spi.c 55.8 KB
Newer Older
1
/*
G
Grant Likely 已提交
2
 * SPI init/core code
3 4
 *
 * Copyright (C) 2005 David Brownell
5
 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/kernel.h>
23
#include <linux/kmod.h>
24 25 26
#include <linux/device.h>
#include <linux/init.h>
#include <linux/cache.h>
27
#include <linux/mutex.h>
28
#include <linux/of_device.h>
29
#include <linux/of_irq.h>
30
#include <linux/slab.h>
31
#include <linux/mod_devicetable.h>
32
#include <linux/spi/spi.h>
33
#include <linux/of_gpio.h>
M
Mark Brown 已提交
34
#include <linux/pm_runtime.h>
35
#include <linux/export.h>
36
#include <linux/sched/rt.h>
37 38
#include <linux/delay.h>
#include <linux/kthread.h>
39 40
#include <linux/ioport.h>
#include <linux/acpi.h>
41

42 43 44
#define CREATE_TRACE_POINTS
#include <trace/events/spi.h>

45 46
static void spidev_release(struct device *dev)
{
47
	struct spi_device	*spi = to_spi_device(dev);
48 49 50 51 52

	/* spi masters may cleanup for released devices */
	if (spi->master->cleanup)
		spi->master->cleanup(spi);

D
David Brownell 已提交
53
	spi_master_put(spi->master);
54
	kfree(spi);
55 56 57 58 59 60
}

static ssize_t
modalias_show(struct device *dev, struct device_attribute *a, char *buf)
{
	const struct spi_device	*spi = to_spi_device(dev);
61 62 63 64 65
	int len;

	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
	if (len != -ENODEV)
		return len;
66

67
	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68
}
69
static DEVICE_ATTR_RO(modalias);
70

71 72 73
static struct attribute *spi_dev_attrs[] = {
	&dev_attr_modalias.attr,
	NULL,
74
};
75
ATTRIBUTE_GROUPS(spi_dev);
76 77 78 79 80

/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 * and the sysfs version makes coldplug work too.
 */

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
						const struct spi_device *sdev)
{
	while (id->name[0]) {
		if (!strcmp(sdev->modalias, id->name))
			return id;
		id++;
	}
	return NULL;
}

const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
{
	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);

	return spi_match_id(sdrv->id_table, sdev);
}
EXPORT_SYMBOL_GPL(spi_get_device_id);

100 101 102
static int spi_match_device(struct device *dev, struct device_driver *drv)
{
	const struct spi_device	*spi = to_spi_device(dev);
103 104
	const struct spi_driver	*sdrv = to_spi_driver(drv);

105 106 107 108
	/* Attempt an OF style match */
	if (of_driver_match_device(dev, drv))
		return 1;

109 110 111 112
	/* Then try ACPI */
	if (acpi_driver_match_device(dev, drv))
		return 1;

113 114
	if (sdrv->id_table)
		return !!spi_match_id(sdrv->id_table, spi);
115

116
	return strcmp(spi->modalias, drv->name) == 0;
117 118
}

119
static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
120 121
{
	const struct spi_device		*spi = to_spi_device(dev);
122 123 124 125 126
	int rc;

	rc = acpi_device_uevent_modalias(dev, env);
	if (rc != -ENODEV)
		return rc;
127

128
	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
129 130 131
	return 0;
}

M
Mark Brown 已提交
132 133
#ifdef CONFIG_PM_SLEEP
static int spi_legacy_suspend(struct device *dev, pm_message_t message)
134
{
135
	int			value = 0;
136
	struct spi_driver	*drv = to_spi_driver(dev->driver);
137 138

	/* suspend will stop irqs and dma; no more i/o */
139 140 141 142 143 144
	if (drv) {
		if (drv->suspend)
			value = drv->suspend(to_spi_device(dev), message);
		else
			dev_dbg(dev, "... can't suspend\n");
	}
145 146 147
	return value;
}

M
Mark Brown 已提交
148
static int spi_legacy_resume(struct device *dev)
149
{
150
	int			value = 0;
151
	struct spi_driver	*drv = to_spi_driver(dev->driver);
152 153

	/* resume may restart the i/o queue */
154 155 156 157 158 159
	if (drv) {
		if (drv->resume)
			value = drv->resume(to_spi_device(dev));
		else
			dev_dbg(dev, "... can't resume\n");
	}
160 161 162
	return value;
}

M
Mark Brown 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
static int spi_pm_suspend(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_suspend(dev);
	else
		return spi_legacy_suspend(dev, PMSG_SUSPEND);
}

static int spi_pm_resume(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_resume(dev);
	else
		return spi_legacy_resume(dev);
}

static int spi_pm_freeze(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_freeze(dev);
	else
		return spi_legacy_suspend(dev, PMSG_FREEZE);
}

static int spi_pm_thaw(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_thaw(dev);
	else
		return spi_legacy_resume(dev);
}

static int spi_pm_poweroff(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_poweroff(dev);
	else
		return spi_legacy_suspend(dev, PMSG_HIBERNATE);
}

static int spi_pm_restore(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_restore(dev);
	else
		return spi_legacy_resume(dev);
}
222
#else
M
Mark Brown 已提交
223 224 225 226 227 228
#define spi_pm_suspend	NULL
#define spi_pm_resume	NULL
#define spi_pm_freeze	NULL
#define spi_pm_thaw	NULL
#define spi_pm_poweroff	NULL
#define spi_pm_restore	NULL
229 230
#endif

M
Mark Brown 已提交
231 232 233 234 235 236 237 238 239 240
static const struct dev_pm_ops spi_pm = {
	.suspend = spi_pm_suspend,
	.resume = spi_pm_resume,
	.freeze = spi_pm_freeze,
	.thaw = spi_pm_thaw,
	.poweroff = spi_pm_poweroff,
	.restore = spi_pm_restore,
	SET_RUNTIME_PM_OPS(
		pm_generic_runtime_suspend,
		pm_generic_runtime_resume,
241
		NULL
M
Mark Brown 已提交
242 243 244
	)
};

245 246
struct bus_type spi_bus_type = {
	.name		= "spi",
247
	.dev_groups	= spi_dev_groups,
248 249
	.match		= spi_match_device,
	.uevent		= spi_uevent,
M
Mark Brown 已提交
250
	.pm		= &spi_pm,
251 252 253
};
EXPORT_SYMBOL_GPL(spi_bus_type);

254 255 256 257

static int spi_drv_probe(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
258 259
	int ret;

260 261
	acpi_dev_pm_attach(dev, true);
	ret = sdrv->probe(to_spi_device(dev));
262
	if (ret)
263
		acpi_dev_pm_detach(dev, true);
264

265
	return ret;
266 267 268 269 270
}

static int spi_drv_remove(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
271 272
	int ret;

273 274
	ret = sdrv->remove(to_spi_device(dev));
	acpi_dev_pm_detach(dev, true);
275

276
	return ret;
277 278 279 280 281 282 283 284 285
}

static void spi_drv_shutdown(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);

	sdrv->shutdown(to_spi_device(dev));
}

D
David Brownell 已提交
286 287 288 289 290
/**
 * spi_register_driver - register a SPI driver
 * @sdrv: the driver to register
 * Context: can sleep
 */
291 292 293 294 295 296 297 298 299 300 301 302 303
int spi_register_driver(struct spi_driver *sdrv)
{
	sdrv->driver.bus = &spi_bus_type;
	if (sdrv->probe)
		sdrv->driver.probe = spi_drv_probe;
	if (sdrv->remove)
		sdrv->driver.remove = spi_drv_remove;
	if (sdrv->shutdown)
		sdrv->driver.shutdown = spi_drv_shutdown;
	return driver_register(&sdrv->driver);
}
EXPORT_SYMBOL_GPL(spi_register_driver);

304 305 306 307 308 309 310 311 312 313
/*-------------------------------------------------------------------------*/

/* SPI devices should normally not be created by SPI device drivers; that
 * would make them board-specific.  Similarly with SPI master drivers.
 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 * with other readonly (flashable) information about mainboard devices.
 */

struct boardinfo {
	struct list_head	list;
314
	struct spi_board_info	board_info;
315 316 317
};

static LIST_HEAD(board_list);
318 319 320 321 322 323
static LIST_HEAD(spi_master_list);

/*
 * Used to protect add/del opertion for board_info list and
 * spi_master list, and their matching process
 */
324
static DEFINE_MUTEX(board_lock);
325

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
/**
 * spi_alloc_device - Allocate a new SPI device
 * @master: Controller to which device is connected
 * Context: can sleep
 *
 * Allows a driver to allocate and initialize a spi_device without
 * registering it immediately.  This allows a driver to directly
 * fill the spi_device with device parameters before calling
 * spi_add_device() on it.
 *
 * Caller is responsible to call spi_add_device() on the returned
 * spi_device structure to add it to the SPI master.  If the caller
 * needs to discard the spi_device without adding it, then it should
 * call spi_dev_put() on it.
 *
 * Returns a pointer to the new device, or NULL.
 */
struct spi_device *spi_alloc_device(struct spi_master *master)
{
	struct spi_device	*spi;
	struct device		*dev = master->dev.parent;

	if (!spi_master_get(master))
		return NULL;

J
Jingoo Han 已提交
351
	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
352 353 354 355 356 357 358
	if (!spi) {
		dev_err(dev, "cannot alloc spi_device\n");
		spi_master_put(master);
		return NULL;
	}

	spi->master = master;
359
	spi->dev.parent = &master->dev;
360 361
	spi->dev.bus = &spi_bus_type;
	spi->dev.release = spidev_release;
362
	spi->cs_gpio = -ENOENT;
363 364 365 366 367
	device_initialize(&spi->dev);
	return spi;
}
EXPORT_SYMBOL_GPL(spi_alloc_device);

368 369 370 371 372 373 374 375 376 377 378 379 380
static void spi_dev_set_name(struct spi_device *spi)
{
	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);

	if (adev) {
		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
		return;
	}

	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
		     spi->chip_select);
}

381 382 383 384 385 386 387 388 389 390 391
static int spi_dev_check(struct device *dev, void *data)
{
	struct spi_device *spi = to_spi_device(dev);
	struct spi_device *new_spi = data;

	if (spi->master == new_spi->master &&
	    spi->chip_select == new_spi->chip_select)
		return -EBUSY;
	return 0;
}

392 393 394 395 396 397 398
/**
 * spi_add_device - Add spi_device allocated with spi_alloc_device
 * @spi: spi_device to register
 *
 * Companion function to spi_alloc_device.  Devices allocated with
 * spi_alloc_device can be added onto the spi bus with this function.
 *
399
 * Returns 0 on success; negative errno on failure
400 401 402
 */
int spi_add_device(struct spi_device *spi)
{
403
	static DEFINE_MUTEX(spi_add_lock);
404 405
	struct spi_master *master = spi->master;
	struct device *dev = master->dev.parent;
406 407 408
	int status;

	/* Chipselects are numbered 0..max; validate. */
409
	if (spi->chip_select >= master->num_chipselect) {
410 411
		dev_err(dev, "cs%d >= max %d\n",
			spi->chip_select,
412
			master->num_chipselect);
413 414 415 416
		return -EINVAL;
	}

	/* Set the bus ID string */
417
	spi_dev_set_name(spi);
418 419 420 421 422 423 424

	/* We need to make sure there's no other device with this
	 * chipselect **BEFORE** we call setup(), else we'll trash
	 * its configuration.  Lock against concurrent add() calls.
	 */
	mutex_lock(&spi_add_lock);

425 426
	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
	if (status) {
427 428 429 430 431
		dev_err(dev, "chipselect %d already in use\n",
				spi->chip_select);
		goto done;
	}

432 433 434
	if (master->cs_gpios)
		spi->cs_gpio = master->cs_gpios[spi->chip_select];

435 436 437 438
	/* Drivers may modify this initial i/o setup, but will
	 * normally rely on the device being setup.  Devices
	 * using SPI_CS_HIGH can't coexist well otherwise...
	 */
439
	status = spi_setup(spi);
440
	if (status < 0) {
441 442
		dev_err(dev, "can't setup %s, status %d\n",
				dev_name(&spi->dev), status);
443
		goto done;
444 445
	}

446
	/* Device may be bound to an active driver when this returns */
447
	status = device_add(&spi->dev);
448
	if (status < 0)
449 450
		dev_err(dev, "can't add %s, status %d\n",
				dev_name(&spi->dev), status);
451
	else
452
		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
453

454 455 456
done:
	mutex_unlock(&spi_add_lock);
	return status;
457 458
}
EXPORT_SYMBOL_GPL(spi_add_device);
459

D
David Brownell 已提交
460 461 462 463 464 465 466
/**
 * spi_new_device - instantiate one new SPI device
 * @master: Controller to which device is connected
 * @chip: Describes the SPI device
 * Context: can sleep
 *
 * On typical mainboards, this is purely internal; and it's not needed
467 468 469 470
 * after board init creates the hard-wired devices.  Some development
 * platforms may not be able to use spi_register_board_info though, and
 * this is exported so that for example a USB or parport based adapter
 * driver could add devices (which it would learn about out-of-band).
471 472
 *
 * Returns the new device, or NULL.
473
 */
474 475
struct spi_device *spi_new_device(struct spi_master *master,
				  struct spi_board_info *chip)
476 477 478 479
{
	struct spi_device	*proxy;
	int			status;

480 481 482 483 484 485 486
	/* NOTE:  caller did any chip->bus_num checks necessary.
	 *
	 * Also, unless we change the return value convention to use
	 * error-or-pointer (not NULL-or-pointer), troubleshootability
	 * suggests syslogged diagnostics are best here (ugh).
	 */

487 488
	proxy = spi_alloc_device(master);
	if (!proxy)
489 490
		return NULL;

491 492
	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));

493 494
	proxy->chip_select = chip->chip_select;
	proxy->max_speed_hz = chip->max_speed_hz;
495
	proxy->mode = chip->mode;
496
	proxy->irq = chip->irq;
497
	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
498 499 500 501
	proxy->dev.platform_data = (void *) chip->platform_data;
	proxy->controller_data = chip->controller_data;
	proxy->controller_state = NULL;

502
	status = spi_add_device(proxy);
503
	if (status < 0) {
504 505
		spi_dev_put(proxy);
		return NULL;
506 507 508 509 510 511
	}

	return proxy;
}
EXPORT_SYMBOL_GPL(spi_new_device);

512 513 514 515 516 517 518 519 520 521 522 523 524 525
static void spi_match_master_to_boardinfo(struct spi_master *master,
				struct spi_board_info *bi)
{
	struct spi_device *dev;

	if (master->bus_num != bi->bus_num)
		return;

	dev = spi_new_device(master, bi);
	if (!dev)
		dev_err(master->dev.parent, "can't create new device for %s\n",
			bi->modalias);
}

D
David Brownell 已提交
526 527 528 529 530 531
/**
 * spi_register_board_info - register SPI devices for a given board
 * @info: array of chip descriptors
 * @n: how many descriptors are provided
 * Context: can sleep
 *
532 533 534 535 536 537 538 539 540 541 542 543 544
 * Board-specific early init code calls this (probably during arch_initcall)
 * with segments of the SPI device table.  Any device nodes are created later,
 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 * this table of devices forever, so that reloading a controller driver will
 * not make Linux forget about these hard-wired devices.
 *
 * Other code can also call this, e.g. a particular add-on board might provide
 * SPI devices through its expansion connector, so code initializing that board
 * would naturally declare its SPI devices.
 *
 * The board info passed can safely be __initdata ... but be careful of
 * any embedded pointers (platform_data, etc), they're copied as-is.
 */
545
int spi_register_board_info(struct spi_board_info const *info, unsigned n)
546
{
547 548
	struct boardinfo *bi;
	int i;
549

550
	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
551 552 553
	if (!bi)
		return -ENOMEM;

554 555
	for (i = 0; i < n; i++, bi++, info++) {
		struct spi_master *master;
556

557 558 559 560 561 562
		memcpy(&bi->board_info, info, sizeof(*info));
		mutex_lock(&board_lock);
		list_add_tail(&bi->list, &board_list);
		list_for_each_entry(master, &spi_master_list, list)
			spi_match_master_to_boardinfo(master, &bi->board_info);
		mutex_unlock(&board_lock);
563
	}
564 565

	return 0;
566 567 568 569
}

/*-------------------------------------------------------------------------*/

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
static void spi_set_cs(struct spi_device *spi, bool enable)
{
	if (spi->mode & SPI_CS_HIGH)
		enable = !enable;

	if (spi->cs_gpio >= 0)
		gpio_set_value(spi->cs_gpio, !enable);
	else if (spi->master->set_cs)
		spi->master->set_cs(spi, !enable);
}

/*
 * spi_transfer_one_message - Default implementation of transfer_one_message()
 *
 * This is a standard implementation of transfer_one_message() for
 * drivers which impelment a transfer_one() operation.  It provides
 * standard handling of delays and chip select management.
 */
static int spi_transfer_one_message(struct spi_master *master,
				    struct spi_message *msg)
{
	struct spi_transfer *xfer;
	bool cur_cs = true;
	bool keep_cs = false;
	int ret = 0;

	spi_set_cs(msg->spi, true);

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		trace_spi_transfer_start(msg, xfer);

601
		reinit_completion(&master->xfer_completion);
602 603 604 605 606 607 608 609

		ret = master->transfer_one(master, msg->spi, xfer);
		if (ret < 0) {
			dev_err(&msg->spi->dev,
				"SPI transfer failed: %d\n", ret);
			goto out;
		}

610 611
		if (ret > 0) {
			ret = 0;
612
			wait_for_completion(&master->xfer_completion);
613
		}
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652

		trace_spi_transfer_stop(msg, xfer);

		if (msg->status != -EINPROGRESS)
			goto out;

		if (xfer->delay_usecs)
			udelay(xfer->delay_usecs);

		if (xfer->cs_change) {
			if (list_is_last(&xfer->transfer_list,
					 &msg->transfers)) {
				keep_cs = true;
			} else {
				cur_cs = !cur_cs;
				spi_set_cs(msg->spi, cur_cs);
			}
		}

		msg->actual_length += xfer->len;
	}

out:
	if (ret != 0 || !keep_cs)
		spi_set_cs(msg->spi, false);

	if (msg->status == -EINPROGRESS)
		msg->status = ret;

	spi_finalize_current_message(master);

	return ret;
}

/**
 * spi_finalize_current_transfer - report completion of a transfer
 *
 * Called by SPI drivers using the core transfer_one_message()
 * implementation to notify it that the current interrupt driven
653
 * transfer has finished and the next one may be scheduled.
654 655 656 657 658 659 660
 */
void spi_finalize_current_transfer(struct spi_master *master)
{
	complete(&master->xfer_completion);
}
EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);

661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
/**
 * spi_pump_messages - kthread work function which processes spi message queue
 * @work: pointer to kthread work struct contained in the master struct
 *
 * This function checks if there is any spi message in the queue that
 * needs processing and if so call out to the driver to initialize hardware
 * and transfer each message.
 *
 */
static void spi_pump_messages(struct kthread_work *work)
{
	struct spi_master *master =
		container_of(work, struct spi_master, pump_messages);
	unsigned long flags;
	bool was_busy = false;
	int ret;

	/* Lock queue and check for queue work */
	spin_lock_irqsave(&master->queue_lock, flags);
	if (list_empty(&master->queue) || !master->running) {
681 682 683
		if (!master->busy) {
			spin_unlock_irqrestore(&master->queue_lock, flags);
			return;
684 685 686
		}
		master->busy = false;
		spin_unlock_irqrestore(&master->queue_lock, flags);
687 688 689 690
		if (master->unprepare_transfer_hardware &&
		    master->unprepare_transfer_hardware(master))
			dev_err(&master->dev,
				"failed to unprepare transfer hardware\n");
691 692 693 694
		if (master->auto_runtime_pm) {
			pm_runtime_mark_last_busy(master->dev.parent);
			pm_runtime_put_autosuspend(master->dev.parent);
		}
695
		trace_spi_master_idle(master);
696 697 698 699 700 701 702 703 704 705
		return;
	}

	/* Make sure we are not already running a message */
	if (master->cur_msg) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return;
	}
	/* Extract head of queue */
	master->cur_msg =
706
		list_first_entry(&master->queue, struct spi_message, queue);
707 708 709 710 711 712 713 714

	list_del_init(&master->cur_msg->queue);
	if (master->busy)
		was_busy = true;
	else
		master->busy = true;
	spin_unlock_irqrestore(&master->queue_lock, flags);

715 716 717 718 719 720 721 722 723
	if (!was_busy && master->auto_runtime_pm) {
		ret = pm_runtime_get_sync(master->dev.parent);
		if (ret < 0) {
			dev_err(&master->dev, "Failed to power device: %d\n",
				ret);
			return;
		}
	}

724 725 726
	if (!was_busy)
		trace_spi_master_busy(master);

727
	if (!was_busy && master->prepare_transfer_hardware) {
728 729 730 731
		ret = master->prepare_transfer_hardware(master);
		if (ret) {
			dev_err(&master->dev,
				"failed to prepare transfer hardware\n");
732 733 734

			if (master->auto_runtime_pm)
				pm_runtime_put(master->dev.parent);
735 736 737 738
			return;
		}
	}

739 740
	trace_spi_message_start(master->cur_msg);

741 742 743 744 745 746 747 748 749 750 751 752
	if (master->prepare_message) {
		ret = master->prepare_message(master, master->cur_msg);
		if (ret) {
			dev_err(&master->dev,
				"failed to prepare message: %d\n", ret);
			master->cur_msg->status = ret;
			spi_finalize_current_message(master);
			return;
		}
		master->cur_msg_prepared = true;
	}

753 754 755
	ret = master->transfer_one_message(master, master->cur_msg);
	if (ret) {
		dev_err(&master->dev,
756 757 758
			"failed to transfer one message from queue: %d\n", ret);
		master->cur_msg->status = ret;
		spi_finalize_current_message(master);
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
		return;
	}
}

static int spi_init_queue(struct spi_master *master)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };

	INIT_LIST_HEAD(&master->queue);
	spin_lock_init(&master->queue_lock);

	master->running = false;
	master->busy = false;

	init_kthread_worker(&master->kworker);
	master->kworker_task = kthread_run(kthread_worker_fn,
775
					   &master->kworker, "%s",
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
					   dev_name(&master->dev));
	if (IS_ERR(master->kworker_task)) {
		dev_err(&master->dev, "failed to create message pump task\n");
		return -ENOMEM;
	}
	init_kthread_work(&master->pump_messages, spi_pump_messages);

	/*
	 * Master config will indicate if this controller should run the
	 * message pump with high (realtime) priority to reduce the transfer
	 * latency on the bus by minimising the delay between a transfer
	 * request and the scheduling of the message pump thread. Without this
	 * setting the message pump thread will remain at default priority.
	 */
	if (master->rt) {
		dev_info(&master->dev,
			"will run message pump with realtime priority\n");
		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
	}

	return 0;
}

/**
 * spi_get_next_queued_message() - called by driver to check for queued
 * messages
 * @master: the master to check for queued messages
 *
 * If there are more messages in the queue, the next message is returned from
 * this call.
 */
struct spi_message *spi_get_next_queued_message(struct spi_master *master)
{
	struct spi_message *next;
	unsigned long flags;

	/* get a pointer to the next message, if any */
	spin_lock_irqsave(&master->queue_lock, flags);
814 815
	next = list_first_entry_or_null(&master->queue, struct spi_message,
					queue);
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
	spin_unlock_irqrestore(&master->queue_lock, flags);

	return next;
}
EXPORT_SYMBOL_GPL(spi_get_next_queued_message);

/**
 * spi_finalize_current_message() - the current message is complete
 * @master: the master to return the message to
 *
 * Called by the driver to notify the core that the message in the front of the
 * queue is complete and can be removed from the queue.
 */
void spi_finalize_current_message(struct spi_master *master)
{
	struct spi_message *mesg;
	unsigned long flags;
833
	int ret;
834 835 836 837 838 839 840 841

	spin_lock_irqsave(&master->queue_lock, flags);
	mesg = master->cur_msg;
	master->cur_msg = NULL;

	queue_kthread_work(&master->kworker, &master->pump_messages);
	spin_unlock_irqrestore(&master->queue_lock, flags);

842 843 844 845 846 847 848 849 850
	if (master->cur_msg_prepared && master->unprepare_message) {
		ret = master->unprepare_message(master, mesg);
		if (ret) {
			dev_err(&master->dev,
				"failed to unprepare message: %d\n", ret);
		}
	}
	master->cur_msg_prepared = false;

851 852 853
	mesg->state = NULL;
	if (mesg->complete)
		mesg->complete(mesg->context);
854 855

	trace_spi_message_done(mesg);
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
}
EXPORT_SYMBOL_GPL(spi_finalize_current_message);

static int spi_start_queue(struct spi_master *master)
{
	unsigned long flags;

	spin_lock_irqsave(&master->queue_lock, flags);

	if (master->running || master->busy) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return -EBUSY;
	}

	master->running = true;
	master->cur_msg = NULL;
	spin_unlock_irqrestore(&master->queue_lock, flags);

	queue_kthread_work(&master->kworker, &master->pump_messages);

	return 0;
}

static int spi_stop_queue(struct spi_master *master)
{
	unsigned long flags;
	unsigned limit = 500;
	int ret = 0;

	spin_lock_irqsave(&master->queue_lock, flags);

	/*
	 * This is a bit lame, but is optimized for the common execution path.
	 * A wait_queue on the master->busy could be used, but then the common
	 * execution path (pump_messages) would be required to call wake_up or
	 * friends on every SPI message. Do this instead.
	 */
	while ((!list_empty(&master->queue) || master->busy) && limit--) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
895
		usleep_range(10000, 11000);
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
		spin_lock_irqsave(&master->queue_lock, flags);
	}

	if (!list_empty(&master->queue) || master->busy)
		ret = -EBUSY;
	else
		master->running = false;

	spin_unlock_irqrestore(&master->queue_lock, flags);

	if (ret) {
		dev_warn(&master->dev,
			 "could not stop message queue\n");
		return ret;
	}
	return ret;
}

static int spi_destroy_queue(struct spi_master *master)
{
	int ret;

	ret = spi_stop_queue(master);

	/*
	 * flush_kthread_worker will block until all work is done.
	 * If the reason that stop_queue timed out is that the work will never
	 * finish, then it does no good to call flush/stop thread, so
	 * return anyway.
	 */
	if (ret) {
		dev_err(&master->dev, "problem destroying queue\n");
		return ret;
	}

	flush_kthread_worker(&master->kworker);
	kthread_stop(master->kworker_task);

	return 0;
}

/**
 * spi_queued_transfer - transfer function for queued transfers
 * @spi: spi device which is requesting transfer
 * @msg: spi message which is to handled is queued to driver queue
 */
static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
{
	struct spi_master *master = spi->master;
	unsigned long flags;

	spin_lock_irqsave(&master->queue_lock, flags);

	if (!master->running) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return -ESHUTDOWN;
	}
	msg->actual_length = 0;
	msg->status = -EINPROGRESS;

	list_add_tail(&msg->queue, &master->queue);
957
	if (!master->busy)
958 959 960 961 962 963 964 965 966 967 968 969
		queue_kthread_work(&master->kworker, &master->pump_messages);

	spin_unlock_irqrestore(&master->queue_lock, flags);
	return 0;
}

static int spi_master_initialize_queue(struct spi_master *master)
{
	int ret;

	master->queued = true;
	master->transfer = spi_queued_transfer;
970 971
	if (!master->transfer_one_message)
		master->transfer_one_message = spi_transfer_one_message;
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994

	/* Initialize and start queue */
	ret = spi_init_queue(master);
	if (ret) {
		dev_err(&master->dev, "problem initializing queue\n");
		goto err_init_queue;
	}
	ret = spi_start_queue(master);
	if (ret) {
		dev_err(&master->dev, "problem starting queue\n");
		goto err_start_queue;
	}

	return 0;

err_start_queue:
err_init_queue:
	spi_destroy_queue(master);
	return ret;
}

/*-------------------------------------------------------------------------*/

995
#if defined(CONFIG_OF)
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
/**
 * of_register_spi_devices() - Register child devices onto the SPI bus
 * @master:	Pointer to spi_master device
 *
 * Registers an spi_device for each child node of master node which has a 'reg'
 * property.
 */
static void of_register_spi_devices(struct spi_master *master)
{
	struct spi_device *spi;
	struct device_node *nc;
	int rc;
T
Trent Piepho 已提交
1008
	u32 value;
1009 1010 1011 1012

	if (!master->dev.of_node)
		return;

1013
	for_each_available_child_of_node(master->dev.of_node, nc) {
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
		/* Alloc an spi_device */
		spi = spi_alloc_device(master);
		if (!spi) {
			dev_err(&master->dev, "spi_device alloc error for %s\n",
				nc->full_name);
			spi_dev_put(spi);
			continue;
		}

		/* Select device driver */
		if (of_modalias_node(nc, spi->modalias,
				     sizeof(spi->modalias)) < 0) {
			dev_err(&master->dev, "cannot find modalias for %s\n",
				nc->full_name);
			spi_dev_put(spi);
			continue;
		}

		/* Device address */
T
Trent Piepho 已提交
1033 1034 1035 1036
		rc = of_property_read_u32(nc, "reg", &value);
		if (rc) {
			dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
				nc->full_name, rc);
1037 1038 1039
			spi_dev_put(spi);
			continue;
		}
T
Trent Piepho 已提交
1040
		spi->chip_select = value;
1041 1042 1043 1044 1045 1046 1047 1048

		/* Mode (clock phase/polarity/etc.) */
		if (of_find_property(nc, "spi-cpha", NULL))
			spi->mode |= SPI_CPHA;
		if (of_find_property(nc, "spi-cpol", NULL))
			spi->mode |= SPI_CPOL;
		if (of_find_property(nc, "spi-cs-high", NULL))
			spi->mode |= SPI_CS_HIGH;
1049 1050
		if (of_find_property(nc, "spi-3wire", NULL))
			spi->mode |= SPI_3WIRE;
1051

W
wangyuhang 已提交
1052
		/* Device DUAL/QUAD mode */
T
Trent Piepho 已提交
1053 1054 1055
		if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
			switch (value) {
			case 1:
1056
				break;
T
Trent Piepho 已提交
1057
			case 2:
1058 1059
				spi->mode |= SPI_TX_DUAL;
				break;
T
Trent Piepho 已提交
1060
			case 4:
1061 1062 1063 1064
				spi->mode |= SPI_TX_QUAD;
				break;
			default:
				dev_err(&master->dev,
1065
					"spi-tx-bus-width %d not supported\n",
T
Trent Piepho 已提交
1066
					value);
1067 1068 1069
				spi_dev_put(spi);
				continue;
			}
W
wangyuhang 已提交
1070 1071
		}

T
Trent Piepho 已提交
1072 1073 1074
		if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
			switch (value) {
			case 1:
1075
				break;
T
Trent Piepho 已提交
1076
			case 2:
1077 1078
				spi->mode |= SPI_RX_DUAL;
				break;
T
Trent Piepho 已提交
1079
			case 4:
1080 1081 1082 1083
				spi->mode |= SPI_RX_QUAD;
				break;
			default:
				dev_err(&master->dev,
1084
					"spi-rx-bus-width %d not supported\n",
T
Trent Piepho 已提交
1085
					value);
1086 1087 1088
				spi_dev_put(spi);
				continue;
			}
W
wangyuhang 已提交
1089 1090
		}

1091
		/* Device speed */
T
Trent Piepho 已提交
1092 1093 1094 1095
		rc = of_property_read_u32(nc, "spi-max-frequency", &value);
		if (rc) {
			dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
				nc->full_name, rc);
1096 1097 1098
			spi_dev_put(spi);
			continue;
		}
T
Trent Piepho 已提交
1099
		spi->max_speed_hz = value;
1100 1101 1102 1103 1104 1105 1106 1107 1108

		/* IRQ */
		spi->irq = irq_of_parse_and_map(nc, 0);

		/* Store a pointer to the node in the device structure */
		of_node_get(nc);
		spi->dev.of_node = nc;

		/* Register the new device */
1109
		request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias);
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
		rc = spi_add_device(spi);
		if (rc) {
			dev_err(&master->dev, "spi_device register error %s\n",
				nc->full_name);
			spi_dev_put(spi);
		}

	}
}
#else
static void of_register_spi_devices(struct spi_master *master) { }
#endif

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
#ifdef CONFIG_ACPI
static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
{
	struct spi_device *spi = data;

	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
		struct acpi_resource_spi_serialbus *sb;

		sb = &ares->data.spi_serial_bus;
		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
			spi->chip_select = sb->device_selection;
			spi->max_speed_hz = sb->connection_speed;

			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
				spi->mode |= SPI_CPHA;
			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
				spi->mode |= SPI_CPOL;
			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
				spi->mode |= SPI_CS_HIGH;
		}
	} else if (spi->irq < 0) {
		struct resource r;

		if (acpi_dev_resource_interrupt(ares, 0, &r))
			spi->irq = r.start;
	}

	/* Always tell the ACPI core to skip this resource */
	return 1;
}

static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
				       void *data, void **return_value)
{
	struct spi_master *master = data;
	struct list_head resource_list;
	struct acpi_device *adev;
	struct spi_device *spi;
	int ret;

	if (acpi_bus_get_device(handle, &adev))
		return AE_OK;
	if (acpi_bus_get_status(adev) || !adev->status.present)
		return AE_OK;

	spi = spi_alloc_device(master);
	if (!spi) {
		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
			dev_name(&adev->dev));
		return AE_NO_MEMORY;
	}

1175
	ACPI_COMPANION_SET(&spi->dev, adev);
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
	spi->irq = -1;

	INIT_LIST_HEAD(&resource_list);
	ret = acpi_dev_get_resources(adev, &resource_list,
				     acpi_spi_add_resource, spi);
	acpi_dev_free_resource_list(&resource_list);

	if (ret < 0 || !spi->max_speed_hz) {
		spi_dev_put(spi);
		return AE_OK;
	}

1188
	adev->power.flags.ignore_parent = true;
1189
	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1190
	if (spi_add_device(spi)) {
1191
		adev->power.flags.ignore_parent = false;
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
			dev_name(&adev->dev));
		spi_dev_put(spi);
	}

	return AE_OK;
}

static void acpi_register_spi_devices(struct spi_master *master)
{
	acpi_status status;
	acpi_handle handle;

1205
	handle = ACPI_HANDLE(master->dev.parent);
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
	if (!handle)
		return;

	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
				     acpi_spi_add_device, NULL,
				     master, NULL);
	if (ACPI_FAILURE(status))
		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
}
#else
static inline void acpi_register_spi_devices(struct spi_master *master) {}
#endif /* CONFIG_ACPI */

T
Tony Jones 已提交
1219
static void spi_master_release(struct device *dev)
1220 1221 1222
{
	struct spi_master *master;

T
Tony Jones 已提交
1223
	master = container_of(dev, struct spi_master, dev);
1224 1225 1226 1227 1228 1229
	kfree(master);
}

static struct class spi_master_class = {
	.name		= "spi_master",
	.owner		= THIS_MODULE,
T
Tony Jones 已提交
1230
	.dev_release	= spi_master_release,
1231 1232 1233
};


1234

1235 1236 1237
/**
 * spi_alloc_master - allocate SPI master controller
 * @dev: the controller, possibly using the platform_bus
D
David Brownell 已提交
1238
 * @size: how much zeroed driver-private data to allocate; the pointer to this
T
Tony Jones 已提交
1239
 *	memory is in the driver_data field of the returned device,
D
David Brownell 已提交
1240
 *	accessible with spi_master_get_devdata().
D
David Brownell 已提交
1241
 * Context: can sleep
1242 1243 1244
 *
 * This call is used only by SPI master controller drivers, which are the
 * only ones directly touching chip registers.  It's how they allocate
D
dmitry pervushin 已提交
1245
 * an spi_master structure, prior to calling spi_register_master().
1246 1247 1248 1249 1250
 *
 * This must be called from context that can sleep.  It returns the SPI
 * master structure on success, else NULL.
 *
 * The caller is responsible for assigning the bus number and initializing
D
dmitry pervushin 已提交
1251
 * the master's methods before calling spi_register_master(); and (after errors
1252 1253
 * adding the device) calling spi_master_put() and kfree() to prevent a memory
 * leak.
1254
 */
1255
struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1256 1257 1258
{
	struct spi_master	*master;

D
David Brownell 已提交
1259 1260 1261
	if (!dev)
		return NULL;

J
Jingoo Han 已提交
1262
	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1263 1264 1265
	if (!master)
		return NULL;

T
Tony Jones 已提交
1266
	device_initialize(&master->dev);
1267 1268
	master->bus_num = -1;
	master->num_chipselect = 1;
T
Tony Jones 已提交
1269 1270
	master->dev.class = &spi_master_class;
	master->dev.parent = get_device(dev);
D
David Brownell 已提交
1271
	spi_master_set_devdata(master, &master[1]);
1272 1273 1274 1275 1276

	return master;
}
EXPORT_SYMBOL_GPL(spi_alloc_master);

1277 1278 1279
#ifdef CONFIG_OF
static int of_spi_register_master(struct spi_master *master)
{
1280
	int nb, i, *cs;
1281 1282 1283 1284 1285 1286
	struct device_node *np = master->dev.of_node;

	if (!np)
		return 0;

	nb = of_gpio_named_count(np, "cs-gpios");
J
Jingoo Han 已提交
1287
	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1288

1289 1290
	/* Return error only for an incorrectly formed cs-gpios property */
	if (nb == 0 || nb == -ENOENT)
1291
		return 0;
1292 1293
	else if (nb < 0)
		return nb;
1294 1295 1296 1297 1298 1299 1300 1301 1302

	cs = devm_kzalloc(&master->dev,
			  sizeof(int) * master->num_chipselect,
			  GFP_KERNEL);
	master->cs_gpios = cs;

	if (!master->cs_gpios)
		return -ENOMEM;

1303
	for (i = 0; i < master->num_chipselect; i++)
1304
		cs[i] = -ENOENT;
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317

	for (i = 0; i < nb; i++)
		cs[i] = of_get_named_gpio(np, "cs-gpios", i);

	return 0;
}
#else
static int of_spi_register_master(struct spi_master *master)
{
	return 0;
}
#endif

1318 1319 1320
/**
 * spi_register_master - register SPI master controller
 * @master: initialized master, originally from spi_alloc_master()
D
David Brownell 已提交
1321
 * Context: can sleep
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
 *
 * SPI master controllers connect to their drivers using some non-SPI bus,
 * such as the platform bus.  The final stage of probe() in that code
 * includes calling spi_register_master() to hook up to this SPI bus glue.
 *
 * SPI controllers use board specific (often SOC specific) bus numbers,
 * and board-specific addressing for SPI devices combines those numbers
 * with chip select numbers.  Since SPI does not directly support dynamic
 * device identification, boards need configuration tables telling which
 * chip is at which address.
 *
 * This must be called from context that can sleep.  It returns zero on
 * success, else a negative error code (dropping the master's refcount).
D
David Brownell 已提交
1335 1336
 * After a successful return, the caller is responsible for calling
 * spi_unregister_master().
1337
 */
1338
int spi_register_master(struct spi_master *master)
1339
{
1340
	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
T
Tony Jones 已提交
1341
	struct device		*dev = master->dev.parent;
1342
	struct boardinfo	*bi;
1343 1344 1345
	int			status = -ENODEV;
	int			dynamic = 0;

D
David Brownell 已提交
1346 1347 1348
	if (!dev)
		return -ENODEV;

1349 1350 1351 1352
	status = of_spi_register_master(master);
	if (status)
		return status;

1353 1354 1355 1356 1357 1358
	/* even if it's just one always-selected device, there must
	 * be at least one chipselect
	 */
	if (master->num_chipselect == 0)
		return -EINVAL;

1359 1360 1361
	if ((master->bus_num < 0) && master->dev.of_node)
		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");

1362
	/* convention:  dynamically assigned bus IDs count down from the max */
1363
	if (master->bus_num < 0) {
1364 1365 1366
		/* FIXME switch to an IDR based scheme, something like
		 * I2C now uses, so we can't run out of "dynamic" IDs
		 */
1367
		master->bus_num = atomic_dec_return(&dyn_bus_id);
1368
		dynamic = 1;
1369 1370
	}

1371 1372 1373
	spin_lock_init(&master->bus_lock_spinlock);
	mutex_init(&master->bus_lock_mutex);
	master->bus_lock_flag = 0;
1374
	init_completion(&master->xfer_completion);
1375

1376 1377 1378
	/* register the device, then userspace will see it.
	 * registration fails if the bus ID is in use.
	 */
1379
	dev_set_name(&master->dev, "spi%u", master->bus_num);
T
Tony Jones 已提交
1380
	status = device_add(&master->dev);
1381
	if (status < 0)
1382
		goto done;
1383
	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1384 1385
			dynamic ? " (dynamic)" : "");

1386 1387 1388 1389 1390 1391
	/* If we're using a queued driver, start the queue */
	if (master->transfer)
		dev_info(dev, "master is unqueued, this is deprecated\n");
	else {
		status = spi_master_initialize_queue(master);
		if (status) {
1392
			device_del(&master->dev);
1393 1394 1395 1396
			goto done;
		}
	}

1397 1398 1399 1400 1401 1402
	mutex_lock(&board_lock);
	list_add_tail(&master->list, &spi_master_list);
	list_for_each_entry(bi, &board_list, list)
		spi_match_master_to_boardinfo(master, &bi->board_info);
	mutex_unlock(&board_lock);

1403
	/* Register devices from the device tree and ACPI */
1404
	of_register_spi_devices(master);
1405
	acpi_register_spi_devices(master);
1406 1407 1408 1409 1410
done:
	return status;
}
EXPORT_SYMBOL_GPL(spi_register_master);

1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
static void devm_spi_unregister(struct device *dev, void *res)
{
	spi_unregister_master(*(struct spi_master **)res);
}

/**
 * dev_spi_register_master - register managed SPI master controller
 * @dev:    device managing SPI master
 * @master: initialized master, originally from spi_alloc_master()
 * Context: can sleep
 *
 * Register a SPI device as with spi_register_master() which will
 * automatically be unregister
 */
int devm_spi_register_master(struct device *dev, struct spi_master *master)
{
	struct spi_master **ptr;
	int ret;

	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return -ENOMEM;

	ret = spi_register_master(master);
1435
	if (!ret) {
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
		*ptr = master;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return ret;
}
EXPORT_SYMBOL_GPL(devm_spi_register_master);

1446
static int __unregister(struct device *dev, void *null)
1447
{
1448
	spi_unregister_device(to_spi_device(dev));
1449 1450 1451 1452 1453 1454
	return 0;
}

/**
 * spi_unregister_master - unregister SPI master controller
 * @master: the master being unregistered
D
David Brownell 已提交
1455
 * Context: can sleep
1456 1457 1458 1459 1460 1461 1462 1463
 *
 * This call is used only by SPI master controller drivers, which are the
 * only ones directly touching chip registers.
 *
 * This must be called from context that can sleep.
 */
void spi_unregister_master(struct spi_master *master)
{
1464 1465
	int dummy;

1466 1467 1468 1469 1470
	if (master->queued) {
		if (spi_destroy_queue(master))
			dev_err(&master->dev, "queue remove failed\n");
	}

1471 1472 1473 1474
	mutex_lock(&board_lock);
	list_del(&master->list);
	mutex_unlock(&board_lock);

1475
	dummy = device_for_each_child(&master->dev, NULL, __unregister);
T
Tony Jones 已提交
1476
	device_unregister(&master->dev);
1477 1478 1479
}
EXPORT_SYMBOL_GPL(spi_unregister_master);

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
int spi_master_suspend(struct spi_master *master)
{
	int ret;

	/* Basically no-ops for non-queued masters */
	if (!master->queued)
		return 0;

	ret = spi_stop_queue(master);
	if (ret)
		dev_err(&master->dev, "queue stop failed\n");

	return ret;
}
EXPORT_SYMBOL_GPL(spi_master_suspend);

int spi_master_resume(struct spi_master *master)
{
	int ret;

	if (!master->queued)
		return 0;

	ret = spi_start_queue(master);
	if (ret)
		dev_err(&master->dev, "queue restart failed\n");

	return ret;
}
EXPORT_SYMBOL_GPL(spi_master_resume);

1511
static int __spi_master_match(struct device *dev, const void *data)
D
Dave Young 已提交
1512 1513
{
	struct spi_master *m;
1514
	const u16 *bus_num = data;
D
Dave Young 已提交
1515 1516 1517 1518 1519

	m = container_of(dev, struct spi_master, dev);
	return m->bus_num == *bus_num;
}

1520 1521 1522
/**
 * spi_busnum_to_master - look up master associated with bus_num
 * @bus_num: the master's bus number
D
David Brownell 已提交
1523
 * Context: can sleep
1524 1525 1526 1527 1528 1529 1530 1531
 *
 * This call may be used with devices that are registered after
 * arch init time.  It returns a refcounted pointer to the relevant
 * spi_master (which the caller must release), or NULL if there is
 * no such master registered.
 */
struct spi_master *spi_busnum_to_master(u16 bus_num)
{
T
Tony Jones 已提交
1532
	struct device		*dev;
1533
	struct spi_master	*master = NULL;
D
Dave Young 已提交
1534

1535
	dev = class_find_device(&spi_master_class, NULL, &bus_num,
D
Dave Young 已提交
1536 1537 1538 1539
				__spi_master_match);
	if (dev)
		master = container_of(dev, struct spi_master, dev);
	/* reference got in class_find_device */
1540
	return master;
1541 1542 1543 1544 1545 1546
}
EXPORT_SYMBOL_GPL(spi_busnum_to_master);


/*-------------------------------------------------------------------------*/

1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
/* Core methods for SPI master protocol drivers.  Some of the
 * other core methods are currently defined as inline functions.
 */

/**
 * spi_setup - setup SPI mode and clock rate
 * @spi: the device whose settings are being modified
 * Context: can sleep, and no requests are queued to the device
 *
 * SPI protocol drivers may need to update the transfer mode if the
 * device doesn't work with its default.  They may likewise need
 * to update clock rates or word sizes from initial values.  This function
 * changes those settings, and must be called from a context that can sleep.
 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
 * effect the next time the device is selected and data is transferred to
 * or from it.  When this function returns, the spi device is deselected.
 *
 * Note that this call will fail if the protocol driver specifies an option
 * that the underlying controller or its driver does not support.  For
 * example, not all hardware supports wire transfers using nine bit words,
 * LSB-first wire encoding, or active-high chipselects.
 */
int spi_setup(struct spi_device *spi)
{
1571
	unsigned	bad_bits;
1572
	int		status = 0;
1573

W
wangyuhang 已提交
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
	/* check mode to prevent that DUAL and QUAD set at the same time
	 */
	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
		dev_err(&spi->dev,
		"setup: can not select dual and quad at the same time\n");
		return -EINVAL;
	}
	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
	 */
	if ((spi->mode & SPI_3WIRE) && (spi->mode &
		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
		return -EINVAL;
1587 1588 1589 1590 1591
	/* help drivers fail *cleanly* when they need options
	 * that aren't supported with their current master
	 */
	bad_bits = spi->mode & ~spi->master->mode_bits;
	if (bad_bits) {
1592
		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1593 1594 1595 1596
			bad_bits);
		return -EINVAL;
	}

1597 1598 1599
	if (!spi->bits_per_word)
		spi->bits_per_word = 8;

1600 1601
	if (spi->master->setup)
		status = spi->master->setup(spi);
1602

J
Jingoo Han 已提交
1603
	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
			(spi->mode & SPI_LOOP) ? "loopback, " : "",
			spi->bits_per_word, spi->max_speed_hz,
			status);

	return status;
}
EXPORT_SYMBOL_GPL(spi_setup);

1616
static int __spi_validate(struct spi_device *spi, struct spi_message *message)
1617 1618
{
	struct spi_master *master = spi->master;
1619
	struct spi_transfer *xfer;
1620
	int w_size, n_words;
1621

1622 1623 1624 1625 1626
	if (list_empty(&message->transfers))
		return -EINVAL;
	if (!message->complete)
		return -EINVAL;

1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
	/* Half-duplex links include original MicroWire, and ones with
	 * only one data pin like SPI_3WIRE (switches direction) or where
	 * either MOSI or MISO is missing.  They can also be caused by
	 * software limitations.
	 */
	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
			|| (spi->mode & SPI_3WIRE)) {
		unsigned flags = master->flags;

		list_for_each_entry(xfer, &message->transfers, transfer_list) {
			if (xfer->rx_buf && xfer->tx_buf)
				return -EINVAL;
			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
				return -EINVAL;
			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
				return -EINVAL;
		}
	}

1646
	/**
1647 1648
	 * Set transfer bits_per_word and max speed as spi device default if
	 * it is not set for this transfer.
W
wangyuhang 已提交
1649 1650
	 * Set transfer tx_nbits and rx_nbits as single transfer default
	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
1651 1652
	 */
	list_for_each_entry(xfer, &message->transfers, transfer_list) {
1653
		message->frame_length += xfer->len;
1654 1655
		if (!xfer->bits_per_word)
			xfer->bits_per_word = spi->bits_per_word;
1656
		if (!xfer->speed_hz) {
1657
			xfer->speed_hz = spi->max_speed_hz;
1658 1659 1660 1661 1662
			if (master->max_speed_hz &&
			    xfer->speed_hz > master->max_speed_hz)
				xfer->speed_hz = master->max_speed_hz;
		}

1663 1664 1665 1666 1667 1668 1669 1670
		if (master->bits_per_word_mask) {
			/* Only 32 bits fit in the mask */
			if (xfer->bits_per_word > 32)
				return -EINVAL;
			if (!(master->bits_per_word_mask &
					BIT(xfer->bits_per_word - 1)))
				return -EINVAL;
		}
1671

1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
		/*
		 * SPI transfer length should be multiple of SPI word size
		 * where SPI word size should be power-of-two multiple
		 */
		if (xfer->bits_per_word <= 8)
			w_size = 1;
		else if (xfer->bits_per_word <= 16)
			w_size = 2;
		else
			w_size = 4;

		n_words = xfer->len / w_size;
		/* No partial transfers accepted */
		if (!n_words || xfer->len % w_size)
			return -EINVAL;

1688 1689 1690 1691 1692
		if (xfer->speed_hz && master->min_speed_hz &&
		    xfer->speed_hz < master->min_speed_hz)
			return -EINVAL;
		if (xfer->speed_hz && master->max_speed_hz &&
		    xfer->speed_hz > master->max_speed_hz)
W
wangyuhang 已提交
1693
			return -EINVAL;
W
wangyuhang 已提交
1694 1695 1696 1697 1698 1699

		if (xfer->tx_buf && !xfer->tx_nbits)
			xfer->tx_nbits = SPI_NBITS_SINGLE;
		if (xfer->rx_buf && !xfer->rx_nbits)
			xfer->rx_nbits = SPI_NBITS_SINGLE;
		/* check transfer tx/rx_nbits:
1700 1701
		 * 1. check the value matches one of single, dual and quad
		 * 2. check tx/rx_nbits match the mode in spi_device
W
wangyuhang 已提交
1702
		 */
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
		if (xfer->tx_buf) {
			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
				xfer->tx_nbits != SPI_NBITS_DUAL &&
				xfer->tx_nbits != SPI_NBITS_QUAD)
				return -EINVAL;
			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
				return -EINVAL;
			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
				!(spi->mode & SPI_TX_QUAD))
				return -EINVAL;
		}
W
wangyuhang 已提交
1715
		/* check transfer rx_nbits */
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
		if (xfer->rx_buf) {
			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
				xfer->rx_nbits != SPI_NBITS_DUAL &&
				xfer->rx_nbits != SPI_NBITS_QUAD)
				return -EINVAL;
			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
				return -EINVAL;
			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
				!(spi->mode & SPI_RX_QUAD))
				return -EINVAL;
		}
1728 1729
	}

1730
	message->status = -EINPROGRESS;
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742

	return 0;
}

static int __spi_async(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;

	message->spi = spi;

	trace_spi_message_submit(message);

1743 1744 1745
	return master->transfer(spi, message);
}

D
David Brownell 已提交
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
/**
 * spi_async - asynchronous SPI transfer
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers, including completion callback
 * Context: any (irqs may be blocked, etc)
 *
 * This call may be used in_irq and other contexts which can't sleep,
 * as well as from task contexts which can sleep.
 *
 * The completion callback is invoked in a context which can't sleep.
 * Before that invocation, the value of message->status is undefined.
 * When the callback is issued, message->status holds either zero (to
 * indicate complete success) or a negative error code.  After that
 * callback returns, the driver which issued the transfer request may
 * deallocate the associated memory; it's no longer in use by any SPI
 * core or controller driver code.
 *
 * Note that although all messages to a spi_device are handled in
 * FIFO order, messages may go to different devices in other orders.
 * Some device might be higher priority, or have various "hard" access
 * time requirements, for example.
 *
 * On detection of any fault during the transfer, processing of
 * the entire message is aborted, and the device is deselected.
 * Until returning from the associated message completion callback,
 * no other spi_message queued to that device will be processed.
 * (This rule applies equally to all the synchronous transfer calls,
 * which are wrappers around this core asynchronous primitive.)
 */
int spi_async(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;
1778 1779
	int ret;
	unsigned long flags;
D
David Brownell 已提交
1780

1781 1782 1783 1784
	ret = __spi_validate(spi, message);
	if (ret != 0)
		return ret;

1785
	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
D
David Brownell 已提交
1786

1787 1788 1789 1790
	if (master->bus_lock_flag)
		ret = -EBUSY;
	else
		ret = __spi_async(spi, message);
D
David Brownell 已提交
1791

1792 1793 1794
	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	return ret;
D
David Brownell 已提交
1795 1796 1797
}
EXPORT_SYMBOL_GPL(spi_async);

1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
/**
 * spi_async_locked - version of spi_async with exclusive bus usage
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers, including completion callback
 * Context: any (irqs may be blocked, etc)
 *
 * This call may be used in_irq and other contexts which can't sleep,
 * as well as from task contexts which can sleep.
 *
 * The completion callback is invoked in a context which can't sleep.
 * Before that invocation, the value of message->status is undefined.
 * When the callback is issued, message->status holds either zero (to
 * indicate complete success) or a negative error code.  After that
 * callback returns, the driver which issued the transfer request may
 * deallocate the associated memory; it's no longer in use by any SPI
 * core or controller driver code.
 *
 * Note that although all messages to a spi_device are handled in
 * FIFO order, messages may go to different devices in other orders.
 * Some device might be higher priority, or have various "hard" access
 * time requirements, for example.
 *
 * On detection of any fault during the transfer, processing of
 * the entire message is aborted, and the device is deselected.
 * Until returning from the associated message completion callback,
 * no other spi_message queued to that device will be processed.
 * (This rule applies equally to all the synchronous transfer calls,
 * which are wrappers around this core asynchronous primitive.)
 */
int spi_async_locked(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;
	int ret;
	unsigned long flags;

1833 1834 1835 1836
	ret = __spi_validate(spi, message);
	if (ret != 0)
		return ret;

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
	spin_lock_irqsave(&master->bus_lock_spinlock, flags);

	ret = __spi_async(spi, message);

	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	return ret;

}
EXPORT_SYMBOL_GPL(spi_async_locked);

1848 1849 1850 1851 1852 1853 1854 1855

/*-------------------------------------------------------------------------*/

/* Utility methods for SPI master protocol drivers, layered on
 * top of the core.  Some other utility methods are defined as
 * inline functions.
 */

1856 1857 1858 1859 1860
static void spi_complete(void *arg)
{
	complete(arg);
}

1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
static int __spi_sync(struct spi_device *spi, struct spi_message *message,
		      int bus_locked)
{
	DECLARE_COMPLETION_ONSTACK(done);
	int status;
	struct spi_master *master = spi->master;

	message->complete = spi_complete;
	message->context = &done;

	if (!bus_locked)
		mutex_lock(&master->bus_lock_mutex);

	status = spi_async_locked(spi, message);

	if (!bus_locked)
		mutex_unlock(&master->bus_lock_mutex);

	if (status == 0) {
		wait_for_completion(&done);
		status = message->status;
	}
	message->context = NULL;
	return status;
}

1887 1888 1889 1890
/**
 * spi_sync - blocking/synchronous SPI data transfers
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers
D
David Brownell 已提交
1891
 * Context: can sleep
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.  Low-overhead controller
 * drivers may DMA directly into and out of the message buffers.
 *
 * Note that the SPI device's chip select is active during the message,
 * and then is normally disabled between messages.  Drivers for some
 * frequently-used devices may want to minimize costs of selecting a chip,
 * by leaving it selected in anticipation that the next message will go
 * to the same chip.  (That may increase power usage.)
 *
D
David Brownell 已提交
1903 1904 1905
 * Also, the caller is guaranteeing that the memory associated with the
 * message will not be freed before this call returns.
 *
1906
 * It returns zero on success, else a negative error code.
1907 1908 1909
 */
int spi_sync(struct spi_device *spi, struct spi_message *message)
{
1910
	return __spi_sync(spi, message, 0);
1911 1912 1913
}
EXPORT_SYMBOL_GPL(spi_sync);

1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
/**
 * spi_sync_locked - version of spi_sync with exclusive bus usage
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.  Low-overhead controller
 * drivers may DMA directly into and out of the message buffers.
 *
 * This call should be used by drivers that require exclusive access to the
L
Lucas De Marchi 已提交
1925
 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
 * be released by a spi_bus_unlock call when the exclusive access is over.
 *
 * It returns zero on success, else a negative error code.
 */
int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
{
	return __spi_sync(spi, message, 1);
}
EXPORT_SYMBOL_GPL(spi_sync_locked);

/**
 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
 * @master: SPI bus master that should be locked for exclusive bus access
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.
 *
 * This call should be used by drivers that require exclusive access to the
 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
 * exclusive access is over. Data transfer must be done by spi_sync_locked
 * and spi_async_locked calls when the SPI bus lock is held.
 *
 * It returns zero on success, else a negative error code.
 */
int spi_bus_lock(struct spi_master *master)
{
	unsigned long flags;

	mutex_lock(&master->bus_lock_mutex);

	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
	master->bus_lock_flag = 1;
	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	/* mutex remains locked until spi_bus_unlock is called */

	return 0;
}
EXPORT_SYMBOL_GPL(spi_bus_lock);

/**
 * spi_bus_unlock - release the lock for exclusive SPI bus usage
 * @master: SPI bus master that was locked for exclusive bus access
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.
 *
 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
 * call.
 *
 * It returns zero on success, else a negative error code.
 */
int spi_bus_unlock(struct spi_master *master)
{
	master->bus_lock_flag = 0;

	mutex_unlock(&master->bus_lock_mutex);

	return 0;
}
EXPORT_SYMBOL_GPL(spi_bus_unlock);

1990
/* portable code must never pass more than 32 bytes */
J
Jingoo Han 已提交
1991
#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
1992 1993 1994 1995 1996 1997 1998 1999

static u8	*buf;

/**
 * spi_write_then_read - SPI synchronous write followed by read
 * @spi: device with which data will be exchanged
 * @txbuf: data to be written (need not be dma-safe)
 * @n_tx: size of txbuf, in bytes
2000 2001
 * @rxbuf: buffer into which data will be read (need not be dma-safe)
 * @n_rx: size of rxbuf, in bytes
D
David Brownell 已提交
2002
 * Context: can sleep
2003 2004 2005 2006
 *
 * This performs a half duplex MicroWire style transaction with the
 * device, sending txbuf and then reading rxbuf.  The return value
 * is zero for success, else a negative errno status code.
2007
 * This call may only be used from a context that may sleep.
2008
 *
D
David Brownell 已提交
2009
 * Parameters to this routine are always copied using a small buffer;
D
David Brownell 已提交
2010 2011
 * portable code should never use this for more than 32 bytes.
 * Performance-sensitive or bulk transfer code should instead use
D
David Brownell 已提交
2012
 * spi_{async,sync}() calls with dma-safe buffers.
2013 2014
 */
int spi_write_then_read(struct spi_device *spi,
2015 2016
		const void *txbuf, unsigned n_tx,
		void *rxbuf, unsigned n_rx)
2017
{
D
David Brownell 已提交
2018
	static DEFINE_MUTEX(lock);
2019 2020 2021

	int			status;
	struct spi_message	message;
2022
	struct spi_transfer	x[2];
2023 2024
	u8			*local_buf;

2025 2026 2027 2028
	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
	 * copying here, (as a pure convenience thing), but we can
	 * keep heap costs out of the hot path unless someone else is
	 * using the pre-allocated buffer or the transfer is too large.
2029
	 */
2030
	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2031 2032
		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
				    GFP_KERNEL | GFP_DMA);
2033 2034 2035 2036 2037
		if (!local_buf)
			return -ENOMEM;
	} else {
		local_buf = buf;
	}
2038

2039
	spi_message_init(&message);
J
Jingoo Han 已提交
2040
	memset(x, 0, sizeof(x));
2041 2042 2043 2044 2045 2046 2047 2048
	if (n_tx) {
		x[0].len = n_tx;
		spi_message_add_tail(&x[0], &message);
	}
	if (n_rx) {
		x[1].len = n_rx;
		spi_message_add_tail(&x[1], &message);
	}
2049

2050
	memcpy(local_buf, txbuf, n_tx);
2051 2052
	x[0].tx_buf = local_buf;
	x[1].rx_buf = local_buf + n_tx;
2053 2054 2055

	/* do the i/o */
	status = spi_sync(spi, &message);
2056
	if (status == 0)
2057
		memcpy(rxbuf, x[1].rx_buf, n_rx);
2058

2059
	if (x[0].tx_buf == buf)
D
David Brownell 已提交
2060
		mutex_unlock(&lock);
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
	else
		kfree(local_buf);

	return status;
}
EXPORT_SYMBOL_GPL(spi_write_then_read);

/*-------------------------------------------------------------------------*/

static int __init spi_init(void)
{
2072 2073
	int	status;

2074
	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2075 2076 2077 2078 2079 2080 2081 2082
	if (!buf) {
		status = -ENOMEM;
		goto err0;
	}

	status = bus_register(&spi_bus_type);
	if (status < 0)
		goto err1;
2083

2084 2085 2086
	status = class_register(&spi_master_class);
	if (status < 0)
		goto err2;
2087
	return 0;
2088 2089 2090 2091 2092 2093 2094 2095

err2:
	bus_unregister(&spi_bus_type);
err1:
	kfree(buf);
	buf = NULL;
err0:
	return status;
2096
}
2097

2098 2099
/* board_info is normally registered in arch_initcall(),
 * but even essential drivers wait till later
2100 2101 2102 2103
 *
 * REVISIT only boardinfo really needs static linking. the rest (device and
 * driver registration) _could_ be dynamically linked (modular) ... costs
 * include needing to have boardinfo data structures be much more public.
2104
 */
2105
postcore_initcall(spi_init);
2106