spi.c 72.9 KB
Newer Older
1
/*
G
Grant Likely 已提交
2
 * SPI init/core code
3 4
 *
 * Copyright (C) 2005 David Brownell
5
 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/init.h>
#include <linux/cache.h>
22 23
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
24
#include <linux/mutex.h>
25
#include <linux/of_device.h>
26
#include <linux/of_irq.h>
27
#include <linux/clk/clk-conf.h>
28
#include <linux/slab.h>
29
#include <linux/mod_devicetable.h>
30
#include <linux/spi/spi.h>
31
#include <linux/of_gpio.h>
M
Mark Brown 已提交
32
#include <linux/pm_runtime.h>
33
#include <linux/pm_domain.h>
34
#include <linux/export.h>
35
#include <linux/sched/rt.h>
36 37
#include <linux/delay.h>
#include <linux/kthread.h>
38 39
#include <linux/ioport.h>
#include <linux/acpi.h>
40

41 42 43
#define CREATE_TRACE_POINTS
#include <trace/events/spi.h>

44 45
static void spidev_release(struct device *dev)
{
46
	struct spi_device	*spi = to_spi_device(dev);
47 48 49 50 51

	/* spi masters may cleanup for released devices */
	if (spi->master->cleanup)
		spi->master->cleanup(spi);

D
David Brownell 已提交
52
	spi_master_put(spi->master);
53
	kfree(spi);
54 55 56 57 58 59
}

static ssize_t
modalias_show(struct device *dev, struct device_attribute *a, char *buf)
{
	const struct spi_device	*spi = to_spi_device(dev);
60 61 62 63 64
	int len;

	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
	if (len != -ENODEV)
		return len;
65

66
	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
67
}
68
static DEVICE_ATTR_RO(modalias);
69

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
#define SPI_STATISTICS_ATTRS(field, file)				\
static ssize_t spi_master_##field##_show(struct device *dev,		\
					 struct device_attribute *attr,	\
					 char *buf)			\
{									\
	struct spi_master *master = container_of(dev,			\
						 struct spi_master, dev); \
	return spi_statistics_##field##_show(&master->statistics, buf);	\
}									\
static struct device_attribute dev_attr_spi_master_##field = {		\
	.attr = { .name = file, .mode = S_IRUGO },			\
	.show = spi_master_##field##_show,				\
};									\
static ssize_t spi_device_##field##_show(struct device *dev,		\
					 struct device_attribute *attr,	\
					char *buf)			\
{									\
	struct spi_device *spi = container_of(dev,			\
					      struct spi_device, dev);	\
	return spi_statistics_##field##_show(&spi->statistics, buf);	\
}									\
static struct device_attribute dev_attr_spi_device_##field = {		\
	.attr = { .name = file, .mode = S_IRUGO },			\
	.show = spi_device_##field##_show,				\
}

#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
					    char *buf)			\
{									\
	unsigned long flags;						\
	ssize_t len;							\
	spin_lock_irqsave(&stat->lock, flags);				\
	len = sprintf(buf, format_string, stat->field);			\
	spin_unlock_irqrestore(&stat->lock, flags);			\
	return len;							\
}									\
SPI_STATISTICS_ATTRS(name, file)

#define SPI_STATISTICS_SHOW(field, format_string)			\
	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
				 field, format_string)

SPI_STATISTICS_SHOW(messages, "%lu");
SPI_STATISTICS_SHOW(transfers, "%lu");
SPI_STATISTICS_SHOW(errors, "%lu");
SPI_STATISTICS_SHOW(timedout, "%lu");

SPI_STATISTICS_SHOW(spi_sync, "%lu");
SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
SPI_STATISTICS_SHOW(spi_async, "%lu");

SPI_STATISTICS_SHOW(bytes, "%llu");
SPI_STATISTICS_SHOW(bytes_rx, "%llu");
SPI_STATISTICS_SHOW(bytes_tx, "%llu");

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
				 "transfer_bytes_histo_" number,	\
				 transfer_bytes_histo[index],  "%lu")
SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");

148 149 150
static struct attribute *spi_dev_attrs[] = {
	&dev_attr_modalias.attr,
	NULL,
151
};
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

static const struct attribute_group spi_dev_group = {
	.attrs  = spi_dev_attrs,
};

static struct attribute *spi_device_statistics_attrs[] = {
	&dev_attr_spi_device_messages.attr,
	&dev_attr_spi_device_transfers.attr,
	&dev_attr_spi_device_errors.attr,
	&dev_attr_spi_device_timedout.attr,
	&dev_attr_spi_device_spi_sync.attr,
	&dev_attr_spi_device_spi_sync_immediate.attr,
	&dev_attr_spi_device_spi_async.attr,
	&dev_attr_spi_device_bytes.attr,
	&dev_attr_spi_device_bytes_rx.attr,
	&dev_attr_spi_device_bytes_tx.attr,
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
	&dev_attr_spi_device_transfer_bytes_histo0.attr,
	&dev_attr_spi_device_transfer_bytes_histo1.attr,
	&dev_attr_spi_device_transfer_bytes_histo2.attr,
	&dev_attr_spi_device_transfer_bytes_histo3.attr,
	&dev_attr_spi_device_transfer_bytes_histo4.attr,
	&dev_attr_spi_device_transfer_bytes_histo5.attr,
	&dev_attr_spi_device_transfer_bytes_histo6.attr,
	&dev_attr_spi_device_transfer_bytes_histo7.attr,
	&dev_attr_spi_device_transfer_bytes_histo8.attr,
	&dev_attr_spi_device_transfer_bytes_histo9.attr,
	&dev_attr_spi_device_transfer_bytes_histo10.attr,
	&dev_attr_spi_device_transfer_bytes_histo11.attr,
	&dev_attr_spi_device_transfer_bytes_histo12.attr,
	&dev_attr_spi_device_transfer_bytes_histo13.attr,
	&dev_attr_spi_device_transfer_bytes_histo14.attr,
	&dev_attr_spi_device_transfer_bytes_histo15.attr,
	&dev_attr_spi_device_transfer_bytes_histo16.attr,
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
	NULL,
};

static const struct attribute_group spi_device_statistics_group = {
	.name  = "statistics",
	.attrs  = spi_device_statistics_attrs,
};

static const struct attribute_group *spi_dev_groups[] = {
	&spi_dev_group,
	&spi_device_statistics_group,
	NULL,
};

static struct attribute *spi_master_statistics_attrs[] = {
	&dev_attr_spi_master_messages.attr,
	&dev_attr_spi_master_transfers.attr,
	&dev_attr_spi_master_errors.attr,
	&dev_attr_spi_master_timedout.attr,
	&dev_attr_spi_master_spi_sync.attr,
	&dev_attr_spi_master_spi_sync_immediate.attr,
	&dev_attr_spi_master_spi_async.attr,
	&dev_attr_spi_master_bytes.attr,
	&dev_attr_spi_master_bytes_rx.attr,
	&dev_attr_spi_master_bytes_tx.attr,
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
	&dev_attr_spi_master_transfer_bytes_histo0.attr,
	&dev_attr_spi_master_transfer_bytes_histo1.attr,
	&dev_attr_spi_master_transfer_bytes_histo2.attr,
	&dev_attr_spi_master_transfer_bytes_histo3.attr,
	&dev_attr_spi_master_transfer_bytes_histo4.attr,
	&dev_attr_spi_master_transfer_bytes_histo5.attr,
	&dev_attr_spi_master_transfer_bytes_histo6.attr,
	&dev_attr_spi_master_transfer_bytes_histo7.attr,
	&dev_attr_spi_master_transfer_bytes_histo8.attr,
	&dev_attr_spi_master_transfer_bytes_histo9.attr,
	&dev_attr_spi_master_transfer_bytes_histo10.attr,
	&dev_attr_spi_master_transfer_bytes_histo11.attr,
	&dev_attr_spi_master_transfer_bytes_histo12.attr,
	&dev_attr_spi_master_transfer_bytes_histo13.attr,
	&dev_attr_spi_master_transfer_bytes_histo14.attr,
	&dev_attr_spi_master_transfer_bytes_histo15.attr,
	&dev_attr_spi_master_transfer_bytes_histo16.attr,
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
	NULL,
};

static const struct attribute_group spi_master_statistics_group = {
	.name  = "statistics",
	.attrs  = spi_master_statistics_attrs,
};

static const struct attribute_group *spi_master_groups[] = {
	&spi_master_statistics_group,
	NULL,
};

void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
				       struct spi_transfer *xfer,
				       struct spi_master *master)
{
	unsigned long flags;
245 246 247 248
	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;

	if (l2len < 0)
		l2len = 0;
249 250 251 252

	spin_lock_irqsave(&stats->lock, flags);

	stats->transfers++;
253
	stats->transfer_bytes_histo[l2len]++;
254 255 256 257 258 259 260 261 262 263 264 265

	stats->bytes += xfer->len;
	if ((xfer->tx_buf) &&
	    (xfer->tx_buf != master->dummy_tx))
		stats->bytes_tx += xfer->len;
	if ((xfer->rx_buf) &&
	    (xfer->rx_buf != master->dummy_rx))
		stats->bytes_rx += xfer->len;

	spin_unlock_irqrestore(&stats->lock, flags);
}
EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
266 267 268 269 270

/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 * and the sysfs version makes coldplug work too.
 */

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
						const struct spi_device *sdev)
{
	while (id->name[0]) {
		if (!strcmp(sdev->modalias, id->name))
			return id;
		id++;
	}
	return NULL;
}

const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
{
	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);

	return spi_match_id(sdrv->id_table, sdev);
}
EXPORT_SYMBOL_GPL(spi_get_device_id);

290 291 292
static int spi_match_device(struct device *dev, struct device_driver *drv)
{
	const struct spi_device	*spi = to_spi_device(dev);
293 294
	const struct spi_driver	*sdrv = to_spi_driver(drv);

295 296 297 298
	/* Attempt an OF style match */
	if (of_driver_match_device(dev, drv))
		return 1;

299 300 301 302
	/* Then try ACPI */
	if (acpi_driver_match_device(dev, drv))
		return 1;

303 304
	if (sdrv->id_table)
		return !!spi_match_id(sdrv->id_table, spi);
305

306
	return strcmp(spi->modalias, drv->name) == 0;
307 308
}

309
static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
310 311
{
	const struct spi_device		*spi = to_spi_device(dev);
312 313 314 315 316
	int rc;

	rc = acpi_device_uevent_modalias(dev, env);
	if (rc != -ENODEV)
		return rc;
317

318
	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
319 320 321 322 323
	return 0;
}

struct bus_type spi_bus_type = {
	.name		= "spi",
324
	.dev_groups	= spi_dev_groups,
325 326 327 328 329
	.match		= spi_match_device,
	.uevent		= spi_uevent,
};
EXPORT_SYMBOL_GPL(spi_bus_type);

330 331 332 333

static int spi_drv_probe(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
334
	struct spi_device		*spi = to_spi_device(dev);
335 336
	int ret;

337 338 339 340
	ret = of_clk_set_defaults(dev->of_node, false);
	if (ret)
		return ret;

341 342 343 344 345 346 347 348
	if (dev->of_node) {
		spi->irq = of_irq_get(dev->of_node, 0);
		if (spi->irq == -EPROBE_DEFER)
			return -EPROBE_DEFER;
		if (spi->irq < 0)
			spi->irq = 0;
	}

349 350
	ret = dev_pm_domain_attach(dev, true);
	if (ret != -EPROBE_DEFER) {
351
		ret = sdrv->probe(spi);
352 353 354
		if (ret)
			dev_pm_domain_detach(dev, true);
	}
355

356
	return ret;
357 358 359 360 361
}

static int spi_drv_remove(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
362 363
	int ret;

364
	ret = sdrv->remove(to_spi_device(dev));
365
	dev_pm_domain_detach(dev, true);
366

367
	return ret;
368 369 370 371 372 373 374 375 376
}

static void spi_drv_shutdown(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);

	sdrv->shutdown(to_spi_device(dev));
}

D
David Brownell 已提交
377
/**
378
 * __spi_register_driver - register a SPI driver
D
David Brownell 已提交
379 380
 * @sdrv: the driver to register
 * Context: can sleep
381 382
 *
 * Return: zero on success, else a negative error code.
D
David Brownell 已提交
383
 */
384
int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
385
{
386
	sdrv->driver.owner = owner;
387 388 389 390 391 392 393 394 395
	sdrv->driver.bus = &spi_bus_type;
	if (sdrv->probe)
		sdrv->driver.probe = spi_drv_probe;
	if (sdrv->remove)
		sdrv->driver.remove = spi_drv_remove;
	if (sdrv->shutdown)
		sdrv->driver.shutdown = spi_drv_shutdown;
	return driver_register(&sdrv->driver);
}
396
EXPORT_SYMBOL_GPL(__spi_register_driver);
397

398 399 400 401 402 403 404 405 406 407
/*-------------------------------------------------------------------------*/

/* SPI devices should normally not be created by SPI device drivers; that
 * would make them board-specific.  Similarly with SPI master drivers.
 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 * with other readonly (flashable) information about mainboard devices.
 */

struct boardinfo {
	struct list_head	list;
408
	struct spi_board_info	board_info;
409 410 411
};

static LIST_HEAD(board_list);
412 413 414 415 416 417
static LIST_HEAD(spi_master_list);

/*
 * Used to protect add/del opertion for board_info list and
 * spi_master list, and their matching process
 */
418
static DEFINE_MUTEX(board_lock);
419

420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
/**
 * spi_alloc_device - Allocate a new SPI device
 * @master: Controller to which device is connected
 * Context: can sleep
 *
 * Allows a driver to allocate and initialize a spi_device without
 * registering it immediately.  This allows a driver to directly
 * fill the spi_device with device parameters before calling
 * spi_add_device() on it.
 *
 * Caller is responsible to call spi_add_device() on the returned
 * spi_device structure to add it to the SPI master.  If the caller
 * needs to discard the spi_device without adding it, then it should
 * call spi_dev_put() on it.
 *
435
 * Return: a pointer to the new device, or NULL.
436 437 438 439 440 441 442 443
 */
struct spi_device *spi_alloc_device(struct spi_master *master)
{
	struct spi_device	*spi;

	if (!spi_master_get(master))
		return NULL;

J
Jingoo Han 已提交
444
	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
445 446 447 448 449 450
	if (!spi) {
		spi_master_put(master);
		return NULL;
	}

	spi->master = master;
451
	spi->dev.parent = &master->dev;
452 453
	spi->dev.bus = &spi_bus_type;
	spi->dev.release = spidev_release;
454
	spi->cs_gpio = -ENOENT;
455 456 457

	spin_lock_init(&spi->statistics.lock);

458 459 460 461 462
	device_initialize(&spi->dev);
	return spi;
}
EXPORT_SYMBOL_GPL(spi_alloc_device);

463 464 465 466 467 468 469 470 471 472 473 474 475
static void spi_dev_set_name(struct spi_device *spi)
{
	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);

	if (adev) {
		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
		return;
	}

	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
		     spi->chip_select);
}

476 477 478 479 480 481 482 483 484 485 486
static int spi_dev_check(struct device *dev, void *data)
{
	struct spi_device *spi = to_spi_device(dev);
	struct spi_device *new_spi = data;

	if (spi->master == new_spi->master &&
	    spi->chip_select == new_spi->chip_select)
		return -EBUSY;
	return 0;
}

487 488 489 490 491 492 493
/**
 * spi_add_device - Add spi_device allocated with spi_alloc_device
 * @spi: spi_device to register
 *
 * Companion function to spi_alloc_device.  Devices allocated with
 * spi_alloc_device can be added onto the spi bus with this function.
 *
494
 * Return: 0 on success; negative errno on failure
495 496 497
 */
int spi_add_device(struct spi_device *spi)
{
498
	static DEFINE_MUTEX(spi_add_lock);
499 500
	struct spi_master *master = spi->master;
	struct device *dev = master->dev.parent;
501 502 503
	int status;

	/* Chipselects are numbered 0..max; validate. */
504
	if (spi->chip_select >= master->num_chipselect) {
505 506
		dev_err(dev, "cs%d >= max %d\n",
			spi->chip_select,
507
			master->num_chipselect);
508 509 510 511
		return -EINVAL;
	}

	/* Set the bus ID string */
512
	spi_dev_set_name(spi);
513 514 515 516 517 518 519

	/* We need to make sure there's no other device with this
	 * chipselect **BEFORE** we call setup(), else we'll trash
	 * its configuration.  Lock against concurrent add() calls.
	 */
	mutex_lock(&spi_add_lock);

520 521
	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
	if (status) {
522 523 524 525 526
		dev_err(dev, "chipselect %d already in use\n",
				spi->chip_select);
		goto done;
	}

527 528 529
	if (master->cs_gpios)
		spi->cs_gpio = master->cs_gpios[spi->chip_select];

530 531 532 533
	/* Drivers may modify this initial i/o setup, but will
	 * normally rely on the device being setup.  Devices
	 * using SPI_CS_HIGH can't coexist well otherwise...
	 */
534
	status = spi_setup(spi);
535
	if (status < 0) {
536 537
		dev_err(dev, "can't setup %s, status %d\n",
				dev_name(&spi->dev), status);
538
		goto done;
539 540
	}

541
	/* Device may be bound to an active driver when this returns */
542
	status = device_add(&spi->dev);
543
	if (status < 0)
544 545
		dev_err(dev, "can't add %s, status %d\n",
				dev_name(&spi->dev), status);
546
	else
547
		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
548

549 550 551
done:
	mutex_unlock(&spi_add_lock);
	return status;
552 553
}
EXPORT_SYMBOL_GPL(spi_add_device);
554

D
David Brownell 已提交
555 556 557 558 559 560 561
/**
 * spi_new_device - instantiate one new SPI device
 * @master: Controller to which device is connected
 * @chip: Describes the SPI device
 * Context: can sleep
 *
 * On typical mainboards, this is purely internal; and it's not needed
562 563 564 565
 * after board init creates the hard-wired devices.  Some development
 * platforms may not be able to use spi_register_board_info though, and
 * this is exported so that for example a USB or parport based adapter
 * driver could add devices (which it would learn about out-of-band).
566
 *
567
 * Return: the new device, or NULL.
568
 */
569 570
struct spi_device *spi_new_device(struct spi_master *master,
				  struct spi_board_info *chip)
571 572 573 574
{
	struct spi_device	*proxy;
	int			status;

575 576 577 578 579 580 581
	/* NOTE:  caller did any chip->bus_num checks necessary.
	 *
	 * Also, unless we change the return value convention to use
	 * error-or-pointer (not NULL-or-pointer), troubleshootability
	 * suggests syslogged diagnostics are best here (ugh).
	 */

582 583
	proxy = spi_alloc_device(master);
	if (!proxy)
584 585
		return NULL;

586 587
	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));

588 589
	proxy->chip_select = chip->chip_select;
	proxy->max_speed_hz = chip->max_speed_hz;
590
	proxy->mode = chip->mode;
591
	proxy->irq = chip->irq;
592
	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
593 594 595 596
	proxy->dev.platform_data = (void *) chip->platform_data;
	proxy->controller_data = chip->controller_data;
	proxy->controller_state = NULL;

597
	status = spi_add_device(proxy);
598
	if (status < 0) {
599 600
		spi_dev_put(proxy);
		return NULL;
601 602 603 604 605 606
	}

	return proxy;
}
EXPORT_SYMBOL_GPL(spi_new_device);

607 608 609 610 611 612 613 614 615 616 617 618 619 620
/**
 * spi_unregister_device - unregister a single SPI device
 * @spi: spi_device to unregister
 *
 * Start making the passed SPI device vanish. Normally this would be handled
 * by spi_unregister_master().
 */
void spi_unregister_device(struct spi_device *spi)
{
	if (spi)
		device_unregister(&spi->dev);
}
EXPORT_SYMBOL_GPL(spi_unregister_device);

621 622 623 624 625 626 627 628 629 630 631 632 633 634
static void spi_match_master_to_boardinfo(struct spi_master *master,
				struct spi_board_info *bi)
{
	struct spi_device *dev;

	if (master->bus_num != bi->bus_num)
		return;

	dev = spi_new_device(master, bi);
	if (!dev)
		dev_err(master->dev.parent, "can't create new device for %s\n",
			bi->modalias);
}

D
David Brownell 已提交
635 636 637 638 639 640
/**
 * spi_register_board_info - register SPI devices for a given board
 * @info: array of chip descriptors
 * @n: how many descriptors are provided
 * Context: can sleep
 *
641 642 643 644 645 646 647 648 649 650 651 652
 * Board-specific early init code calls this (probably during arch_initcall)
 * with segments of the SPI device table.  Any device nodes are created later,
 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 * this table of devices forever, so that reloading a controller driver will
 * not make Linux forget about these hard-wired devices.
 *
 * Other code can also call this, e.g. a particular add-on board might provide
 * SPI devices through its expansion connector, so code initializing that board
 * would naturally declare its SPI devices.
 *
 * The board info passed can safely be __initdata ... but be careful of
 * any embedded pointers (platform_data, etc), they're copied as-is.
653 654
 *
 * Return: zero on success, else a negative error code.
655
 */
656
int spi_register_board_info(struct spi_board_info const *info, unsigned n)
657
{
658 659
	struct boardinfo *bi;
	int i;
660

661 662 663
	if (!n)
		return -EINVAL;

664
	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
665 666 667
	if (!bi)
		return -ENOMEM;

668 669
	for (i = 0; i < n; i++, bi++, info++) {
		struct spi_master *master;
670

671 672 673 674 675 676
		memcpy(&bi->board_info, info, sizeof(*info));
		mutex_lock(&board_lock);
		list_add_tail(&bi->list, &board_list);
		list_for_each_entry(master, &spi_master_list, list)
			spi_match_master_to_boardinfo(master, &bi->board_info);
		mutex_unlock(&board_lock);
677
	}
678 679

	return 0;
680 681 682 683
}

/*-------------------------------------------------------------------------*/

684 685 686 687 688
static void spi_set_cs(struct spi_device *spi, bool enable)
{
	if (spi->mode & SPI_CS_HIGH)
		enable = !enable;

689
	if (gpio_is_valid(spi->cs_gpio))
690 691 692 693 694
		gpio_set_value(spi->cs_gpio, !enable);
	else if (spi->master->set_cs)
		spi->master->set_cs(spi, !enable);
}

695
#ifdef CONFIG_HAS_DMA
696 697 698 699 700
static int spi_map_buf(struct spi_master *master, struct device *dev,
		       struct sg_table *sgt, void *buf, size_t len,
		       enum dma_data_direction dir)
{
	const bool vmalloced_buf = is_vmalloc_addr(buf);
701 702
	int desc_len;
	int sgs;
703 704 705 706 707
	struct page *vm_page;
	void *sg_buf;
	size_t min;
	int i, ret;

708 709 710 711 712 713 714 715
	if (vmalloced_buf) {
		desc_len = PAGE_SIZE;
		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
	} else {
		desc_len = master->max_dma_len;
		sgs = DIV_ROUND_UP(len, desc_len);
	}

716 717 718 719 720 721 722
	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
	if (ret != 0)
		return ret;

	for (i = 0; i < sgs; i++) {

		if (vmalloced_buf) {
723 724
			min = min_t(size_t,
				    len, desc_len - offset_in_page(buf));
725 726 727 728 729
			vm_page = vmalloc_to_page(buf);
			if (!vm_page) {
				sg_free_table(sgt);
				return -ENOMEM;
			}
730 731
			sg_set_page(&sgt->sgl[i], vm_page,
				    min, offset_in_page(buf));
732
		} else {
733
			min = min_t(size_t, len, desc_len);
734
			sg_buf = buf;
735
			sg_set_buf(&sgt->sgl[i], sg_buf, min);
736 737 738 739 740 741 742 743
		}


		buf += min;
		len -= min;
	}

	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
744 745
	if (!ret)
		ret = -ENOMEM;
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
	if (ret < 0) {
		sg_free_table(sgt);
		return ret;
	}

	sgt->nents = ret;

	return 0;
}

static void spi_unmap_buf(struct spi_master *master, struct device *dev,
			  struct sg_table *sgt, enum dma_data_direction dir)
{
	if (sgt->orig_nents) {
		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
		sg_free_table(sgt);
	}
}

765
static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
766 767 768
{
	struct device *tx_dev, *rx_dev;
	struct spi_transfer *xfer;
769
	int ret;
770

771
	if (!master->can_dma)
772 773
		return 0;

774 775 776 777 778 779 780 781 782
	if (master->dma_tx)
		tx_dev = master->dma_tx->device->dev;
	else
		tx_dev = &master->dev;

	if (master->dma_rx)
		rx_dev = master->dma_rx->device->dev;
	else
		rx_dev = &master->dev;
783 784 785 786 787 788

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		if (!master->can_dma(master, msg->spi, xfer))
			continue;

		if (xfer->tx_buf != NULL) {
789 790 791 792 793
			ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
					  (void *)xfer->tx_buf, xfer->len,
					  DMA_TO_DEVICE);
			if (ret != 0)
				return ret;
794 795 796
		}

		if (xfer->rx_buf != NULL) {
797 798 799 800 801 802 803
			ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
					  xfer->rx_buf, xfer->len,
					  DMA_FROM_DEVICE);
			if (ret != 0) {
				spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
					      DMA_TO_DEVICE);
				return ret;
804 805 806 807 808 809 810 811 812
			}
		}
	}

	master->cur_msg_mapped = true;

	return 0;
}

813
static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
814 815 816 817
{
	struct spi_transfer *xfer;
	struct device *tx_dev, *rx_dev;

818
	if (!master->cur_msg_mapped || !master->can_dma)
819 820
		return 0;

821 822 823 824 825 826 827 828 829
	if (master->dma_tx)
		tx_dev = master->dma_tx->device->dev;
	else
		tx_dev = &master->dev;

	if (master->dma_rx)
		rx_dev = master->dma_rx->device->dev;
	else
		rx_dev = &master->dev;
830 831 832 833 834

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		if (!master->can_dma(master, msg->spi, xfer))
			continue;

835 836
		spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
		spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
837 838 839 840
	}

	return 0;
}
841 842 843 844 845 846 847
#else /* !CONFIG_HAS_DMA */
static inline int __spi_map_msg(struct spi_master *master,
				struct spi_message *msg)
{
	return 0;
}

848 849
static inline int __spi_unmap_msg(struct spi_master *master,
				  struct spi_message *msg)
850 851 852 853 854
{
	return 0;
}
#endif /* !CONFIG_HAS_DMA */

855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
static inline int spi_unmap_msg(struct spi_master *master,
				struct spi_message *msg)
{
	struct spi_transfer *xfer;

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		/*
		 * Restore the original value of tx_buf or rx_buf if they are
		 * NULL.
		 */
		if (xfer->tx_buf == master->dummy_tx)
			xfer->tx_buf = NULL;
		if (xfer->rx_buf == master->dummy_rx)
			xfer->rx_buf = NULL;
	}

	return __spi_unmap_msg(master, msg);
}

874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
{
	struct spi_transfer *xfer;
	void *tmp;
	unsigned int max_tx, max_rx;

	if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
		max_tx = 0;
		max_rx = 0;

		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
			if ((master->flags & SPI_MASTER_MUST_TX) &&
			    !xfer->tx_buf)
				max_tx = max(xfer->len, max_tx);
			if ((master->flags & SPI_MASTER_MUST_RX) &&
			    !xfer->rx_buf)
				max_rx = max(xfer->len, max_rx);
		}

		if (max_tx) {
			tmp = krealloc(master->dummy_tx, max_tx,
				       GFP_KERNEL | GFP_DMA);
			if (!tmp)
				return -ENOMEM;
			master->dummy_tx = tmp;
			memset(tmp, 0, max_tx);
		}

		if (max_rx) {
			tmp = krealloc(master->dummy_rx, max_rx,
				       GFP_KERNEL | GFP_DMA);
			if (!tmp)
				return -ENOMEM;
			master->dummy_rx = tmp;
		}

		if (max_tx || max_rx) {
			list_for_each_entry(xfer, &msg->transfers,
					    transfer_list) {
				if (!xfer->tx_buf)
					xfer->tx_buf = master->dummy_tx;
				if (!xfer->rx_buf)
					xfer->rx_buf = master->dummy_rx;
			}
		}
	}

	return __spi_map_msg(master, msg);
}
923

924 925 926 927 928 929 930 931 932 933 934 935 936
/*
 * spi_transfer_one_message - Default implementation of transfer_one_message()
 *
 * This is a standard implementation of transfer_one_message() for
 * drivers which impelment a transfer_one() operation.  It provides
 * standard handling of delays and chip select management.
 */
static int spi_transfer_one_message(struct spi_master *master,
				    struct spi_message *msg)
{
	struct spi_transfer *xfer;
	bool keep_cs = false;
	int ret = 0;
937
	unsigned long ms = 1;
938 939
	struct spi_statistics *statm = &master->statistics;
	struct spi_statistics *stats = &msg->spi->statistics;
940 941 942

	spi_set_cs(msg->spi, true);

943 944 945
	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);

946 947 948
	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		trace_spi_transfer_start(msg, xfer);

949 950 951
		spi_statistics_add_transfer_stats(statm, xfer, master);
		spi_statistics_add_transfer_stats(stats, xfer, master);

952 953
		if (xfer->tx_buf || xfer->rx_buf) {
			reinit_completion(&master->xfer_completion);
954

955 956
			ret = master->transfer_one(master, msg->spi, xfer);
			if (ret < 0) {
957 958 959 960
				SPI_STATISTICS_INCREMENT_FIELD(statm,
							       errors);
				SPI_STATISTICS_INCREMENT_FIELD(stats,
							       errors);
961 962 963 964
				dev_err(&msg->spi->dev,
					"SPI transfer failed: %d\n", ret);
				goto out;
			}
965

966 967 968 969
			if (ret > 0) {
				ret = 0;
				ms = xfer->len * 8 * 1000 / xfer->speed_hz;
				ms += ms + 100; /* some tolerance */
970

971 972 973
				ms = wait_for_completion_timeout(&master->xfer_completion,
								 msecs_to_jiffies(ms));
			}
974

975
			if (ms == 0) {
976 977 978 979
				SPI_STATISTICS_INCREMENT_FIELD(statm,
							       timedout);
				SPI_STATISTICS_INCREMENT_FIELD(stats,
							       timedout);
980 981 982 983 984 985 986 987 988
				dev_err(&msg->spi->dev,
					"SPI transfer timed out\n");
				msg->status = -ETIMEDOUT;
			}
		} else {
			if (xfer->len)
				dev_err(&msg->spi->dev,
					"Bufferless transfer has length %u\n",
					xfer->len);
989
		}
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003

		trace_spi_transfer_stop(msg, xfer);

		if (msg->status != -EINPROGRESS)
			goto out;

		if (xfer->delay_usecs)
			udelay(xfer->delay_usecs);

		if (xfer->cs_change) {
			if (list_is_last(&xfer->transfer_list,
					 &msg->transfers)) {
				keep_cs = true;
			} else {
1004 1005 1006
				spi_set_cs(msg->spi, false);
				udelay(10);
				spi_set_cs(msg->spi, true);
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
			}
		}

		msg->actual_length += xfer->len;
	}

out:
	if (ret != 0 || !keep_cs)
		spi_set_cs(msg->spi, false);

	if (msg->status == -EINPROGRESS)
		msg->status = ret;

1020
	if (msg->status && master->handle_err)
1021 1022
		master->handle_err(master, msg);

1023 1024 1025 1026 1027 1028 1029
	spi_finalize_current_message(master);

	return ret;
}

/**
 * spi_finalize_current_transfer - report completion of a transfer
T
Thierry Reding 已提交
1030
 * @master: the master reporting completion
1031 1032 1033
 *
 * Called by SPI drivers using the core transfer_one_message()
 * implementation to notify it that the current interrupt driven
1034
 * transfer has finished and the next one may be scheduled.
1035 1036 1037 1038 1039 1040 1041
 */
void spi_finalize_current_transfer(struct spi_master *master)
{
	complete(&master->xfer_completion);
}
EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);

1042
/**
1043 1044 1045
 * __spi_pump_messages - function which processes spi message queue
 * @master: master to process queue for
 * @in_kthread: true if we are in the context of the message pump thread
1046 1047 1048 1049 1050
 *
 * This function checks if there is any spi message in the queue that
 * needs processing and if so call out to the driver to initialize hardware
 * and transfer each message.
 *
1051 1052 1053
 * Note that it is called both from the kthread itself and also from
 * inside spi_sync(); the queue extraction handling at the top of the
 * function should deal with this safely.
1054
 */
1055
static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
1056 1057 1058 1059 1060
{
	unsigned long flags;
	bool was_busy = false;
	int ret;

1061
	/* Lock queue */
1062
	spin_lock_irqsave(&master->queue_lock, flags);
1063 1064 1065 1066 1067 1068 1069

	/* Make sure we are not already running a message */
	if (master->cur_msg) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return;
	}

1070 1071 1072 1073 1074 1075 1076
	/* If another context is idling the device then defer */
	if (master->idling) {
		queue_kthread_work(&master->kworker, &master->pump_messages);
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return;
	}

1077
	/* Check if the queue is idle */
1078
	if (list_empty(&master->queue) || !master->running) {
1079 1080 1081
		if (!master->busy) {
			spin_unlock_irqrestore(&master->queue_lock, flags);
			return;
1082
		}
1083 1084 1085 1086 1087 1088 1089 1090 1091

		/* Only do teardown in the thread */
		if (!in_kthread) {
			queue_kthread_work(&master->kworker,
					   &master->pump_messages);
			spin_unlock_irqrestore(&master->queue_lock, flags);
			return;
		}

1092
		master->busy = false;
1093
		master->idling = true;
1094
		spin_unlock_irqrestore(&master->queue_lock, flags);
1095

1096 1097 1098 1099
		kfree(master->dummy_rx);
		master->dummy_rx = NULL;
		kfree(master->dummy_tx);
		master->dummy_tx = NULL;
1100 1101 1102 1103
		if (master->unprepare_transfer_hardware &&
		    master->unprepare_transfer_hardware(master))
			dev_err(&master->dev,
				"failed to unprepare transfer hardware\n");
1104 1105 1106 1107
		if (master->auto_runtime_pm) {
			pm_runtime_mark_last_busy(master->dev.parent);
			pm_runtime_put_autosuspend(master->dev.parent);
		}
1108
		trace_spi_master_idle(master);
1109

1110 1111
		spin_lock_irqsave(&master->queue_lock, flags);
		master->idling = false;
1112 1113 1114 1115 1116 1117
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return;
	}

	/* Extract head of queue */
	master->cur_msg =
1118
		list_first_entry(&master->queue, struct spi_message, queue);
1119 1120 1121 1122 1123 1124 1125 1126

	list_del_init(&master->cur_msg->queue);
	if (master->busy)
		was_busy = true;
	else
		master->busy = true;
	spin_unlock_irqrestore(&master->queue_lock, flags);

1127 1128 1129 1130 1131 1132 1133 1134 1135
	if (!was_busy && master->auto_runtime_pm) {
		ret = pm_runtime_get_sync(master->dev.parent);
		if (ret < 0) {
			dev_err(&master->dev, "Failed to power device: %d\n",
				ret);
			return;
		}
	}

1136 1137 1138
	if (!was_busy)
		trace_spi_master_busy(master);

1139
	if (!was_busy && master->prepare_transfer_hardware) {
1140 1141 1142 1143
		ret = master->prepare_transfer_hardware(master);
		if (ret) {
			dev_err(&master->dev,
				"failed to prepare transfer hardware\n");
1144 1145 1146

			if (master->auto_runtime_pm)
				pm_runtime_put(master->dev.parent);
1147 1148 1149 1150
			return;
		}
	}

1151 1152
	trace_spi_message_start(master->cur_msg);

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
	if (master->prepare_message) {
		ret = master->prepare_message(master, master->cur_msg);
		if (ret) {
			dev_err(&master->dev,
				"failed to prepare message: %d\n", ret);
			master->cur_msg->status = ret;
			spi_finalize_current_message(master);
			return;
		}
		master->cur_msg_prepared = true;
	}

1165 1166 1167 1168 1169 1170 1171
	ret = spi_map_msg(master, master->cur_msg);
	if (ret) {
		master->cur_msg->status = ret;
		spi_finalize_current_message(master);
		return;
	}

1172 1173 1174
	ret = master->transfer_one_message(master, master->cur_msg);
	if (ret) {
		dev_err(&master->dev,
1175
			"failed to transfer one message from queue\n");
1176 1177 1178 1179
		return;
	}
}

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
/**
 * spi_pump_messages - kthread work function which processes spi message queue
 * @work: pointer to kthread work struct contained in the master struct
 */
static void spi_pump_messages(struct kthread_work *work)
{
	struct spi_master *master =
		container_of(work, struct spi_master, pump_messages);

	__spi_pump_messages(master, true);
}

1192 1193 1194 1195 1196 1197 1198 1199 1200
static int spi_init_queue(struct spi_master *master)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };

	master->running = false;
	master->busy = false;

	init_kthread_worker(&master->kworker);
	master->kworker_task = kthread_run(kthread_worker_fn,
1201
					   &master->kworker, "%s",
1202 1203 1204
					   dev_name(&master->dev));
	if (IS_ERR(master->kworker_task)) {
		dev_err(&master->dev, "failed to create message pump task\n");
1205
		return PTR_ERR(master->kworker_task);
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
	}
	init_kthread_work(&master->pump_messages, spi_pump_messages);

	/*
	 * Master config will indicate if this controller should run the
	 * message pump with high (realtime) priority to reduce the transfer
	 * latency on the bus by minimising the delay between a transfer
	 * request and the scheduling of the message pump thread. Without this
	 * setting the message pump thread will remain at default priority.
	 */
	if (master->rt) {
		dev_info(&master->dev,
			"will run message pump with realtime priority\n");
		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
	}

	return 0;
}

/**
 * spi_get_next_queued_message() - called by driver to check for queued
 * messages
 * @master: the master to check for queued messages
 *
 * If there are more messages in the queue, the next message is returned from
 * this call.
1232 1233
 *
 * Return: the next message in the queue, else NULL if the queue is empty.
1234 1235 1236 1237 1238 1239 1240 1241
 */
struct spi_message *spi_get_next_queued_message(struct spi_master *master)
{
	struct spi_message *next;
	unsigned long flags;

	/* get a pointer to the next message, if any */
	spin_lock_irqsave(&master->queue_lock, flags);
1242 1243
	next = list_first_entry_or_null(&master->queue, struct spi_message,
					queue);
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
	spin_unlock_irqrestore(&master->queue_lock, flags);

	return next;
}
EXPORT_SYMBOL_GPL(spi_get_next_queued_message);

/**
 * spi_finalize_current_message() - the current message is complete
 * @master: the master to return the message to
 *
 * Called by the driver to notify the core that the message in the front of the
 * queue is complete and can be removed from the queue.
 */
void spi_finalize_current_message(struct spi_master *master)
{
	struct spi_message *mesg;
	unsigned long flags;
1261
	int ret;
1262 1263 1264 1265 1266

	spin_lock_irqsave(&master->queue_lock, flags);
	mesg = master->cur_msg;
	spin_unlock_irqrestore(&master->queue_lock, flags);

1267 1268
	spi_unmap_msg(master, mesg);

1269 1270 1271 1272 1273 1274 1275
	if (master->cur_msg_prepared && master->unprepare_message) {
		ret = master->unprepare_message(master, mesg);
		if (ret) {
			dev_err(&master->dev,
				"failed to unprepare message: %d\n", ret);
		}
	}
1276

1277 1278
	spin_lock_irqsave(&master->queue_lock, flags);
	master->cur_msg = NULL;
1279
	master->cur_msg_prepared = false;
1280 1281 1282 1283
	queue_kthread_work(&master->kworker, &master->pump_messages);
	spin_unlock_irqrestore(&master->queue_lock, flags);

	trace_spi_message_done(mesg);
1284

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
	mesg->state = NULL;
	if (mesg->complete)
		mesg->complete(mesg->context);
}
EXPORT_SYMBOL_GPL(spi_finalize_current_message);

static int spi_start_queue(struct spi_master *master)
{
	unsigned long flags;

	spin_lock_irqsave(&master->queue_lock, flags);

	if (master->running || master->busy) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return -EBUSY;
	}

	master->running = true;
	master->cur_msg = NULL;
	spin_unlock_irqrestore(&master->queue_lock, flags);

	queue_kthread_work(&master->kworker, &master->pump_messages);

	return 0;
}

static int spi_stop_queue(struct spi_master *master)
{
	unsigned long flags;
	unsigned limit = 500;
	int ret = 0;

	spin_lock_irqsave(&master->queue_lock, flags);

	/*
	 * This is a bit lame, but is optimized for the common execution path.
	 * A wait_queue on the master->busy could be used, but then the common
	 * execution path (pump_messages) would be required to call wake_up or
	 * friends on every SPI message. Do this instead.
	 */
	while ((!list_empty(&master->queue) || master->busy) && limit--) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
1327
		usleep_range(10000, 11000);
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
		spin_lock_irqsave(&master->queue_lock, flags);
	}

	if (!list_empty(&master->queue) || master->busy)
		ret = -EBUSY;
	else
		master->running = false;

	spin_unlock_irqrestore(&master->queue_lock, flags);

	if (ret) {
		dev_warn(&master->dev,
			 "could not stop message queue\n");
		return ret;
	}
	return ret;
}

static int spi_destroy_queue(struct spi_master *master)
{
	int ret;

	ret = spi_stop_queue(master);

	/*
	 * flush_kthread_worker will block until all work is done.
	 * If the reason that stop_queue timed out is that the work will never
	 * finish, then it does no good to call flush/stop thread, so
	 * return anyway.
	 */
	if (ret) {
		dev_err(&master->dev, "problem destroying queue\n");
		return ret;
	}

	flush_kthread_worker(&master->kworker);
	kthread_stop(master->kworker_task);

	return 0;
}

1369 1370 1371
static int __spi_queued_transfer(struct spi_device *spi,
				 struct spi_message *msg,
				 bool need_pump)
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
{
	struct spi_master *master = spi->master;
	unsigned long flags;

	spin_lock_irqsave(&master->queue_lock, flags);

	if (!master->running) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return -ESHUTDOWN;
	}
	msg->actual_length = 0;
	msg->status = -EINPROGRESS;

	list_add_tail(&msg->queue, &master->queue);
1386
	if (!master->busy && need_pump)
1387 1388 1389 1390 1391 1392
		queue_kthread_work(&master->kworker, &master->pump_messages);

	spin_unlock_irqrestore(&master->queue_lock, flags);
	return 0;
}

1393 1394 1395 1396
/**
 * spi_queued_transfer - transfer function for queued transfers
 * @spi: spi device which is requesting transfer
 * @msg: spi message which is to handled is queued to driver queue
1397 1398
 *
 * Return: zero on success, else a negative error code.
1399 1400 1401 1402 1403 1404
 */
static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
{
	return __spi_queued_transfer(spi, msg, true);
}

1405 1406 1407 1408 1409
static int spi_master_initialize_queue(struct spi_master *master)
{
	int ret;

	master->transfer = spi_queued_transfer;
1410 1411
	if (!master->transfer_one_message)
		master->transfer_one_message = spi_transfer_one_message;
1412 1413 1414 1415 1416 1417 1418

	/* Initialize and start queue */
	ret = spi_init_queue(master);
	if (ret) {
		dev_err(&master->dev, "problem initializing queue\n");
		goto err_init_queue;
	}
1419
	master->queued = true;
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
	ret = spi_start_queue(master);
	if (ret) {
		dev_err(&master->dev, "problem starting queue\n");
		goto err_start_queue;
	}

	return 0;

err_start_queue:
	spi_destroy_queue(master);
1430
err_init_queue:
1431 1432 1433 1434 1435
	return ret;
}

/*-------------------------------------------------------------------------*/

1436
#if defined(CONFIG_OF)
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
static struct spi_device *
of_register_spi_device(struct spi_master *master, struct device_node *nc)
{
	struct spi_device *spi;
	int rc;
	u32 value;

	/* Alloc an spi_device */
	spi = spi_alloc_device(master);
	if (!spi) {
		dev_err(&master->dev, "spi_device alloc error for %s\n",
			nc->full_name);
		rc = -ENOMEM;
		goto err_out;
	}

	/* Select device driver */
	rc = of_modalias_node(nc, spi->modalias,
				sizeof(spi->modalias));
	if (rc < 0) {
		dev_err(&master->dev, "cannot find modalias for %s\n",
			nc->full_name);
		goto err_out;
	}

	/* Device address */
	rc = of_property_read_u32(nc, "reg", &value);
	if (rc) {
		dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
			nc->full_name, rc);
		goto err_out;
	}
	spi->chip_select = value;

	/* Mode (clock phase/polarity/etc.) */
	if (of_find_property(nc, "spi-cpha", NULL))
		spi->mode |= SPI_CPHA;
	if (of_find_property(nc, "spi-cpol", NULL))
		spi->mode |= SPI_CPOL;
	if (of_find_property(nc, "spi-cs-high", NULL))
		spi->mode |= SPI_CS_HIGH;
	if (of_find_property(nc, "spi-3wire", NULL))
		spi->mode |= SPI_3WIRE;
	if (of_find_property(nc, "spi-lsb-first", NULL))
		spi->mode |= SPI_LSB_FIRST;

	/* Device DUAL/QUAD mode */
	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
		switch (value) {
		case 1:
			break;
		case 2:
			spi->mode |= SPI_TX_DUAL;
			break;
		case 4:
			spi->mode |= SPI_TX_QUAD;
			break;
		default:
			dev_warn(&master->dev,
				"spi-tx-bus-width %d not supported\n",
				value);
			break;
		}
	}

	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
		switch (value) {
		case 1:
			break;
		case 2:
			spi->mode |= SPI_RX_DUAL;
			break;
		case 4:
			spi->mode |= SPI_RX_QUAD;
			break;
		default:
			dev_warn(&master->dev,
				"spi-rx-bus-width %d not supported\n",
				value);
			break;
		}
	}

	/* Device speed */
	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
	if (rc) {
		dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
			nc->full_name, rc);
		goto err_out;
	}
	spi->max_speed_hz = value;

	/* Store a pointer to the node in the device structure */
	of_node_get(nc);
	spi->dev.of_node = nc;

	/* Register the new device */
	rc = spi_add_device(spi);
	if (rc) {
		dev_err(&master->dev, "spi_device register error %s\n",
			nc->full_name);
		goto err_out;
	}

	return spi;

err_out:
	spi_dev_put(spi);
	return ERR_PTR(rc);
}

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
/**
 * of_register_spi_devices() - Register child devices onto the SPI bus
 * @master:	Pointer to spi_master device
 *
 * Registers an spi_device for each child node of master node which has a 'reg'
 * property.
 */
static void of_register_spi_devices(struct spi_master *master)
{
	struct spi_device *spi;
	struct device_node *nc;

	if (!master->dev.of_node)
		return;

1563
	for_each_available_child_of_node(master->dev.of_node, nc) {
1564 1565 1566
		spi = of_register_spi_device(master, nc);
		if (IS_ERR(spi))
			dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1567 1568 1569 1570 1571 1572 1573
				nc->full_name);
	}
}
#else
static void of_register_spi_devices(struct spi_master *master) { }
#endif

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
#ifdef CONFIG_ACPI
static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
{
	struct spi_device *spi = data;

	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
		struct acpi_resource_spi_serialbus *sb;

		sb = &ares->data.spi_serial_bus;
		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
			spi->chip_select = sb->device_selection;
			spi->max_speed_hz = sb->connection_speed;

			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
				spi->mode |= SPI_CPHA;
			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
				spi->mode |= SPI_CPOL;
			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
				spi->mode |= SPI_CS_HIGH;
		}
	} else if (spi->irq < 0) {
		struct resource r;

		if (acpi_dev_resource_interrupt(ares, 0, &r))
			spi->irq = r.start;
	}

	/* Always tell the ACPI core to skip this resource */
	return 1;
}

static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
				       void *data, void **return_value)
{
	struct spi_master *master = data;
	struct list_head resource_list;
	struct acpi_device *adev;
	struct spi_device *spi;
	int ret;

	if (acpi_bus_get_device(handle, &adev))
		return AE_OK;
	if (acpi_bus_get_status(adev) || !adev->status.present)
		return AE_OK;

	spi = spi_alloc_device(master);
	if (!spi) {
		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
			dev_name(&adev->dev));
		return AE_NO_MEMORY;
	}

1626
	ACPI_COMPANION_SET(&spi->dev, adev);
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
	spi->irq = -1;

	INIT_LIST_HEAD(&resource_list);
	ret = acpi_dev_get_resources(adev, &resource_list,
				     acpi_spi_add_resource, spi);
	acpi_dev_free_resource_list(&resource_list);

	if (ret < 0 || !spi->max_speed_hz) {
		spi_dev_put(spi);
		return AE_OK;
	}

1639
	adev->power.flags.ignore_parent = true;
1640
	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1641
	if (spi_add_device(spi)) {
1642
		adev->power.flags.ignore_parent = false;
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
			dev_name(&adev->dev));
		spi_dev_put(spi);
	}

	return AE_OK;
}

static void acpi_register_spi_devices(struct spi_master *master)
{
	acpi_status status;
	acpi_handle handle;

1656
	handle = ACPI_HANDLE(master->dev.parent);
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
	if (!handle)
		return;

	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
				     acpi_spi_add_device, NULL,
				     master, NULL);
	if (ACPI_FAILURE(status))
		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
}
#else
static inline void acpi_register_spi_devices(struct spi_master *master) {}
#endif /* CONFIG_ACPI */

T
Tony Jones 已提交
1670
static void spi_master_release(struct device *dev)
1671 1672 1673
{
	struct spi_master *master;

T
Tony Jones 已提交
1674
	master = container_of(dev, struct spi_master, dev);
1675 1676 1677 1678 1679 1680
	kfree(master);
}

static struct class spi_master_class = {
	.name		= "spi_master",
	.owner		= THIS_MODULE,
T
Tony Jones 已提交
1681
	.dev_release	= spi_master_release,
1682
	.dev_groups	= spi_master_groups,
1683 1684 1685 1686 1687 1688
};


/**
 * spi_alloc_master - allocate SPI master controller
 * @dev: the controller, possibly using the platform_bus
D
David Brownell 已提交
1689
 * @size: how much zeroed driver-private data to allocate; the pointer to this
T
Tony Jones 已提交
1690
 *	memory is in the driver_data field of the returned device,
D
David Brownell 已提交
1691
 *	accessible with spi_master_get_devdata().
D
David Brownell 已提交
1692
 * Context: can sleep
1693 1694 1695
 *
 * This call is used only by SPI master controller drivers, which are the
 * only ones directly touching chip registers.  It's how they allocate
D
dmitry pervushin 已提交
1696
 * an spi_master structure, prior to calling spi_register_master().
1697
 *
1698
 * This must be called from context that can sleep.
1699 1700
 *
 * The caller is responsible for assigning the bus number and initializing
D
dmitry pervushin 已提交
1701
 * the master's methods before calling spi_register_master(); and (after errors
1702
 * adding the device) calling spi_master_put() to prevent a memory leak.
1703 1704
 *
 * Return: the SPI master structure on success, else NULL.
1705
 */
1706
struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1707 1708 1709
{
	struct spi_master	*master;

D
David Brownell 已提交
1710 1711 1712
	if (!dev)
		return NULL;

J
Jingoo Han 已提交
1713
	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1714 1715 1716
	if (!master)
		return NULL;

T
Tony Jones 已提交
1717
	device_initialize(&master->dev);
1718 1719
	master->bus_num = -1;
	master->num_chipselect = 1;
T
Tony Jones 已提交
1720 1721
	master->dev.class = &spi_master_class;
	master->dev.parent = get_device(dev);
D
David Brownell 已提交
1722
	spi_master_set_devdata(master, &master[1]);
1723 1724 1725 1726 1727

	return master;
}
EXPORT_SYMBOL_GPL(spi_alloc_master);

1728 1729 1730
#ifdef CONFIG_OF
static int of_spi_register_master(struct spi_master *master)
{
1731
	int nb, i, *cs;
1732 1733 1734 1735 1736 1737
	struct device_node *np = master->dev.of_node;

	if (!np)
		return 0;

	nb = of_gpio_named_count(np, "cs-gpios");
J
Jingoo Han 已提交
1738
	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1739

1740 1741
	/* Return error only for an incorrectly formed cs-gpios property */
	if (nb == 0 || nb == -ENOENT)
1742
		return 0;
1743 1744
	else if (nb < 0)
		return nb;
1745 1746 1747 1748 1749 1750 1751 1752 1753

	cs = devm_kzalloc(&master->dev,
			  sizeof(int) * master->num_chipselect,
			  GFP_KERNEL);
	master->cs_gpios = cs;

	if (!master->cs_gpios)
		return -ENOMEM;

1754
	for (i = 0; i < master->num_chipselect; i++)
1755
		cs[i] = -ENOENT;
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768

	for (i = 0; i < nb; i++)
		cs[i] = of_get_named_gpio(np, "cs-gpios", i);

	return 0;
}
#else
static int of_spi_register_master(struct spi_master *master)
{
	return 0;
}
#endif

1769 1770 1771
/**
 * spi_register_master - register SPI master controller
 * @master: initialized master, originally from spi_alloc_master()
D
David Brownell 已提交
1772
 * Context: can sleep
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
 *
 * SPI master controllers connect to their drivers using some non-SPI bus,
 * such as the platform bus.  The final stage of probe() in that code
 * includes calling spi_register_master() to hook up to this SPI bus glue.
 *
 * SPI controllers use board specific (often SOC specific) bus numbers,
 * and board-specific addressing for SPI devices combines those numbers
 * with chip select numbers.  Since SPI does not directly support dynamic
 * device identification, boards need configuration tables telling which
 * chip is at which address.
 *
 * This must be called from context that can sleep.  It returns zero on
 * success, else a negative error code (dropping the master's refcount).
D
David Brownell 已提交
1786 1787
 * After a successful return, the caller is responsible for calling
 * spi_unregister_master().
1788 1789
 *
 * Return: zero on success, else a negative error code.
1790
 */
1791
int spi_register_master(struct spi_master *master)
1792
{
1793
	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
T
Tony Jones 已提交
1794
	struct device		*dev = master->dev.parent;
1795
	struct boardinfo	*bi;
1796 1797 1798
	int			status = -ENODEV;
	int			dynamic = 0;

D
David Brownell 已提交
1799 1800 1801
	if (!dev)
		return -ENODEV;

1802 1803 1804 1805
	status = of_spi_register_master(master);
	if (status)
		return status;

1806 1807 1808 1809 1810 1811
	/* even if it's just one always-selected device, there must
	 * be at least one chipselect
	 */
	if (master->num_chipselect == 0)
		return -EINVAL;

1812 1813 1814
	if ((master->bus_num < 0) && master->dev.of_node)
		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");

1815
	/* convention:  dynamically assigned bus IDs count down from the max */
1816
	if (master->bus_num < 0) {
1817 1818 1819
		/* FIXME switch to an IDR based scheme, something like
		 * I2C now uses, so we can't run out of "dynamic" IDs
		 */
1820
		master->bus_num = atomic_dec_return(&dyn_bus_id);
1821
		dynamic = 1;
1822 1823
	}

1824 1825
	INIT_LIST_HEAD(&master->queue);
	spin_lock_init(&master->queue_lock);
1826 1827 1828
	spin_lock_init(&master->bus_lock_spinlock);
	mutex_init(&master->bus_lock_mutex);
	master->bus_lock_flag = 0;
1829
	init_completion(&master->xfer_completion);
1830 1831
	if (!master->max_dma_len)
		master->max_dma_len = INT_MAX;
1832

1833 1834 1835
	/* register the device, then userspace will see it.
	 * registration fails if the bus ID is in use.
	 */
1836
	dev_set_name(&master->dev, "spi%u", master->bus_num);
T
Tony Jones 已提交
1837
	status = device_add(&master->dev);
1838
	if (status < 0)
1839
		goto done;
1840
	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1841 1842
			dynamic ? " (dynamic)" : "");

1843 1844 1845 1846 1847 1848
	/* If we're using a queued driver, start the queue */
	if (master->transfer)
		dev_info(dev, "master is unqueued, this is deprecated\n");
	else {
		status = spi_master_initialize_queue(master);
		if (status) {
1849
			device_del(&master->dev);
1850 1851 1852
			goto done;
		}
	}
1853 1854
	/* add statistics */
	spin_lock_init(&master->statistics.lock);
1855

1856 1857 1858 1859 1860 1861
	mutex_lock(&board_lock);
	list_add_tail(&master->list, &spi_master_list);
	list_for_each_entry(bi, &board_list, list)
		spi_match_master_to_boardinfo(master, &bi->board_info);
	mutex_unlock(&board_lock);

1862
	/* Register devices from the device tree and ACPI */
1863
	of_register_spi_devices(master);
1864
	acpi_register_spi_devices(master);
1865 1866 1867 1868 1869
done:
	return status;
}
EXPORT_SYMBOL_GPL(spi_register_master);

1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
static void devm_spi_unregister(struct device *dev, void *res)
{
	spi_unregister_master(*(struct spi_master **)res);
}

/**
 * dev_spi_register_master - register managed SPI master controller
 * @dev:    device managing SPI master
 * @master: initialized master, originally from spi_alloc_master()
 * Context: can sleep
 *
 * Register a SPI device as with spi_register_master() which will
 * automatically be unregister
1883 1884
 *
 * Return: zero on success, else a negative error code.
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
 */
int devm_spi_register_master(struct device *dev, struct spi_master *master)
{
	struct spi_master **ptr;
	int ret;

	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return -ENOMEM;

	ret = spi_register_master(master);
1896
	if (!ret) {
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
		*ptr = master;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return ret;
}
EXPORT_SYMBOL_GPL(devm_spi_register_master);

1907
static int __unregister(struct device *dev, void *null)
1908
{
1909
	spi_unregister_device(to_spi_device(dev));
1910 1911 1912 1913 1914 1915
	return 0;
}

/**
 * spi_unregister_master - unregister SPI master controller
 * @master: the master being unregistered
D
David Brownell 已提交
1916
 * Context: can sleep
1917 1918 1919 1920 1921 1922 1923 1924
 *
 * This call is used only by SPI master controller drivers, which are the
 * only ones directly touching chip registers.
 *
 * This must be called from context that can sleep.
 */
void spi_unregister_master(struct spi_master *master)
{
1925 1926
	int dummy;

1927 1928 1929 1930 1931
	if (master->queued) {
		if (spi_destroy_queue(master))
			dev_err(&master->dev, "queue remove failed\n");
	}

1932 1933 1934 1935
	mutex_lock(&board_lock);
	list_del(&master->list);
	mutex_unlock(&board_lock);

1936
	dummy = device_for_each_child(&master->dev, NULL, __unregister);
T
Tony Jones 已提交
1937
	device_unregister(&master->dev);
1938 1939 1940
}
EXPORT_SYMBOL_GPL(spi_unregister_master);

1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
int spi_master_suspend(struct spi_master *master)
{
	int ret;

	/* Basically no-ops for non-queued masters */
	if (!master->queued)
		return 0;

	ret = spi_stop_queue(master);
	if (ret)
		dev_err(&master->dev, "queue stop failed\n");

	return ret;
}
EXPORT_SYMBOL_GPL(spi_master_suspend);

int spi_master_resume(struct spi_master *master)
{
	int ret;

	if (!master->queued)
		return 0;

	ret = spi_start_queue(master);
	if (ret)
		dev_err(&master->dev, "queue restart failed\n");

	return ret;
}
EXPORT_SYMBOL_GPL(spi_master_resume);

1972
static int __spi_master_match(struct device *dev, const void *data)
D
Dave Young 已提交
1973 1974
{
	struct spi_master *m;
1975
	const u16 *bus_num = data;
D
Dave Young 已提交
1976 1977 1978 1979 1980

	m = container_of(dev, struct spi_master, dev);
	return m->bus_num == *bus_num;
}

1981 1982 1983
/**
 * spi_busnum_to_master - look up master associated with bus_num
 * @bus_num: the master's bus number
D
David Brownell 已提交
1984
 * Context: can sleep
1985 1986 1987 1988 1989
 *
 * This call may be used with devices that are registered after
 * arch init time.  It returns a refcounted pointer to the relevant
 * spi_master (which the caller must release), or NULL if there is
 * no such master registered.
1990 1991
 *
 * Return: the SPI master structure on success, else NULL.
1992 1993 1994
 */
struct spi_master *spi_busnum_to_master(u16 bus_num)
{
T
Tony Jones 已提交
1995
	struct device		*dev;
1996
	struct spi_master	*master = NULL;
D
Dave Young 已提交
1997

1998
	dev = class_find_device(&spi_master_class, NULL, &bus_num,
D
Dave Young 已提交
1999 2000 2001 2002
				__spi_master_match);
	if (dev)
		master = container_of(dev, struct spi_master, dev);
	/* reference got in class_find_device */
2003
	return master;
2004 2005 2006 2007 2008 2009
}
EXPORT_SYMBOL_GPL(spi_busnum_to_master);


/*-------------------------------------------------------------------------*/

2010 2011 2012 2013
/* Core methods for SPI master protocol drivers.  Some of the
 * other core methods are currently defined as inline functions.
 */

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
{
	if (master->bits_per_word_mask) {
		/* Only 32 bits fit in the mask */
		if (bits_per_word > 32)
			return -EINVAL;
		if (!(master->bits_per_word_mask &
				SPI_BPW_MASK(bits_per_word)))
			return -EINVAL;
	}

	return 0;
}

2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
/**
 * spi_setup - setup SPI mode and clock rate
 * @spi: the device whose settings are being modified
 * Context: can sleep, and no requests are queued to the device
 *
 * SPI protocol drivers may need to update the transfer mode if the
 * device doesn't work with its default.  They may likewise need
 * to update clock rates or word sizes from initial values.  This function
 * changes those settings, and must be called from a context that can sleep.
 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
 * effect the next time the device is selected and data is transferred to
 * or from it.  When this function returns, the spi device is deselected.
 *
 * Note that this call will fail if the protocol driver specifies an option
 * that the underlying controller or its driver does not support.  For
 * example, not all hardware supports wire transfers using nine bit words,
 * LSB-first wire encoding, or active-high chipselects.
2045 2046
 *
 * Return: zero on success, else a negative error code.
2047 2048 2049
 */
int spi_setup(struct spi_device *spi)
{
2050
	unsigned	bad_bits, ugly_bits;
2051
	int		status;
2052

W
wangyuhang 已提交
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
	/* check mode to prevent that DUAL and QUAD set at the same time
	 */
	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
		dev_err(&spi->dev,
		"setup: can not select dual and quad at the same time\n");
		return -EINVAL;
	}
	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
	 */
	if ((spi->mode & SPI_3WIRE) && (spi->mode &
		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
		return -EINVAL;
2066 2067 2068 2069
	/* help drivers fail *cleanly* when they need options
	 * that aren't supported with their current master
	 */
	bad_bits = spi->mode & ~spi->master->mode_bits;
2070 2071 2072 2073 2074 2075 2076 2077 2078
	ugly_bits = bad_bits &
		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
	if (ugly_bits) {
		dev_warn(&spi->dev,
			 "setup: ignoring unsupported mode bits %x\n",
			 ugly_bits);
		spi->mode &= ~ugly_bits;
		bad_bits &= ~ugly_bits;
	}
2079
	if (bad_bits) {
2080
		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2081 2082 2083 2084
			bad_bits);
		return -EINVAL;
	}

2085 2086 2087
	if (!spi->bits_per_word)
		spi->bits_per_word = 8;

2088 2089 2090
	status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
	if (status)
		return status;
2091

2092 2093 2094
	if (!spi->max_speed_hz)
		spi->max_speed_hz = spi->master->max_speed_hz;

2095 2096
	if (spi->master->setup)
		status = spi->master->setup(spi);
2097

2098 2099
	spi_set_cs(spi, false);

J
Jingoo Han 已提交
2100
	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
			(spi->mode & SPI_LOOP) ? "loopback, " : "",
			spi->bits_per_word, spi->max_speed_hz,
			status);

	return status;
}
EXPORT_SYMBOL_GPL(spi_setup);

2113
static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2114 2115
{
	struct spi_master *master = spi->master;
2116
	struct spi_transfer *xfer;
2117
	int w_size;
2118

2119 2120 2121
	if (list_empty(&message->transfers))
		return -EINVAL;

2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
	/* Half-duplex links include original MicroWire, and ones with
	 * only one data pin like SPI_3WIRE (switches direction) or where
	 * either MOSI or MISO is missing.  They can also be caused by
	 * software limitations.
	 */
	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
			|| (spi->mode & SPI_3WIRE)) {
		unsigned flags = master->flags;

		list_for_each_entry(xfer, &message->transfers, transfer_list) {
			if (xfer->rx_buf && xfer->tx_buf)
				return -EINVAL;
			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
				return -EINVAL;
			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
				return -EINVAL;
		}
	}

2141
	/**
2142 2143
	 * Set transfer bits_per_word and max speed as spi device default if
	 * it is not set for this transfer.
W
wangyuhang 已提交
2144 2145
	 * Set transfer tx_nbits and rx_nbits as single transfer default
	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2146 2147
	 */
	list_for_each_entry(xfer, &message->transfers, transfer_list) {
2148
		message->frame_length += xfer->len;
2149 2150
		if (!xfer->bits_per_word)
			xfer->bits_per_word = spi->bits_per_word;
2151 2152

		if (!xfer->speed_hz)
2153
			xfer->speed_hz = spi->max_speed_hz;
2154 2155
		if (!xfer->speed_hz)
			xfer->speed_hz = master->max_speed_hz;
2156 2157 2158 2159

		if (master->max_speed_hz &&
		    xfer->speed_hz > master->max_speed_hz)
			xfer->speed_hz = master->max_speed_hz;
2160

2161 2162
		if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
			return -EINVAL;
2163

2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
		/*
		 * SPI transfer length should be multiple of SPI word size
		 * where SPI word size should be power-of-two multiple
		 */
		if (xfer->bits_per_word <= 8)
			w_size = 1;
		else if (xfer->bits_per_word <= 16)
			w_size = 2;
		else
			w_size = 4;

		/* No partial transfers accepted */
2176
		if (xfer->len % w_size)
2177 2178
			return -EINVAL;

2179 2180 2181
		if (xfer->speed_hz && master->min_speed_hz &&
		    xfer->speed_hz < master->min_speed_hz)
			return -EINVAL;
W
wangyuhang 已提交
2182 2183 2184 2185 2186 2187

		if (xfer->tx_buf && !xfer->tx_nbits)
			xfer->tx_nbits = SPI_NBITS_SINGLE;
		if (xfer->rx_buf && !xfer->rx_nbits)
			xfer->rx_nbits = SPI_NBITS_SINGLE;
		/* check transfer tx/rx_nbits:
2188 2189
		 * 1. check the value matches one of single, dual and quad
		 * 2. check tx/rx_nbits match the mode in spi_device
W
wangyuhang 已提交
2190
		 */
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
		if (xfer->tx_buf) {
			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
				xfer->tx_nbits != SPI_NBITS_DUAL &&
				xfer->tx_nbits != SPI_NBITS_QUAD)
				return -EINVAL;
			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
				return -EINVAL;
			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
				!(spi->mode & SPI_TX_QUAD))
				return -EINVAL;
		}
W
wangyuhang 已提交
2203
		/* check transfer rx_nbits */
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
		if (xfer->rx_buf) {
			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
				xfer->rx_nbits != SPI_NBITS_DUAL &&
				xfer->rx_nbits != SPI_NBITS_QUAD)
				return -EINVAL;
			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
				return -EINVAL;
			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
				!(spi->mode & SPI_RX_QUAD))
				return -EINVAL;
		}
2216 2217
	}

2218
	message->status = -EINPROGRESS;
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228

	return 0;
}

static int __spi_async(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;

	message->spi = spi;

2229 2230 2231
	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);

2232 2233
	trace_spi_message_submit(message);

2234 2235 2236
	return master->transfer(spi, message);
}

D
David Brownell 已提交
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
/**
 * spi_async - asynchronous SPI transfer
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers, including completion callback
 * Context: any (irqs may be blocked, etc)
 *
 * This call may be used in_irq and other contexts which can't sleep,
 * as well as from task contexts which can sleep.
 *
 * The completion callback is invoked in a context which can't sleep.
 * Before that invocation, the value of message->status is undefined.
 * When the callback is issued, message->status holds either zero (to
 * indicate complete success) or a negative error code.  After that
 * callback returns, the driver which issued the transfer request may
 * deallocate the associated memory; it's no longer in use by any SPI
 * core or controller driver code.
 *
 * Note that although all messages to a spi_device are handled in
 * FIFO order, messages may go to different devices in other orders.
 * Some device might be higher priority, or have various "hard" access
 * time requirements, for example.
 *
 * On detection of any fault during the transfer, processing of
 * the entire message is aborted, and the device is deselected.
 * Until returning from the associated message completion callback,
 * no other spi_message queued to that device will be processed.
 * (This rule applies equally to all the synchronous transfer calls,
 * which are wrappers around this core asynchronous primitive.)
2265 2266
 *
 * Return: zero on success, else a negative error code.
D
David Brownell 已提交
2267 2268 2269 2270
 */
int spi_async(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;
2271 2272
	int ret;
	unsigned long flags;
D
David Brownell 已提交
2273

2274 2275 2276 2277
	ret = __spi_validate(spi, message);
	if (ret != 0)
		return ret;

2278
	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
D
David Brownell 已提交
2279

2280 2281 2282 2283
	if (master->bus_lock_flag)
		ret = -EBUSY;
	else
		ret = __spi_async(spi, message);
D
David Brownell 已提交
2284

2285 2286 2287
	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	return ret;
D
David Brownell 已提交
2288 2289 2290
}
EXPORT_SYMBOL_GPL(spi_async);

2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
/**
 * spi_async_locked - version of spi_async with exclusive bus usage
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers, including completion callback
 * Context: any (irqs may be blocked, etc)
 *
 * This call may be used in_irq and other contexts which can't sleep,
 * as well as from task contexts which can sleep.
 *
 * The completion callback is invoked in a context which can't sleep.
 * Before that invocation, the value of message->status is undefined.
 * When the callback is issued, message->status holds either zero (to
 * indicate complete success) or a negative error code.  After that
 * callback returns, the driver which issued the transfer request may
 * deallocate the associated memory; it's no longer in use by any SPI
 * core or controller driver code.
 *
 * Note that although all messages to a spi_device are handled in
 * FIFO order, messages may go to different devices in other orders.
 * Some device might be higher priority, or have various "hard" access
 * time requirements, for example.
 *
 * On detection of any fault during the transfer, processing of
 * the entire message is aborted, and the device is deselected.
 * Until returning from the associated message completion callback,
 * no other spi_message queued to that device will be processed.
 * (This rule applies equally to all the synchronous transfer calls,
 * which are wrappers around this core asynchronous primitive.)
2319 2320
 *
 * Return: zero on success, else a negative error code.
2321 2322 2323 2324 2325 2326 2327
 */
int spi_async_locked(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;
	int ret;
	unsigned long flags;

2328 2329 2330 2331
	ret = __spi_validate(spi, message);
	if (ret != 0)
		return ret;

2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
	spin_lock_irqsave(&master->bus_lock_spinlock, flags);

	ret = __spi_async(spi, message);

	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	return ret;

}
EXPORT_SYMBOL_GPL(spi_async_locked);

2343 2344 2345 2346 2347 2348 2349 2350

/*-------------------------------------------------------------------------*/

/* Utility methods for SPI master protocol drivers, layered on
 * top of the core.  Some other utility methods are defined as
 * inline functions.
 */

2351 2352 2353 2354 2355
static void spi_complete(void *arg)
{
	complete(arg);
}

2356 2357 2358 2359 2360 2361
static int __spi_sync(struct spi_device *spi, struct spi_message *message,
		      int bus_locked)
{
	DECLARE_COMPLETION_ONSTACK(done);
	int status;
	struct spi_master *master = spi->master;
2362 2363 2364 2365 2366
	unsigned long flags;

	status = __spi_validate(spi, message);
	if (status != 0)
		return status;
2367 2368 2369

	message->complete = spi_complete;
	message->context = &done;
2370
	message->spi = spi;
2371

2372 2373 2374
	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);

2375 2376 2377
	if (!bus_locked)
		mutex_lock(&master->bus_lock_mutex);

2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
	/* If we're not using the legacy transfer method then we will
	 * try to transfer in the calling context so special case.
	 * This code would be less tricky if we could remove the
	 * support for driver implemented message queues.
	 */
	if (master->transfer == spi_queued_transfer) {
		spin_lock_irqsave(&master->bus_lock_spinlock, flags);

		trace_spi_message_submit(message);

		status = __spi_queued_transfer(spi, message, false);

		spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
	} else {
		status = spi_async_locked(spi, message);
	}
2394 2395 2396 2397 2398

	if (!bus_locked)
		mutex_unlock(&master->bus_lock_mutex);

	if (status == 0) {
2399 2400 2401
		/* Push out the messages in the calling context if we
		 * can.
		 */
2402 2403 2404 2405 2406
		if (master->transfer == spi_queued_transfer) {
			SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
						       spi_sync_immediate);
			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
						       spi_sync_immediate);
2407
			__spi_pump_messages(master, false);
2408
		}
2409

2410 2411 2412 2413 2414 2415 2416
		wait_for_completion(&done);
		status = message->status;
	}
	message->context = NULL;
	return status;
}

2417 2418 2419 2420
/**
 * spi_sync - blocking/synchronous SPI data transfers
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers
D
David Brownell 已提交
2421
 * Context: can sleep
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.  Low-overhead controller
 * drivers may DMA directly into and out of the message buffers.
 *
 * Note that the SPI device's chip select is active during the message,
 * and then is normally disabled between messages.  Drivers for some
 * frequently-used devices may want to minimize costs of selecting a chip,
 * by leaving it selected in anticipation that the next message will go
 * to the same chip.  (That may increase power usage.)
 *
D
David Brownell 已提交
2433 2434 2435
 * Also, the caller is guaranteeing that the memory associated with the
 * message will not be freed before this call returns.
 *
2436
 * Return: zero on success, else a negative error code.
2437 2438 2439
 */
int spi_sync(struct spi_device *spi, struct spi_message *message)
{
2440
	return __spi_sync(spi, message, 0);
2441 2442 2443
}
EXPORT_SYMBOL_GPL(spi_sync);

2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
/**
 * spi_sync_locked - version of spi_sync with exclusive bus usage
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.  Low-overhead controller
 * drivers may DMA directly into and out of the message buffers.
 *
 * This call should be used by drivers that require exclusive access to the
L
Lucas De Marchi 已提交
2455
 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2456 2457
 * be released by a spi_bus_unlock call when the exclusive access is over.
 *
2458
 * Return: zero on success, else a negative error code.
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
 */
int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
{
	return __spi_sync(spi, message, 1);
}
EXPORT_SYMBOL_GPL(spi_sync_locked);

/**
 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
 * @master: SPI bus master that should be locked for exclusive bus access
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.
 *
 * This call should be used by drivers that require exclusive access to the
 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
 * exclusive access is over. Data transfer must be done by spi_sync_locked
 * and spi_async_locked calls when the SPI bus lock is held.
 *
2479
 * Return: always zero.
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
 */
int spi_bus_lock(struct spi_master *master)
{
	unsigned long flags;

	mutex_lock(&master->bus_lock_mutex);

	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
	master->bus_lock_flag = 1;
	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	/* mutex remains locked until spi_bus_unlock is called */

	return 0;
}
EXPORT_SYMBOL_GPL(spi_bus_lock);

/**
 * spi_bus_unlock - release the lock for exclusive SPI bus usage
 * @master: SPI bus master that was locked for exclusive bus access
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.
 *
 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
 * call.
 *
2508
 * Return: always zero.
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
 */
int spi_bus_unlock(struct spi_master *master)
{
	master->bus_lock_flag = 0;

	mutex_unlock(&master->bus_lock_mutex);

	return 0;
}
EXPORT_SYMBOL_GPL(spi_bus_unlock);

2520
/* portable code must never pass more than 32 bytes */
J
Jingoo Han 已提交
2521
#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
2522 2523 2524 2525 2526 2527 2528 2529

static u8	*buf;

/**
 * spi_write_then_read - SPI synchronous write followed by read
 * @spi: device with which data will be exchanged
 * @txbuf: data to be written (need not be dma-safe)
 * @n_tx: size of txbuf, in bytes
2530 2531
 * @rxbuf: buffer into which data will be read (need not be dma-safe)
 * @n_rx: size of rxbuf, in bytes
D
David Brownell 已提交
2532
 * Context: can sleep
2533 2534 2535 2536
 *
 * This performs a half duplex MicroWire style transaction with the
 * device, sending txbuf and then reading rxbuf.  The return value
 * is zero for success, else a negative errno status code.
2537
 * This call may only be used from a context that may sleep.
2538
 *
D
David Brownell 已提交
2539
 * Parameters to this routine are always copied using a small buffer;
D
David Brownell 已提交
2540 2541
 * portable code should never use this for more than 32 bytes.
 * Performance-sensitive or bulk transfer code should instead use
D
David Brownell 已提交
2542
 * spi_{async,sync}() calls with dma-safe buffers.
2543 2544
 *
 * Return: zero on success, else a negative error code.
2545 2546
 */
int spi_write_then_read(struct spi_device *spi,
2547 2548
		const void *txbuf, unsigned n_tx,
		void *rxbuf, unsigned n_rx)
2549
{
D
David Brownell 已提交
2550
	static DEFINE_MUTEX(lock);
2551 2552 2553

	int			status;
	struct spi_message	message;
2554
	struct spi_transfer	x[2];
2555 2556
	u8			*local_buf;

2557 2558 2559 2560
	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
	 * copying here, (as a pure convenience thing), but we can
	 * keep heap costs out of the hot path unless someone else is
	 * using the pre-allocated buffer or the transfer is too large.
2561
	 */
2562
	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2563 2564
		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
				    GFP_KERNEL | GFP_DMA);
2565 2566 2567 2568 2569
		if (!local_buf)
			return -ENOMEM;
	} else {
		local_buf = buf;
	}
2570

2571
	spi_message_init(&message);
J
Jingoo Han 已提交
2572
	memset(x, 0, sizeof(x));
2573 2574 2575 2576 2577 2578 2579 2580
	if (n_tx) {
		x[0].len = n_tx;
		spi_message_add_tail(&x[0], &message);
	}
	if (n_rx) {
		x[1].len = n_rx;
		spi_message_add_tail(&x[1], &message);
	}
2581

2582
	memcpy(local_buf, txbuf, n_tx);
2583 2584
	x[0].tx_buf = local_buf;
	x[1].rx_buf = local_buf + n_tx;
2585 2586 2587

	/* do the i/o */
	status = spi_sync(spi, &message);
2588
	if (status == 0)
2589
		memcpy(rxbuf, x[1].rx_buf, n_rx);
2590

2591
	if (x[0].tx_buf == buf)
D
David Brownell 已提交
2592
		mutex_unlock(&lock);
2593 2594 2595 2596 2597 2598 2599 2600 2601
	else
		kfree(local_buf);

	return status;
}
EXPORT_SYMBOL_GPL(spi_write_then_read);

/*-------------------------------------------------------------------------*/

2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
#if IS_ENABLED(CONFIG_OF_DYNAMIC)
static int __spi_of_device_match(struct device *dev, void *data)
{
	return dev->of_node == data;
}

/* must call put_device() when done with returned spi_device device */
static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
{
	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
						__spi_of_device_match);
	return dev ? to_spi_device(dev) : NULL;
}

static int __spi_of_master_match(struct device *dev, const void *data)
{
	return dev->of_node == data;
}

/* the spi masters are not using spi_bus, so we find it with another way */
static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
{
	struct device *dev;

	dev = class_find_device(&spi_master_class, NULL, node,
				__spi_of_master_match);
	if (!dev)
		return NULL;

	/* reference got in class_find_device */
	return container_of(dev, struct spi_master, dev);
}

static int of_spi_notify(struct notifier_block *nb, unsigned long action,
			 void *arg)
{
	struct of_reconfig_data *rd = arg;
	struct spi_master *master;
	struct spi_device *spi;

	switch (of_reconfig_get_state_change(action, arg)) {
	case OF_RECONFIG_CHANGE_ADD:
		master = of_find_spi_master_by_node(rd->dn->parent);
		if (master == NULL)
			return NOTIFY_OK;	/* not for us */

		spi = of_register_spi_device(master, rd->dn);
		put_device(&master->dev);

		if (IS_ERR(spi)) {
			pr_err("%s: failed to create for '%s'\n",
					__func__, rd->dn->full_name);
			return notifier_from_errno(PTR_ERR(spi));
		}
		break;

	case OF_RECONFIG_CHANGE_REMOVE:
		/* find our device by node */
		spi = of_find_spi_device_by_node(rd->dn);
		if (spi == NULL)
			return NOTIFY_OK;	/* no? not meant for us */

		/* unregister takes one ref away */
		spi_unregister_device(spi);

		/* and put the reference of the find */
		put_device(&spi->dev);
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block spi_of_notifier = {
	.notifier_call = of_spi_notify,
};
#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
extern struct notifier_block spi_of_notifier;
#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */

2682 2683
static int __init spi_init(void)
{
2684 2685
	int	status;

2686
	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2687 2688 2689 2690 2691 2692 2693 2694
	if (!buf) {
		status = -ENOMEM;
		goto err0;
	}

	status = bus_register(&spi_bus_type);
	if (status < 0)
		goto err1;
2695

2696 2697 2698
	status = class_register(&spi_master_class);
	if (status < 0)
		goto err2;
2699

2700
	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2701 2702
		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));

2703
	return 0;
2704 2705 2706 2707 2708 2709 2710 2711

err2:
	bus_unregister(&spi_bus_type);
err1:
	kfree(buf);
	buf = NULL;
err0:
	return status;
2712
}
2713

2714 2715
/* board_info is normally registered in arch_initcall(),
 * but even essential drivers wait till later
2716 2717 2718 2719
 *
 * REVISIT only boardinfo really needs static linking. the rest (device and
 * driver registration) _could_ be dynamically linked (modular) ... costs
 * include needing to have boardinfo data structures be much more public.
2720
 */
2721
postcore_initcall(spi_init);
2722