:
	spi_dev_put(spi);
	return ERR_PTR(rc);
}

1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
/**
 * of_register_spi_devices() - Register child devices onto the SPI bus
 * @master:	Pointer to spi_master device
 *
 * Registers an spi_device for each child node of master node which has a 'reg'
 * property.
 */
static void of_register_spi_devices(struct spi_master *master)
{
	struct spi_device *spi;
	struct device_node *nc;

	if (!master->dev.of_node)
		return;

1590
	for_each_available_child_of_node(master->dev.of_node, nc) {
1591 1592
		if (of_node_test_and_set_flag(nc, OF_POPULATED))
			continue;
1593 1594 1595
		spi = of_register_spi_device(master, nc);
		if (IS_ERR(spi))
			dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1596 1597 1598 1599 1600 1601 1602
				nc->full_name);
	}
}
#else
static void of_register_spi_devices(struct spi_master *master) { }
#endif

1603 1604 1605 1606
#ifdef CONFIG_ACPI
static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
{
	struct spi_device *spi = data;
1607
	struct spi_master *master = spi->master;
1608 1609 1610 1611 1612 1613

	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
		struct acpi_resource_spi_serialbus *sb;

		sb = &ares->data.spi_serial_bus;
		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
			/*
			 * ACPI DeviceSelection numbering is handled by the
			 * host controller driver in Windows and can vary
			 * from driver to driver. In Linux we always expect
			 * 0 .. max - 1 so we need to ask the driver to
			 * translate between the two schemes.
			 */
			if (master->fw_translate_cs) {
				int cs = master->fw_translate_cs(master,
						sb->device_selection);
				if (cs < 0)
					return cs;
				spi->chip_select = cs;
			} else {
				spi->chip_select = sb->device_selection;
			}

1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
			spi->max_speed_hz = sb->connection_speed;

			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
				spi->mode |= SPI_CPHA;
			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
				spi->mode |= SPI_CPOL;
			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
				spi->mode |= SPI_CS_HIGH;
		}
	} else if (spi->irq < 0) {
		struct resource r;

		if (acpi_dev_resource_interrupt(ares, 0, &r))
			spi->irq = r.start;
	}

	/* Always tell the ACPI core to skip this resource */
	return 1;
}

1651 1652
static acpi_status acpi_register_spi_device(struct spi_master *master,
					    struct acpi_device *adev)
1653 1654 1655 1656 1657
{
	struct list_head resource_list;
	struct spi_device *spi;
	int ret;

1658 1659
	if (acpi_bus_get_status(adev) || !adev->status.present ||
	    acpi_device_enumerated(adev))
1660 1661 1662 1663 1664 1665 1666 1667 1668
		return AE_OK;

	spi = spi_alloc_device(master);
	if (!spi) {
		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
			dev_name(&adev->dev));
		return AE_NO_MEMORY;
	}

1669
	ACPI_COMPANION_SET(&spi->dev, adev);
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
	spi->irq = -1;

	INIT_LIST_HEAD(&resource_list);
	ret = acpi_dev_get_resources(adev, &resource_list,
				     acpi_spi_add_resource, spi);
	acpi_dev_free_resource_list(&resource_list);

	if (ret < 0 || !spi->max_speed_hz) {
		spi_dev_put(spi);
		return AE_OK;
	}

1682 1683 1684
	if (spi->irq < 0)
		spi->irq = acpi_dev_gpio_irq_get(adev, 0);

1685 1686
	acpi_device_set_enumerated(adev);

1687
	adev->power.flags.ignore_parent = true;
1688
	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1689
	if (spi_add_device(spi)) {
1690
		adev->power.flags.ignore_parent = false;
1691 1692 1693 1694 1695 1696 1697 1698
		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
			dev_name(&adev->dev));
		spi_dev_put(spi);
	}

	return AE_OK;
}

1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
				       void *data, void **return_value)
{
	struct spi_master *master = data;
	struct acpi_device *adev;

	if (acpi_bus_get_device(handle, &adev))
		return AE_OK;

	return acpi_register_spi_device(master, adev);
}

1711 1712 1713 1714 1715
static void acpi_register_spi_devices(struct spi_master *master)
{
	acpi_status status;
	acpi_handle handle;

1716
	handle = ACPI_HANDLE(master->dev.parent);
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
	if (!handle)
		return;

	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
				     acpi_spi_add_device, NULL,
				     master, NULL);
	if (ACPI_FAILURE(status))
		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
}
#else
static inline void acpi_register_spi_devices(struct spi_master *master) {}
#endif /* CONFIG_ACPI */

T
Tony Jones 已提交
1730
static void spi_master_release(struct device *dev)
1731 1732 1733
{
	struct spi_master *master;

T
Tony Jones 已提交
1734
	master = container_of(dev, struct spi_master, dev);
1735 1736 1737 1738 1739 1740
	kfree(master);
}

static struct class spi_master_class = {
	.name		= "spi_master",
	.owner		= THIS_MODULE,
T
Tony Jones 已提交
1741
	.dev_release	= spi_master_release,
1742
	.dev_groups	= spi_master_groups,
1743 1744 1745 1746 1747 1748
};


/**
 * spi_alloc_master - allocate SPI master controller
 * @dev: the controller, possibly using the platform_bus
D
David Brownell 已提交
1749
 * @size: how much zeroed driver-private data to allocate; the pointer to this
T
Tony Jones 已提交
1750
 *	memory is in the driver_data field of the returned device,
D
David Brownell 已提交
1751
 *	accessible with spi_master_get_devdata().
D
David Brownell 已提交
1752
 * Context: can sleep
1753 1754 1755
 *
 * This call is used only by SPI master controller drivers, which are the
 * only ones directly touching chip registers.  It's how they allocate
D
dmitry pervushin 已提交
1756
 * an spi_master structure, prior to calling spi_register_master().
1757
 *
1758
 * This must be called from context that can sleep.
1759 1760
 *
 * The caller is responsible for assigning the bus number and initializing
D
dmitry pervushin 已提交
1761
 * the master's methods before calling spi_register_master(); and (after errors
1762
 * adding the device) calling spi_master_put() to prevent a memory leak.
1763 1764
 *
 * Return: the SPI master structure on success, else NULL.
1765
 */
1766
struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1767 1768 1769
{
	struct spi_master	*master;

D
David Brownell 已提交
1770 1771 1772
	if (!dev)
		return NULL;

J
Jingoo Han 已提交
1773
	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1774 1775 1776
	if (!master)
		return NULL;

T
Tony Jones 已提交
1777
	device_initialize(&master->dev);
1778 1779
	master->bus_num = -1;
	master->num_chipselect = 1;
T
Tony Jones 已提交
1780
	master->dev.class = &spi_master_class;
1781
	master->dev.parent = dev;
1782
	pm_suspend_ignore_children(&master->dev, true);
D
David Brownell 已提交
1783
	spi_master_set_devdata(master, &master[1]);
1784 1785 1786 1787 1788

	return master;
}
EXPORT_SYMBOL_GPL(spi_alloc_master);

1789 1790 1791
#ifdef CONFIG_OF
static int of_spi_register_master(struct spi_master *master)
{
1792
	int nb, i, *cs;
1793 1794 1795 1796 1797 1798
	struct device_node *np = master->dev.of_node;

	if (!np)
		return 0;

	nb = of_gpio_named_count(np, "cs-gpios");
J
Jingoo Han 已提交
1799
	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1800

1801 1802
	/* Return error only for an incorrectly formed cs-gpios property */
	if (nb == 0 || nb == -ENOENT)
1803
		return 0;
1804 1805
	else if (nb < 0)
		return nb;
1806 1807 1808 1809 1810 1811 1812 1813 1814

	cs = devm_kzalloc(&master->dev,
			  sizeof(int) * master->num_chipselect,
			  GFP_KERNEL);
	master->cs_gpios = cs;

	if (!master->cs_gpios)
		return -ENOMEM;

1815
	for (i = 0; i < master->num_chipselect; i++)
1816
		cs[i] = -ENOENT;
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829

	for (i = 0; i < nb; i++)
		cs[i] = of_get_named_gpio(np, "cs-gpios", i);

	return 0;
}
#else
static int of_spi_register_master(struct spi_master *master)
{
	return 0;
}
#endif

1830 1831 1832
/**
 * spi_register_master - register SPI master controller
 * @master: initialized master, originally from spi_alloc_master()
D
David Brownell 已提交
1833
 * Context: can sleep
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
 *
 * SPI master controllers connect to their drivers using some non-SPI bus,
 * such as the platform bus.  The final stage of probe() in that code
 * includes calling spi_register_master() to hook up to this SPI bus glue.
 *
 * SPI controllers use board specific (often SOC specific) bus numbers,
 * and board-specific addressing for SPI devices combines those numbers
 * with chip select numbers.  Since SPI does not directly support dynamic
 * device identification, boards need configuration tables telling which
 * chip is at which address.
 *
 * This must be called from context that can sleep.  It returns zero on
 * success, else a negative error code (dropping the master's refcount).
D
David Brownell 已提交
1847 1848
 * After a successful return, the caller is responsible for calling
 * spi_unregister_master().
1849 1850
 *
 * Return: zero on success, else a negative error code.
1851
 */
1852
int spi_register_master(struct spi_master *master)
1853
{
1854
	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
T
Tony Jones 已提交
1855
	struct device		*dev = master->dev.parent;
1856
	struct boardinfo	*bi;
1857 1858 1859
	int			status = -ENODEV;
	int			dynamic = 0;

D
David Brownell 已提交
1860 1861 1862
	if (!dev)
		return -ENODEV;

1863 1864 1865 1866
	status = of_spi_register_master(master);
	if (status)
		return status;

1867 1868 1869 1870 1871 1872
	/* even if it's just one always-selected device, there must
	 * be at least one chipselect
	 */
	if (master->num_chipselect == 0)
		return -EINVAL;

1873 1874 1875
	if ((master->bus_num < 0) && master->dev.of_node)
		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");

1876
	/* convention:  dynamically assigned bus IDs count down from the max */
1877
	if (master->bus_num < 0) {
1878 1879 1880
		/* FIXME switch to an IDR based scheme, something like
		 * I2C now uses, so we can't run out of "dynamic" IDs
		 */
1881
		master->bus_num = atomic_dec_return(&dyn_bus_id);
1882
		dynamic = 1;
1883 1884
	}

1885 1886
	INIT_LIST_HEAD(&master->queue);
	spin_lock_init(&master->queue_lock);
1887 1888 1889
	spin_lock_init(&master->bus_lock_spinlock);
	mutex_init(&master->bus_lock_mutex);
	master->bus_lock_flag = 0;
1890
	init_completion(&master->xfer_completion);
1891 1892
	if (!master->max_dma_len)
		master->max_dma_len = INT_MAX;
1893

1894 1895 1896
	/* register the device, then userspace will see it.
	 * registration fails if the bus ID is in use.
	 */
1897
	dev_set_name(&master->dev, "spi%u", master->bus_num);
T
Tony Jones 已提交
1898
	status = device_add(&master->dev);
1899
	if (status < 0)
1900
		goto done;
1901
	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1902 1903
			dynamic ? " (dynamic)" : "");

1904 1905 1906 1907 1908 1909
	/* If we're using a queued driver, start the queue */
	if (master->transfer)
		dev_info(dev, "master is unqueued, this is deprecated\n");
	else {
		status = spi_master_initialize_queue(master);
		if (status) {
1910
			device_del(&master->dev);
1911 1912 1913
			goto done;
		}
	}
1914 1915
	/* add statistics */
	spin_lock_init(&master->statistics.lock);
1916

1917 1918 1919 1920 1921 1922
	mutex_lock(&board_lock);
	list_add_tail(&master->list, &spi_master_list);
	list_for_each_entry(bi, &board_list, list)
		spi_match_master_to_boardinfo(master, &bi->board_info);
	mutex_unlock(&board_lock);

1923
	/* Register devices from the device tree and ACPI */
1924
	of_register_spi_devices(master);
1925
	acpi_register_spi_devices(master);
1926 1927 1928 1929 1930
done:
	return status;
}
EXPORT_SYMBOL_GPL(spi_register_master);

1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
static void devm_spi_unregister(struct device *dev, void *res)
{
	spi_unregister_master(*(struct spi_master **)res);
}

/**
 * dev_spi_register_master - register managed SPI master controller
 * @dev:    device managing SPI master
 * @master: initialized master, originally from spi_alloc_master()
 * Context: can sleep
 *
 * Register a SPI device as with spi_register_master() which will
 * automatically be unregister
1944 1945
 *
 * Return: zero on success, else a negative error code.
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
 */
int devm_spi_register_master(struct device *dev, struct spi_master *master)
{
	struct spi_master **ptr;
	int ret;

	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return -ENOMEM;

	ret = spi_register_master(master);
1957
	if (!ret) {
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
		*ptr = master;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return ret;
}
EXPORT_SYMBOL_GPL(devm_spi_register_master);

1968
static int __unregister(struct device *dev, void *null)
1969
{
1970
	spi_unregister_device(to_spi_device(dev));
1971 1972 1973 1974 1975 1976
	return 0;
}

/**
 * spi_unregister_master - unregister SPI master controller
 * @master: the master being unregistered
D
David Brownell 已提交
1977
 * Context: can sleep
1978 1979 1980 1981 1982 1983 1984 1985
 *
 * This call is used only by SPI master controller drivers, which are the
 * only ones directly touching chip registers.
 *
 * This must be called from context that can sleep.
 */
void spi_unregister_master(struct spi_master *master)
{
1986 1987
	int dummy;

1988 1989 1990 1991 1992
	if (master->queued) {
		if (spi_destroy_queue(master))
			dev_err(&master->dev, "queue remove failed\n");
	}

1993 1994 1995 1996
	mutex_lock(&board_lock);
	list_del(&master->list);
	mutex_unlock(&board_lock);

1997
	dummy = device_for_each_child(&master->dev, NULL, __unregister);
T
Tony Jones 已提交
1998
	device_unregister(&master->dev);
1999 2000 2001
}
EXPORT_SYMBOL_GPL(spi_unregister_master);

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
int spi_master_suspend(struct spi_master *master)
{
	int ret;

	/* Basically no-ops for non-queued masters */
	if (!master->queued)
		return 0;

	ret = spi_stop_queue(master);
	if (ret)
		dev_err(&master->dev, "queue stop failed\n");

	return ret;
}
EXPORT_SYMBOL_GPL(spi_master_suspend);

int spi_master_resume(struct spi_master *master)
{
	int ret;

	if (!master->queued)
		return 0;

	ret = spi_start_queue(master);
	if (ret)
		dev_err(&master->dev, "queue restart failed\n");

	return ret;
}
EXPORT_SYMBOL_GPL(spi_master_resume);

2033
static int __spi_master_match(struct device *dev, const void *data)
D
Dave Young 已提交
2034 2035
{
	struct spi_master *m;
2036
	const u16 *bus_num = data;
D
Dave Young 已提交
2037 2038 2039 2040 2041

	m = container_of(dev, struct spi_master, dev);
	return m->bus_num == *bus_num;
}

2042 2043 2044
/**
 * spi_busnum_to_master - look up master associated with bus_num
 * @bus_num: the master's bus number
D
David Brownell 已提交
2045
 * Context: can sleep
2046 2047 2048 2049 2050
 *
 * This call may be used with devices that are registered after
 * arch init time.  It returns a refcounted pointer to the relevant
 * spi_master (which the caller must release), or NULL if there is
 * no such master registered.
2051 2052
 *
 * Return: the SPI master structure on success, else NULL.
2053 2054 2055
 */
struct spi_master *spi_busnum_to_master(u16 bus_num)
{
T
Tony Jones 已提交
2056
	struct device		*dev;
2057
	struct spi_master	*master = NULL;
D
Dave Young 已提交
2058

2059
	dev = class_find_device(&spi_master_class, NULL, &bus_num,
D
Dave Young 已提交
2060 2061 2062 2063
				__spi_master_match);
	if (dev)
		master = container_of(dev, struct spi_master, dev);
	/* reference got in class_find_device */
2064
	return master;
2065 2066 2067
}
EXPORT_SYMBOL_GPL(spi_busnum_to_master);

2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
/*-------------------------------------------------------------------------*/

/* Core methods for SPI resource management */

/**
 * spi_res_alloc - allocate a spi resource that is life-cycle managed
 *                 during the processing of a spi_message while using
 *                 spi_transfer_one
 * @spi:     the spi device for which we allocate memory
 * @release: the release code to execute for this resource
 * @size:    size to alloc and return
 * @gfp:     GFP allocation flags
 *
 * Return: the pointer to the allocated data
 *
 * This may get enhanced in the future to allocate from a memory pool
 * of the @spi_device or @spi_master to avoid repeated allocations.
 */
void *spi_res_alloc(struct spi_device *spi,
		    spi_res_release_t release,
		    size_t size, gfp_t gfp)
{
	struct spi_res *sres;

	sres = kzalloc(sizeof(*sres) + size, gfp);
	if (!sres)
		return NULL;

	INIT_LIST_HEAD(&sres->entry);
	sres->release = release;

	return sres->data;
}
EXPORT_SYMBOL_GPL(spi_res_alloc);

/**
 * spi_res_free - free an spi resource
 * @res: pointer to the custom data of a resource
 *
 */
void spi_res_free(void *res)
{
	struct spi_res *sres = container_of(res, struct spi_res, data);

	if (!res)
		return;

	WARN_ON(!list_empty(&sres->entry));
	kfree(sres);
}
EXPORT_SYMBOL_GPL(spi_res_free);

/**
 * spi_res_add - add a spi_res to the spi_message
 * @message: the spi message
 * @res:     the spi_resource
 */
void spi_res_add(struct spi_message *message, void *res)
{
	struct spi_res *sres = container_of(res, struct spi_res, data);

	WARN_ON(!list_empty(&sres->entry));
	list_add_tail(&sres->entry, &message->resources);
}
EXPORT_SYMBOL_GPL(spi_res_add);

/**
 * spi_res_release - release all spi resources for this message
 * @master:  the @spi_master
 * @message: the @spi_message
 */
void spi_res_release(struct spi_master *master,
		     struct spi_message *message)
{
	struct spi_res *res;

	while (!list_empty(&message->resources)) {
		res = list_last_entry(&message->resources,
				      struct spi_res, entry);

		if (res->release)
			res->release(master, message, res->data);

		list_del(&res->entry);

		kfree(res);
	}
}
EXPORT_SYMBOL_GPL(spi_res_release);
2157 2158 2159

/*-------------------------------------------------------------------------*/

2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
/* Core methods for spi_message alterations */

static void __spi_replace_transfers_release(struct spi_master *master,
					    struct spi_message *msg,
					    void *res)
{
	struct spi_replaced_transfers *rxfer = res;
	size_t i;

	/* call extra callback if requested */
	if (rxfer->release)
		rxfer->release(master, msg, res);

	/* insert replaced transfers back into the message */
	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);

	/* remove the formerly inserted entries */
	for (i = 0; i < rxfer->inserted; i++)
		list_del(&rxfer->inserted_transfers[i].transfer_list);
}

/**
 * spi_replace_transfers - replace transfers with several transfers
 *                         and register change with spi_message.resources
 * @msg:           the spi_message we work upon
 * @xfer_first:    the first spi_transfer we want to replace
 * @remove:        number of transfers to remove
 * @insert:        the number of transfers we want to insert instead
 * @release:       extra release code necessary in some circumstances
 * @extradatasize: extra data to allocate (with alignment guarantees
 *                 of struct @spi_transfer)
2191
 * @gfp:           gfp flags
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
 *
 * Returns: pointer to @spi_replaced_transfers,
 *          PTR_ERR(...) in case of errors.
 */
struct spi_replaced_transfers *spi_replace_transfers(
	struct spi_message *msg,
	struct spi_transfer *xfer_first,
	size_t remove,
	size_t insert,
	spi_replaced_release_t release,
	size_t extradatasize,
	gfp_t gfp)
{
	struct spi_replaced_transfers *rxfer;
	struct spi_transfer *xfer;
	size_t i;

	/* allocate the structure using spi_res */
	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
			      insert * sizeof(struct spi_transfer)
			      + sizeof(struct spi_replaced_transfers)
			      + extradatasize,
			      gfp);
	if (!rxfer)
		return ERR_PTR(-ENOMEM);

	/* the release code to invoke before running the generic release */
	rxfer->release = release;

	/* assign extradata */
	if (extradatasize)
		rxfer->extradata =
			&rxfer->inserted_transfers[insert];

	/* init the replaced_transfers list */
	INIT_LIST_HEAD(&rxfer->replaced_transfers);

	/* assign the list_entry after which we should reinsert
	 * the @replaced_transfers - it may be spi_message.messages!
	 */
	rxfer->replaced_after = xfer_first->transfer_list.prev;

	/* remove the requested number of transfers */
	for (i = 0; i < remove; i++) {
		/* if the entry after replaced_after it is msg->transfers
		 * then we have been requested to remove more transfers
		 * than are in the list
		 */
		if (rxfer->replaced_after->next == &msg->transfers) {
			dev_err(&msg->spi->dev,
				"requested to remove more spi_transfers than are available\n");
			/* insert replaced transfers back into the message */
			list_splice(&rxfer->replaced_transfers,
				    rxfer->replaced_after);

			/* free the spi_replace_transfer structure */
			spi_res_free(rxfer);

			/* and return with an error */
			return ERR_PTR(-EINVAL);
		}

		/* remove the entry after replaced_after from list of
		 * transfers and add it to list of replaced_transfers
		 */
		list_move_tail(rxfer->replaced_after->next,
			       &rxfer->replaced_transfers);
	}

	/* create copy of the given xfer with identical settings
	 * based on the first transfer to get removed
	 */
	for (i = 0; i < insert; i++) {
		/* we need to run in reverse order */
		xfer = &rxfer->inserted_transfers[insert - 1 - i];

		/* copy all spi_transfer data */
		memcpy(xfer, xfer_first, sizeof(*xfer));

		/* add to list */
		list_add(&xfer->transfer_list, rxfer->replaced_after);

		/* clear cs_change and delay_usecs for all but the last */
		if (i) {
			xfer->cs_change = false;
			xfer->delay_usecs = 0;
		}
	}

	/* set up inserted */
	rxfer->inserted = insert;

	/* and register it with spi_res/spi_message */
	spi_res_add(msg, rxfer);

	return rxfer;
}
EXPORT_SYMBOL_GPL(spi_replace_transfers);

2291 2292 2293 2294 2295
static int __spi_split_transfer_maxsize(struct spi_master *master,
					struct spi_message *msg,
					struct spi_transfer **xferp,
					size_t maxsize,
					gfp_t gfp)
2296 2297 2298 2299 2300 2301 2302 2303
{
	struct spi_transfer *xfer = *xferp, *xfers;
	struct spi_replaced_transfers *srt;
	size_t offset;
	size_t count, i;

	/* warn once about this fact that we are splitting a transfer */
	dev_warn_once(&msg->spi->dev,
2304
		      "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2305 2306 2307 2308 2309 2310 2311
		      xfer->len, maxsize);

	/* calculate how many we have to replace */
	count = DIV_ROUND_UP(xfer->len, maxsize);

	/* create replacement */
	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2312 2313
	if (IS_ERR(srt))
		return PTR_ERR(srt);
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
	xfers = srt->inserted_transfers;

	/* now handle each of those newly inserted spi_transfers
	 * note that the replacements spi_transfers all are preset
	 * to the same values as *xferp, so tx_buf, rx_buf and len
	 * are all identical (as well as most others)
	 * so we just have to fix up len and the pointers.
	 *
	 * this also includes support for the depreciated
	 * spi_message.is_dma_mapped interface
	 */

	/* the first transfer just needs the length modified, so we
	 * run it outside the loop
	 */
F
Fabio Estevam 已提交
2329
	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365

	/* all the others need rx_buf/tx_buf also set */
	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
		/* update rx_buf, tx_buf and dma */
		if (xfers[i].rx_buf)
			xfers[i].rx_buf += offset;
		if (xfers[i].rx_dma)
			xfers[i].rx_dma += offset;
		if (xfers[i].tx_buf)
			xfers[i].tx_buf += offset;
		if (xfers[i].tx_dma)
			xfers[i].tx_dma += offset;

		/* update length */
		xfers[i].len = min(maxsize, xfers[i].len - offset);
	}

	/* we set up xferp to the last entry we have inserted,
	 * so that we skip those already split transfers
	 */
	*xferp = &xfers[count - 1];

	/* increment statistics counters */
	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
				       transfers_split_maxsize);
	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
				       transfers_split_maxsize);

	return 0;
}

/**
 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
 *                              when an individual transfer exceeds a
 *                              certain size
 * @master:    the @spi_master for this transfer
2366 2367
 * @msg:   the @spi_message to transform
 * @maxsize:  the maximum when to apply this
2368
 * @gfp: GFP allocation flags
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
 *
 * Return: status of transformation
 */
int spi_split_transfers_maxsize(struct spi_master *master,
				struct spi_message *msg,
				size_t maxsize,
				gfp_t gfp)
{
	struct spi_transfer *xfer;
	int ret;

	/* iterate over the transfer_list,
	 * but note that xfer is advanced to the last transfer inserted
	 * to avoid checking sizes again unnecessarily (also xfer does
	 * potentiall belong to a different list by the time the
	 * replacement has happened
	 */
	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		if (xfer->len > maxsize) {
			ret = __spi_split_transfer_maxsize(
				master, msg, &xfer, maxsize, gfp);
			if (ret)
				return ret;
		}
	}

	return 0;
}
EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2398 2399 2400

/*-------------------------------------------------------------------------*/

2401 2402 2403 2404
/* Core methods for SPI master protocol drivers.  Some of the
 * other core methods are currently defined as inline functions.
 */

2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
{
	if (master->bits_per_word_mask) {
		/* Only 32 bits fit in the mask */
		if (bits_per_word > 32)
			return -EINVAL;
		if (!(master->bits_per_word_mask &
				SPI_BPW_MASK(bits_per_word)))
			return -EINVAL;
	}

	return 0;
}

2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
/**
 * spi_setup - setup SPI mode and clock rate
 * @spi: the device whose settings are being modified
 * Context: can sleep, and no requests are queued to the device
 *
 * SPI protocol drivers may need to update the transfer mode if the
 * device doesn't work with its default.  They may likewise need
 * to update clock rates or word sizes from initial values.  This function
 * changes those settings, and must be called from a context that can sleep.
 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
 * effect the next time the device is selected and data is transferred to
 * or from it.  When this function returns, the spi device is deselected.
 *
 * Note that this call will fail if the protocol driver specifies an option
 * that the underlying controller or its driver does not support.  For
 * example, not all hardware supports wire transfers using nine bit words,
 * LSB-first wire encoding, or active-high chipselects.
2436 2437
 *
 * Return: zero on success, else a negative error code.
2438 2439 2440
 */
int spi_setup(struct spi_device *spi)
{
2441
	unsigned	bad_bits, ugly_bits;
2442
	int		status;
2443

W
wangyuhang 已提交
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
	/* check mode to prevent that DUAL and QUAD set at the same time
	 */
	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
		dev_err(&spi->dev,
		"setup: can not select dual and quad at the same time\n");
		return -EINVAL;
	}
	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
	 */
	if ((spi->mode & SPI_3WIRE) && (spi->mode &
		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
		return -EINVAL;
2457 2458 2459 2460
	/* help drivers fail *cleanly* when they need options
	 * that aren't supported with their current master
	 */
	bad_bits = spi->mode & ~spi->master->mode_bits;
2461 2462 2463 2464 2465 2466 2467 2468 2469
	ugly_bits = bad_bits &
		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
	if (ugly_bits) {
		dev_warn(&spi->dev,
			 "setup: ignoring unsupported mode bits %x\n",
			 ugly_bits);
		spi->mode &= ~ugly_bits;
		bad_bits &= ~ugly_bits;
	}
2470
	if (bad_bits) {
2471
		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2472 2473 2474 2475
			bad_bits);
		return -EINVAL;
	}

2476 2477 2478
	if (!spi->bits_per_word)
		spi->bits_per_word = 8;

2479 2480 2481
	status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
	if (status)
		return status;
2482

2483 2484 2485
	if (!spi->max_speed_hz)
		spi->max_speed_hz = spi->master->max_speed_hz;

2486 2487
	if (spi->master->setup)
		status = spi->master->setup(spi);
2488

2489 2490
	spi_set_cs(spi, false);

J
Jingoo Han 已提交
2491
	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
			(spi->mode & SPI_LOOP) ? "loopback, " : "",
			spi->bits_per_word, spi->max_speed_hz,
			status);

	return status;
}
EXPORT_SYMBOL_GPL(spi_setup);

2504
static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2505 2506
{
	struct spi_master *master = spi->master;
2507
	struct spi_transfer *xfer;
2508
	int w_size;
2509

2510 2511 2512
	if (list_empty(&message->transfers))
		return -EINVAL;

2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
	/* Half-duplex links include original MicroWire, and ones with
	 * only one data pin like SPI_3WIRE (switches direction) or where
	 * either MOSI or MISO is missing.  They can also be caused by
	 * software limitations.
	 */
	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
			|| (spi->mode & SPI_3WIRE)) {
		unsigned flags = master->flags;

		list_for_each_entry(xfer, &message->transfers, transfer_list) {
			if (xfer->rx_buf && xfer->tx_buf)
				return -EINVAL;
			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
				return -EINVAL;
			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
				return -EINVAL;
		}
	}

2532
	/**
2533 2534
	 * Set transfer bits_per_word and max speed as spi device default if
	 * it is not set for this transfer.
W
wangyuhang 已提交
2535 2536
	 * Set transfer tx_nbits and rx_nbits as single transfer default
	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2537
	 */
2538
	message->frame_length = 0;
2539
	list_for_each_entry(xfer, &message->transfers, transfer_list) {
2540
		message->frame_length += xfer->len;
2541 2542
		if (!xfer->bits_per_word)
			xfer->bits_per_word = spi->bits_per_word;
2543 2544

		if (!xfer->speed_hz)
2545
			xfer->speed_hz = spi->max_speed_hz;
2546 2547
		if (!xfer->speed_hz)
			xfer->speed_hz = master->max_speed_hz;
2548 2549 2550 2551

		if (master->max_speed_hz &&
		    xfer->speed_hz > master->max_speed_hz)
			xfer->speed_hz = master->max_speed_hz;
2552

2553 2554
		if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
			return -EINVAL;
2555

2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
		/*
		 * SPI transfer length should be multiple of SPI word size
		 * where SPI word size should be power-of-two multiple
		 */
		if (xfer->bits_per_word <= 8)
			w_size = 1;
		else if (xfer->bits_per_word <= 16)
			w_size = 2;
		else
			w_size = 4;

		/* No partial transfers accepted */
2568
		if (xfer->len % w_size)
2569 2570
			return -EINVAL;

2571 2572 2573
		if (xfer->speed_hz && master->min_speed_hz &&
		    xfer->speed_hz < master->min_speed_hz)
			return -EINVAL;
W
wangyuhang 已提交
2574 2575 2576 2577 2578 2579

		if (xfer->tx_buf && !xfer->tx_nbits)
			xfer->tx_nbits = SPI_NBITS_SINGLE;
		if (xfer->rx_buf && !xfer->rx_nbits)
			xfer->rx_nbits = SPI_NBITS_SINGLE;
		/* check transfer tx/rx_nbits:
2580 2581
		 * 1. check the value matches one of single, dual and quad
		 * 2. check tx/rx_nbits match the mode in spi_device
W
wangyuhang 已提交
2582
		 */
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
		if (xfer->tx_buf) {
			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
				xfer->tx_nbits != SPI_NBITS_DUAL &&
				xfer->tx_nbits != SPI_NBITS_QUAD)
				return -EINVAL;
			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
				return -EINVAL;
			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
				!(spi->mode & SPI_TX_QUAD))
				return -EINVAL;
		}
W
wangyuhang 已提交
2595
		/* check transfer rx_nbits */
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
		if (xfer->rx_buf) {
			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
				xfer->rx_nbits != SPI_NBITS_DUAL &&
				xfer->rx_nbits != SPI_NBITS_QUAD)
				return -EINVAL;
			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
				return -EINVAL;
			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
				!(spi->mode & SPI_RX_QUAD))
				return -EINVAL;
		}
2608 2609
	}

2610
	message->status = -EINPROGRESS;
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620

	return 0;
}

static int __spi_async(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;

	message->spi = spi;

2621 2622 2623
	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);

2624 2625
	trace_spi_message_submit(message);

2626 2627 2628
	return master->transfer(spi, message);
}

D
David Brownell 已提交
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
/**
 * spi_async - asynchronous SPI transfer
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers, including completion callback
 * Context: any (irqs may be blocked, etc)
 *
 * This call may be used in_irq and other contexts which can't sleep,
 * as well as from task contexts which can sleep.
 *
 * The completion callback is invoked in a context which can't sleep.
 * Before that invocation, the value of message->status is undefined.
 * When the callback is issued, message->status holds either zero (to
 * indicate complete success) or a negative error code.  After that
 * callback returns, the driver which issued the transfer request may
 * deallocate the associated memory; it's no longer in use by any SPI
 * core or controller driver code.
 *
 * Note that although all messages to a spi_device are handled in
 * FIFO order, messages may go to different devices in other orders.
 * Some device might be higher priority, or have various "hard" access
 * time requirements, for example.
 *
 * On detection of any fault during the transfer, processing of
 * the entire message is aborted, and the device is deselected.
 * Until returning from the associated message completion callback,
 * no other spi_message queued to that device will be processed.
 * (This rule applies equally to all the synchronous transfer calls,
 * which are wrappers around this core asynchronous primitive.)
2657 2658
 *
 * Return: zero on success, else a negative error code.
D
David Brownell 已提交
2659 2660 2661 2662
 */
int spi_async(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;
2663 2664
	int ret;
	unsigned long flags;
D
David Brownell 已提交
2665

2666 2667 2668 2669
	ret = __spi_validate(spi, message);
	if (ret != 0)
		return ret;

2670
	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
D
David Brownell 已提交
2671

2672 2673 2674 2675
	if (master->bus_lock_flag)
		ret = -EBUSY;
	else
		ret = __spi_async(spi, message);
D
David Brownell 已提交
2676

2677 2678 2679
	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	return ret;
D
David Brownell 已提交
2680 2681 2682
}
EXPORT_SYMBOL_GPL(spi_async);

2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
/**
 * spi_async_locked - version of spi_async with exclusive bus usage
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers, including completion callback
 * Context: any (irqs may be blocked, etc)
 *
 * This call may be used in_irq and other contexts which can't sleep,
 * as well as from task contexts which can sleep.
 *
 * The completion callback is invoked in a context which can't sleep.
 * Before that invocation, the value of message->status is undefined.
 * When the callback is issued, message->status holds either zero (to
 * indicate complete success) or a negative error code.  After that
 * callback returns, the driver which issued the transfer request may
 * deallocate the associated memory; it's no longer in use by any SPI
 * core or controller driver code.
 *
 * Note that although all messages to a spi_device are handled in
 * FIFO order, messages may go to different devices in other orders.
 * Some device might be higher priority, or have various "hard" access
 * time requirements, for example.
 *
 * On detection of any fault during the transfer, processing of
 * the entire message is aborted, and the device is deselected.
 * Until returning from the associated message completion callback,
 * no other spi_message queued to that device will be processed.
 * (This rule applies equally to all the synchronous transfer calls,
 * which are wrappers around this core asynchronous primitive.)
2711 2712
 *
 * Return: zero on success, else a negative error code.
2713 2714 2715 2716 2717 2718 2719
 */
int spi_async_locked(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;
	int ret;
	unsigned long flags;

2720 2721 2722 2723
	ret = __spi_validate(spi, message);
	if (ret != 0)
		return ret;

2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
	spin_lock_irqsave(&master->bus_lock_spinlock, flags);

	ret = __spi_async(spi, message);

	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	return ret;

}
EXPORT_SYMBOL_GPL(spi_async_locked);

2735

2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
int spi_flash_read(struct spi_device *spi,
		   struct spi_flash_read_message *msg)

{
	struct spi_master *master = spi->master;
	int ret;

	if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
	     msg->addr_nbits == SPI_NBITS_DUAL) &&
	    !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
		return -EINVAL;
	if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
	     msg->addr_nbits == SPI_NBITS_QUAD) &&
	    !(spi->mode & SPI_TX_QUAD))
		return -EINVAL;
	if (msg->data_nbits == SPI_NBITS_DUAL &&
	    !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
		return -EINVAL;
	if (msg->data_nbits == SPI_NBITS_QUAD &&
	    !(spi->mode &  SPI_RX_QUAD))
		return -EINVAL;

	if (master->auto_runtime_pm) {
		ret = pm_runtime_get_sync(master->dev.parent);
		if (ret < 0) {
			dev_err(&master->dev, "Failed to power device: %d\n",
				ret);
			return ret;
		}
	}
	mutex_lock(&master->bus_lock_mutex);
	ret = master->spi_flash_read(spi, msg);
	mutex_unlock(&master->bus_lock_mutex);
	if (master->auto_runtime_pm)
		pm_runtime_put(master->dev.parent);

	return ret;
}
EXPORT_SYMBOL_GPL(spi_flash_read);

2776 2777 2778 2779 2780 2781 2782
/*-------------------------------------------------------------------------*/

/* Utility methods for SPI master protocol drivers, layered on
 * top of the core.  Some other utility methods are defined as
 * inline functions.
 */

2783 2784 2785 2786 2787
static void spi_complete(void *arg)
{
	complete(arg);
}

2788 2789 2790 2791 2792 2793
static int __spi_sync(struct spi_device *spi, struct spi_message *message,
		      int bus_locked)
{
	DECLARE_COMPLETION_ONSTACK(done);
	int status;
	struct spi_master *master = spi->master;
2794 2795 2796 2797 2798
	unsigned long flags;

	status = __spi_validate(spi, message);
	if (status != 0)
		return status;
2799 2800 2801

	message->complete = spi_complete;
	message->context = &done;
2802
	message->spi = spi;
2803

2804 2805 2806
	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);

2807 2808 2809
	if (!bus_locked)
		mutex_lock(&master->bus_lock_mutex);

2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
	/* If we're not using the legacy transfer method then we will
	 * try to transfer in the calling context so special case.
	 * This code would be less tricky if we could remove the
	 * support for driver implemented message queues.
	 */
	if (master->transfer == spi_queued_transfer) {
		spin_lock_irqsave(&master->bus_lock_spinlock, flags);

		trace_spi_message_submit(message);

		status = __spi_queued_transfer(spi, message, false);

		spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
	} else {
		status = spi_async_locked(spi, message);
	}
2826 2827 2828 2829 2830

	if (!bus_locked)
		mutex_unlock(&master->bus_lock_mutex);

	if (status == 0) {
2831 2832 2833
		/* Push out the messages in the calling context if we
		 * can.
		 */
2834 2835 2836 2837 2838
		if (master->transfer == spi_queued_transfer) {
			SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
						       spi_sync_immediate);
			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
						       spi_sync_immediate);
2839
			__spi_pump_messages(master, false, bus_locked);
2840
		}
2841

2842 2843 2844 2845 2846 2847 2848
		wait_for_completion(&done);
		status = message->status;
	}
	message->context = NULL;
	return status;
}

2849 2850 2851 2852
/**
 * spi_sync - blocking/synchronous SPI data transfers
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers
D
David Brownell 已提交
2853
 * Context: can sleep
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.  Low-overhead controller
 * drivers may DMA directly into and out of the message buffers.
 *
 * Note that the SPI device's chip select is active during the message,
 * and then is normally disabled between messages.  Drivers for some
 * frequently-used devices may want to minimize costs of selecting a chip,
 * by leaving it selected in anticipation that the next message will go
 * to the same chip.  (That may increase power usage.)
 *
D
David Brownell 已提交
2865 2866 2867
 * Also, the caller is guaranteeing that the memory associated with the
 * message will not be freed before this call returns.
 *
2868
 * Return: zero on success, else a negative error code.
2869 2870 2871
 */
int spi_sync(struct spi_device *spi, struct spi_message *message)
{
2872
	return __spi_sync(spi, message, spi->master->bus_lock_flag);
2873 2874 2875
}
EXPORT_SYMBOL_GPL(spi_sync);

2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
/**
 * spi_sync_locked - version of spi_sync with exclusive bus usage
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.  Low-overhead controller
 * drivers may DMA directly into and out of the message buffers.
 *
 * This call should be used by drivers that require exclusive access to the
L
Lucas De Marchi 已提交
2887
 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2888 2889
 * be released by a spi_bus_unlock call when the exclusive access is over.
 *
2890
 * Return: zero on success, else a negative error code.
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
 */
int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
{
	return __spi_sync(spi, message, 1);
}
EXPORT_SYMBOL_GPL(spi_sync_locked);

/**
 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
 * @master: SPI bus master that should be locked for exclusive bus access
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.
 *
 * This call should be used by drivers that require exclusive access to the
 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
 * exclusive access is over. Data transfer must be done by spi_sync_locked
 * and spi_async_locked calls when the SPI bus lock is held.
 *
2911
 * Return: always zero.
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
 */
int spi_bus_lock(struct spi_master *master)
{
	unsigned long flags;

	mutex_lock(&master->bus_lock_mutex);

	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
	master->bus_lock_flag = 1;
	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	/* mutex remains locked until spi_bus_unlock is called */

	return 0;
}
EXPORT_SYMBOL_GPL(spi_bus_lock);

/**
 * spi_bus_unlock - release the lock for exclusive SPI bus usage
 * @master: SPI bus master that was locked for exclusive bus access
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.
 *
 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
 * call.
 *
2940
 * Return: always zero.
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
 */
int spi_bus_unlock(struct spi_master *master)
{
	master->bus_lock_flag = 0;

	mutex_unlock(&master->bus_lock_mutex);

	return 0;
}
EXPORT_SYMBOL_GPL(spi_bus_unlock);

2952
/* portable code must never pass more than 32 bytes */
J
Jingoo Han 已提交
2953
#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
2954 2955 2956 2957 2958 2959 2960 2961

static u8	*buf;

/**
 * spi_write_then_read - SPI synchronous write followed by read
 * @spi: device with which data will be exchanged
 * @txbuf: data to be written (need not be dma-safe)
 * @n_tx: size of txbuf, in bytes
2962 2963
 * @rxbuf: buffer into which data will be read (need not be dma-safe)
 * @n_rx: size of rxbuf, in bytes
D
David Brownell 已提交
2964
 * Context: can sleep
2965 2966 2967 2968
 *
 * This performs a half duplex MicroWire style transaction with the
 * device, sending txbuf and then reading rxbuf.  The return value
 * is zero for success, else a negative errno status code.
2969
 * This call may only be used from a context that may sleep.
2970
 *
D
David Brownell 已提交
2971
 * Parameters to this routine are always copied using a small buffer;
D
David Brownell 已提交
2972 2973
 * portable code should never use this for more than 32 bytes.
 * Performance-sensitive or bulk transfer code should instead use
D
David Brownell 已提交
2974
 * spi_{async,sync}() calls with dma-safe buffers.
2975 2976
 *
 * Return: zero on success, else a negative error code.
2977 2978
 */
int spi_write_then_read(struct spi_device *spi,
2979 2980
		const void *txbuf, unsigned n_tx,
		void *rxbuf, unsigned n_rx)
2981
{
D
David Brownell 已提交
2982
	static DEFINE_MUTEX(lock);
2983 2984 2985

	int			status;
	struct spi_message	message;
2986
	struct spi_transfer	x[2];
2987 2988
	u8			*local_buf;

2989 2990 2991 2992
	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
	 * copying here, (as a pure convenience thing), but we can
	 * keep heap costs out of the hot path unless someone else is
	 * using the pre-allocated buffer or the transfer is too large.
2993
	 */
2994
	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2995 2996
		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
				    GFP_KERNEL | GFP_DMA);
2997 2998 2999 3000 3001
		if (!local_buf)
			return -ENOMEM;
	} else {
		local_buf = buf;
	}
3002

3003
	spi_message_init(&message);
J
Jingoo Han 已提交
3004
	memset(x, 0, sizeof(x));
3005 3006 3007 3008 3009 3010 3011 3012
	if (n_tx) {
		x[0].len = n_tx;
		spi_message_add_tail(&x[0], &message);
	}
	if (n_rx) {
		x[1].len = n_rx;
		spi_message_add_tail(&x[1], &message);
	}
3013

3014
	memcpy(local_buf, txbuf, n_tx);
3015 3016
	x[0].tx_buf = local_buf;
	x[1].rx_buf = local_buf + n_tx;
3017 3018 3019

	/* do the i/o */
	status = spi_sync(spi, &message);
3020
	if (status == 0)
3021
		memcpy(rxbuf, x[1].rx_buf, n_rx);
3022

3023
	if (x[0].tx_buf == buf)
D
David Brownell 已提交
3024
		mutex_unlock(&lock);
3025 3026 3027 3028 3029 3030 3031 3032 3033
	else
		kfree(local_buf);

	return status;
}
EXPORT_SYMBOL_GPL(spi_write_then_read);

/*-------------------------------------------------------------------------*/

3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
#if IS_ENABLED(CONFIG_OF_DYNAMIC)
static int __spi_of_device_match(struct device *dev, void *data)
{
	return dev->of_node == data;
}

/* must call put_device() when done with returned spi_device device */
static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
{
	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
						__spi_of_device_match);
	return dev ? to_spi_device(dev) : NULL;
}

static int __spi_of_master_match(struct device *dev, const void *data)
{
	return dev->of_node == data;
}

/* the spi masters are not using spi_bus, so we find it with another way */
static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
{
	struct device *dev;

	dev = class_find_device(&spi_master_class, NULL, node,
				__spi_of_master_match);
	if (!dev)
		return NULL;

	/* reference got in class_find_device */
	return container_of(dev, struct spi_master, dev);
}

static int of_spi_notify(struct notifier_block *nb, unsigned long action,
			 void *arg)
{
	struct of_reconfig_data *rd = arg;
	struct spi_master *master;
	struct spi_device *spi;

	switch (of_reconfig_get_state_change(action, arg)) {
	case OF_RECONFIG_CHANGE_ADD:
		master = of_find_spi_master_by_node(rd->dn->parent);
		if (master == NULL)
			return NOTIFY_OK;	/* not for us */

3080 3081 3082 3083 3084
		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
			put_device(&master->dev);
			return NOTIFY_OK;
		}

3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
		spi = of_register_spi_device(master, rd->dn);
		put_device(&master->dev);

		if (IS_ERR(spi)) {
			pr_err("%s: failed to create for '%s'\n",
					__func__, rd->dn->full_name);
			return notifier_from_errno(PTR_ERR(spi));
		}
		break;

	case OF_RECONFIG_CHANGE_REMOVE:
3096 3097 3098 3099
		/* already depopulated? */
		if (!of_node_check_flag(rd->dn, OF_POPULATED))
			return NOTIFY_OK;

3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
		/* find our device by node */
		spi = of_find_spi_device_by_node(rd->dn);
		if (spi == NULL)
			return NOTIFY_OK;	/* no? not meant for us */

		/* unregister takes one ref away */
		spi_unregister_device(spi);

		/* and put the reference of the find */
		put_device(&spi->dev);
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block spi_of_notifier = {
	.notifier_call = of_spi_notify,
};
#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
extern struct notifier_block spi_of_notifier;
#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */

3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
#if IS_ENABLED(CONFIG_ACPI)
static int spi_acpi_master_match(struct device *dev, const void *data)
{
	return ACPI_COMPANION(dev->parent) == data;
}

static int spi_acpi_device_match(struct device *dev, void *data)
{
	return ACPI_COMPANION(dev) == data;
}

static struct spi_master *acpi_spi_find_master_by_adev(struct acpi_device *adev)
{
	struct device *dev;

	dev = class_find_device(&spi_master_class, NULL, adev,
				spi_acpi_master_match);
	if (!dev)
		return NULL;

	return container_of(dev, struct spi_master, dev);
}

static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
{
	struct device *dev;

	dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);

	return dev ? to_spi_device(dev) : NULL;
}

static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
			   void *arg)
{
	struct acpi_device *adev = arg;
	struct spi_master *master;
	struct spi_device *spi;

	switch (value) {
	case ACPI_RECONFIG_DEVICE_ADD:
		master = acpi_spi_find_master_by_adev(adev->parent);
		if (!master)
			break;

		acpi_register_spi_device(master, adev);
		put_device(&master->dev);
		break;
	case ACPI_RECONFIG_DEVICE_REMOVE:
		if (!acpi_device_enumerated(adev))
			break;

		spi = acpi_spi_find_device_by_adev(adev);
		if (!spi)
			break;

		spi_unregister_device(spi);
		put_device(&spi->dev);
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block spi_acpi_notifier = {
	.notifier_call = acpi_spi_notify,
};
#else
extern struct notifier_block spi_acpi_notifier;
#endif

3194 3195
static int __init spi_init(void)
{
3196 3197
	int	status;

3198
	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3199 3200 3201 3202 3203 3204 3205 3206
	if (!buf) {
		status = -ENOMEM;
		goto err0;
	}

	status = bus_register(&spi_bus_type);
	if (status < 0)
		goto err1;
3207

3208 3209 3210
	status = class_register(&spi_master_class);
	if (status < 0)
		goto err2;
3211

3212
	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3213
		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3214 3215
	if (IS_ENABLED(CONFIG_ACPI))
		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3216

3217
	return 0;
3218 3219 3220 3221 3222 3223 3224 3225

err2:
	bus_unregister(&spi_bus_type);
err1:
	kfree(buf);
	buf = NULL;
err0:
	return status;
3226
}
3227

3228 3229
/* board_info is normally registered in arch_initcall(),
 * but even essential drivers wait till later
3230 3231 3232 3233
 *
 * REVISIT only boardinfo really needs static linking. the rest (device and
 * driver registration) _could_ be dynamically linked (modular) ... costs
 * include needing to have boardinfo data structures be much more public.
3234
 */
3235
postcore_initcall(spi_init);
3236