spi.c 75.5 KB
Newer Older
1
/*
G
Grant Likely 已提交
2
 * SPI init/core code
3 4
 *
 * Copyright (C) 2005 David Brownell
5
 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/init.h>
#include <linux/cache.h>
22 23
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
24
#include <linux/mutex.h>
25
#include <linux/of_device.h>
26
#include <linux/of_irq.h>
27
#include <linux/clk/clk-conf.h>
28
#include <linux/slab.h>
29
#include <linux/mod_devicetable.h>
30
#include <linux/spi/spi.h>
31
#include <linux/of_gpio.h>
M
Mark Brown 已提交
32
#include <linux/pm_runtime.h>
33
#include <linux/pm_domain.h>
34
#include <linux/export.h>
35
#include <linux/sched/rt.h>
36 37
#include <linux/delay.h>
#include <linux/kthread.h>
38 39
#include <linux/ioport.h>
#include <linux/acpi.h>
40

41 42 43
#define CREATE_TRACE_POINTS
#include <trace/events/spi.h>

44 45
static void spidev_release(struct device *dev)
{
46
	struct spi_device	*spi = to_spi_device(dev);
47 48 49 50 51

	/* spi masters may cleanup for released devices */
	if (spi->master->cleanup)
		spi->master->cleanup(spi);

D
David Brownell 已提交
52
	spi_master_put(spi->master);
53
	kfree(spi);
54 55 56 57 58 59
}

static ssize_t
modalias_show(struct device *dev, struct device_attribute *a, char *buf)
{
	const struct spi_device	*spi = to_spi_device(dev);
60 61 62 63 64
	int len;

	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
	if (len != -ENODEV)
		return len;
65

66
	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
67
}
68
static DEVICE_ATTR_RO(modalias);
69

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
#define SPI_STATISTICS_ATTRS(field, file)				\
static ssize_t spi_master_##field##_show(struct device *dev,		\
					 struct device_attribute *attr,	\
					 char *buf)			\
{									\
	struct spi_master *master = container_of(dev,			\
						 struct spi_master, dev); \
	return spi_statistics_##field##_show(&master->statistics, buf);	\
}									\
static struct device_attribute dev_attr_spi_master_##field = {		\
	.attr = { .name = file, .mode = S_IRUGO },			\
	.show = spi_master_##field##_show,				\
};									\
static ssize_t spi_device_##field##_show(struct device *dev,		\
					 struct device_attribute *attr,	\
					char *buf)			\
{									\
G
Geliang Tang 已提交
87
	struct spi_device *spi = to_spi_device(dev);			\
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
	return spi_statistics_##field##_show(&spi->statistics, buf);	\
}									\
static struct device_attribute dev_attr_spi_device_##field = {		\
	.attr = { .name = file, .mode = S_IRUGO },			\
	.show = spi_device_##field##_show,				\
}

#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
					    char *buf)			\
{									\
	unsigned long flags;						\
	ssize_t len;							\
	spin_lock_irqsave(&stat->lock, flags);				\
	len = sprintf(buf, format_string, stat->field);			\
	spin_unlock_irqrestore(&stat->lock, flags);			\
	return len;							\
}									\
SPI_STATISTICS_ATTRS(name, file)

#define SPI_STATISTICS_SHOW(field, format_string)			\
	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
				 field, format_string)

SPI_STATISTICS_SHOW(messages, "%lu");
SPI_STATISTICS_SHOW(transfers, "%lu");
SPI_STATISTICS_SHOW(errors, "%lu");
SPI_STATISTICS_SHOW(timedout, "%lu");

SPI_STATISTICS_SHOW(spi_sync, "%lu");
SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
SPI_STATISTICS_SHOW(spi_async, "%lu");

SPI_STATISTICS_SHOW(bytes, "%llu");
SPI_STATISTICS_SHOW(bytes_rx, "%llu");
SPI_STATISTICS_SHOW(bytes_tx, "%llu");

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
				 "transfer_bytes_histo_" number,	\
				 transfer_bytes_histo[index],  "%lu")
SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");

147 148 149
static struct attribute *spi_dev_attrs[] = {
	&dev_attr_modalias.attr,
	NULL,
150
};
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166

static const struct attribute_group spi_dev_group = {
	.attrs  = spi_dev_attrs,
};

static struct attribute *spi_device_statistics_attrs[] = {
	&dev_attr_spi_device_messages.attr,
	&dev_attr_spi_device_transfers.attr,
	&dev_attr_spi_device_errors.attr,
	&dev_attr_spi_device_timedout.attr,
	&dev_attr_spi_device_spi_sync.attr,
	&dev_attr_spi_device_spi_sync_immediate.attr,
	&dev_attr_spi_device_spi_async.attr,
	&dev_attr_spi_device_bytes.attr,
	&dev_attr_spi_device_bytes_rx.attr,
	&dev_attr_spi_device_bytes_tx.attr,
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
	&dev_attr_spi_device_transfer_bytes_histo0.attr,
	&dev_attr_spi_device_transfer_bytes_histo1.attr,
	&dev_attr_spi_device_transfer_bytes_histo2.attr,
	&dev_attr_spi_device_transfer_bytes_histo3.attr,
	&dev_attr_spi_device_transfer_bytes_histo4.attr,
	&dev_attr_spi_device_transfer_bytes_histo5.attr,
	&dev_attr_spi_device_transfer_bytes_histo6.attr,
	&dev_attr_spi_device_transfer_bytes_histo7.attr,
	&dev_attr_spi_device_transfer_bytes_histo8.attr,
	&dev_attr_spi_device_transfer_bytes_histo9.attr,
	&dev_attr_spi_device_transfer_bytes_histo10.attr,
	&dev_attr_spi_device_transfer_bytes_histo11.attr,
	&dev_attr_spi_device_transfer_bytes_histo12.attr,
	&dev_attr_spi_device_transfer_bytes_histo13.attr,
	&dev_attr_spi_device_transfer_bytes_histo14.attr,
	&dev_attr_spi_device_transfer_bytes_histo15.attr,
	&dev_attr_spi_device_transfer_bytes_histo16.attr,
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
	NULL,
};

static const struct attribute_group spi_device_statistics_group = {
	.name  = "statistics",
	.attrs  = spi_device_statistics_attrs,
};

static const struct attribute_group *spi_dev_groups[] = {
	&spi_dev_group,
	&spi_device_statistics_group,
	NULL,
};

static struct attribute *spi_master_statistics_attrs[] = {
	&dev_attr_spi_master_messages.attr,
	&dev_attr_spi_master_transfers.attr,
	&dev_attr_spi_master_errors.attr,
	&dev_attr_spi_master_timedout.attr,
	&dev_attr_spi_master_spi_sync.attr,
	&dev_attr_spi_master_spi_sync_immediate.attr,
	&dev_attr_spi_master_spi_async.attr,
	&dev_attr_spi_master_bytes.attr,
	&dev_attr_spi_master_bytes_rx.attr,
	&dev_attr_spi_master_bytes_tx.attr,
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
	&dev_attr_spi_master_transfer_bytes_histo0.attr,
	&dev_attr_spi_master_transfer_bytes_histo1.attr,
	&dev_attr_spi_master_transfer_bytes_histo2.attr,
	&dev_attr_spi_master_transfer_bytes_histo3.attr,
	&dev_attr_spi_master_transfer_bytes_histo4.attr,
	&dev_attr_spi_master_transfer_bytes_histo5.attr,
	&dev_attr_spi_master_transfer_bytes_histo6.attr,
	&dev_attr_spi_master_transfer_bytes_histo7.attr,
	&dev_attr_spi_master_transfer_bytes_histo8.attr,
	&dev_attr_spi_master_transfer_bytes_histo9.attr,
	&dev_attr_spi_master_transfer_bytes_histo10.attr,
	&dev_attr_spi_master_transfer_bytes_histo11.attr,
	&dev_attr_spi_master_transfer_bytes_histo12.attr,
	&dev_attr_spi_master_transfer_bytes_histo13.attr,
	&dev_attr_spi_master_transfer_bytes_histo14.attr,
	&dev_attr_spi_master_transfer_bytes_histo15.attr,
	&dev_attr_spi_master_transfer_bytes_histo16.attr,
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
	NULL,
};

static const struct attribute_group spi_master_statistics_group = {
	.name  = "statistics",
	.attrs  = spi_master_statistics_attrs,
};

static const struct attribute_group *spi_master_groups[] = {
	&spi_master_statistics_group,
	NULL,
};

void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
				       struct spi_transfer *xfer,
				       struct spi_master *master)
{
	unsigned long flags;
244 245 246 247
	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;

	if (l2len < 0)
		l2len = 0;
248 249 250 251

	spin_lock_irqsave(&stats->lock, flags);

	stats->transfers++;
252
	stats->transfer_bytes_histo[l2len]++;
253 254 255 256 257 258 259 260 261 262 263 264

	stats->bytes += xfer->len;
	if ((xfer->tx_buf) &&
	    (xfer->tx_buf != master->dummy_tx))
		stats->bytes_tx += xfer->len;
	if ((xfer->rx_buf) &&
	    (xfer->rx_buf != master->dummy_rx))
		stats->bytes_rx += xfer->len;

	spin_unlock_irqrestore(&stats->lock, flags);
}
EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
265 266 267 268 269

/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 * and the sysfs version makes coldplug work too.
 */

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
						const struct spi_device *sdev)
{
	while (id->name[0]) {
		if (!strcmp(sdev->modalias, id->name))
			return id;
		id++;
	}
	return NULL;
}

const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
{
	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);

	return spi_match_id(sdrv->id_table, sdev);
}
EXPORT_SYMBOL_GPL(spi_get_device_id);

289 290 291
static int spi_match_device(struct device *dev, struct device_driver *drv)
{
	const struct spi_device	*spi = to_spi_device(dev);
292 293
	const struct spi_driver	*sdrv = to_spi_driver(drv);

294 295 296 297
	/* Attempt an OF style match */
	if (of_driver_match_device(dev, drv))
		return 1;

298 299 300 301
	/* Then try ACPI */
	if (acpi_driver_match_device(dev, drv))
		return 1;

302 303
	if (sdrv->id_table)
		return !!spi_match_id(sdrv->id_table, spi);
304

305
	return strcmp(spi->modalias, drv->name) == 0;
306 307
}

308
static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
309 310
{
	const struct spi_device		*spi = to_spi_device(dev);
311 312 313 314 315
	int rc;

	rc = acpi_device_uevent_modalias(dev, env);
	if (rc != -ENODEV)
		return rc;
316

317
	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
318 319 320 321 322
	return 0;
}

struct bus_type spi_bus_type = {
	.name		= "spi",
323
	.dev_groups	= spi_dev_groups,
324 325 326 327 328
	.match		= spi_match_device,
	.uevent		= spi_uevent,
};
EXPORT_SYMBOL_GPL(spi_bus_type);

329 330 331 332

static int spi_drv_probe(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
333
	struct spi_device		*spi = to_spi_device(dev);
334 335
	int ret;

336 337 338 339
	ret = of_clk_set_defaults(dev->of_node, false);
	if (ret)
		return ret;

340 341 342 343 344 345 346 347
	if (dev->of_node) {
		spi->irq = of_irq_get(dev->of_node, 0);
		if (spi->irq == -EPROBE_DEFER)
			return -EPROBE_DEFER;
		if (spi->irq < 0)
			spi->irq = 0;
	}

348 349
	ret = dev_pm_domain_attach(dev, true);
	if (ret != -EPROBE_DEFER) {
350
		ret = sdrv->probe(spi);
351 352 353
		if (ret)
			dev_pm_domain_detach(dev, true);
	}
354

355
	return ret;
356 357 358 359 360
}

static int spi_drv_remove(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
361 362
	int ret;

363
	ret = sdrv->remove(to_spi_device(dev));
364
	dev_pm_domain_detach(dev, true);
365

366
	return ret;
367 368 369 370 371 372 373 374 375
}

static void spi_drv_shutdown(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);

	sdrv->shutdown(to_spi_device(dev));
}

D
David Brownell 已提交
376
/**
377
 * __spi_register_driver - register a SPI driver
378
 * @owner: owner module of the driver to register
D
David Brownell 已提交
379 380
 * @sdrv: the driver to register
 * Context: can sleep
381 382
 *
 * Return: zero on success, else a negative error code.
D
David Brownell 已提交
383
 */
384
int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
385
{
386
	sdrv->driver.owner = owner;
387 388 389 390 391 392 393 394 395
	sdrv->driver.bus = &spi_bus_type;
	if (sdrv->probe)
		sdrv->driver.probe = spi_drv_probe;
	if (sdrv->remove)
		sdrv->driver.remove = spi_drv_remove;
	if (sdrv->shutdown)
		sdrv->driver.shutdown = spi_drv_shutdown;
	return driver_register(&sdrv->driver);
}
396
EXPORT_SYMBOL_GPL(__spi_register_driver);
397

398 399 400 401 402 403 404 405 406 407
/*-------------------------------------------------------------------------*/

/* SPI devices should normally not be created by SPI device drivers; that
 * would make them board-specific.  Similarly with SPI master drivers.
 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 * with other readonly (flashable) information about mainboard devices.
 */

struct boardinfo {
	struct list_head	list;
408
	struct spi_board_info	board_info;
409 410 411
};

static LIST_HEAD(board_list);
412 413 414 415 416 417
static LIST_HEAD(spi_master_list);

/*
 * Used to protect add/del opertion for board_info list and
 * spi_master list, and their matching process
 */
418
static DEFINE_MUTEX(board_lock);
419

420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
/**
 * spi_alloc_device - Allocate a new SPI device
 * @master: Controller to which device is connected
 * Context: can sleep
 *
 * Allows a driver to allocate and initialize a spi_device without
 * registering it immediately.  This allows a driver to directly
 * fill the spi_device with device parameters before calling
 * spi_add_device() on it.
 *
 * Caller is responsible to call spi_add_device() on the returned
 * spi_device structure to add it to the SPI master.  If the caller
 * needs to discard the spi_device without adding it, then it should
 * call spi_dev_put() on it.
 *
435
 * Return: a pointer to the new device, or NULL.
436 437 438 439 440 441 442 443
 */
struct spi_device *spi_alloc_device(struct spi_master *master)
{
	struct spi_device	*spi;

	if (!spi_master_get(master))
		return NULL;

J
Jingoo Han 已提交
444
	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
445 446 447 448 449 450
	if (!spi) {
		spi_master_put(master);
		return NULL;
	}

	spi->master = master;
451
	spi->dev.parent = &master->dev;
452 453
	spi->dev.bus = &spi_bus_type;
	spi->dev.release = spidev_release;
454
	spi->cs_gpio = -ENOENT;
455 456 457

	spin_lock_init(&spi->statistics.lock);

458 459 460 461 462
	device_initialize(&spi->dev);
	return spi;
}
EXPORT_SYMBOL_GPL(spi_alloc_device);

463 464 465 466 467 468 469 470 471 472 473 474 475
static void spi_dev_set_name(struct spi_device *spi)
{
	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);

	if (adev) {
		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
		return;
	}

	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
		     spi->chip_select);
}

476 477 478 479 480 481 482 483 484 485 486
static int spi_dev_check(struct device *dev, void *data)
{
	struct spi_device *spi = to_spi_device(dev);
	struct spi_device *new_spi = data;

	if (spi->master == new_spi->master &&
	    spi->chip_select == new_spi->chip_select)
		return -EBUSY;
	return 0;
}

487 488 489 490 491 492 493
/**
 * spi_add_device - Add spi_device allocated with spi_alloc_device
 * @spi: spi_device to register
 *
 * Companion function to spi_alloc_device.  Devices allocated with
 * spi_alloc_device can be added onto the spi bus with this function.
 *
494
 * Return: 0 on success; negative errno on failure
495 496 497
 */
int spi_add_device(struct spi_device *spi)
{
498
	static DEFINE_MUTEX(spi_add_lock);
499 500
	struct spi_master *master = spi->master;
	struct device *dev = master->dev.parent;
501 502 503
	int status;

	/* Chipselects are numbered 0..max; validate. */
504
	if (spi->chip_select >= master->num_chipselect) {
505 506
		dev_err(dev, "cs%d >= max %d\n",
			spi->chip_select,
507
			master->num_chipselect);
508 509 510 511
		return -EINVAL;
	}

	/* Set the bus ID string */
512
	spi_dev_set_name(spi);
513 514 515 516 517 518 519

	/* We need to make sure there's no other device with this
	 * chipselect **BEFORE** we call setup(), else we'll trash
	 * its configuration.  Lock against concurrent add() calls.
	 */
	mutex_lock(&spi_add_lock);

520 521
	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
	if (status) {
522 523 524 525 526
		dev_err(dev, "chipselect %d already in use\n",
				spi->chip_select);
		goto done;
	}

527 528 529
	if (master->cs_gpios)
		spi->cs_gpio = master->cs_gpios[spi->chip_select];

530 531 532 533
	/* Drivers may modify this initial i/o setup, but will
	 * normally rely on the device being setup.  Devices
	 * using SPI_CS_HIGH can't coexist well otherwise...
	 */
534
	status = spi_setup(spi);
535
	if (status < 0) {
536 537
		dev_err(dev, "can't setup %s, status %d\n",
				dev_name(&spi->dev), status);
538
		goto done;
539 540
	}

541
	/* Device may be bound to an active driver when this returns */
542
	status = device_add(&spi->dev);
543
	if (status < 0)
544 545
		dev_err(dev, "can't add %s, status %d\n",
				dev_name(&spi->dev), status);
546
	else
547
		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
548

549 550 551
done:
	mutex_unlock(&spi_add_lock);
	return status;
552 553
}
EXPORT_SYMBOL_GPL(spi_add_device);
554

D
David Brownell 已提交
555 556 557 558 559 560 561
/**
 * spi_new_device - instantiate one new SPI device
 * @master: Controller to which device is connected
 * @chip: Describes the SPI device
 * Context: can sleep
 *
 * On typical mainboards, this is purely internal; and it's not needed
562 563 564 565
 * after board init creates the hard-wired devices.  Some development
 * platforms may not be able to use spi_register_board_info though, and
 * this is exported so that for example a USB or parport based adapter
 * driver could add devices (which it would learn about out-of-band).
566
 *
567
 * Return: the new device, or NULL.
568
 */
569 570
struct spi_device *spi_new_device(struct spi_master *master,
				  struct spi_board_info *chip)
571 572 573 574
{
	struct spi_device	*proxy;
	int			status;

575 576 577 578 579 580 581
	/* NOTE:  caller did any chip->bus_num checks necessary.
	 *
	 * Also, unless we change the return value convention to use
	 * error-or-pointer (not NULL-or-pointer), troubleshootability
	 * suggests syslogged diagnostics are best here (ugh).
	 */

582 583
	proxy = spi_alloc_device(master);
	if (!proxy)
584 585
		return NULL;

586 587
	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));

588 589
	proxy->chip_select = chip->chip_select;
	proxy->max_speed_hz = chip->max_speed_hz;
590
	proxy->mode = chip->mode;
591
	proxy->irq = chip->irq;
592
	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
593 594 595 596
	proxy->dev.platform_data = (void *) chip->platform_data;
	proxy->controller_data = chip->controller_data;
	proxy->controller_state = NULL;

597
	status = spi_add_device(proxy);
598
	if (status < 0) {
599 600
		spi_dev_put(proxy);
		return NULL;
601 602 603 604 605 606
	}

	return proxy;
}
EXPORT_SYMBOL_GPL(spi_new_device);

607 608 609 610 611 612 613 614 615
/**
 * spi_unregister_device - unregister a single SPI device
 * @spi: spi_device to unregister
 *
 * Start making the passed SPI device vanish. Normally this would be handled
 * by spi_unregister_master().
 */
void spi_unregister_device(struct spi_device *spi)
{
616 617 618 619 620 621
	if (!spi)
		return;

	if (spi->dev.of_node)
		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
	device_unregister(&spi->dev);
622 623 624
}
EXPORT_SYMBOL_GPL(spi_unregister_device);

625 626 627 628 629 630 631 632 633 634 635 636 637 638
static void spi_match_master_to_boardinfo(struct spi_master *master,
				struct spi_board_info *bi)
{
	struct spi_device *dev;

	if (master->bus_num != bi->bus_num)
		return;

	dev = spi_new_device(master, bi);
	if (!dev)
		dev_err(master->dev.parent, "can't create new device for %s\n",
			bi->modalias);
}

D
David Brownell 已提交
639 640 641 642 643 644
/**
 * spi_register_board_info - register SPI devices for a given board
 * @info: array of chip descriptors
 * @n: how many descriptors are provided
 * Context: can sleep
 *
645 646 647 648 649 650 651 652 653 654 655 656
 * Board-specific early init code calls this (probably during arch_initcall)
 * with segments of the SPI device table.  Any device nodes are created later,
 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 * this table of devices forever, so that reloading a controller driver will
 * not make Linux forget about these hard-wired devices.
 *
 * Other code can also call this, e.g. a particular add-on board might provide
 * SPI devices through its expansion connector, so code initializing that board
 * would naturally declare its SPI devices.
 *
 * The board info passed can safely be __initdata ... but be careful of
 * any embedded pointers (platform_data, etc), they're copied as-is.
657 658
 *
 * Return: zero on success, else a negative error code.
659
 */
660
int spi_register_board_info(struct spi_board_info const *info, unsigned n)
661
{
662 663
	struct boardinfo *bi;
	int i;
664

665 666 667
	if (!n)
		return -EINVAL;

668
	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
669 670 671
	if (!bi)
		return -ENOMEM;

672 673
	for (i = 0; i < n; i++, bi++, info++) {
		struct spi_master *master;
674

675 676 677 678 679 680
		memcpy(&bi->board_info, info, sizeof(*info));
		mutex_lock(&board_lock);
		list_add_tail(&bi->list, &board_list);
		list_for_each_entry(master, &spi_master_list, list)
			spi_match_master_to_boardinfo(master, &bi->board_info);
		mutex_unlock(&board_lock);
681
	}
682 683

	return 0;
684 685 686 687
}

/*-------------------------------------------------------------------------*/

688 689 690 691 692
static void spi_set_cs(struct spi_device *spi, bool enable)
{
	if (spi->mode & SPI_CS_HIGH)
		enable = !enable;

693
	if (gpio_is_valid(spi->cs_gpio))
694 695 696 697 698
		gpio_set_value(spi->cs_gpio, !enable);
	else if (spi->master->set_cs)
		spi->master->set_cs(spi, !enable);
}

699
#ifdef CONFIG_HAS_DMA
700 701 702 703 704
static int spi_map_buf(struct spi_master *master, struct device *dev,
		       struct sg_table *sgt, void *buf, size_t len,
		       enum dma_data_direction dir)
{
	const bool vmalloced_buf = is_vmalloc_addr(buf);
705 706
	int desc_len;
	int sgs;
707 708 709 710 711
	struct page *vm_page;
	void *sg_buf;
	size_t min;
	int i, ret;

712 713 714 715 716 717 718 719
	if (vmalloced_buf) {
		desc_len = PAGE_SIZE;
		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
	} else {
		desc_len = master->max_dma_len;
		sgs = DIV_ROUND_UP(len, desc_len);
	}

720 721 722 723 724 725 726
	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
	if (ret != 0)
		return ret;

	for (i = 0; i < sgs; i++) {

		if (vmalloced_buf) {
727 728
			min = min_t(size_t,
				    len, desc_len - offset_in_page(buf));
729 730 731 732 733
			vm_page = vmalloc_to_page(buf);
			if (!vm_page) {
				sg_free_table(sgt);
				return -ENOMEM;
			}
734 735
			sg_set_page(&sgt->sgl[i], vm_page,
				    min, offset_in_page(buf));
736
		} else {
737
			min = min_t(size_t, len, desc_len);
738
			sg_buf = buf;
739
			sg_set_buf(&sgt->sgl[i], sg_buf, min);
740 741 742 743 744 745 746 747
		}


		buf += min;
		len -= min;
	}

	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
748 749
	if (!ret)
		ret = -ENOMEM;
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
	if (ret < 0) {
		sg_free_table(sgt);
		return ret;
	}

	sgt->nents = ret;

	return 0;
}

static void spi_unmap_buf(struct spi_master *master, struct device *dev,
			  struct sg_table *sgt, enum dma_data_direction dir)
{
	if (sgt->orig_nents) {
		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
		sg_free_table(sgt);
	}
}

769
static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
770 771 772
{
	struct device *tx_dev, *rx_dev;
	struct spi_transfer *xfer;
773
	int ret;
774

775
	if (!master->can_dma)
776 777
		return 0;

778 779 780 781 782 783 784 785 786
	if (master->dma_tx)
		tx_dev = master->dma_tx->device->dev;
	else
		tx_dev = &master->dev;

	if (master->dma_rx)
		rx_dev = master->dma_rx->device->dev;
	else
		rx_dev = &master->dev;
787 788 789 790 791 792

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		if (!master->can_dma(master, msg->spi, xfer))
			continue;

		if (xfer->tx_buf != NULL) {
793 794 795 796 797
			ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
					  (void *)xfer->tx_buf, xfer->len,
					  DMA_TO_DEVICE);
			if (ret != 0)
				return ret;
798 799 800
		}

		if (xfer->rx_buf != NULL) {
801 802 803 804 805 806 807
			ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
					  xfer->rx_buf, xfer->len,
					  DMA_FROM_DEVICE);
			if (ret != 0) {
				spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
					      DMA_TO_DEVICE);
				return ret;
808 809 810 811 812 813 814 815 816
			}
		}
	}

	master->cur_msg_mapped = true;

	return 0;
}

817
static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
818 819 820 821
{
	struct spi_transfer *xfer;
	struct device *tx_dev, *rx_dev;

822
	if (!master->cur_msg_mapped || !master->can_dma)
823 824
		return 0;

825 826 827 828 829 830 831 832 833
	if (master->dma_tx)
		tx_dev = master->dma_tx->device->dev;
	else
		tx_dev = &master->dev;

	if (master->dma_rx)
		rx_dev = master->dma_rx->device->dev;
	else
		rx_dev = &master->dev;
834 835 836 837 838

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		if (!master->can_dma(master, msg->spi, xfer))
			continue;

839 840
		spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
		spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
841 842 843 844
	}

	return 0;
}
845 846 847 848 849 850 851
#else /* !CONFIG_HAS_DMA */
static inline int __spi_map_msg(struct spi_master *master,
				struct spi_message *msg)
{
	return 0;
}

852 853
static inline int __spi_unmap_msg(struct spi_master *master,
				  struct spi_message *msg)
854 855 856 857 858
{
	return 0;
}
#endif /* !CONFIG_HAS_DMA */

859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
static inline int spi_unmap_msg(struct spi_master *master,
				struct spi_message *msg)
{
	struct spi_transfer *xfer;

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		/*
		 * Restore the original value of tx_buf or rx_buf if they are
		 * NULL.
		 */
		if (xfer->tx_buf == master->dummy_tx)
			xfer->tx_buf = NULL;
		if (xfer->rx_buf == master->dummy_rx)
			xfer->rx_buf = NULL;
	}

	return __spi_unmap_msg(master, msg);
}

878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
{
	struct spi_transfer *xfer;
	void *tmp;
	unsigned int max_tx, max_rx;

	if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
		max_tx = 0;
		max_rx = 0;

		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
			if ((master->flags & SPI_MASTER_MUST_TX) &&
			    !xfer->tx_buf)
				max_tx = max(xfer->len, max_tx);
			if ((master->flags & SPI_MASTER_MUST_RX) &&
			    !xfer->rx_buf)
				max_rx = max(xfer->len, max_rx);
		}

		if (max_tx) {
			tmp = krealloc(master->dummy_tx, max_tx,
				       GFP_KERNEL | GFP_DMA);
			if (!tmp)
				return -ENOMEM;
			master->dummy_tx = tmp;
			memset(tmp, 0, max_tx);
		}

		if (max_rx) {
			tmp = krealloc(master->dummy_rx, max_rx,
				       GFP_KERNEL | GFP_DMA);
			if (!tmp)
				return -ENOMEM;
			master->dummy_rx = tmp;
		}

		if (max_tx || max_rx) {
			list_for_each_entry(xfer, &msg->transfers,
					    transfer_list) {
				if (!xfer->tx_buf)
					xfer->tx_buf = master->dummy_tx;
				if (!xfer->rx_buf)
					xfer->rx_buf = master->dummy_rx;
			}
		}
	}

	return __spi_map_msg(master, msg);
}
927

928 929 930 931 932 933 934 935 936 937 938 939 940
/*
 * spi_transfer_one_message - Default implementation of transfer_one_message()
 *
 * This is a standard implementation of transfer_one_message() for
 * drivers which impelment a transfer_one() operation.  It provides
 * standard handling of delays and chip select management.
 */
static int spi_transfer_one_message(struct spi_master *master,
				    struct spi_message *msg)
{
	struct spi_transfer *xfer;
	bool keep_cs = false;
	int ret = 0;
941
	unsigned long ms = 1;
942 943
	struct spi_statistics *statm = &master->statistics;
	struct spi_statistics *stats = &msg->spi->statistics;
944 945 946

	spi_set_cs(msg->spi, true);

947 948 949
	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);

950 951 952
	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		trace_spi_transfer_start(msg, xfer);

953 954 955
		spi_statistics_add_transfer_stats(statm, xfer, master);
		spi_statistics_add_transfer_stats(stats, xfer, master);

956 957
		if (xfer->tx_buf || xfer->rx_buf) {
			reinit_completion(&master->xfer_completion);
958

959 960
			ret = master->transfer_one(master, msg->spi, xfer);
			if (ret < 0) {
961 962 963 964
				SPI_STATISTICS_INCREMENT_FIELD(statm,
							       errors);
				SPI_STATISTICS_INCREMENT_FIELD(stats,
							       errors);
965 966 967 968
				dev_err(&msg->spi->dev,
					"SPI transfer failed: %d\n", ret);
				goto out;
			}
969

970 971 972 973
			if (ret > 0) {
				ret = 0;
				ms = xfer->len * 8 * 1000 / xfer->speed_hz;
				ms += ms + 100; /* some tolerance */
974

975 976 977
				ms = wait_for_completion_timeout(&master->xfer_completion,
								 msecs_to_jiffies(ms));
			}
978

979
			if (ms == 0) {
980 981 982 983
				SPI_STATISTICS_INCREMENT_FIELD(statm,
							       timedout);
				SPI_STATISTICS_INCREMENT_FIELD(stats,
							       timedout);
984 985 986 987 988 989 990 991 992
				dev_err(&msg->spi->dev,
					"SPI transfer timed out\n");
				msg->status = -ETIMEDOUT;
			}
		} else {
			if (xfer->len)
				dev_err(&msg->spi->dev,
					"Bufferless transfer has length %u\n",
					xfer->len);
993
		}
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007

		trace_spi_transfer_stop(msg, xfer);

		if (msg->status != -EINPROGRESS)
			goto out;

		if (xfer->delay_usecs)
			udelay(xfer->delay_usecs);

		if (xfer->cs_change) {
			if (list_is_last(&xfer->transfer_list,
					 &msg->transfers)) {
				keep_cs = true;
			} else {
1008 1009 1010
				spi_set_cs(msg->spi, false);
				udelay(10);
				spi_set_cs(msg->spi, true);
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
			}
		}

		msg->actual_length += xfer->len;
	}

out:
	if (ret != 0 || !keep_cs)
		spi_set_cs(msg->spi, false);

	if (msg->status == -EINPROGRESS)
		msg->status = ret;

1024
	if (msg->status && master->handle_err)
1025 1026
		master->handle_err(master, msg);

1027 1028
	spi_res_release(master, msg);

1029 1030 1031 1032 1033 1034 1035
	spi_finalize_current_message(master);

	return ret;
}

/**
 * spi_finalize_current_transfer - report completion of a transfer
T
Thierry Reding 已提交
1036
 * @master: the master reporting completion
1037 1038 1039
 *
 * Called by SPI drivers using the core transfer_one_message()
 * implementation to notify it that the current interrupt driven
1040
 * transfer has finished and the next one may be scheduled.
1041 1042 1043 1044 1045 1046 1047
 */
void spi_finalize_current_transfer(struct spi_master *master)
{
	complete(&master->xfer_completion);
}
EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);

1048
/**
1049 1050 1051
 * __spi_pump_messages - function which processes spi message queue
 * @master: master to process queue for
 * @in_kthread: true if we are in the context of the message pump thread
1052 1053 1054 1055 1056
 *
 * This function checks if there is any spi message in the queue that
 * needs processing and if so call out to the driver to initialize hardware
 * and transfer each message.
 *
1057 1058 1059
 * Note that it is called both from the kthread itself and also from
 * inside spi_sync(); the queue extraction handling at the top of the
 * function should deal with this safely.
1060
 */
1061
static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
1062 1063 1064 1065 1066
{
	unsigned long flags;
	bool was_busy = false;
	int ret;

1067
	/* Lock queue */
1068
	spin_lock_irqsave(&master->queue_lock, flags);
1069 1070 1071 1072 1073 1074 1075

	/* Make sure we are not already running a message */
	if (master->cur_msg) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return;
	}

1076 1077 1078 1079 1080 1081 1082
	/* If another context is idling the device then defer */
	if (master->idling) {
		queue_kthread_work(&master->kworker, &master->pump_messages);
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return;
	}

1083
	/* Check if the queue is idle */
1084
	if (list_empty(&master->queue) || !master->running) {
1085 1086 1087
		if (!master->busy) {
			spin_unlock_irqrestore(&master->queue_lock, flags);
			return;
1088
		}
1089 1090 1091 1092 1093 1094 1095 1096 1097

		/* Only do teardown in the thread */
		if (!in_kthread) {
			queue_kthread_work(&master->kworker,
					   &master->pump_messages);
			spin_unlock_irqrestore(&master->queue_lock, flags);
			return;
		}

1098
		master->busy = false;
1099
		master->idling = true;
1100
		spin_unlock_irqrestore(&master->queue_lock, flags);
1101

1102 1103 1104 1105
		kfree(master->dummy_rx);
		master->dummy_rx = NULL;
		kfree(master->dummy_tx);
		master->dummy_tx = NULL;
1106 1107 1108 1109
		if (master->unprepare_transfer_hardware &&
		    master->unprepare_transfer_hardware(master))
			dev_err(&master->dev,
				"failed to unprepare transfer hardware\n");
1110 1111 1112 1113
		if (master->auto_runtime_pm) {
			pm_runtime_mark_last_busy(master->dev.parent);
			pm_runtime_put_autosuspend(master->dev.parent);
		}
1114
		trace_spi_master_idle(master);
1115

1116 1117
		spin_lock_irqsave(&master->queue_lock, flags);
		master->idling = false;
1118 1119 1120 1121 1122 1123
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return;
	}

	/* Extract head of queue */
	master->cur_msg =
1124
		list_first_entry(&master->queue, struct spi_message, queue);
1125 1126 1127 1128 1129 1130 1131 1132

	list_del_init(&master->cur_msg->queue);
	if (master->busy)
		was_busy = true;
	else
		master->busy = true;
	spin_unlock_irqrestore(&master->queue_lock, flags);

1133 1134 1135 1136 1137 1138 1139 1140 1141
	if (!was_busy && master->auto_runtime_pm) {
		ret = pm_runtime_get_sync(master->dev.parent);
		if (ret < 0) {
			dev_err(&master->dev, "Failed to power device: %d\n",
				ret);
			return;
		}
	}

1142 1143 1144
	if (!was_busy)
		trace_spi_master_busy(master);

1145
	if (!was_busy && master->prepare_transfer_hardware) {
1146 1147 1148 1149
		ret = master->prepare_transfer_hardware(master);
		if (ret) {
			dev_err(&master->dev,
				"failed to prepare transfer hardware\n");
1150 1151 1152

			if (master->auto_runtime_pm)
				pm_runtime_put(master->dev.parent);
1153 1154 1155 1156
			return;
		}
	}

1157 1158
	trace_spi_message_start(master->cur_msg);

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
	if (master->prepare_message) {
		ret = master->prepare_message(master, master->cur_msg);
		if (ret) {
			dev_err(&master->dev,
				"failed to prepare message: %d\n", ret);
			master->cur_msg->status = ret;
			spi_finalize_current_message(master);
			return;
		}
		master->cur_msg_prepared = true;
	}

1171 1172 1173 1174 1175 1176 1177
	ret = spi_map_msg(master, master->cur_msg);
	if (ret) {
		master->cur_msg->status = ret;
		spi_finalize_current_message(master);
		return;
	}

1178 1179 1180
	ret = master->transfer_one_message(master, master->cur_msg);
	if (ret) {
		dev_err(&master->dev,
1181
			"failed to transfer one message from queue\n");
1182 1183 1184 1185
		return;
	}
}

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
/**
 * spi_pump_messages - kthread work function which processes spi message queue
 * @work: pointer to kthread work struct contained in the master struct
 */
static void spi_pump_messages(struct kthread_work *work)
{
	struct spi_master *master =
		container_of(work, struct spi_master, pump_messages);

	__spi_pump_messages(master, true);
}

1198 1199 1200 1201 1202 1203 1204 1205 1206
static int spi_init_queue(struct spi_master *master)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };

	master->running = false;
	master->busy = false;

	init_kthread_worker(&master->kworker);
	master->kworker_task = kthread_run(kthread_worker_fn,
1207
					   &master->kworker, "%s",
1208 1209 1210
					   dev_name(&master->dev));
	if (IS_ERR(master->kworker_task)) {
		dev_err(&master->dev, "failed to create message pump task\n");
1211
		return PTR_ERR(master->kworker_task);
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
	}
	init_kthread_work(&master->pump_messages, spi_pump_messages);

	/*
	 * Master config will indicate if this controller should run the
	 * message pump with high (realtime) priority to reduce the transfer
	 * latency on the bus by minimising the delay between a transfer
	 * request and the scheduling of the message pump thread. Without this
	 * setting the message pump thread will remain at default priority.
	 */
	if (master->rt) {
		dev_info(&master->dev,
			"will run message pump with realtime priority\n");
		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
	}

	return 0;
}

/**
 * spi_get_next_queued_message() - called by driver to check for queued
 * messages
 * @master: the master to check for queued messages
 *
 * If there are more messages in the queue, the next message is returned from
 * this call.
1238 1239
 *
 * Return: the next message in the queue, else NULL if the queue is empty.
1240 1241 1242 1243 1244 1245 1246 1247
 */
struct spi_message *spi_get_next_queued_message(struct spi_master *master)
{
	struct spi_message *next;
	unsigned long flags;

	/* get a pointer to the next message, if any */
	spin_lock_irqsave(&master->queue_lock, flags);
1248 1249
	next = list_first_entry_or_null(&master->queue, struct spi_message,
					queue);
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
	spin_unlock_irqrestore(&master->queue_lock, flags);

	return next;
}
EXPORT_SYMBOL_GPL(spi_get_next_queued_message);

/**
 * spi_finalize_current_message() - the current message is complete
 * @master: the master to return the message to
 *
 * Called by the driver to notify the core that the message in the front of the
 * queue is complete and can be removed from the queue.
 */
void spi_finalize_current_message(struct spi_master *master)
{
	struct spi_message *mesg;
	unsigned long flags;
1267
	int ret;
1268 1269 1270 1271 1272

	spin_lock_irqsave(&master->queue_lock, flags);
	mesg = master->cur_msg;
	spin_unlock_irqrestore(&master->queue_lock, flags);

1273 1274
	spi_unmap_msg(master, mesg);

1275 1276 1277 1278 1279 1280 1281
	if (master->cur_msg_prepared && master->unprepare_message) {
		ret = master->unprepare_message(master, mesg);
		if (ret) {
			dev_err(&master->dev,
				"failed to unprepare message: %d\n", ret);
		}
	}
1282

1283 1284
	spin_lock_irqsave(&master->queue_lock, flags);
	master->cur_msg = NULL;
1285
	master->cur_msg_prepared = false;
1286 1287 1288 1289
	queue_kthread_work(&master->kworker, &master->pump_messages);
	spin_unlock_irqrestore(&master->queue_lock, flags);

	trace_spi_message_done(mesg);
1290

1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	mesg->state = NULL;
	if (mesg->complete)
		mesg->complete(mesg->context);
}
EXPORT_SYMBOL_GPL(spi_finalize_current_message);

static int spi_start_queue(struct spi_master *master)
{
	unsigned long flags;

	spin_lock_irqsave(&master->queue_lock, flags);

	if (master->running || master->busy) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return -EBUSY;
	}

	master->running = true;
	master->cur_msg = NULL;
	spin_unlock_irqrestore(&master->queue_lock, flags);

	queue_kthread_work(&master->kworker, &master->pump_messages);

	return 0;
}

static int spi_stop_queue(struct spi_master *master)
{
	unsigned long flags;
	unsigned limit = 500;
	int ret = 0;

	spin_lock_irqsave(&master->queue_lock, flags);

	/*
	 * This is a bit lame, but is optimized for the common execution path.
	 * A wait_queue on the master->busy could be used, but then the common
	 * execution path (pump_messages) would be required to call wake_up or
	 * friends on every SPI message. Do this instead.
	 */
	while ((!list_empty(&master->queue) || master->busy) && limit--) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
1333
		usleep_range(10000, 11000);
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
		spin_lock_irqsave(&master->queue_lock, flags);
	}

	if (!list_empty(&master->queue) || master->busy)
		ret = -EBUSY;
	else
		master->running = false;

	spin_unlock_irqrestore(&master->queue_lock, flags);

	if (ret) {
		dev_warn(&master->dev,
			 "could not stop message queue\n");
		return ret;
	}
	return ret;
}

static int spi_destroy_queue(struct spi_master *master)
{
	int ret;

	ret = spi_stop_queue(master);

	/*
	 * flush_kthread_worker will block until all work is done.
	 * If the reason that stop_queue timed out is that the work will never
	 * finish, then it does no good to call flush/stop thread, so
	 * return anyway.
	 */
	if (ret) {
		dev_err(&master->dev, "problem destroying queue\n");
		return ret;
	}

	flush_kthread_worker(&master->kworker);
	kthread_stop(master->kworker_task);

	return 0;
}

1375 1376 1377
static int __spi_queued_transfer(struct spi_device *spi,
				 struct spi_message *msg,
				 bool need_pump)
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
{
	struct spi_master *master = spi->master;
	unsigned long flags;

	spin_lock_irqsave(&master->queue_lock, flags);

	if (!master->running) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return -ESHUTDOWN;
	}
	msg->actual_length = 0;
	msg->status = -EINPROGRESS;

	list_add_tail(&msg->queue, &master->queue);
1392
	if (!master->busy && need_pump)
1393 1394 1395 1396 1397 1398
		queue_kthread_work(&master->kworker, &master->pump_messages);

	spin_unlock_irqrestore(&master->queue_lock, flags);
	return 0;
}

1399 1400 1401 1402
/**
 * spi_queued_transfer - transfer function for queued transfers
 * @spi: spi device which is requesting transfer
 * @msg: spi message which is to handled is queued to driver queue
1403 1404
 *
 * Return: zero on success, else a negative error code.
1405 1406 1407 1408 1409 1410
 */
static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
{
	return __spi_queued_transfer(spi, msg, true);
}

1411 1412 1413 1414 1415
static int spi_master_initialize_queue(struct spi_master *master)
{
	int ret;

	master->transfer = spi_queued_transfer;
1416 1417
	if (!master->transfer_one_message)
		master->transfer_one_message = spi_transfer_one_message;
1418 1419 1420 1421 1422 1423 1424

	/* Initialize and start queue */
	ret = spi_init_queue(master);
	if (ret) {
		dev_err(&master->dev, "problem initializing queue\n");
		goto err_init_queue;
	}
1425
	master->queued = true;
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
	ret = spi_start_queue(master);
	if (ret) {
		dev_err(&master->dev, "problem starting queue\n");
		goto err_start_queue;
	}

	return 0;

err_start_queue:
	spi_destroy_queue(master);
1436
err_init_queue:
1437 1438 1439 1440 1441
	return ret;
}

/*-------------------------------------------------------------------------*/

1442
#if defined(CONFIG_OF)
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
static struct spi_device *
of_register_spi_device(struct spi_master *master, struct device_node *nc)
{
	struct spi_device *spi;
	int rc;
	u32 value;

	/* Alloc an spi_device */
	spi = spi_alloc_device(master);
	if (!spi) {
		dev_err(&master->dev, "spi_device alloc error for %s\n",
			nc->full_name);
		rc = -ENOMEM;
		goto err_out;
	}

	/* Select device driver */
	rc = of_modalias_node(nc, spi->modalias,
				sizeof(spi->modalias));
	if (rc < 0) {
		dev_err(&master->dev, "cannot find modalias for %s\n",
			nc->full_name);
		goto err_out;
	}

	/* Device address */
	rc = of_property_read_u32(nc, "reg", &value);
	if (rc) {
		dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
			nc->full_name, rc);
		goto err_out;
	}
	spi->chip_select = value;

	/* Mode (clock phase/polarity/etc.) */
	if (of_find_property(nc, "spi-cpha", NULL))
		spi->mode |= SPI_CPHA;
	if (of_find_property(nc, "spi-cpol", NULL))
		spi->mode |= SPI_CPOL;
	if (of_find_property(nc, "spi-cs-high", NULL))
		spi->mode |= SPI_CS_HIGH;
	if (of_find_property(nc, "spi-3wire", NULL))
		spi->mode |= SPI_3WIRE;
	if (of_find_property(nc, "spi-lsb-first", NULL))
		spi->mode |= SPI_LSB_FIRST;

	/* Device DUAL/QUAD mode */
	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
		switch (value) {
		case 1:
			break;
		case 2:
			spi->mode |= SPI_TX_DUAL;
			break;
		case 4:
			spi->mode |= SPI_TX_QUAD;
			break;
		default:
			dev_warn(&master->dev,
				"spi-tx-bus-width %d not supported\n",
				value);
			break;
		}
	}

	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
		switch (value) {
		case 1:
			break;
		case 2:
			spi->mode |= SPI_RX_DUAL;
			break;
		case 4:
			spi->mode |= SPI_RX_QUAD;
			break;
		default:
			dev_warn(&master->dev,
				"spi-rx-bus-width %d not supported\n",
				value);
			break;
		}
	}

	/* Device speed */
	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
	if (rc) {
		dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
			nc->full_name, rc);
		goto err_out;
	}
	spi->max_speed_hz = value;

	/* Store a pointer to the node in the device structure */
	of_node_get(nc);
	spi->dev.of_node = nc;

	/* Register the new device */
	rc = spi_add_device(spi);
	if (rc) {
		dev_err(&master->dev, "spi_device register error %s\n",
			nc->full_name);
		goto err_out;
	}

	return spi;

err_out:
	spi_dev_put(spi);
	return ERR_PTR(rc);
}

1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
/**
 * of_register_spi_devices() - Register child devices onto the SPI bus
 * @master:	Pointer to spi_master device
 *
 * Registers an spi_device for each child node of master node which has a 'reg'
 * property.
 */
static void of_register_spi_devices(struct spi_master *master)
{
	struct spi_device *spi;
	struct device_node *nc;

	if (!master->dev.of_node)
		return;

1569
	for_each_available_child_of_node(master->dev.of_node, nc) {
1570 1571
		if (of_node_test_and_set_flag(nc, OF_POPULATED))
			continue;
1572 1573 1574
		spi = of_register_spi_device(master, nc);
		if (IS_ERR(spi))
			dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1575 1576 1577 1578 1579 1580 1581
				nc->full_name);
	}
}
#else
static void of_register_spi_devices(struct spi_master *master) { }
#endif

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
#ifdef CONFIG_ACPI
static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
{
	struct spi_device *spi = data;

	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
		struct acpi_resource_spi_serialbus *sb;

		sb = &ares->data.spi_serial_bus;
		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
			spi->chip_select = sb->device_selection;
			spi->max_speed_hz = sb->connection_speed;

			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
				spi->mode |= SPI_CPHA;
			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
				spi->mode |= SPI_CPOL;
			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
				spi->mode |= SPI_CS_HIGH;
		}
	} else if (spi->irq < 0) {
		struct resource r;

		if (acpi_dev_resource_interrupt(ares, 0, &r))
			spi->irq = r.start;
	}

	/* Always tell the ACPI core to skip this resource */
	return 1;
}

static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
				       void *data, void **return_value)
{
	struct spi_master *master = data;
	struct list_head resource_list;
	struct acpi_device *adev;
	struct spi_device *spi;
	int ret;

	if (acpi_bus_get_device(handle, &adev))
		return AE_OK;
	if (acpi_bus_get_status(adev) || !adev->status.present)
		return AE_OK;

	spi = spi_alloc_device(master);
	if (!spi) {
		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
			dev_name(&adev->dev));
		return AE_NO_MEMORY;
	}

1634
	ACPI_COMPANION_SET(&spi->dev, adev);
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
	spi->irq = -1;

	INIT_LIST_HEAD(&resource_list);
	ret = acpi_dev_get_resources(adev, &resource_list,
				     acpi_spi_add_resource, spi);
	acpi_dev_free_resource_list(&resource_list);

	if (ret < 0 || !spi->max_speed_hz) {
		spi_dev_put(spi);
		return AE_OK;
	}

1647 1648 1649
	if (spi->irq < 0)
		spi->irq = acpi_dev_gpio_irq_get(adev, 0);

1650
	adev->power.flags.ignore_parent = true;
1651
	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1652
	if (spi_add_device(spi)) {
1653
		adev->power.flags.ignore_parent = false;
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
			dev_name(&adev->dev));
		spi_dev_put(spi);
	}

	return AE_OK;
}

static void acpi_register_spi_devices(struct spi_master *master)
{
	acpi_status status;
	acpi_handle handle;

1667
	handle = ACPI_HANDLE(master->dev.parent);
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
	if (!handle)
		return;

	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
				     acpi_spi_add_device, NULL,
				     master, NULL);
	if (ACPI_FAILURE(status))
		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
}
#else
static inline void acpi_register_spi_devices(struct spi_master *master) {}
#endif /* CONFIG_ACPI */

T
Tony Jones 已提交
1681
static void spi_master_release(struct device *dev)
1682 1683 1684
{
	struct spi_master *master;

T
Tony Jones 已提交
1685
	master = container_of(dev, struct spi_master, dev);
1686 1687 1688 1689 1690 1691
	kfree(master);
}

static struct class spi_master_class = {
	.name		= "spi_master",
	.owner		= THIS_MODULE,
T
Tony Jones 已提交
1692
	.dev_release	= spi_master_release,
1693
	.dev_groups	= spi_master_groups,
1694 1695 1696 1697 1698 1699
};


/**
 * spi_alloc_master - allocate SPI master controller
 * @dev: the controller, possibly using the platform_bus
D
David Brownell 已提交
1700
 * @size: how much zeroed driver-private data to allocate; the pointer to this
T
Tony Jones 已提交
1701
 *	memory is in the driver_data field of the returned device,
D
David Brownell 已提交
1702
 *	accessible with spi_master_get_devdata().
D
David Brownell 已提交
1703
 * Context: can sleep
1704 1705 1706
 *
 * This call is used only by SPI master controller drivers, which are the
 * only ones directly touching chip registers.  It's how they allocate
D
dmitry pervushin 已提交
1707
 * an spi_master structure, prior to calling spi_register_master().
1708
 *
1709
 * This must be called from context that can sleep.
1710 1711
 *
 * The caller is responsible for assigning the bus number and initializing
D
dmitry pervushin 已提交
1712
 * the master's methods before calling spi_register_master(); and (after errors
1713
 * adding the device) calling spi_master_put() to prevent a memory leak.
1714 1715
 *
 * Return: the SPI master structure on success, else NULL.
1716
 */
1717
struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1718 1719 1720
{
	struct spi_master	*master;

D
David Brownell 已提交
1721 1722 1723
	if (!dev)
		return NULL;

J
Jingoo Han 已提交
1724
	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1725 1726 1727
	if (!master)
		return NULL;

T
Tony Jones 已提交
1728
	device_initialize(&master->dev);
1729 1730
	master->bus_num = -1;
	master->num_chipselect = 1;
T
Tony Jones 已提交
1731
	master->dev.class = &spi_master_class;
1732
	master->dev.parent = dev;
D
David Brownell 已提交
1733
	spi_master_set_devdata(master, &master[1]);
1734 1735 1736 1737 1738

	return master;
}
EXPORT_SYMBOL_GPL(spi_alloc_master);

1739 1740 1741
#ifdef CONFIG_OF
static int of_spi_register_master(struct spi_master *master)
{
1742
	int nb, i, *cs;
1743 1744 1745 1746 1747 1748
	struct device_node *np = master->dev.of_node;

	if (!np)
		return 0;

	nb = of_gpio_named_count(np, "cs-gpios");
J
Jingoo Han 已提交
1749
	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1750

1751 1752
	/* Return error only for an incorrectly formed cs-gpios property */
	if (nb == 0 || nb == -ENOENT)
1753
		return 0;
1754 1755
	else if (nb < 0)
		return nb;
1756 1757 1758 1759 1760 1761 1762 1763 1764

	cs = devm_kzalloc(&master->dev,
			  sizeof(int) * master->num_chipselect,
			  GFP_KERNEL);
	master->cs_gpios = cs;

	if (!master->cs_gpios)
		return -ENOMEM;

1765
	for (i = 0; i < master->num_chipselect; i++)
1766
		cs[i] = -ENOENT;
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779

	for (i = 0; i < nb; i++)
		cs[i] = of_get_named_gpio(np, "cs-gpios", i);

	return 0;
}
#else
static int of_spi_register_master(struct spi_master *master)
{
	return 0;
}
#endif

1780 1781 1782
/**
 * spi_register_master - register SPI master controller
 * @master: initialized master, originally from spi_alloc_master()
D
David Brownell 已提交
1783
 * Context: can sleep
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
 *
 * SPI master controllers connect to their drivers using some non-SPI bus,
 * such as the platform bus.  The final stage of probe() in that code
 * includes calling spi_register_master() to hook up to this SPI bus glue.
 *
 * SPI controllers use board specific (often SOC specific) bus numbers,
 * and board-specific addressing for SPI devices combines those numbers
 * with chip select numbers.  Since SPI does not directly support dynamic
 * device identification, boards need configuration tables telling which
 * chip is at which address.
 *
 * This must be called from context that can sleep.  It returns zero on
 * success, else a negative error code (dropping the master's refcount).
D
David Brownell 已提交
1797 1798
 * After a successful return, the caller is responsible for calling
 * spi_unregister_master().
1799 1800
 *
 * Return: zero on success, else a negative error code.
1801
 */
1802
int spi_register_master(struct spi_master *master)
1803
{
1804
	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
T
Tony Jones 已提交
1805
	struct device		*dev = master->dev.parent;
1806
	struct boardinfo	*bi;
1807 1808 1809
	int			status = -ENODEV;
	int			dynamic = 0;

D
David Brownell 已提交
1810 1811 1812
	if (!dev)
		return -ENODEV;

1813 1814 1815 1816
	status = of_spi_register_master(master);
	if (status)
		return status;

1817 1818 1819 1820 1821 1822
	/* even if it's just one always-selected device, there must
	 * be at least one chipselect
	 */
	if (master->num_chipselect == 0)
		return -EINVAL;

1823 1824 1825
	if ((master->bus_num < 0) && master->dev.of_node)
		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");

1826
	/* convention:  dynamically assigned bus IDs count down from the max */
1827
	if (master->bus_num < 0) {
1828 1829 1830
		/* FIXME switch to an IDR based scheme, something like
		 * I2C now uses, so we can't run out of "dynamic" IDs
		 */
1831
		master->bus_num = atomic_dec_return(&dyn_bus_id);
1832
		dynamic = 1;
1833 1834
	}

1835 1836
	INIT_LIST_HEAD(&master->queue);
	spin_lock_init(&master->queue_lock);
1837 1838 1839
	spin_lock_init(&master->bus_lock_spinlock);
	mutex_init(&master->bus_lock_mutex);
	master->bus_lock_flag = 0;
1840
	init_completion(&master->xfer_completion);
1841 1842
	if (!master->max_dma_len)
		master->max_dma_len = INT_MAX;
1843

1844 1845 1846
	/* register the device, then userspace will see it.
	 * registration fails if the bus ID is in use.
	 */
1847
	dev_set_name(&master->dev, "spi%u", master->bus_num);
T
Tony Jones 已提交
1848
	status = device_add(&master->dev);
1849
	if (status < 0)
1850
		goto done;
1851
	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1852 1853
			dynamic ? " (dynamic)" : "");

1854 1855 1856 1857 1858 1859
	/* If we're using a queued driver, start the queue */
	if (master->transfer)
		dev_info(dev, "master is unqueued, this is deprecated\n");
	else {
		status = spi_master_initialize_queue(master);
		if (status) {
1860
			device_del(&master->dev);
1861 1862 1863
			goto done;
		}
	}
1864 1865
	/* add statistics */
	spin_lock_init(&master->statistics.lock);
1866

1867 1868 1869 1870 1871 1872
	mutex_lock(&board_lock);
	list_add_tail(&master->list, &spi_master_list);
	list_for_each_entry(bi, &board_list, list)
		spi_match_master_to_boardinfo(master, &bi->board_info);
	mutex_unlock(&board_lock);

1873
	/* Register devices from the device tree and ACPI */
1874
	of_register_spi_devices(master);
1875
	acpi_register_spi_devices(master);
1876 1877 1878 1879 1880
done:
	return status;
}
EXPORT_SYMBOL_GPL(spi_register_master);

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
static void devm_spi_unregister(struct device *dev, void *res)
{
	spi_unregister_master(*(struct spi_master **)res);
}

/**
 * dev_spi_register_master - register managed SPI master controller
 * @dev:    device managing SPI master
 * @master: initialized master, originally from spi_alloc_master()
 * Context: can sleep
 *
 * Register a SPI device as with spi_register_master() which will
 * automatically be unregister
1894 1895
 *
 * Return: zero on success, else a negative error code.
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
 */
int devm_spi_register_master(struct device *dev, struct spi_master *master)
{
	struct spi_master **ptr;
	int ret;

	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return -ENOMEM;

	ret = spi_register_master(master);
1907
	if (!ret) {
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
		*ptr = master;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return ret;
}
EXPORT_SYMBOL_GPL(devm_spi_register_master);

1918
static int __unregister(struct device *dev, void *null)
1919
{
1920
	spi_unregister_device(to_spi_device(dev));
1921 1922 1923 1924 1925 1926
	return 0;
}

/**
 * spi_unregister_master - unregister SPI master controller
 * @master: the master being unregistered
D
David Brownell 已提交
1927
 * Context: can sleep
1928 1929 1930 1931 1932 1933 1934 1935
 *
 * This call is used only by SPI master controller drivers, which are the
 * only ones directly touching chip registers.
 *
 * This must be called from context that can sleep.
 */
void spi_unregister_master(struct spi_master *master)
{
1936 1937
	int dummy;

1938 1939 1940 1941 1942
	if (master->queued) {
		if (spi_destroy_queue(master))
			dev_err(&master->dev, "queue remove failed\n");
	}

1943 1944 1945 1946
	mutex_lock(&board_lock);
	list_del(&master->list);
	mutex_unlock(&board_lock);

1947
	dummy = device_for_each_child(&master->dev, NULL, __unregister);
T
Tony Jones 已提交
1948
	device_unregister(&master->dev);
1949 1950 1951
}
EXPORT_SYMBOL_GPL(spi_unregister_master);

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
int spi_master_suspend(struct spi_master *master)
{
	int ret;

	/* Basically no-ops for non-queued masters */
	if (!master->queued)
		return 0;

	ret = spi_stop_queue(master);
	if (ret)
		dev_err(&master->dev, "queue stop failed\n");

	return ret;
}
EXPORT_SYMBOL_GPL(spi_master_suspend);

int spi_master_resume(struct spi_master *master)
{
	int ret;

	if (!master->queued)
		return 0;

	ret = spi_start_queue(master);
	if (ret)
		dev_err(&master->dev, "queue restart failed\n");

	return ret;
}
EXPORT_SYMBOL_GPL(spi_master_resume);

1983
static int __spi_master_match(struct device *dev, const void *data)
D
Dave Young 已提交
1984 1985
{
	struct spi_master *m;
1986
	const u16 *bus_num = data;
D
Dave Young 已提交
1987 1988 1989 1990 1991

	m = container_of(dev, struct spi_master, dev);
	return m->bus_num == *bus_num;
}

1992 1993 1994
/**
 * spi_busnum_to_master - look up master associated with bus_num
 * @bus_num: the master's bus number
D
David Brownell 已提交
1995
 * Context: can sleep
1996 1997 1998 1999 2000
 *
 * This call may be used with devices that are registered after
 * arch init time.  It returns a refcounted pointer to the relevant
 * spi_master (which the caller must release), or NULL if there is
 * no such master registered.
2001 2002
 *
 * Return: the SPI master structure on success, else NULL.
2003 2004 2005
 */
struct spi_master *spi_busnum_to_master(u16 bus_num)
{
T
Tony Jones 已提交
2006
	struct device		*dev;
2007
	struct spi_master	*master = NULL;
D
Dave Young 已提交
2008

2009
	dev = class_find_device(&spi_master_class, NULL, &bus_num,
D
Dave Young 已提交
2010 2011 2012 2013
				__spi_master_match);
	if (dev)
		master = container_of(dev, struct spi_master, dev);
	/* reference got in class_find_device */
2014
	return master;
2015 2016 2017
}
EXPORT_SYMBOL_GPL(spi_busnum_to_master);

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
/*-------------------------------------------------------------------------*/

/* Core methods for SPI resource management */

/**
 * spi_res_alloc - allocate a spi resource that is life-cycle managed
 *                 during the processing of a spi_message while using
 *                 spi_transfer_one
 * @spi:     the spi device for which we allocate memory
 * @release: the release code to execute for this resource
 * @size:    size to alloc and return
 * @gfp:     GFP allocation flags
 *
 * Return: the pointer to the allocated data
 *
 * This may get enhanced in the future to allocate from a memory pool
 * of the @spi_device or @spi_master to avoid repeated allocations.
 */
void *spi_res_alloc(struct spi_device *spi,
		    spi_res_release_t release,
		    size_t size, gfp_t gfp)
{
	struct spi_res *sres;

	sres = kzalloc(sizeof(*sres) + size, gfp);
	if (!sres)
		return NULL;

	INIT_LIST_HEAD(&sres->entry);
	sres->release = release;

	return sres->data;
}
EXPORT_SYMBOL_GPL(spi_res_alloc);

/**
 * spi_res_free - free an spi resource
 * @res: pointer to the custom data of a resource
 *
 */
void spi_res_free(void *res)
{
	struct spi_res *sres = container_of(res, struct spi_res, data);

	if (!res)
		return;

	WARN_ON(!list_empty(&sres->entry));
	kfree(sres);
}
EXPORT_SYMBOL_GPL(spi_res_free);

/**
 * spi_res_add - add a spi_res to the spi_message
 * @message: the spi message
 * @res:     the spi_resource
 */
void spi_res_add(struct spi_message *message, void *res)
{
	struct spi_res *sres = container_of(res, struct spi_res, data);

	WARN_ON(!list_empty(&sres->entry));
	list_add_tail(&sres->entry, &message->resources);
}
EXPORT_SYMBOL_GPL(spi_res_add);

/**
 * spi_res_release - release all spi resources for this message
 * @master:  the @spi_master
 * @message: the @spi_message
 */
void spi_res_release(struct spi_master *master,
		     struct spi_message *message)
{
	struct spi_res *res;

	while (!list_empty(&message->resources)) {
		res = list_last_entry(&message->resources,
				      struct spi_res, entry);

		if (res->release)
			res->release(master, message, res->data);

		list_del(&res->entry);

		kfree(res);
	}
}
EXPORT_SYMBOL_GPL(spi_res_release);
2107 2108 2109

/*-------------------------------------------------------------------------*/

2110 2111 2112 2113
/* Core methods for SPI master protocol drivers.  Some of the
 * other core methods are currently defined as inline functions.
 */

2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
{
	if (master->bits_per_word_mask) {
		/* Only 32 bits fit in the mask */
		if (bits_per_word > 32)
			return -EINVAL;
		if (!(master->bits_per_word_mask &
				SPI_BPW_MASK(bits_per_word)))
			return -EINVAL;
	}

	return 0;
}

2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
/**
 * spi_setup - setup SPI mode and clock rate
 * @spi: the device whose settings are being modified
 * Context: can sleep, and no requests are queued to the device
 *
 * SPI protocol drivers may need to update the transfer mode if the
 * device doesn't work with its default.  They may likewise need
 * to update clock rates or word sizes from initial values.  This function
 * changes those settings, and must be called from a context that can sleep.
 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
 * effect the next time the device is selected and data is transferred to
 * or from it.  When this function returns, the spi device is deselected.
 *
 * Note that this call will fail if the protocol driver specifies an option
 * that the underlying controller or its driver does not support.  For
 * example, not all hardware supports wire transfers using nine bit words,
 * LSB-first wire encoding, or active-high chipselects.
2145 2146
 *
 * Return: zero on success, else a negative error code.
2147 2148 2149
 */
int spi_setup(struct spi_device *spi)
{
2150
	unsigned	bad_bits, ugly_bits;
2151
	int		status;
2152

W
wangyuhang 已提交
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
	/* check mode to prevent that DUAL and QUAD set at the same time
	 */
	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
		dev_err(&spi->dev,
		"setup: can not select dual and quad at the same time\n");
		return -EINVAL;
	}
	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
	 */
	if ((spi->mode & SPI_3WIRE) && (spi->mode &
		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
		return -EINVAL;
2166 2167 2168 2169
	/* help drivers fail *cleanly* when they need options
	 * that aren't supported with their current master
	 */
	bad_bits = spi->mode & ~spi->master->mode_bits;
2170 2171 2172 2173 2174 2175 2176 2177 2178
	ugly_bits = bad_bits &
		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
	if (ugly_bits) {
		dev_warn(&spi->dev,
			 "setup: ignoring unsupported mode bits %x\n",
			 ugly_bits);
		spi->mode &= ~ugly_bits;
		bad_bits &= ~ugly_bits;
	}
2179
	if (bad_bits) {
2180
		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2181 2182 2183 2184
			bad_bits);
		return -EINVAL;
	}

2185 2186 2187
	if (!spi->bits_per_word)
		spi->bits_per_word = 8;

2188 2189 2190
	status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
	if (status)
		return status;
2191

2192 2193 2194
	if (!spi->max_speed_hz)
		spi->max_speed_hz = spi->master->max_speed_hz;

2195 2196
	if (spi->master->setup)
		status = spi->master->setup(spi);
2197

2198 2199
	spi_set_cs(spi, false);

J
Jingoo Han 已提交
2200
	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
			(spi->mode & SPI_LOOP) ? "loopback, " : "",
			spi->bits_per_word, spi->max_speed_hz,
			status);

	return status;
}
EXPORT_SYMBOL_GPL(spi_setup);

2213
static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2214 2215
{
	struct spi_master *master = spi->master;
2216
	struct spi_transfer *xfer;
2217
	int w_size;
2218

2219 2220 2221
	if (list_empty(&message->transfers))
		return -EINVAL;

2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
	/* Half-duplex links include original MicroWire, and ones with
	 * only one data pin like SPI_3WIRE (switches direction) or where
	 * either MOSI or MISO is missing.  They can also be caused by
	 * software limitations.
	 */
	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
			|| (spi->mode & SPI_3WIRE)) {
		unsigned flags = master->flags;

		list_for_each_entry(xfer, &message->transfers, transfer_list) {
			if (xfer->rx_buf && xfer->tx_buf)
				return -EINVAL;
			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
				return -EINVAL;
			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
				return -EINVAL;
		}
	}

2241
	/**
2242 2243
	 * Set transfer bits_per_word and max speed as spi device default if
	 * it is not set for this transfer.
W
wangyuhang 已提交
2244 2245
	 * Set transfer tx_nbits and rx_nbits as single transfer default
	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2246
	 */
2247
	message->frame_length = 0;
2248
	list_for_each_entry(xfer, &message->transfers, transfer_list) {
2249
		message->frame_length += xfer->len;
2250 2251
		if (!xfer->bits_per_word)
			xfer->bits_per_word = spi->bits_per_word;
2252 2253

		if (!xfer->speed_hz)
2254
			xfer->speed_hz = spi->max_speed_hz;
2255 2256
		if (!xfer->speed_hz)
			xfer->speed_hz = master->max_speed_hz;
2257 2258 2259 2260

		if (master->max_speed_hz &&
		    xfer->speed_hz > master->max_speed_hz)
			xfer->speed_hz = master->max_speed_hz;
2261

2262 2263
		if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
			return -EINVAL;
2264

2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
		/*
		 * SPI transfer length should be multiple of SPI word size
		 * where SPI word size should be power-of-two multiple
		 */
		if (xfer->bits_per_word <= 8)
			w_size = 1;
		else if (xfer->bits_per_word <= 16)
			w_size = 2;
		else
			w_size = 4;

		/* No partial transfers accepted */
2277
		if (xfer->len % w_size)
2278 2279
			return -EINVAL;

2280 2281 2282
		if (xfer->speed_hz && master->min_speed_hz &&
		    xfer->speed_hz < master->min_speed_hz)
			return -EINVAL;
W
wangyuhang 已提交
2283 2284 2285 2286 2287 2288

		if (xfer->tx_buf && !xfer->tx_nbits)
			xfer->tx_nbits = SPI_NBITS_SINGLE;
		if (xfer->rx_buf && !xfer->rx_nbits)
			xfer->rx_nbits = SPI_NBITS_SINGLE;
		/* check transfer tx/rx_nbits:
2289 2290
		 * 1. check the value matches one of single, dual and quad
		 * 2. check tx/rx_nbits match the mode in spi_device
W
wangyuhang 已提交
2291
		 */
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
		if (xfer->tx_buf) {
			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
				xfer->tx_nbits != SPI_NBITS_DUAL &&
				xfer->tx_nbits != SPI_NBITS_QUAD)
				return -EINVAL;
			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
				return -EINVAL;
			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
				!(spi->mode & SPI_TX_QUAD))
				return -EINVAL;
		}
W
wangyuhang 已提交
2304
		/* check transfer rx_nbits */
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
		if (xfer->rx_buf) {
			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
				xfer->rx_nbits != SPI_NBITS_DUAL &&
				xfer->rx_nbits != SPI_NBITS_QUAD)
				return -EINVAL;
			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
				return -EINVAL;
			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
				!(spi->mode & SPI_RX_QUAD))
				return -EINVAL;
		}
2317 2318
	}

2319
	message->status = -EINPROGRESS;
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329

	return 0;
}

static int __spi_async(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;

	message->spi = spi;

2330 2331 2332
	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);

2333 2334
	trace_spi_message_submit(message);

2335 2336 2337
	return master->transfer(spi, message);
}

D
David Brownell 已提交
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
/**
 * spi_async - asynchronous SPI transfer
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers, including completion callback
 * Context: any (irqs may be blocked, etc)
 *
 * This call may be used in_irq and other contexts which can't sleep,
 * as well as from task contexts which can sleep.
 *
 * The completion callback is invoked in a context which can't sleep.
 * Before that invocation, the value of message->status is undefined.
 * When the callback is issued, message->status holds either zero (to
 * indicate complete success) or a negative error code.  After that
 * callback returns, the driver which issued the transfer request may
 * deallocate the associated memory; it's no longer in use by any SPI
 * core or controller driver code.
 *
 * Note that although all messages to a spi_device are handled in
 * FIFO order, messages may go to different devices in other orders.
 * Some device might be higher priority, or have various "hard" access
 * time requirements, for example.
 *
 * On detection of any fault during the transfer, processing of
 * the entire message is aborted, and the device is deselected.
 * Until returning from the associated message completion callback,
 * no other spi_message queued to that device will be processed.
 * (This rule applies equally to all the synchronous transfer calls,
 * which are wrappers around this core asynchronous primitive.)
2366 2367
 *
 * Return: zero on success, else a negative error code.
D
David Brownell 已提交
2368 2369 2370 2371
 */
int spi_async(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;
2372 2373
	int ret;
	unsigned long flags;
D
David Brownell 已提交
2374

2375 2376 2377 2378
	ret = __spi_validate(spi, message);
	if (ret != 0)
		return ret;

2379
	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
D
David Brownell 已提交
2380

2381 2382 2383 2384
	if (master->bus_lock_flag)
		ret = -EBUSY;
	else
		ret = __spi_async(spi, message);
D
David Brownell 已提交
2385

2386 2387 2388
	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	return ret;
D
David Brownell 已提交
2389 2390 2391
}
EXPORT_SYMBOL_GPL(spi_async);

2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
/**
 * spi_async_locked - version of spi_async with exclusive bus usage
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers, including completion callback
 * Context: any (irqs may be blocked, etc)
 *
 * This call may be used in_irq and other contexts which can't sleep,
 * as well as from task contexts which can sleep.
 *
 * The completion callback is invoked in a context which can't sleep.
 * Before that invocation, the value of message->status is undefined.
 * When the callback is issued, message->status holds either zero (to
 * indicate complete success) or a negative error code.  After that
 * callback returns, the driver which issued the transfer request may
 * deallocate the associated memory; it's no longer in use by any SPI
 * core or controller driver code.
 *
 * Note that although all messages to a spi_device are handled in
 * FIFO order, messages may go to different devices in other orders.
 * Some device might be higher priority, or have various "hard" access
 * time requirements, for example.
 *
 * On detection of any fault during the transfer, processing of
 * the entire message is aborted, and the device is deselected.
 * Until returning from the associated message completion callback,
 * no other spi_message queued to that device will be processed.
 * (This rule applies equally to all the synchronous transfer calls,
 * which are wrappers around this core asynchronous primitive.)
2420 2421
 *
 * Return: zero on success, else a negative error code.
2422 2423 2424 2425 2426 2427 2428
 */
int spi_async_locked(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;
	int ret;
	unsigned long flags;

2429 2430 2431 2432
	ret = __spi_validate(spi, message);
	if (ret != 0)
		return ret;

2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
	spin_lock_irqsave(&master->bus_lock_spinlock, flags);

	ret = __spi_async(spi, message);

	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	return ret;

}
EXPORT_SYMBOL_GPL(spi_async_locked);

2444 2445 2446 2447 2448 2449 2450 2451

/*-------------------------------------------------------------------------*/

/* Utility methods for SPI master protocol drivers, layered on
 * top of the core.  Some other utility methods are defined as
 * inline functions.
 */

2452 2453 2454 2455 2456
static void spi_complete(void *arg)
{
	complete(arg);
}

2457 2458 2459 2460 2461 2462
static int __spi_sync(struct spi_device *spi, struct spi_message *message,
		      int bus_locked)
{
	DECLARE_COMPLETION_ONSTACK(done);
	int status;
	struct spi_master *master = spi->master;
2463 2464 2465 2466 2467
	unsigned long flags;

	status = __spi_validate(spi, message);
	if (status != 0)
		return status;
2468 2469 2470

	message->complete = spi_complete;
	message->context = &done;
2471
	message->spi = spi;
2472

2473 2474 2475
	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);

2476 2477 2478
	if (!bus_locked)
		mutex_lock(&master->bus_lock_mutex);

2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
	/* If we're not using the legacy transfer method then we will
	 * try to transfer in the calling context so special case.
	 * This code would be less tricky if we could remove the
	 * support for driver implemented message queues.
	 */
	if (master->transfer == spi_queued_transfer) {
		spin_lock_irqsave(&master->bus_lock_spinlock, flags);

		trace_spi_message_submit(message);

		status = __spi_queued_transfer(spi, message, false);

		spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
	} else {
		status = spi_async_locked(spi, message);
	}
2495 2496 2497 2498 2499

	if (!bus_locked)
		mutex_unlock(&master->bus_lock_mutex);

	if (status == 0) {
2500 2501 2502
		/* Push out the messages in the calling context if we
		 * can.
		 */
2503 2504 2505 2506 2507
		if (master->transfer == spi_queued_transfer) {
			SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
						       spi_sync_immediate);
			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
						       spi_sync_immediate);
2508
			__spi_pump_messages(master, false);
2509
		}
2510

2511 2512 2513 2514 2515 2516 2517
		wait_for_completion(&done);
		status = message->status;
	}
	message->context = NULL;
	return status;
}

2518 2519 2520 2521
/**
 * spi_sync - blocking/synchronous SPI data transfers
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers
D
David Brownell 已提交
2522
 * Context: can sleep
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.  Low-overhead controller
 * drivers may DMA directly into and out of the message buffers.
 *
 * Note that the SPI device's chip select is active during the message,
 * and then is normally disabled between messages.  Drivers for some
 * frequently-used devices may want to minimize costs of selecting a chip,
 * by leaving it selected in anticipation that the next message will go
 * to the same chip.  (That may increase power usage.)
 *
D
David Brownell 已提交
2534 2535 2536
 * Also, the caller is guaranteeing that the memory associated with the
 * message will not be freed before this call returns.
 *
2537
 * Return: zero on success, else a negative error code.
2538 2539 2540
 */
int spi_sync(struct spi_device *spi, struct spi_message *message)
{
2541
	return __spi_sync(spi, message, 0);
2542 2543 2544
}
EXPORT_SYMBOL_GPL(spi_sync);

2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
/**
 * spi_sync_locked - version of spi_sync with exclusive bus usage
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.  Low-overhead controller
 * drivers may DMA directly into and out of the message buffers.
 *
 * This call should be used by drivers that require exclusive access to the
L
Lucas De Marchi 已提交
2556
 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2557 2558
 * be released by a spi_bus_unlock call when the exclusive access is over.
 *
2559
 * Return: zero on success, else a negative error code.
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
 */
int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
{
	return __spi_sync(spi, message, 1);
}
EXPORT_SYMBOL_GPL(spi_sync_locked);

/**
 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
 * @master: SPI bus master that should be locked for exclusive bus access
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.
 *
 * This call should be used by drivers that require exclusive access to the
 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
 * exclusive access is over. Data transfer must be done by spi_sync_locked
 * and spi_async_locked calls when the SPI bus lock is held.
 *
2580
 * Return: always zero.
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
 */
int spi_bus_lock(struct spi_master *master)
{
	unsigned long flags;

	mutex_lock(&master->bus_lock_mutex);

	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
	master->bus_lock_flag = 1;
	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	/* mutex remains locked until spi_bus_unlock is called */

	return 0;
}
EXPORT_SYMBOL_GPL(spi_bus_lock);

/**
 * spi_bus_unlock - release the lock for exclusive SPI bus usage
 * @master: SPI bus master that was locked for exclusive bus access
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.
 *
 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
 * call.
 *
2609
 * Return: always zero.
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
 */
int spi_bus_unlock(struct spi_master *master)
{
	master->bus_lock_flag = 0;

	mutex_unlock(&master->bus_lock_mutex);

	return 0;
}
EXPORT_SYMBOL_GPL(spi_bus_unlock);

2621
/* portable code must never pass more than 32 bytes */
J
Jingoo Han 已提交
2622
#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
2623 2624 2625 2626 2627 2628 2629 2630

static u8	*buf;

/**
 * spi_write_then_read - SPI synchronous write followed by read
 * @spi: device with which data will be exchanged
 * @txbuf: data to be written (need not be dma-safe)
 * @n_tx: size of txbuf, in bytes
2631 2632
 * @rxbuf: buffer into which data will be read (need not be dma-safe)
 * @n_rx: size of rxbuf, in bytes
D
David Brownell 已提交
2633
 * Context: can sleep
2634 2635 2636 2637
 *
 * This performs a half duplex MicroWire style transaction with the
 * device, sending txbuf and then reading rxbuf.  The return value
 * is zero for success, else a negative errno status code.
2638
 * This call may only be used from a context that may sleep.
2639
 *
D
David Brownell 已提交
2640
 * Parameters to this routine are always copied using a small buffer;
D
David Brownell 已提交
2641 2642
 * portable code should never use this for more than 32 bytes.
 * Performance-sensitive or bulk transfer code should instead use
D
David Brownell 已提交
2643
 * spi_{async,sync}() calls with dma-safe buffers.
2644 2645
 *
 * Return: zero on success, else a negative error code.
2646 2647
 */
int spi_write_then_read(struct spi_device *spi,
2648 2649
		const void *txbuf, unsigned n_tx,
		void *rxbuf, unsigned n_rx)
2650
{
D
David Brownell 已提交
2651
	static DEFINE_MUTEX(lock);
2652 2653 2654

	int			status;
	struct spi_message	message;
2655
	struct spi_transfer	x[2];
2656 2657
	u8			*local_buf;

2658 2659 2660 2661
	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
	 * copying here, (as a pure convenience thing), but we can
	 * keep heap costs out of the hot path unless someone else is
	 * using the pre-allocated buffer or the transfer is too large.
2662
	 */
2663
	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2664 2665
		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
				    GFP_KERNEL | GFP_DMA);
2666 2667 2668 2669 2670
		if (!local_buf)
			return -ENOMEM;
	} else {
		local_buf = buf;
	}
2671

2672
	spi_message_init(&message);
J
Jingoo Han 已提交
2673
	memset(x, 0, sizeof(x));
2674 2675 2676 2677 2678 2679 2680 2681
	if (n_tx) {
		x[0].len = n_tx;
		spi_message_add_tail(&x[0], &message);
	}
	if (n_rx) {
		x[1].len = n_rx;
		spi_message_add_tail(&x[1], &message);
	}
2682

2683
	memcpy(local_buf, txbuf, n_tx);
2684 2685
	x[0].tx_buf = local_buf;
	x[1].rx_buf = local_buf + n_tx;
2686 2687 2688

	/* do the i/o */
	status = spi_sync(spi, &message);
2689
	if (status == 0)
2690
		memcpy(rxbuf, x[1].rx_buf, n_rx);
2691

2692
	if (x[0].tx_buf == buf)
D
David Brownell 已提交
2693
		mutex_unlock(&lock);
2694 2695 2696 2697 2698 2699 2700 2701 2702
	else
		kfree(local_buf);

	return status;
}
EXPORT_SYMBOL_GPL(spi_write_then_read);

/*-------------------------------------------------------------------------*/

2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
#if IS_ENABLED(CONFIG_OF_DYNAMIC)
static int __spi_of_device_match(struct device *dev, void *data)
{
	return dev->of_node == data;
}

/* must call put_device() when done with returned spi_device device */
static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
{
	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
						__spi_of_device_match);
	return dev ? to_spi_device(dev) : NULL;
}

static int __spi_of_master_match(struct device *dev, const void *data)
{
	return dev->of_node == data;
}

/* the spi masters are not using spi_bus, so we find it with another way */
static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
{
	struct device *dev;

	dev = class_find_device(&spi_master_class, NULL, node,
				__spi_of_master_match);
	if (!dev)
		return NULL;

	/* reference got in class_find_device */
	return container_of(dev, struct spi_master, dev);
}

static int of_spi_notify(struct notifier_block *nb, unsigned long action,
			 void *arg)
{
	struct of_reconfig_data *rd = arg;
	struct spi_master *master;
	struct spi_device *spi;

	switch (of_reconfig_get_state_change(action, arg)) {
	case OF_RECONFIG_CHANGE_ADD:
		master = of_find_spi_master_by_node(rd->dn->parent);
		if (master == NULL)
			return NOTIFY_OK;	/* not for us */

2749 2750 2751 2752 2753
		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
			put_device(&master->dev);
			return NOTIFY_OK;
		}

2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
		spi = of_register_spi_device(master, rd->dn);
		put_device(&master->dev);

		if (IS_ERR(spi)) {
			pr_err("%s: failed to create for '%s'\n",
					__func__, rd->dn->full_name);
			return notifier_from_errno(PTR_ERR(spi));
		}
		break;

	case OF_RECONFIG_CHANGE_REMOVE:
2765 2766 2767 2768
		/* already depopulated? */
		if (!of_node_check_flag(rd->dn, OF_POPULATED))
			return NOTIFY_OK;

2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
		/* find our device by node */
		spi = of_find_spi_device_by_node(rd->dn);
		if (spi == NULL)
			return NOTIFY_OK;	/* no? not meant for us */

		/* unregister takes one ref away */
		spi_unregister_device(spi);

		/* and put the reference of the find */
		put_device(&spi->dev);
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block spi_of_notifier = {
	.notifier_call = of_spi_notify,
};
#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
extern struct notifier_block spi_of_notifier;
#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */

2792 2793
static int __init spi_init(void)
{
2794 2795
	int	status;

2796
	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2797 2798 2799 2800 2801 2802 2803 2804
	if (!buf) {
		status = -ENOMEM;
		goto err0;
	}

	status = bus_register(&spi_bus_type);
	if (status < 0)
		goto err1;
2805

2806 2807 2808
	status = class_register(&spi_master_class);
	if (status < 0)
		goto err2;
2809

2810
	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2811 2812
		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));

2813
	return 0;
2814 2815 2816 2817 2818 2819 2820 2821

err2:
	bus_unregister(&spi_bus_type);
err1:
	kfree(buf);
	buf = NULL;
err0:
	return status;
2822
}
2823

2824 2825
/* board_info is normally registered in arch_initcall(),
 * but even essential drivers wait till later
2826 2827 2828 2829
 *
 * REVISIT only boardinfo really needs static linking. the rest (device and
 * driver registration) _could_ be dynamically linked (modular) ... costs
 * include needing to have boardinfo data structures be much more public.
2830
 */
2831
postcore_initcall(spi_init);
2832