spi.c 55.0 KB
Newer Older
1
/*
G
Grant Likely 已提交
2
 * SPI init/core code
3 4
 *
 * Copyright (C) 2005 David Brownell
5
 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/kernel.h>
23
#include <linux/kmod.h>
24 25 26
#include <linux/device.h>
#include <linux/init.h>
#include <linux/cache.h>
27
#include <linux/mutex.h>
28
#include <linux/of_device.h>
29
#include <linux/of_irq.h>
30
#include <linux/slab.h>
31
#include <linux/mod_devicetable.h>
32
#include <linux/spi/spi.h>
33
#include <linux/of_gpio.h>
M
Mark Brown 已提交
34
#include <linux/pm_runtime.h>
35
#include <linux/export.h>
36
#include <linux/sched/rt.h>
37 38
#include <linux/delay.h>
#include <linux/kthread.h>
39 40
#include <linux/ioport.h>
#include <linux/acpi.h>
41

42 43 44
#define CREATE_TRACE_POINTS
#include <trace/events/spi.h>

45 46
static void spidev_release(struct device *dev)
{
47
	struct spi_device	*spi = to_spi_device(dev);
48 49 50 51 52

	/* spi masters may cleanup for released devices */
	if (spi->master->cleanup)
		spi->master->cleanup(spi);

D
David Brownell 已提交
53
	spi_master_put(spi->master);
54
	kfree(spi);
55 56 57 58 59 60 61
}

static ssize_t
modalias_show(struct device *dev, struct device_attribute *a, char *buf)
{
	const struct spi_device	*spi = to_spi_device(dev);

62
	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
63
}
64
static DEVICE_ATTR_RO(modalias);
65

66 67 68
static struct attribute *spi_dev_attrs[] = {
	&dev_attr_modalias.attr,
	NULL,
69
};
70
ATTRIBUTE_GROUPS(spi_dev);
71 72 73 74 75

/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 * and the sysfs version makes coldplug work too.
 */

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
						const struct spi_device *sdev)
{
	while (id->name[0]) {
		if (!strcmp(sdev->modalias, id->name))
			return id;
		id++;
	}
	return NULL;
}

const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
{
	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);

	return spi_match_id(sdrv->id_table, sdev);
}
EXPORT_SYMBOL_GPL(spi_get_device_id);

95 96 97
static int spi_match_device(struct device *dev, struct device_driver *drv)
{
	const struct spi_device	*spi = to_spi_device(dev);
98 99
	const struct spi_driver	*sdrv = to_spi_driver(drv);

100 101 102 103
	/* Attempt an OF style match */
	if (of_driver_match_device(dev, drv))
		return 1;

104 105 106 107
	/* Then try ACPI */
	if (acpi_driver_match_device(dev, drv))
		return 1;

108 109
	if (sdrv->id_table)
		return !!spi_match_id(sdrv->id_table, spi);
110

111
	return strcmp(spi->modalias, drv->name) == 0;
112 113
}

114
static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
115 116 117
{
	const struct spi_device		*spi = to_spi_device(dev);

118
	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
119 120 121
	return 0;
}

M
Mark Brown 已提交
122 123
#ifdef CONFIG_PM_SLEEP
static int spi_legacy_suspend(struct device *dev, pm_message_t message)
124
{
125
	int			value = 0;
126
	struct spi_driver	*drv = to_spi_driver(dev->driver);
127 128

	/* suspend will stop irqs and dma; no more i/o */
129 130 131 132 133 134
	if (drv) {
		if (drv->suspend)
			value = drv->suspend(to_spi_device(dev), message);
		else
			dev_dbg(dev, "... can't suspend\n");
	}
135 136 137
	return value;
}

M
Mark Brown 已提交
138
static int spi_legacy_resume(struct device *dev)
139
{
140
	int			value = 0;
141
	struct spi_driver	*drv = to_spi_driver(dev->driver);
142 143

	/* resume may restart the i/o queue */
144 145 146 147 148 149
	if (drv) {
		if (drv->resume)
			value = drv->resume(to_spi_device(dev));
		else
			dev_dbg(dev, "... can't resume\n");
	}
150 151 152
	return value;
}

M
Mark Brown 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
static int spi_pm_suspend(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_suspend(dev);
	else
		return spi_legacy_suspend(dev, PMSG_SUSPEND);
}

static int spi_pm_resume(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_resume(dev);
	else
		return spi_legacy_resume(dev);
}

static int spi_pm_freeze(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_freeze(dev);
	else
		return spi_legacy_suspend(dev, PMSG_FREEZE);
}

static int spi_pm_thaw(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_thaw(dev);
	else
		return spi_legacy_resume(dev);
}

static int spi_pm_poweroff(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_poweroff(dev);
	else
		return spi_legacy_suspend(dev, PMSG_HIBERNATE);
}

static int spi_pm_restore(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_restore(dev);
	else
		return spi_legacy_resume(dev);
}
212
#else
M
Mark Brown 已提交
213 214 215 216 217 218
#define spi_pm_suspend	NULL
#define spi_pm_resume	NULL
#define spi_pm_freeze	NULL
#define spi_pm_thaw	NULL
#define spi_pm_poweroff	NULL
#define spi_pm_restore	NULL
219 220
#endif

M
Mark Brown 已提交
221 222 223 224 225 226 227 228 229 230
static const struct dev_pm_ops spi_pm = {
	.suspend = spi_pm_suspend,
	.resume = spi_pm_resume,
	.freeze = spi_pm_freeze,
	.thaw = spi_pm_thaw,
	.poweroff = spi_pm_poweroff,
	.restore = spi_pm_restore,
	SET_RUNTIME_PM_OPS(
		pm_generic_runtime_suspend,
		pm_generic_runtime_resume,
231
		NULL
M
Mark Brown 已提交
232 233 234
	)
};

235 236
struct bus_type spi_bus_type = {
	.name		= "spi",
237
	.dev_groups	= spi_dev_groups,
238 239
	.match		= spi_match_device,
	.uevent		= spi_uevent,
M
Mark Brown 已提交
240
	.pm		= &spi_pm,
241 242 243
};
EXPORT_SYMBOL_GPL(spi_bus_type);

244 245 246 247

static int spi_drv_probe(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
248 249 250 251 252 253 254
	struct spi_device		*spi = to_spi_device(dev);
	int ret;

	acpi_dev_pm_attach(&spi->dev, true);
	ret = sdrv->probe(spi);
	if (ret)
		acpi_dev_pm_detach(&spi->dev, true);
255

256
	return ret;
257 258 259 260 261
}

static int spi_drv_remove(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
262 263 264 265 266
	struct spi_device		*spi = to_spi_device(dev);
	int ret;

	ret = sdrv->remove(spi);
	acpi_dev_pm_detach(&spi->dev, true);
267

268
	return ret;
269 270 271 272 273 274 275 276 277
}

static void spi_drv_shutdown(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);

	sdrv->shutdown(to_spi_device(dev));
}

D
David Brownell 已提交
278 279 280 281 282
/**
 * spi_register_driver - register a SPI driver
 * @sdrv: the driver to register
 * Context: can sleep
 */
283 284 285 286 287 288 289 290 291 292 293 294 295
int spi_register_driver(struct spi_driver *sdrv)
{
	sdrv->driver.bus = &spi_bus_type;
	if (sdrv->probe)
		sdrv->driver.probe = spi_drv_probe;
	if (sdrv->remove)
		sdrv->driver.remove = spi_drv_remove;
	if (sdrv->shutdown)
		sdrv->driver.shutdown = spi_drv_shutdown;
	return driver_register(&sdrv->driver);
}
EXPORT_SYMBOL_GPL(spi_register_driver);

296 297 298 299 300 301 302 303 304 305
/*-------------------------------------------------------------------------*/

/* SPI devices should normally not be created by SPI device drivers; that
 * would make them board-specific.  Similarly with SPI master drivers.
 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 * with other readonly (flashable) information about mainboard devices.
 */

struct boardinfo {
	struct list_head	list;
306
	struct spi_board_info	board_info;
307 308 309
};

static LIST_HEAD(board_list);
310 311 312 313 314 315
static LIST_HEAD(spi_master_list);

/*
 * Used to protect add/del opertion for board_info list and
 * spi_master list, and their matching process
 */
316
static DEFINE_MUTEX(board_lock);
317

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
/**
 * spi_alloc_device - Allocate a new SPI device
 * @master: Controller to which device is connected
 * Context: can sleep
 *
 * Allows a driver to allocate and initialize a spi_device without
 * registering it immediately.  This allows a driver to directly
 * fill the spi_device with device parameters before calling
 * spi_add_device() on it.
 *
 * Caller is responsible to call spi_add_device() on the returned
 * spi_device structure to add it to the SPI master.  If the caller
 * needs to discard the spi_device without adding it, then it should
 * call spi_dev_put() on it.
 *
 * Returns a pointer to the new device, or NULL.
 */
struct spi_device *spi_alloc_device(struct spi_master *master)
{
	struct spi_device	*spi;
	struct device		*dev = master->dev.parent;

	if (!spi_master_get(master))
		return NULL;

J
Jingoo Han 已提交
343
	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
344 345 346 347 348 349 350
	if (!spi) {
		dev_err(dev, "cannot alloc spi_device\n");
		spi_master_put(master);
		return NULL;
	}

	spi->master = master;
351
	spi->dev.parent = &master->dev;
352 353
	spi->dev.bus = &spi_bus_type;
	spi->dev.release = spidev_release;
354
	spi->cs_gpio = -ENOENT;
355 356 357 358 359
	device_initialize(&spi->dev);
	return spi;
}
EXPORT_SYMBOL_GPL(spi_alloc_device);

360 361 362 363 364 365 366 367 368 369 370 371 372
static void spi_dev_set_name(struct spi_device *spi)
{
	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);

	if (adev) {
		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
		return;
	}

	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
		     spi->chip_select);
}

373 374 375 376 377 378 379
/**
 * spi_add_device - Add spi_device allocated with spi_alloc_device
 * @spi: spi_device to register
 *
 * Companion function to spi_alloc_device.  Devices allocated with
 * spi_alloc_device can be added onto the spi bus with this function.
 *
380
 * Returns 0 on success; negative errno on failure
381 382 383
 */
int spi_add_device(struct spi_device *spi)
{
384
	static DEFINE_MUTEX(spi_add_lock);
385 386
	struct spi_master *master = spi->master;
	struct device *dev = master->dev.parent;
387
	struct device *d;
388 389 390
	int status;

	/* Chipselects are numbered 0..max; validate. */
391
	if (spi->chip_select >= master->num_chipselect) {
392 393
		dev_err(dev, "cs%d >= max %d\n",
			spi->chip_select,
394
			master->num_chipselect);
395 396 397 398
		return -EINVAL;
	}

	/* Set the bus ID string */
399
	spi_dev_set_name(spi);
400 401 402 403 404 405 406

	/* We need to make sure there's no other device with this
	 * chipselect **BEFORE** we call setup(), else we'll trash
	 * its configuration.  Lock against concurrent add() calls.
	 */
	mutex_lock(&spi_add_lock);

407 408
	d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
	if (d != NULL) {
409 410
		dev_err(dev, "chipselect %d already in use\n",
				spi->chip_select);
411
		put_device(d);
412 413 414 415
		status = -EBUSY;
		goto done;
	}

416 417 418
	if (master->cs_gpios)
		spi->cs_gpio = master->cs_gpios[spi->chip_select];

419 420 421 422
	/* Drivers may modify this initial i/o setup, but will
	 * normally rely on the device being setup.  Devices
	 * using SPI_CS_HIGH can't coexist well otherwise...
	 */
423
	status = spi_setup(spi);
424
	if (status < 0) {
425 426
		dev_err(dev, "can't setup %s, status %d\n",
				dev_name(&spi->dev), status);
427
		goto done;
428 429
	}

430
	/* Device may be bound to an active driver when this returns */
431
	status = device_add(&spi->dev);
432
	if (status < 0)
433 434
		dev_err(dev, "can't add %s, status %d\n",
				dev_name(&spi->dev), status);
435
	else
436
		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
437

438 439 440
done:
	mutex_unlock(&spi_add_lock);
	return status;
441 442
}
EXPORT_SYMBOL_GPL(spi_add_device);
443

D
David Brownell 已提交
444 445 446 447 448 449 450
/**
 * spi_new_device - instantiate one new SPI device
 * @master: Controller to which device is connected
 * @chip: Describes the SPI device
 * Context: can sleep
 *
 * On typical mainboards, this is purely internal; and it's not needed
451 452 453 454
 * after board init creates the hard-wired devices.  Some development
 * platforms may not be able to use spi_register_board_info though, and
 * this is exported so that for example a USB or parport based adapter
 * driver could add devices (which it would learn about out-of-band).
455 456
 *
 * Returns the new device, or NULL.
457
 */
458 459
struct spi_device *spi_new_device(struct spi_master *master,
				  struct spi_board_info *chip)
460 461 462 463
{
	struct spi_device	*proxy;
	int			status;

464 465 466 467 468 469 470
	/* NOTE:  caller did any chip->bus_num checks necessary.
	 *
	 * Also, unless we change the return value convention to use
	 * error-or-pointer (not NULL-or-pointer), troubleshootability
	 * suggests syslogged diagnostics are best here (ugh).
	 */

471 472
	proxy = spi_alloc_device(master);
	if (!proxy)
473 474
		return NULL;

475 476
	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));

477 478
	proxy->chip_select = chip->chip_select;
	proxy->max_speed_hz = chip->max_speed_hz;
479
	proxy->mode = chip->mode;
480
	proxy->irq = chip->irq;
481
	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
482 483 484 485
	proxy->dev.platform_data = (void *) chip->platform_data;
	proxy->controller_data = chip->controller_data;
	proxy->controller_state = NULL;

486
	status = spi_add_device(proxy);
487
	if (status < 0) {
488 489
		spi_dev_put(proxy);
		return NULL;
490 491 492 493 494 495
	}

	return proxy;
}
EXPORT_SYMBOL_GPL(spi_new_device);

496 497 498 499 500 501 502 503 504 505 506 507 508 509
static void spi_match_master_to_boardinfo(struct spi_master *master,
				struct spi_board_info *bi)
{
	struct spi_device *dev;

	if (master->bus_num != bi->bus_num)
		return;

	dev = spi_new_device(master, bi);
	if (!dev)
		dev_err(master->dev.parent, "can't create new device for %s\n",
			bi->modalias);
}

D
David Brownell 已提交
510 511 512 513 514 515
/**
 * spi_register_board_info - register SPI devices for a given board
 * @info: array of chip descriptors
 * @n: how many descriptors are provided
 * Context: can sleep
 *
516 517 518 519 520 521 522 523 524 525 526 527 528
 * Board-specific early init code calls this (probably during arch_initcall)
 * with segments of the SPI device table.  Any device nodes are created later,
 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 * this table of devices forever, so that reloading a controller driver will
 * not make Linux forget about these hard-wired devices.
 *
 * Other code can also call this, e.g. a particular add-on board might provide
 * SPI devices through its expansion connector, so code initializing that board
 * would naturally declare its SPI devices.
 *
 * The board info passed can safely be __initdata ... but be careful of
 * any embedded pointers (platform_data, etc), they're copied as-is.
 */
529
int spi_register_board_info(struct spi_board_info const *info, unsigned n)
530
{
531 532
	struct boardinfo *bi;
	int i;
533

534
	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
535 536 537
	if (!bi)
		return -ENOMEM;

538 539
	for (i = 0; i < n; i++, bi++, info++) {
		struct spi_master *master;
540

541 542 543 544 545 546
		memcpy(&bi->board_info, info, sizeof(*info));
		mutex_lock(&board_lock);
		list_add_tail(&bi->list, &board_list);
		list_for_each_entry(master, &spi_master_list, list)
			spi_match_master_to_boardinfo(master, &bi->board_info);
		mutex_unlock(&board_lock);
547
	}
548 549

	return 0;
550 551 552 553
}

/*-------------------------------------------------------------------------*/

554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
static void spi_set_cs(struct spi_device *spi, bool enable)
{
	if (spi->mode & SPI_CS_HIGH)
		enable = !enable;

	if (spi->cs_gpio >= 0)
		gpio_set_value(spi->cs_gpio, !enable);
	else if (spi->master->set_cs)
		spi->master->set_cs(spi, !enable);
}

/*
 * spi_transfer_one_message - Default implementation of transfer_one_message()
 *
 * This is a standard implementation of transfer_one_message() for
 * drivers which impelment a transfer_one() operation.  It provides
 * standard handling of delays and chip select management.
 */
static int spi_transfer_one_message(struct spi_master *master,
				    struct spi_message *msg)
{
	struct spi_transfer *xfer;
	bool cur_cs = true;
	bool keep_cs = false;
	int ret = 0;

	spi_set_cs(msg->spi, true);

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		trace_spi_transfer_start(msg, xfer);

585
		reinit_completion(&master->xfer_completion);
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642

		ret = master->transfer_one(master, msg->spi, xfer);
		if (ret < 0) {
			dev_err(&msg->spi->dev,
				"SPI transfer failed: %d\n", ret);
			goto out;
		}

		if (ret > 0)
			wait_for_completion(&master->xfer_completion);

		trace_spi_transfer_stop(msg, xfer);

		if (msg->status != -EINPROGRESS)
			goto out;

		if (xfer->delay_usecs)
			udelay(xfer->delay_usecs);

		if (xfer->cs_change) {
			if (list_is_last(&xfer->transfer_list,
					 &msg->transfers)) {
				keep_cs = true;
			} else {
				cur_cs = !cur_cs;
				spi_set_cs(msg->spi, cur_cs);
			}
		}

		msg->actual_length += xfer->len;
	}

out:
	if (ret != 0 || !keep_cs)
		spi_set_cs(msg->spi, false);

	if (msg->status == -EINPROGRESS)
		msg->status = ret;

	spi_finalize_current_message(master);

	return ret;
}

/**
 * spi_finalize_current_transfer - report completion of a transfer
 *
 * Called by SPI drivers using the core transfer_one_message()
 * implementation to notify it that the current interrupt driven
 * transfer has finised and the next one may be scheduled.
 */
void spi_finalize_current_transfer(struct spi_master *master)
{
	complete(&master->xfer_completion);
}
EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);

643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
/**
 * spi_pump_messages - kthread work function which processes spi message queue
 * @work: pointer to kthread work struct contained in the master struct
 *
 * This function checks if there is any spi message in the queue that
 * needs processing and if so call out to the driver to initialize hardware
 * and transfer each message.
 *
 */
static void spi_pump_messages(struct kthread_work *work)
{
	struct spi_master *master =
		container_of(work, struct spi_master, pump_messages);
	unsigned long flags;
	bool was_busy = false;
	int ret;

	/* Lock queue and check for queue work */
	spin_lock_irqsave(&master->queue_lock, flags);
	if (list_empty(&master->queue) || !master->running) {
663 664 665
		if (!master->busy) {
			spin_unlock_irqrestore(&master->queue_lock, flags);
			return;
666 667 668
		}
		master->busy = false;
		spin_unlock_irqrestore(&master->queue_lock, flags);
669 670 671 672
		if (master->unprepare_transfer_hardware &&
		    master->unprepare_transfer_hardware(master))
			dev_err(&master->dev,
				"failed to unprepare transfer hardware\n");
673 674 675 676
		if (master->auto_runtime_pm) {
			pm_runtime_mark_last_busy(master->dev.parent);
			pm_runtime_put_autosuspend(master->dev.parent);
		}
677
		trace_spi_master_idle(master);
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
		return;
	}

	/* Make sure we are not already running a message */
	if (master->cur_msg) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return;
	}
	/* Extract head of queue */
	master->cur_msg =
	    list_entry(master->queue.next, struct spi_message, queue);

	list_del_init(&master->cur_msg->queue);
	if (master->busy)
		was_busy = true;
	else
		master->busy = true;
	spin_unlock_irqrestore(&master->queue_lock, flags);

697 698 699 700 701 702 703 704 705
	if (!was_busy && master->auto_runtime_pm) {
		ret = pm_runtime_get_sync(master->dev.parent);
		if (ret < 0) {
			dev_err(&master->dev, "Failed to power device: %d\n",
				ret);
			return;
		}
	}

706 707 708
	if (!was_busy)
		trace_spi_master_busy(master);

709
	if (!was_busy && master->prepare_transfer_hardware) {
710 711 712 713
		ret = master->prepare_transfer_hardware(master);
		if (ret) {
			dev_err(&master->dev,
				"failed to prepare transfer hardware\n");
714 715 716

			if (master->auto_runtime_pm)
				pm_runtime_put(master->dev.parent);
717 718 719 720
			return;
		}
	}

721 722
	trace_spi_message_start(master->cur_msg);

723 724 725 726 727 728 729 730 731 732 733 734
	if (master->prepare_message) {
		ret = master->prepare_message(master, master->cur_msg);
		if (ret) {
			dev_err(&master->dev,
				"failed to prepare message: %d\n", ret);
			master->cur_msg->status = ret;
			spi_finalize_current_message(master);
			return;
		}
		master->cur_msg_prepared = true;
	}

735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
	ret = master->transfer_one_message(master, master->cur_msg);
	if (ret) {
		dev_err(&master->dev,
			"failed to transfer one message from queue\n");
		return;
	}
}

static int spi_init_queue(struct spi_master *master)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };

	INIT_LIST_HEAD(&master->queue);
	spin_lock_init(&master->queue_lock);

	master->running = false;
	master->busy = false;

	init_kthread_worker(&master->kworker);
	master->kworker_task = kthread_run(kthread_worker_fn,
755
					   &master->kworker, "%s",
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
					   dev_name(&master->dev));
	if (IS_ERR(master->kworker_task)) {
		dev_err(&master->dev, "failed to create message pump task\n");
		return -ENOMEM;
	}
	init_kthread_work(&master->pump_messages, spi_pump_messages);

	/*
	 * Master config will indicate if this controller should run the
	 * message pump with high (realtime) priority to reduce the transfer
	 * latency on the bus by minimising the delay between a transfer
	 * request and the scheduling of the message pump thread. Without this
	 * setting the message pump thread will remain at default priority.
	 */
	if (master->rt) {
		dev_info(&master->dev,
			"will run message pump with realtime priority\n");
		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
	}

	return 0;
}

/**
 * spi_get_next_queued_message() - called by driver to check for queued
 * messages
 * @master: the master to check for queued messages
 *
 * If there are more messages in the queue, the next message is returned from
 * this call.
 */
struct spi_message *spi_get_next_queued_message(struct spi_master *master)
{
	struct spi_message *next;
	unsigned long flags;

	/* get a pointer to the next message, if any */
	spin_lock_irqsave(&master->queue_lock, flags);
	if (list_empty(&master->queue))
		next = NULL;
	else
		next = list_entry(master->queue.next,
				  struct spi_message, queue);
	spin_unlock_irqrestore(&master->queue_lock, flags);

	return next;
}
EXPORT_SYMBOL_GPL(spi_get_next_queued_message);

/**
 * spi_finalize_current_message() - the current message is complete
 * @master: the master to return the message to
 *
 * Called by the driver to notify the core that the message in the front of the
 * queue is complete and can be removed from the queue.
 */
void spi_finalize_current_message(struct spi_master *master)
{
	struct spi_message *mesg;
	unsigned long flags;
816
	int ret;
817 818 819 820 821 822 823 824

	spin_lock_irqsave(&master->queue_lock, flags);
	mesg = master->cur_msg;
	master->cur_msg = NULL;

	queue_kthread_work(&master->kworker, &master->pump_messages);
	spin_unlock_irqrestore(&master->queue_lock, flags);

825 826 827 828 829 830 831 832 833
	if (master->cur_msg_prepared && master->unprepare_message) {
		ret = master->unprepare_message(master, mesg);
		if (ret) {
			dev_err(&master->dev,
				"failed to unprepare message: %d\n", ret);
		}
	}
	master->cur_msg_prepared = false;

834 835 836
	mesg->state = NULL;
	if (mesg->complete)
		mesg->complete(mesg->context);
837 838

	trace_spi_message_done(mesg);
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
}
EXPORT_SYMBOL_GPL(spi_finalize_current_message);

static int spi_start_queue(struct spi_master *master)
{
	unsigned long flags;

	spin_lock_irqsave(&master->queue_lock, flags);

	if (master->running || master->busy) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return -EBUSY;
	}

	master->running = true;
	master->cur_msg = NULL;
	spin_unlock_irqrestore(&master->queue_lock, flags);

	queue_kthread_work(&master->kworker, &master->pump_messages);

	return 0;
}

static int spi_stop_queue(struct spi_master *master)
{
	unsigned long flags;
	unsigned limit = 500;
	int ret = 0;

	spin_lock_irqsave(&master->queue_lock, flags);

	/*
	 * This is a bit lame, but is optimized for the common execution path.
	 * A wait_queue on the master->busy could be used, but then the common
	 * execution path (pump_messages) would be required to call wake_up or
	 * friends on every SPI message. Do this instead.
	 */
	while ((!list_empty(&master->queue) || master->busy) && limit--) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		msleep(10);
		spin_lock_irqsave(&master->queue_lock, flags);
	}

	if (!list_empty(&master->queue) || master->busy)
		ret = -EBUSY;
	else
		master->running = false;

	spin_unlock_irqrestore(&master->queue_lock, flags);

	if (ret) {
		dev_warn(&master->dev,
			 "could not stop message queue\n");
		return ret;
	}
	return ret;
}

static int spi_destroy_queue(struct spi_master *master)
{
	int ret;

	ret = spi_stop_queue(master);

	/*
	 * flush_kthread_worker will block until all work is done.
	 * If the reason that stop_queue timed out is that the work will never
	 * finish, then it does no good to call flush/stop thread, so
	 * return anyway.
	 */
	if (ret) {
		dev_err(&master->dev, "problem destroying queue\n");
		return ret;
	}

	flush_kthread_worker(&master->kworker);
	kthread_stop(master->kworker_task);

	return 0;
}

/**
 * spi_queued_transfer - transfer function for queued transfers
 * @spi: spi device which is requesting transfer
 * @msg: spi message which is to handled is queued to driver queue
 */
static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
{
	struct spi_master *master = spi->master;
	unsigned long flags;

	spin_lock_irqsave(&master->queue_lock, flags);

	if (!master->running) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return -ESHUTDOWN;
	}
	msg->actual_length = 0;
	msg->status = -EINPROGRESS;

	list_add_tail(&msg->queue, &master->queue);
940
	if (!master->busy)
941 942 943 944 945 946 947 948 949 950 951 952
		queue_kthread_work(&master->kworker, &master->pump_messages);

	spin_unlock_irqrestore(&master->queue_lock, flags);
	return 0;
}

static int spi_master_initialize_queue(struct spi_master *master)
{
	int ret;

	master->queued = true;
	master->transfer = spi_queued_transfer;
953 954
	if (!master->transfer_one_message)
		master->transfer_one_message = spi_transfer_one_message;
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977

	/* Initialize and start queue */
	ret = spi_init_queue(master);
	if (ret) {
		dev_err(&master->dev, "problem initializing queue\n");
		goto err_init_queue;
	}
	ret = spi_start_queue(master);
	if (ret) {
		dev_err(&master->dev, "problem starting queue\n");
		goto err_start_queue;
	}

	return 0;

err_start_queue:
err_init_queue:
	spi_destroy_queue(master);
	return ret;
}

/*-------------------------------------------------------------------------*/

978
#if defined(CONFIG_OF)
979 980 981 982 983 984 985 986 987 988 989 990
/**
 * of_register_spi_devices() - Register child devices onto the SPI bus
 * @master:	Pointer to spi_master device
 *
 * Registers an spi_device for each child node of master node which has a 'reg'
 * property.
 */
static void of_register_spi_devices(struct spi_master *master)
{
	struct spi_device *spi;
	struct device_node *nc;
	int rc;
T
Trent Piepho 已提交
991
	u32 value;
992 993 994 995

	if (!master->dev.of_node)
		return;

996
	for_each_available_child_of_node(master->dev.of_node, nc) {
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
		/* Alloc an spi_device */
		spi = spi_alloc_device(master);
		if (!spi) {
			dev_err(&master->dev, "spi_device alloc error for %s\n",
				nc->full_name);
			spi_dev_put(spi);
			continue;
		}

		/* Select device driver */
		if (of_modalias_node(nc, spi->modalias,
				     sizeof(spi->modalias)) < 0) {
			dev_err(&master->dev, "cannot find modalias for %s\n",
				nc->full_name);
			spi_dev_put(spi);
			continue;
		}

		/* Device address */
T
Trent Piepho 已提交
1016 1017 1018 1019
		rc = of_property_read_u32(nc, "reg", &value);
		if (rc) {
			dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
				nc->full_name, rc);
1020 1021 1022
			spi_dev_put(spi);
			continue;
		}
T
Trent Piepho 已提交
1023
		spi->chip_select = value;
1024 1025 1026 1027 1028 1029 1030 1031

		/* Mode (clock phase/polarity/etc.) */
		if (of_find_property(nc, "spi-cpha", NULL))
			spi->mode |= SPI_CPHA;
		if (of_find_property(nc, "spi-cpol", NULL))
			spi->mode |= SPI_CPOL;
		if (of_find_property(nc, "spi-cs-high", NULL))
			spi->mode |= SPI_CS_HIGH;
1032 1033
		if (of_find_property(nc, "spi-3wire", NULL))
			spi->mode |= SPI_3WIRE;
1034

W
wangyuhang 已提交
1035
		/* Device DUAL/QUAD mode */
T
Trent Piepho 已提交
1036 1037 1038
		if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
			switch (value) {
			case 1:
1039
				break;
T
Trent Piepho 已提交
1040
			case 2:
1041 1042
				spi->mode |= SPI_TX_DUAL;
				break;
T
Trent Piepho 已提交
1043
			case 4:
1044 1045 1046 1047
				spi->mode |= SPI_TX_QUAD;
				break;
			default:
				dev_err(&master->dev,
1048
					"spi-tx-bus-width %d not supported\n",
T
Trent Piepho 已提交
1049
					value);
1050 1051 1052
				spi_dev_put(spi);
				continue;
			}
W
wangyuhang 已提交
1053 1054
		}

T
Trent Piepho 已提交
1055 1056 1057
		if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
			switch (value) {
			case 1:
1058
				break;
T
Trent Piepho 已提交
1059
			case 2:
1060 1061
				spi->mode |= SPI_RX_DUAL;
				break;
T
Trent Piepho 已提交
1062
			case 4:
1063 1064 1065 1066
				spi->mode |= SPI_RX_QUAD;
				break;
			default:
				dev_err(&master->dev,
1067
					"spi-rx-bus-width %d not supported\n",
T
Trent Piepho 已提交
1068
					value);
1069 1070 1071
				spi_dev_put(spi);
				continue;
			}
W
wangyuhang 已提交
1072 1073
		}

1074
		/* Device speed */
T
Trent Piepho 已提交
1075 1076 1077 1078
		rc = of_property_read_u32(nc, "spi-max-frequency", &value);
		if (rc) {
			dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
				nc->full_name, rc);
1079 1080 1081
			spi_dev_put(spi);
			continue;
		}
T
Trent Piepho 已提交
1082
		spi->max_speed_hz = value;
1083 1084 1085 1086 1087 1088 1089 1090 1091

		/* IRQ */
		spi->irq = irq_of_parse_and_map(nc, 0);

		/* Store a pointer to the node in the device structure */
		of_node_get(nc);
		spi->dev.of_node = nc;

		/* Register the new device */
1092
		request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias);
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
		rc = spi_add_device(spi);
		if (rc) {
			dev_err(&master->dev, "spi_device register error %s\n",
				nc->full_name);
			spi_dev_put(spi);
		}

	}
}
#else
static void of_register_spi_devices(struct spi_master *master) { }
#endif

1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
#ifdef CONFIG_ACPI
static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
{
	struct spi_device *spi = data;

	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
		struct acpi_resource_spi_serialbus *sb;

		sb = &ares->data.spi_serial_bus;
		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
			spi->chip_select = sb->device_selection;
			spi->max_speed_hz = sb->connection_speed;

			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
				spi->mode |= SPI_CPHA;
			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
				spi->mode |= SPI_CPOL;
			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
				spi->mode |= SPI_CS_HIGH;
		}
	} else if (spi->irq < 0) {
		struct resource r;

		if (acpi_dev_resource_interrupt(ares, 0, &r))
			spi->irq = r.start;
	}

	/* Always tell the ACPI core to skip this resource */
	return 1;
}

static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
				       void *data, void **return_value)
{
	struct spi_master *master = data;
	struct list_head resource_list;
	struct acpi_device *adev;
	struct spi_device *spi;
	int ret;

	if (acpi_bus_get_device(handle, &adev))
		return AE_OK;
	if (acpi_bus_get_status(adev) || !adev->status.present)
		return AE_OK;

	spi = spi_alloc_device(master);
	if (!spi) {
		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
			dev_name(&adev->dev));
		return AE_NO_MEMORY;
	}

1158
	ACPI_COMPANION_SET(&spi->dev, adev);
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
	spi->irq = -1;

	INIT_LIST_HEAD(&resource_list);
	ret = acpi_dev_get_resources(adev, &resource_list,
				     acpi_spi_add_resource, spi);
	acpi_dev_free_resource_list(&resource_list);

	if (ret < 0 || !spi->max_speed_hz) {
		spi_dev_put(spi);
		return AE_OK;
	}

1171
	adev->power.flags.ignore_parent = true;
1172
	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1173
	if (spi_add_device(spi)) {
1174
		adev->power.flags.ignore_parent = false;
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
			dev_name(&adev->dev));
		spi_dev_put(spi);
	}

	return AE_OK;
}

static void acpi_register_spi_devices(struct spi_master *master)
{
	acpi_status status;
	acpi_handle handle;

1188
	handle = ACPI_HANDLE(master->dev.parent);
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	if (!handle)
		return;

	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
				     acpi_spi_add_device, NULL,
				     master, NULL);
	if (ACPI_FAILURE(status))
		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
}
#else
static inline void acpi_register_spi_devices(struct spi_master *master) {}
#endif /* CONFIG_ACPI */

T
Tony Jones 已提交
1202
static void spi_master_release(struct device *dev)
1203 1204 1205
{
	struct spi_master *master;

T
Tony Jones 已提交
1206
	master = container_of(dev, struct spi_master, dev);
1207 1208 1209 1210 1211 1212
	kfree(master);
}

static struct class spi_master_class = {
	.name		= "spi_master",
	.owner		= THIS_MODULE,
T
Tony Jones 已提交
1213
	.dev_release	= spi_master_release,
1214 1215 1216
};


1217

1218 1219 1220
/**
 * spi_alloc_master - allocate SPI master controller
 * @dev: the controller, possibly using the platform_bus
D
David Brownell 已提交
1221
 * @size: how much zeroed driver-private data to allocate; the pointer to this
T
Tony Jones 已提交
1222
 *	memory is in the driver_data field of the returned device,
D
David Brownell 已提交
1223
 *	accessible with spi_master_get_devdata().
D
David Brownell 已提交
1224
 * Context: can sleep
1225 1226 1227
 *
 * This call is used only by SPI master controller drivers, which are the
 * only ones directly touching chip registers.  It's how they allocate
D
dmitry pervushin 已提交
1228
 * an spi_master structure, prior to calling spi_register_master().
1229 1230 1231 1232 1233
 *
 * This must be called from context that can sleep.  It returns the SPI
 * master structure on success, else NULL.
 *
 * The caller is responsible for assigning the bus number and initializing
D
dmitry pervushin 已提交
1234
 * the master's methods before calling spi_register_master(); and (after errors
1235 1236
 * adding the device) calling spi_master_put() and kfree() to prevent a memory
 * leak.
1237
 */
1238
struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1239 1240 1241
{
	struct spi_master	*master;

D
David Brownell 已提交
1242 1243 1244
	if (!dev)
		return NULL;

J
Jingoo Han 已提交
1245
	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1246 1247 1248
	if (!master)
		return NULL;

T
Tony Jones 已提交
1249
	device_initialize(&master->dev);
1250 1251
	master->bus_num = -1;
	master->num_chipselect = 1;
T
Tony Jones 已提交
1252 1253
	master->dev.class = &spi_master_class;
	master->dev.parent = get_device(dev);
D
David Brownell 已提交
1254
	spi_master_set_devdata(master, &master[1]);
1255 1256 1257 1258 1259

	return master;
}
EXPORT_SYMBOL_GPL(spi_alloc_master);

1260 1261 1262
#ifdef CONFIG_OF
static int of_spi_register_master(struct spi_master *master)
{
1263
	int nb, i, *cs;
1264 1265 1266 1267 1268 1269
	struct device_node *np = master->dev.of_node;

	if (!np)
		return 0;

	nb = of_gpio_named_count(np, "cs-gpios");
J
Jingoo Han 已提交
1270
	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1271

1272 1273
	/* Return error only for an incorrectly formed cs-gpios property */
	if (nb == 0 || nb == -ENOENT)
1274
		return 0;
1275 1276
	else if (nb < 0)
		return nb;
1277 1278 1279 1280 1281 1282 1283 1284 1285

	cs = devm_kzalloc(&master->dev,
			  sizeof(int) * master->num_chipselect,
			  GFP_KERNEL);
	master->cs_gpios = cs;

	if (!master->cs_gpios)
		return -ENOMEM;

1286
	for (i = 0; i < master->num_chipselect; i++)
1287
		cs[i] = -ENOENT;
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300

	for (i = 0; i < nb; i++)
		cs[i] = of_get_named_gpio(np, "cs-gpios", i);

	return 0;
}
#else
static int of_spi_register_master(struct spi_master *master)
{
	return 0;
}
#endif

1301 1302 1303
/**
 * spi_register_master - register SPI master controller
 * @master: initialized master, originally from spi_alloc_master()
D
David Brownell 已提交
1304
 * Context: can sleep
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
 *
 * SPI master controllers connect to their drivers using some non-SPI bus,
 * such as the platform bus.  The final stage of probe() in that code
 * includes calling spi_register_master() to hook up to this SPI bus glue.
 *
 * SPI controllers use board specific (often SOC specific) bus numbers,
 * and board-specific addressing for SPI devices combines those numbers
 * with chip select numbers.  Since SPI does not directly support dynamic
 * device identification, boards need configuration tables telling which
 * chip is at which address.
 *
 * This must be called from context that can sleep.  It returns zero on
 * success, else a negative error code (dropping the master's refcount).
D
David Brownell 已提交
1318 1319
 * After a successful return, the caller is responsible for calling
 * spi_unregister_master().
1320
 */
1321
int spi_register_master(struct spi_master *master)
1322
{
1323
	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
T
Tony Jones 已提交
1324
	struct device		*dev = master->dev.parent;
1325
	struct boardinfo	*bi;
1326 1327 1328
	int			status = -ENODEV;
	int			dynamic = 0;

D
David Brownell 已提交
1329 1330 1331
	if (!dev)
		return -ENODEV;

1332 1333 1334 1335
	status = of_spi_register_master(master);
	if (status)
		return status;

1336 1337 1338 1339 1340 1341
	/* even if it's just one always-selected device, there must
	 * be at least one chipselect
	 */
	if (master->num_chipselect == 0)
		return -EINVAL;

1342 1343 1344
	if ((master->bus_num < 0) && master->dev.of_node)
		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");

1345
	/* convention:  dynamically assigned bus IDs count down from the max */
1346
	if (master->bus_num < 0) {
1347 1348 1349
		/* FIXME switch to an IDR based scheme, something like
		 * I2C now uses, so we can't run out of "dynamic" IDs
		 */
1350
		master->bus_num = atomic_dec_return(&dyn_bus_id);
1351
		dynamic = 1;
1352 1353
	}

1354 1355 1356
	spin_lock_init(&master->bus_lock_spinlock);
	mutex_init(&master->bus_lock_mutex);
	master->bus_lock_flag = 0;
1357
	init_completion(&master->xfer_completion);
1358

1359 1360 1361
	/* register the device, then userspace will see it.
	 * registration fails if the bus ID is in use.
	 */
1362
	dev_set_name(&master->dev, "spi%u", master->bus_num);
T
Tony Jones 已提交
1363
	status = device_add(&master->dev);
1364
	if (status < 0)
1365
		goto done;
1366
	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1367 1368
			dynamic ? " (dynamic)" : "");

1369 1370 1371 1372 1373 1374
	/* If we're using a queued driver, start the queue */
	if (master->transfer)
		dev_info(dev, "master is unqueued, this is deprecated\n");
	else {
		status = spi_master_initialize_queue(master);
		if (status) {
1375
			device_del(&master->dev);
1376 1377 1378 1379
			goto done;
		}
	}

1380 1381 1382 1383 1384 1385
	mutex_lock(&board_lock);
	list_add_tail(&master->list, &spi_master_list);
	list_for_each_entry(bi, &board_list, list)
		spi_match_master_to_boardinfo(master, &bi->board_info);
	mutex_unlock(&board_lock);

1386
	/* Register devices from the device tree and ACPI */
1387
	of_register_spi_devices(master);
1388
	acpi_register_spi_devices(master);
1389 1390 1391 1392 1393
done:
	return status;
}
EXPORT_SYMBOL_GPL(spi_register_master);

1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
static void devm_spi_unregister(struct device *dev, void *res)
{
	spi_unregister_master(*(struct spi_master **)res);
}

/**
 * dev_spi_register_master - register managed SPI master controller
 * @dev:    device managing SPI master
 * @master: initialized master, originally from spi_alloc_master()
 * Context: can sleep
 *
 * Register a SPI device as with spi_register_master() which will
 * automatically be unregister
 */
int devm_spi_register_master(struct device *dev, struct spi_master *master)
{
	struct spi_master **ptr;
	int ret;

	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return -ENOMEM;

	ret = spi_register_master(master);
	if (ret != 0) {
		*ptr = master;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return ret;
}
EXPORT_SYMBOL_GPL(devm_spi_register_master);

1429
static int __unregister(struct device *dev, void *null)
1430
{
1431
	spi_unregister_device(to_spi_device(dev));
1432 1433 1434 1435 1436 1437
	return 0;
}

/**
 * spi_unregister_master - unregister SPI master controller
 * @master: the master being unregistered
D
David Brownell 已提交
1438
 * Context: can sleep
1439 1440 1441 1442 1443 1444 1445 1446
 *
 * This call is used only by SPI master controller drivers, which are the
 * only ones directly touching chip registers.
 *
 * This must be called from context that can sleep.
 */
void spi_unregister_master(struct spi_master *master)
{
1447 1448
	int dummy;

1449 1450 1451 1452 1453
	if (master->queued) {
		if (spi_destroy_queue(master))
			dev_err(&master->dev, "queue remove failed\n");
	}

1454 1455 1456 1457
	mutex_lock(&board_lock);
	list_del(&master->list);
	mutex_unlock(&board_lock);

1458
	dummy = device_for_each_child(&master->dev, NULL, __unregister);
T
Tony Jones 已提交
1459
	device_unregister(&master->dev);
1460 1461 1462
}
EXPORT_SYMBOL_GPL(spi_unregister_master);

1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
int spi_master_suspend(struct spi_master *master)
{
	int ret;

	/* Basically no-ops for non-queued masters */
	if (!master->queued)
		return 0;

	ret = spi_stop_queue(master);
	if (ret)
		dev_err(&master->dev, "queue stop failed\n");

	return ret;
}
EXPORT_SYMBOL_GPL(spi_master_suspend);

int spi_master_resume(struct spi_master *master)
{
	int ret;

	if (!master->queued)
		return 0;

	ret = spi_start_queue(master);
	if (ret)
		dev_err(&master->dev, "queue restart failed\n");

	return ret;
}
EXPORT_SYMBOL_GPL(spi_master_resume);

1494
static int __spi_master_match(struct device *dev, const void *data)
D
Dave Young 已提交
1495 1496
{
	struct spi_master *m;
1497
	const u16 *bus_num = data;
D
Dave Young 已提交
1498 1499 1500 1501 1502

	m = container_of(dev, struct spi_master, dev);
	return m->bus_num == *bus_num;
}

1503 1504 1505
/**
 * spi_busnum_to_master - look up master associated with bus_num
 * @bus_num: the master's bus number
D
David Brownell 已提交
1506
 * Context: can sleep
1507 1508 1509 1510 1511 1512 1513 1514
 *
 * This call may be used with devices that are registered after
 * arch init time.  It returns a refcounted pointer to the relevant
 * spi_master (which the caller must release), or NULL if there is
 * no such master registered.
 */
struct spi_master *spi_busnum_to_master(u16 bus_num)
{
T
Tony Jones 已提交
1515
	struct device		*dev;
1516
	struct spi_master	*master = NULL;
D
Dave Young 已提交
1517

1518
	dev = class_find_device(&spi_master_class, NULL, &bus_num,
D
Dave Young 已提交
1519 1520 1521 1522
				__spi_master_match);
	if (dev)
		master = container_of(dev, struct spi_master, dev);
	/* reference got in class_find_device */
1523
	return master;
1524 1525 1526 1527 1528 1529
}
EXPORT_SYMBOL_GPL(spi_busnum_to_master);


/*-------------------------------------------------------------------------*/

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
/* Core methods for SPI master protocol drivers.  Some of the
 * other core methods are currently defined as inline functions.
 */

/**
 * spi_setup - setup SPI mode and clock rate
 * @spi: the device whose settings are being modified
 * Context: can sleep, and no requests are queued to the device
 *
 * SPI protocol drivers may need to update the transfer mode if the
 * device doesn't work with its default.  They may likewise need
 * to update clock rates or word sizes from initial values.  This function
 * changes those settings, and must be called from a context that can sleep.
 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
 * effect the next time the device is selected and data is transferred to
 * or from it.  When this function returns, the spi device is deselected.
 *
 * Note that this call will fail if the protocol driver specifies an option
 * that the underlying controller or its driver does not support.  For
 * example, not all hardware supports wire transfers using nine bit words,
 * LSB-first wire encoding, or active-high chipselects.
 */
int spi_setup(struct spi_device *spi)
{
1554
	unsigned	bad_bits;
1555
	int		status = 0;
1556

W
wangyuhang 已提交
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
	/* check mode to prevent that DUAL and QUAD set at the same time
	 */
	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
		dev_err(&spi->dev,
		"setup: can not select dual and quad at the same time\n");
		return -EINVAL;
	}
	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
	 */
	if ((spi->mode & SPI_3WIRE) && (spi->mode &
		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
		return -EINVAL;
1570 1571 1572 1573 1574
	/* help drivers fail *cleanly* when they need options
	 * that aren't supported with their current master
	 */
	bad_bits = spi->mode & ~spi->master->mode_bits;
	if (bad_bits) {
1575
		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1576 1577 1578 1579
			bad_bits);
		return -EINVAL;
	}

1580 1581 1582
	if (!spi->bits_per_word)
		spi->bits_per_word = 8;

1583 1584
	if (spi->master->setup)
		status = spi->master->setup(spi);
1585

J
Jingoo Han 已提交
1586
	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
			(spi->mode & SPI_LOOP) ? "loopback, " : "",
			spi->bits_per_word, spi->max_speed_hz,
			status);

	return status;
}
EXPORT_SYMBOL_GPL(spi_setup);

1599 1600 1601
static int __spi_async(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;
1602
	struct spi_transfer *xfer;
1603

1604 1605 1606 1607
	message->spi = spi;

	trace_spi_message_submit(message);

1608 1609 1610 1611 1612
	if (list_empty(&message->transfers))
		return -EINVAL;
	if (!message->complete)
		return -EINVAL;

1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
	/* Half-duplex links include original MicroWire, and ones with
	 * only one data pin like SPI_3WIRE (switches direction) or where
	 * either MOSI or MISO is missing.  They can also be caused by
	 * software limitations.
	 */
	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
			|| (spi->mode & SPI_3WIRE)) {
		unsigned flags = master->flags;

		list_for_each_entry(xfer, &message->transfers, transfer_list) {
			if (xfer->rx_buf && xfer->tx_buf)
				return -EINVAL;
			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
				return -EINVAL;
			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
				return -EINVAL;
		}
	}

1632
	/**
1633 1634
	 * Set transfer bits_per_word and max speed as spi device default if
	 * it is not set for this transfer.
W
wangyuhang 已提交
1635 1636
	 * Set transfer tx_nbits and rx_nbits as single transfer default
	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
1637 1638
	 */
	list_for_each_entry(xfer, &message->transfers, transfer_list) {
1639
		message->frame_length += xfer->len;
1640 1641
		if (!xfer->bits_per_word)
			xfer->bits_per_word = spi->bits_per_word;
1642
		if (!xfer->speed_hz) {
1643
			xfer->speed_hz = spi->max_speed_hz;
1644 1645 1646 1647 1648
			if (master->max_speed_hz &&
			    xfer->speed_hz > master->max_speed_hz)
				xfer->speed_hz = master->max_speed_hz;
		}

1649 1650 1651 1652 1653 1654 1655 1656
		if (master->bits_per_word_mask) {
			/* Only 32 bits fit in the mask */
			if (xfer->bits_per_word > 32)
				return -EINVAL;
			if (!(master->bits_per_word_mask &
					BIT(xfer->bits_per_word - 1)))
				return -EINVAL;
		}
1657 1658 1659 1660 1661 1662

		if (xfer->speed_hz && master->min_speed_hz &&
		    xfer->speed_hz < master->min_speed_hz)
			return -EINVAL;
		if (xfer->speed_hz && master->max_speed_hz &&
		    xfer->speed_hz > master->max_speed_hz)
W
wangyuhang 已提交
1663
			return -EINVAL;
W
wangyuhang 已提交
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673

		if (xfer->tx_buf && !xfer->tx_nbits)
			xfer->tx_nbits = SPI_NBITS_SINGLE;
		if (xfer->rx_buf && !xfer->rx_nbits)
			xfer->rx_nbits = SPI_NBITS_SINGLE;
		/* check transfer tx/rx_nbits:
		 * 1. keep the value is not out of single, dual and quad
		 * 2. keep tx/rx_nbits is contained by mode in spi_device
		 * 3. if SPI_3WIRE, tx/rx_nbits should be in single
		 */
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
		if (xfer->tx_buf) {
			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
				xfer->tx_nbits != SPI_NBITS_DUAL &&
				xfer->tx_nbits != SPI_NBITS_QUAD)
				return -EINVAL;
			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
				return -EINVAL;
			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
				!(spi->mode & SPI_TX_QUAD))
				return -EINVAL;
			if ((spi->mode & SPI_3WIRE) &&
				(xfer->tx_nbits != SPI_NBITS_SINGLE))
				return -EINVAL;
		}
W
wangyuhang 已提交
1689
		/* check transfer rx_nbits */
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
		if (xfer->rx_buf) {
			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
				xfer->rx_nbits != SPI_NBITS_DUAL &&
				xfer->rx_nbits != SPI_NBITS_QUAD)
				return -EINVAL;
			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
				return -EINVAL;
			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
				!(spi->mode & SPI_RX_QUAD))
				return -EINVAL;
			if ((spi->mode & SPI_3WIRE) &&
				(xfer->rx_nbits != SPI_NBITS_SINGLE))
				return -EINVAL;
		}
1705 1706
	}

1707 1708 1709 1710
	message->status = -EINPROGRESS;
	return master->transfer(spi, message);
}

D
David Brownell 已提交
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
/**
 * spi_async - asynchronous SPI transfer
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers, including completion callback
 * Context: any (irqs may be blocked, etc)
 *
 * This call may be used in_irq and other contexts which can't sleep,
 * as well as from task contexts which can sleep.
 *
 * The completion callback is invoked in a context which can't sleep.
 * Before that invocation, the value of message->status is undefined.
 * When the callback is issued, message->status holds either zero (to
 * indicate complete success) or a negative error code.  After that
 * callback returns, the driver which issued the transfer request may
 * deallocate the associated memory; it's no longer in use by any SPI
 * core or controller driver code.
 *
 * Note that although all messages to a spi_device are handled in
 * FIFO order, messages may go to different devices in other orders.
 * Some device might be higher priority, or have various "hard" access
 * time requirements, for example.
 *
 * On detection of any fault during the transfer, processing of
 * the entire message is aborted, and the device is deselected.
 * Until returning from the associated message completion callback,
 * no other spi_message queued to that device will be processed.
 * (This rule applies equally to all the synchronous transfer calls,
 * which are wrappers around this core asynchronous primitive.)
 */
int spi_async(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;
1743 1744
	int ret;
	unsigned long flags;
D
David Brownell 已提交
1745

1746
	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
D
David Brownell 已提交
1747

1748 1749 1750 1751
	if (master->bus_lock_flag)
		ret = -EBUSY;
	else
		ret = __spi_async(spi, message);
D
David Brownell 已提交
1752

1753 1754 1755
	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	return ret;
D
David Brownell 已提交
1756 1757 1758
}
EXPORT_SYMBOL_GPL(spi_async);

1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
/**
 * spi_async_locked - version of spi_async with exclusive bus usage
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers, including completion callback
 * Context: any (irqs may be blocked, etc)
 *
 * This call may be used in_irq and other contexts which can't sleep,
 * as well as from task contexts which can sleep.
 *
 * The completion callback is invoked in a context which can't sleep.
 * Before that invocation, the value of message->status is undefined.
 * When the callback is issued, message->status holds either zero (to
 * indicate complete success) or a negative error code.  After that
 * callback returns, the driver which issued the transfer request may
 * deallocate the associated memory; it's no longer in use by any SPI
 * core or controller driver code.
 *
 * Note that although all messages to a spi_device are handled in
 * FIFO order, messages may go to different devices in other orders.
 * Some device might be higher priority, or have various "hard" access
 * time requirements, for example.
 *
 * On detection of any fault during the transfer, processing of
 * the entire message is aborted, and the device is deselected.
 * Until returning from the associated message completion callback,
 * no other spi_message queued to that device will be processed.
 * (This rule applies equally to all the synchronous transfer calls,
 * which are wrappers around this core asynchronous primitive.)
 */
int spi_async_locked(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;
	int ret;
	unsigned long flags;

	spin_lock_irqsave(&master->bus_lock_spinlock, flags);

	ret = __spi_async(spi, message);

	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	return ret;

}
EXPORT_SYMBOL_GPL(spi_async_locked);

1805 1806 1807 1808 1809 1810 1811 1812

/*-------------------------------------------------------------------------*/

/* Utility methods for SPI master protocol drivers, layered on
 * top of the core.  Some other utility methods are defined as
 * inline functions.
 */

1813 1814 1815 1816 1817
static void spi_complete(void *arg)
{
	complete(arg);
}

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
static int __spi_sync(struct spi_device *spi, struct spi_message *message,
		      int bus_locked)
{
	DECLARE_COMPLETION_ONSTACK(done);
	int status;
	struct spi_master *master = spi->master;

	message->complete = spi_complete;
	message->context = &done;

	if (!bus_locked)
		mutex_lock(&master->bus_lock_mutex);

	status = spi_async_locked(spi, message);

	if (!bus_locked)
		mutex_unlock(&master->bus_lock_mutex);

	if (status == 0) {
		wait_for_completion(&done);
		status = message->status;
	}
	message->context = NULL;
	return status;
}

1844 1845 1846 1847
/**
 * spi_sync - blocking/synchronous SPI data transfers
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers
D
David Brownell 已提交
1848
 * Context: can sleep
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.  Low-overhead controller
 * drivers may DMA directly into and out of the message buffers.
 *
 * Note that the SPI device's chip select is active during the message,
 * and then is normally disabled between messages.  Drivers for some
 * frequently-used devices may want to minimize costs of selecting a chip,
 * by leaving it selected in anticipation that the next message will go
 * to the same chip.  (That may increase power usage.)
 *
D
David Brownell 已提交
1860 1861 1862
 * Also, the caller is guaranteeing that the memory associated with the
 * message will not be freed before this call returns.
 *
1863
 * It returns zero on success, else a negative error code.
1864 1865 1866
 */
int spi_sync(struct spi_device *spi, struct spi_message *message)
{
1867
	return __spi_sync(spi, message, 0);
1868 1869 1870
}
EXPORT_SYMBOL_GPL(spi_sync);

1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
/**
 * spi_sync_locked - version of spi_sync with exclusive bus usage
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.  Low-overhead controller
 * drivers may DMA directly into and out of the message buffers.
 *
 * This call should be used by drivers that require exclusive access to the
L
Lucas De Marchi 已提交
1882
 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
 * be released by a spi_bus_unlock call when the exclusive access is over.
 *
 * It returns zero on success, else a negative error code.
 */
int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
{
	return __spi_sync(spi, message, 1);
}
EXPORT_SYMBOL_GPL(spi_sync_locked);

/**
 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
 * @master: SPI bus master that should be locked for exclusive bus access
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.
 *
 * This call should be used by drivers that require exclusive access to the
 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
 * exclusive access is over. Data transfer must be done by spi_sync_locked
 * and spi_async_locked calls when the SPI bus lock is held.
 *
 * It returns zero on success, else a negative error code.
 */
int spi_bus_lock(struct spi_master *master)
{
	unsigned long flags;

	mutex_lock(&master->bus_lock_mutex);

	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
	master->bus_lock_flag = 1;
	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	/* mutex remains locked until spi_bus_unlock is called */

	return 0;
}
EXPORT_SYMBOL_GPL(spi_bus_lock);

/**
 * spi_bus_unlock - release the lock for exclusive SPI bus usage
 * @master: SPI bus master that was locked for exclusive bus access
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.
 *
 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
 * call.
 *
 * It returns zero on success, else a negative error code.
 */
int spi_bus_unlock(struct spi_master *master)
{
	master->bus_lock_flag = 0;

	mutex_unlock(&master->bus_lock_mutex);

	return 0;
}
EXPORT_SYMBOL_GPL(spi_bus_unlock);

1947
/* portable code must never pass more than 32 bytes */
J
Jingoo Han 已提交
1948
#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
1949 1950 1951 1952 1953 1954 1955 1956

static u8	*buf;

/**
 * spi_write_then_read - SPI synchronous write followed by read
 * @spi: device with which data will be exchanged
 * @txbuf: data to be written (need not be dma-safe)
 * @n_tx: size of txbuf, in bytes
1957 1958
 * @rxbuf: buffer into which data will be read (need not be dma-safe)
 * @n_rx: size of rxbuf, in bytes
D
David Brownell 已提交
1959
 * Context: can sleep
1960 1961 1962 1963
 *
 * This performs a half duplex MicroWire style transaction with the
 * device, sending txbuf and then reading rxbuf.  The return value
 * is zero for success, else a negative errno status code.
1964
 * This call may only be used from a context that may sleep.
1965
 *
D
David Brownell 已提交
1966
 * Parameters to this routine are always copied using a small buffer;
D
David Brownell 已提交
1967 1968
 * portable code should never use this for more than 32 bytes.
 * Performance-sensitive or bulk transfer code should instead use
D
David Brownell 已提交
1969
 * spi_{async,sync}() calls with dma-safe buffers.
1970 1971
 */
int spi_write_then_read(struct spi_device *spi,
1972 1973
		const void *txbuf, unsigned n_tx,
		void *rxbuf, unsigned n_rx)
1974
{
D
David Brownell 已提交
1975
	static DEFINE_MUTEX(lock);
1976 1977 1978

	int			status;
	struct spi_message	message;
1979
	struct spi_transfer	x[2];
1980 1981
	u8			*local_buf;

1982 1983 1984 1985
	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
	 * copying here, (as a pure convenience thing), but we can
	 * keep heap costs out of the hot path unless someone else is
	 * using the pre-allocated buffer or the transfer is too large.
1986
	 */
1987
	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
1988 1989
		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
				    GFP_KERNEL | GFP_DMA);
1990 1991 1992 1993 1994
		if (!local_buf)
			return -ENOMEM;
	} else {
		local_buf = buf;
	}
1995

1996
	spi_message_init(&message);
J
Jingoo Han 已提交
1997
	memset(x, 0, sizeof(x));
1998 1999 2000 2001 2002 2003 2004 2005
	if (n_tx) {
		x[0].len = n_tx;
		spi_message_add_tail(&x[0], &message);
	}
	if (n_rx) {
		x[1].len = n_rx;
		spi_message_add_tail(&x[1], &message);
	}
2006

2007
	memcpy(local_buf, txbuf, n_tx);
2008 2009
	x[0].tx_buf = local_buf;
	x[1].rx_buf = local_buf + n_tx;
2010 2011 2012

	/* do the i/o */
	status = spi_sync(spi, &message);
2013
	if (status == 0)
2014
		memcpy(rxbuf, x[1].rx_buf, n_rx);
2015

2016
	if (x[0].tx_buf == buf)
D
David Brownell 已提交
2017
		mutex_unlock(&lock);
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
	else
		kfree(local_buf);

	return status;
}
EXPORT_SYMBOL_GPL(spi_write_then_read);

/*-------------------------------------------------------------------------*/

static int __init spi_init(void)
{
2029 2030
	int	status;

2031
	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2032 2033 2034 2035 2036 2037 2038 2039
	if (!buf) {
		status = -ENOMEM;
		goto err0;
	}

	status = bus_register(&spi_bus_type);
	if (status < 0)
		goto err1;
2040

2041 2042 2043
	status = class_register(&spi_master_class);
	if (status < 0)
		goto err2;
2044
	return 0;
2045 2046 2047 2048 2049 2050 2051 2052

err2:
	bus_unregister(&spi_bus_type);
err1:
	kfree(buf);
	buf = NULL;
err0:
	return status;
2053
}
2054

2055 2056
/* board_info is normally registered in arch_initcall(),
 * but even essential drivers wait till later
2057 2058 2059 2060
 *
 * REVISIT only boardinfo really needs static linking. the rest (device and
 * driver registration) _could_ be dynamically linked (modular) ... costs
 * include needing to have boardinfo data structures be much more public.
2061
 */
2062
postcore_initcall(spi_init);
2063