blk-mq.c 58.3 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
24
#include <linux/crash_dump.h>
25
#include <linux/prefetch.h>
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
	unsigned int i;

46
	for (i = 0; i < hctx->ctx_map.size; i++)
47
		if (hctx->ctx_map.map[i].word)
48 49 50 51 52
			return true;

	return false;
}

53 54 55 56 57 58 59 60 61
static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
					      struct blk_mq_ctx *ctx)
{
	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
}

#define CTX_TO_BIT(hctx, ctx)	\
	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))

62 63 64 65 66 67
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
68 69 70 71 72 73 74 75 76 77 78 79
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
80 81
}

82
void blk_mq_freeze_queue_start(struct request_queue *q)
83
{
84
	int freeze_depth;
85

86 87
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
88
		percpu_ref_kill(&q->q_usage_counter);
89
		blk_mq_run_hw_queues(q, false);
90
	}
91
}
92
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
93 94 95

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
96
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
97 98
}

99 100 101 102
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
103
void blk_freeze_queue(struct request_queue *q)
104
{
105 106 107 108 109 110 111
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
112 113 114
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
115 116 117 118 119 120 121 122 123

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
124
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
125

126
void blk_mq_unfreeze_queue(struct request_queue *q)
127
{
128
	int freeze_depth;
129

130 131 132
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
133
		percpu_ref_reinit(&q->q_usage_counter);
134
		wake_up_all(&q->mq_freeze_wq);
135
	}
136
}
137
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
138

139 140 141 142 143 144 145 146
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
147 148 149 150 151 152 153

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
154 155
}

156 157 158 159 160 161
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

162
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
163 164
			       struct request *rq, int op,
			       unsigned int op_flags)
165
{
166
	if (blk_queue_io_stat(q))
167
		op_flags |= REQ_IO_STAT;
168

169 170 171
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
172
	rq->mq_ctx = ctx;
173
	req_set_op_attrs(rq, op, op_flags);
174 175 176 177 178 179
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
180
	rq->start_time = jiffies;
181 182
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
183
	set_start_time_ns(rq);
184 185 186 187 188 189 190 191 192 193
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

194 195
	rq->cmd = rq->__cmd;

196 197 198 199 200 201
	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
202 203
	rq->timeout = 0;

204 205 206 207
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

208
	ctx->rq_dispatched[rw_is_sync(op, op_flags)]++;
209 210
}

211
static struct request *
212
__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int op, int op_flags)
213 214 215 216
{
	struct request *rq;
	unsigned int tag;

217
	tag = blk_mq_get_tag(data);
218
	if (tag != BLK_MQ_TAG_FAIL) {
219
		rq = data->hctx->tags->rqs[tag];
220

221
		if (blk_mq_tag_busy(data->hctx)) {
222
			rq->cmd_flags = REQ_MQ_INFLIGHT;
223
			atomic_inc(&data->hctx->nr_active);
224 225 226
		}

		rq->tag = tag;
227
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op, op_flags);
228 229 230 231 232 233
		return rq;
	}

	return NULL;
}

234 235
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
236
{
237 238
	struct blk_mq_ctx *ctx;
	struct blk_mq_hw_ctx *hctx;
239
	struct request *rq;
240
	struct blk_mq_alloc_data alloc_data;
241
	int ret;
242

243
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
244 245
	if (ret)
		return ERR_PTR(ret);
246

247 248
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);
249
	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
250

251
	rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
252
	if (!rq && !(flags & BLK_MQ_REQ_NOWAIT)) {
253 254 255 256 257
		__blk_mq_run_hw_queue(hctx);
		blk_mq_put_ctx(ctx);

		ctx = blk_mq_get_ctx(q);
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
258
		blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
259
		rq =  __blk_mq_alloc_request(&alloc_data, rw, 0);
260
		ctx = alloc_data.ctx;
261 262
	}
	blk_mq_put_ctx(ctx);
K
Keith Busch 已提交
263
	if (!rq) {
264
		blk_queue_exit(q);
265
		return ERR_PTR(-EWOULDBLOCK);
K
Keith Busch 已提交
266
	}
267 268 269 270

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
271 272
	return rq;
}
273
EXPORT_SYMBOL(blk_mq_alloc_request);
274

M
Ming Lin 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	struct blk_mq_alloc_data alloc_data;
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

	hctx = q->queue_hw_ctx[hctx_idx];
	ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));

	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
	rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
	if (!rq) {
		blk_queue_exit(q);
		return ERR_PTR(-EWOULDBLOCK);
	}

	return rq;
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

314 315 316 317 318 319
static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

320 321
	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
		atomic_dec(&hctx->nr_active);
322
	rq->cmd_flags = 0;
323

324
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
325
	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
326
	blk_queue_exit(q);
327 328
}

329
void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
330 331 332 333 334
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
	__blk_mq_free_request(hctx, ctx, rq);
335 336 337 338 339 340 341 342 343 344 345

}
EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);

void blk_mq_free_request(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q = rq->q;

	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
	blk_mq_free_hctx_request(hctx, rq);
346
}
J
Jens Axboe 已提交
347
EXPORT_SYMBOL_GPL(blk_mq_free_request);
348

349
inline void __blk_mq_end_request(struct request *rq, int error)
350
{
M
Ming Lei 已提交
351 352
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
353
	if (rq->end_io) {
354
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
355 356 357
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
358
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
359
	}
360
}
361
EXPORT_SYMBOL(__blk_mq_end_request);
362

363
void blk_mq_end_request(struct request *rq, int error)
364 365 366
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
367
	__blk_mq_end_request(rq, error);
368
}
369
EXPORT_SYMBOL(blk_mq_end_request);
370

371
static void __blk_mq_complete_request_remote(void *data)
372
{
373
	struct request *rq = data;
374

375
	rq->q->softirq_done_fn(rq);
376 377
}

378
static void blk_mq_ipi_complete_request(struct request *rq)
379 380
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
381
	bool shared = false;
382 383
	int cpu;

C
Christoph Hellwig 已提交
384
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
385 386 387
		rq->q->softirq_done_fn(rq);
		return;
	}
388 389

	cpu = get_cpu();
C
Christoph Hellwig 已提交
390 391 392 393
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
394
		rq->csd.func = __blk_mq_complete_request_remote;
395 396
		rq->csd.info = rq;
		rq->csd.flags = 0;
397
		smp_call_function_single_async(ctx->cpu, &rq->csd);
398
	} else {
399
		rq->q->softirq_done_fn(rq);
400
	}
401 402
	put_cpu();
}
403

404
static void __blk_mq_complete_request(struct request *rq)
405 406 407 408
{
	struct request_queue *q = rq->q;

	if (!q->softirq_done_fn)
409
		blk_mq_end_request(rq, rq->errors);
410 411 412 413
	else
		blk_mq_ipi_complete_request(rq);
}

414 415 416 417 418 419 420 421
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
422
void blk_mq_complete_request(struct request *rq, int error)
423
{
424 425 426
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
427
		return;
428 429
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
430
		__blk_mq_complete_request(rq);
431
	}
432 433
}
EXPORT_SYMBOL(blk_mq_complete_request);
434

435 436 437 438 439 440
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

441
void blk_mq_start_request(struct request *rq)
442 443 444 445 446
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
447
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
448 449
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
450

451
	blk_add_timer(rq);
452

453 454 455 456 457 458
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

459 460 461 462 463 464
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
465 466 467 468
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
469 470 471 472 473 474 475 476 477

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
478
}
479
EXPORT_SYMBOL(blk_mq_start_request);
480

481
static void __blk_mq_requeue_request(struct request *rq)
482 483 484 485
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
486

487 488 489 490
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
491 492
}

493 494 495 496 497
void blk_mq_requeue_request(struct request *rq)
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
498
	blk_mq_add_to_requeue_list(rq, true);
499 500 501
}
EXPORT_SYMBOL(blk_mq_requeue_request);

502 503 504
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
505
		container_of(work, struct request_queue, requeue_work.work);
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
			continue;

		rq->cmd_flags &= ~REQ_SOFTBARRIER;
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

529 530 531 532 533
	/*
	 * Use the start variant of queue running here, so that running
	 * the requeue work will kick stopped queues.
	 */
	blk_mq_start_hw_queues(q);
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
}

void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
		rq->cmd_flags |= REQ_SOFTBARRIER;
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

558 559
void blk_mq_cancel_requeue_work(struct request_queue *q)
{
560
	cancel_delayed_work_sync(&q->requeue_work);
561 562 563
}
EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);

564 565
void blk_mq_kick_requeue_list(struct request_queue *q)
{
566
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
567 568 569
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

570 571 572 573 574 575 576 577
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

598 599
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
600 601
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
602
		return tags->rqs[tag];
603
	}
604 605

	return NULL;
606 607 608
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

609
struct blk_mq_timeout_data {
610 611
	unsigned long next;
	unsigned int next_set;
612 613
};

614
void blk_mq_rq_timed_out(struct request *req, bool reserved)
615
{
616 617
	struct blk_mq_ops *ops = req->q->mq_ops;
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
618 619 620 621 622 623 624 625 626 627

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
628 629
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
630

631
	if (ops->timeout)
632
		ret = ops->timeout(req, reserved);
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
648
}
649

650 651 652 653
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
654

655 656 657 658 659
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		/*
		 * If a request wasn't started before the queue was
		 * marked dying, kill it here or it'll go unnoticed.
		 */
660 661 662 663
		if (unlikely(blk_queue_dying(rq->q))) {
			rq->errors = -EIO;
			blk_mq_end_request(rq, rq->errors);
		}
664
		return;
665
	}
666

667 668
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
669
			blk_mq_rq_timed_out(rq, reserved);
670 671 672 673
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
674 675
}

676
static void blk_mq_timeout_work(struct work_struct *work)
677
{
678 679
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
680 681 682 683 684
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
685

686 687 688 689 690 691 692 693 694 695 696 697 698 699
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
	 * blk_mq_freeze_queue_start, and the moment the last request is
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
700 701
		return;

702
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
703

704 705 706
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
707
	} else {
708 709
		struct blk_mq_hw_ctx *hctx;

710 711 712 713 714
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
715
	}
716
	blk_queue_exit(q);
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

758 759 760 761 762 763 764 765 766
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
	struct blk_mq_ctx *ctx;
	int i;

767
	for (i = 0; i < hctx->ctx_map.size; i++) {
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
		unsigned int off, bit;

		if (!bm->word)
			continue;

		bit = 0;
		off = i * hctx->ctx_map.bits_per_word;
		do {
			bit = find_next_bit(&bm->word, bm->depth, bit);
			if (bit >= bm->depth)
				break;

			ctx = hctx->ctxs[bit + off];
			clear_bit(bit, &bm->word);
			spin_lock(&ctx->lock);
			list_splice_tail_init(&ctx->rq_list, list);
			spin_unlock(&ctx->lock);

			bit++;
		} while (1);
	}
}

792 793 794 795 796 797 798 799
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;

	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
}

800 801 802 803 804 805 806 807 808 809 810
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
811 812
	LIST_HEAD(driver_list);
	struct list_head *dptr;
813
	int queued;
814

815
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
816 817
		return;

818 819 820
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

821 822 823 824 825
	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
826
	flush_busy_ctxs(hctx, &rq_list);
827 828 829 830 831 832 833 834 835 836 837 838

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

839 840 841 842 843 844
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

845 846 847
	/*
	 * Now process all the entries, sending them to the driver.
	 */
848
	queued = 0;
849
	while (!list_empty(&rq_list)) {
850
		struct blk_mq_queue_data bd;
851 852 853 854 855
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

856 857 858 859 860
		bd.rq = rq;
		bd.list = dptr;
		bd.last = list_empty(&rq_list);

		ret = q->mq_ops->queue_rq(hctx, &bd);
861 862 863
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
864
			break;
865 866
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
867
			__blk_mq_requeue_request(rq);
868 869 870 871
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
872
			rq->errors = -EIO;
873
			blk_mq_end_request(rq, rq->errors);
874 875 876 877 878
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
879 880 881 882 883 884 885

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
		if (!dptr && rq_list.next != rq_list.prev)
			dptr = &driver_list;
886 887
	}

888
	hctx->dispatched[queued_to_index(queued)]++;
889 890 891 892 893 894 895 896 897

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
898 899 900 901 902 903 904 905 906 907
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
		 **/
		blk_mq_run_hw_queue(hctx, true);
908 909 910
	}
}

911 912 913 914 915 916 917 918
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
919 920
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
921 922

	if (--hctx->next_cpu_batch <= 0) {
923
		int cpu = hctx->next_cpu, next_cpu;
924 925 926 927 928 929 930

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
931 932

		return cpu;
933 934
	}

935
	return hctx->next_cpu;
936 937
}

938 939
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
940 941
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
	    !blk_mq_hw_queue_mapped(hctx)))
942 943
		return;

944
	if (!async) {
945 946
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
947
			__blk_mq_run_hw_queue(hctx);
948
			put_cpu();
949 950
			return;
		}
951

952
		put_cpu();
953
	}
954

955
	kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
956 957
}

958
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
959 960 961 962 963 964 965
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
966
		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
967 968
			continue;

969
		blk_mq_run_hw_queue(hctx, async);
970 971
	}
}
972
EXPORT_SYMBOL(blk_mq_run_hw_queues);
973 974 975

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
976
	cancel_work(&hctx->run_work);
977
	cancel_delayed_work(&hctx->delay_work);
978 979 980 981
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

982 983 984 985 986 987 988 989 990 991
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

992 993 994
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
995

996
	blk_mq_run_hw_queue(hctx, false);
997 998 999
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1010
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1011 1012 1013 1014 1015 1016 1017 1018 1019
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1020
		blk_mq_run_hw_queue(hctx, async);
1021 1022 1023 1024
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1025
static void blk_mq_run_work_fn(struct work_struct *work)
1026 1027 1028
{
	struct blk_mq_hw_ctx *hctx;

1029
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1030

1031 1032 1033
	__blk_mq_run_hw_queue(hctx);
}

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1046 1047
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1048

1049 1050
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1051 1052 1053
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1054 1055 1056
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1057
{
J
Jens Axboe 已提交
1058 1059
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1060 1061
	trace_block_rq_insert(hctx->queue, rq);

1062 1063 1064 1065
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1066
}
1067

1068 1069 1070 1071 1072
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
				    struct request *rq, bool at_head)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1073
	__blk_mq_insert_req_list(hctx, rq, at_head);
1074 1075 1076
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1077
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
J
Jens Axboe 已提交
1078
			   bool async)
1079
{
J
Jens Axboe 已提交
1080
	struct blk_mq_ctx *ctx = rq->mq_ctx;
1081
	struct request_queue *q = rq->q;
1082 1083 1084 1085
	struct blk_mq_hw_ctx *hctx;

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1086 1087 1088
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, at_head);
	spin_unlock(&ctx->lock);
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
	struct blk_mq_hw_ctx *hctx;

	trace_block_unplug(q, depth, !from_schedule);

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1116
		BUG_ON(rq->mq_ctx != ctx);
1117
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1118
		__blk_mq_insert_req_list(hctx, rq, false);
1119
	}
1120
	blk_mq_hctx_mark_pending(hctx, ctx);
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1186

1187
	blk_account_io_start(rq, 1);
1188 1189
}

1190 1191 1192 1193 1194 1195
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1196 1197 1198
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1199
{
1200
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1201 1202 1203 1204 1205 1206 1207
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1208 1209
		struct request_queue *q = hctx->queue;

1210 1211 1212 1213 1214
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1215

1216 1217 1218
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1219
	}
1220
}
1221

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
struct blk_map_ctx {
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
};

static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
					  struct blk_map_ctx *data)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
1234 1235
	int op = bio_data_dir(bio);
	int op_flags = 0;
1236
	struct blk_mq_alloc_data alloc_data;
1237

1238
	blk_queue_enter_live(q);
1239 1240 1241
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

J
Jens Axboe 已提交
1242
	if (rw_is_sync(bio_op(bio), bio->bi_opf))
1243
		op_flags |= REQ_SYNC;
1244

1245
	trace_block_getrq(q, bio, op);
1246
	blk_mq_set_alloc_data(&alloc_data, q, BLK_MQ_REQ_NOWAIT, ctx, hctx);
1247
	rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
1248
	if (unlikely(!rq)) {
1249
		__blk_mq_run_hw_queue(hctx);
1250
		blk_mq_put_ctx(ctx);
1251
		trace_block_sleeprq(q, bio, op);
1252 1253

		ctx = blk_mq_get_ctx(q);
1254
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1255
		blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
1256
		rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
1257 1258
		ctx = alloc_data.ctx;
		hctx = alloc_data.hctx;
1259 1260 1261
	}

	hctx->queued++;
1262 1263 1264 1265 1266
	data->hctx = hctx;
	data->ctx = ctx;
	return rq;
}

1267
static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
{
	int ret;
	struct request_queue *q = rq->q;
	struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
			rq->mq_ctx->cpu);
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};
1278
	blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1279 1280 1281 1282 1283 1284 1285

	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1286 1287
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1288
		return 0;
1289
	}
1290

1291 1292 1293 1294 1295 1296 1297
	__blk_mq_requeue_request(rq);

	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
		return 0;
1298
	}
1299 1300

	return -1;
1301 1302
}

1303 1304 1305 1306 1307
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
1308
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1309
{
J
Jens Axboe 已提交
1310 1311
	const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1312 1313
	struct blk_map_ctx data;
	struct request *rq;
1314 1315
	unsigned int request_count = 0;
	struct blk_plug *plug;
1316
	struct request *same_queue_rq = NULL;
1317
	blk_qc_t cookie;
1318 1319 1320 1321

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1322
		bio_io_error(bio);
1323
		return BLK_QC_T_NONE;
1324 1325
	}

1326 1327
	blk_queue_split(q, &bio, q->bio_split);

1328 1329 1330
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1331

1332 1333
	rq = blk_mq_map_request(q, bio, &data);
	if (unlikely(!rq))
1334
		return BLK_QC_T_NONE;
1335

1336
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1337 1338 1339 1340 1341 1342 1343

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

1344
	plug = current->plug;
1345 1346 1347 1348 1349
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1350 1351 1352
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1353 1354 1355 1356

		blk_mq_bio_to_request(rq, bio);

		/*
1357
		 * We do limited pluging. If the bio can be merged, do that.
1358 1359
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1360
		 */
1361
		if (plug) {
1362 1363
			/*
			 * The plug list might get flushed before this. If that
1364 1365 1366
			 * happens, same_queue_rq is invalid and plug list is
			 * empty
			 */
1367 1368
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1369
				list_del_init(&old_rq->queuelist);
1370
			}
1371 1372 1373 1374 1375
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1376 1377 1378
			goto done;
		if (!blk_mq_direct_issue_request(old_rq, &cookie))
			goto done;
1379
		blk_mq_insert_request(old_rq, false, true, true);
1380
		goto done;
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
1394 1395
done:
	return cookie;
1396 1397 1398 1399 1400 1401
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
1402
static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1403
{
J
Jens Axboe 已提交
1404 1405
	const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1406 1407
	struct blk_plug *plug;
	unsigned int request_count = 0;
1408 1409
	struct blk_map_ctx data;
	struct request *rq;
1410
	blk_qc_t cookie;
1411 1412 1413 1414

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1415
		bio_io_error(bio);
1416
		return BLK_QC_T_NONE;
1417 1418
	}

1419 1420
	blk_queue_split(q, &bio, q->bio_split);

1421 1422 1423 1424 1425
	if (!is_flush_fua && !blk_queue_nomerges(q)) {
		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
			return BLK_QC_T_NONE;
	} else
		request_count = blk_plug_queued_count(q);
1426 1427

	rq = blk_mq_map_request(q, bio, &data);
1428
	if (unlikely(!rq))
1429
		return BLK_QC_T_NONE;
1430

1431
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1444 1445 1446
	plug = current->plug;
	if (plug) {
		blk_mq_bio_to_request(rq, bio);
M
Ming Lei 已提交
1447
		if (!request_count)
1448
			trace_block_plug(q);
1449 1450 1451 1452

		blk_mq_put_ctx(data.ctx);

		if (request_count >= BLK_MAX_REQUEST_COUNT) {
1453 1454
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1455
		}
1456

1457
		list_add_tail(&rq->queuelist, &plug->mq_list);
1458
		return cookie;
1459 1460
	}

1461 1462 1463 1464 1465 1466 1467 1468 1469
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1470 1471
	}

1472
	blk_mq_put_ctx(data.ctx);
1473
	return cookie;
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
}

/*
 * Default mapping to a software queue, since we use one per CPU.
 */
struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
{
	return q->queue_hw_ctx[q->mq_map[cpu]];
}
EXPORT_SYMBOL(blk_mq_map_queue);

1485 1486
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1487
{
1488
	struct page *page;
1489

1490
	if (tags->rqs && set->ops->exit_request) {
1491
		int i;
1492

1493 1494
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1495
				continue;
1496 1497
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1498
			tags->rqs[i] = NULL;
1499
		}
1500 1501
	}

1502 1503
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1504
		list_del_init(&page->lru);
1505 1506 1507 1508 1509
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1510 1511 1512
		__free_pages(page, page->private);
	}

1513
	kfree(tags->rqs);
1514

1515
	blk_mq_free_tags(tags);
1516 1517 1518 1519
}

static size_t order_to_size(unsigned int order)
{
1520
	return (size_t)PAGE_SIZE << order;
1521 1522
}

1523 1524
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1525
{
1526
	struct blk_mq_tags *tags;
1527 1528 1529
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1530
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
S
Shaohua Li 已提交
1531 1532
				set->numa_node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1533 1534
	if (!tags)
		return NULL;
1535

1536 1537
	INIT_LIST_HEAD(&tags->page_list);

1538 1539 1540
	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
1541 1542 1543 1544
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1545 1546 1547 1548 1549

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1550
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1551
				cache_line_size());
1552
	left = rq_size * set->queue_depth;
1553

1554
	for (i = 0; i < set->queue_depth; ) {
1555 1556 1557 1558 1559
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1560
		while (this_order && left < order_to_size(this_order - 1))
1561 1562 1563
			this_order--;

		do {
1564
			page = alloc_pages_node(set->numa_node,
1565
				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1566
				this_order);
1567 1568 1569 1570 1571 1572 1573 1574 1575
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1576
			goto fail;
1577 1578

		page->private = this_order;
1579
		list_add_tail(&page->lru, &tags->page_list);
1580 1581

		p = page_address(page);
1582 1583 1584 1585 1586
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1587
		entries_per_page = order_to_size(this_order) / rq_size;
1588
		to_do = min(entries_per_page, set->queue_depth - i);
1589 1590
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1591 1592 1593 1594
			tags->rqs[i] = p;
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
1595 1596
						set->numa_node)) {
					tags->rqs[i] = NULL;
1597
					goto fail;
1598
				}
1599 1600
			}

1601 1602 1603 1604
			p += rq_size;
			i++;
		}
	}
1605
	return tags;
1606

1607 1608 1609
fail:
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1610 1611
}

1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
{
	kfree(bitmap->map);
}

static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
{
	unsigned int bpw = 8, total, num_maps, i;

	bitmap->bits_per_word = bpw;

	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
					GFP_KERNEL, node);
	if (!bitmap->map)
		return -ENOMEM;

	total = nr_cpu_ids;
	for (i = 0; i < num_maps; i++) {
		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
		total -= bitmap->map[i].depth;
	}

	return 0;
}

J
Jens Axboe 已提交
1638 1639 1640 1641 1642
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1643 1644 1645 1646 1647
static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

J
Jens Axboe 已提交
1648
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
		return NOTIFY_OK;

J
Jens Axboe 已提交
1660 1661 1662
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674

	blk_mq_run_hw_queue(hctx, true);
	return NOTIFY_OK;
}

static int blk_mq_hctx_notify(void *data, unsigned long action,
			      unsigned int cpu)
{
	struct blk_mq_hw_ctx *hctx = data;

	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
		return blk_mq_hctx_cpu_offline(hctx, cpu);
M
Ming Lei 已提交
1675 1676 1677 1678 1679

	/*
	 * In case of CPU online, tags may be reallocated
	 * in blk_mq_map_swqueue() after mapping is updated.
	 */
1680 1681 1682 1683

	return NOTIFY_OK;
}

1684
/* hctx->ctxs will be freed in queue's release handler */
1685 1686 1687 1688
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1689 1690
	unsigned flush_start_tag = set->queue_depth;

1691 1692
	blk_mq_tag_idle(hctx);

1693 1694 1695 1696 1697
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1698 1699 1700 1701
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1702
	blk_free_flush_queue(hctx->fq);
1703 1704 1705
	blk_mq_free_bitmap(&hctx->ctx_map);
}

M
Ming Lei 已提交
1706 1707 1708 1709 1710 1711 1712 1713 1714
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1715
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1716 1717 1718 1719 1720 1721 1722 1723 1724
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

1725
	queue_for_each_hw_ctx(q, hctx, i)
M
Ming Lei 已提交
1726 1727 1728
		free_cpumask_var(hctx->cpumask);
}

1729 1730 1731
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1732
{
1733
	int node;
1734
	unsigned flush_start_tag = set->queue_depth;
1735 1736 1737 1738 1739

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1740
	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1741 1742 1743 1744 1745
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1746
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1747 1748 1749 1750 1751 1752

	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
					blk_mq_hctx_notify, hctx);
	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);

	hctx->tags = set->tags[hctx_idx];
1753 1754

	/*
1755 1756
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1757
	 */
1758 1759 1760 1761
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1762

1763 1764
	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
		goto free_ctxs;
1765

1766
	hctx->nr_ctx = 0;
1767

1768 1769 1770
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1771

1772 1773 1774
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1775

1776 1777 1778 1779 1780
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1781

1782
	return 0;
1783

1784 1785 1786 1787 1788
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1789 1790 1791 1792 1793 1794
 free_bitmap:
	blk_mq_free_bitmap(&hctx->ctx_map);
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1795

1796 1797
	return -1;
}
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

1818 1819
		hctx = q->mq_ops->map_queue(q, i);

1820 1821 1822 1823 1824
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1825
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1826 1827 1828
	}
}

1829 1830
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
1831 1832 1833 1834
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
1835
	struct blk_mq_tag_set *set = q->tag_set;
1836

1837 1838 1839 1840 1841
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

1842
	queue_for_each_hw_ctx(q, hctx, i) {
1843
		cpumask_clear(hctx->cpumask);
1844 1845 1846 1847 1848 1849
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
1850
	for_each_possible_cpu(i) {
1851
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1852
		if (!cpumask_test_cpu(i, online_mask))
1853 1854
			continue;

1855
		ctx = per_cpu_ptr(q->queue_ctx, i);
1856
		hctx = q->mq_ops->map_queue(q, i);
K
Keith Busch 已提交
1857

1858
		cpumask_set_cpu(i, hctx->cpumask);
1859 1860 1861
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1862

1863 1864
	mutex_unlock(&q->sysfs_lock);

1865
	queue_for_each_hw_ctx(q, hctx, i) {
1866 1867
		struct blk_mq_ctxmap *map = &hctx->ctx_map;

1868
		/*
1869 1870
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
1871 1872 1873 1874 1875 1876
		 */
		if (!hctx->nr_ctx) {
			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
			}
M
Ming Lei 已提交
1877
			hctx->tags = NULL;
1878 1879 1880
			continue;
		}

M
Ming Lei 已提交
1881 1882 1883 1884 1885 1886
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[i])
			set->tags[i] = blk_mq_init_rq_map(set, i);
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

1887
		cpumask_copy(hctx->tags->cpumask, hctx->cpumask);
1888 1889 1890 1891 1892
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
1893
		map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1894

1895 1896 1897
		/*
		 * Initialize batch roundrobin counts
		 */
1898 1899 1900
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1901 1902
}

1903
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1904 1905 1906 1907
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
1919 1920 1921

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
1922
		queue_set_hctx_shared(q, shared);
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
1933 1934 1935 1936 1937 1938
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
1939 1940 1941 1942 1943 1944 1945 1946 1947
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
1948 1949 1950 1951 1952 1953 1954 1955 1956

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
1957
	list_add_tail(&q->tag_set_list, &set->tag_list);
1958

1959 1960 1961
	mutex_unlock(&set->tag_list_lock);
}

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
1974 1975 1976 1977
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
		kfree(hctx->ctxs);
1978
		kfree(hctx);
1979
	}
1980

1981 1982 1983
	kfree(q->mq_map);
	q->mq_map = NULL;

1984 1985 1986 1987 1988 1989
	kfree(q->queue_hw_ctx);

	/* ctx kobj stays in queue_ctx */
	free_percpu(q->queue_ctx);
}

1990
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
2006 2007
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2008
{
K
Keith Busch 已提交
2009 2010
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2011

K
Keith Busch 已提交
2012
	blk_mq_sysfs_unregister(q);
2013
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2014
		int node;
2015

K
Keith Busch 已提交
2016 2017 2018 2019
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2020 2021
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2022
		if (!hctxs[i])
K
Keith Busch 已提交
2023
			break;
2024

2025
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2026 2027 2028 2029 2030
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2031

2032
		atomic_set(&hctxs[i]->nr_active, 0);
2033
		hctxs[i]->numa_node = node;
2034
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2035 2036 2037 2038 2039 2040 2041 2042

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2043
	}
K
Keith Busch 已提交
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
			if (hctx->tags) {
				blk_mq_free_rq_map(set, hctx->tags, j);
				set->tags[j] = NULL;
			}
			blk_mq_exit_hctx(q, set, hctx, j);
			free_cpumask_var(hctx->cpumask);
			kobject_put(&hctx->kobj);
			kfree(hctx->ctxs);
			kfree(hctx);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2068 2069 2070
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

K
Keith Busch 已提交
2071 2072
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2073
		goto err_exit;
K
Keith Busch 已提交
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086

	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

	q->mq_map = blk_mq_make_queue_map(set);
	if (!q->mq_map)
		goto err_map;

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2087

2088
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2089
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2090 2091 2092

	q->nr_queues = nr_cpu_ids;

2093
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2094

2095 2096 2097
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2098 2099
	q->sg_reserved_size = INT_MAX;

2100
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2101 2102 2103
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2104 2105 2106 2107 2108
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2109 2110 2111 2112 2113
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2114 2115
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2116

2117
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2118

2119
	get_online_cpus();
2120 2121
	mutex_lock(&all_q_mutex);

2122
	list_add_tail(&q->all_q_node, &all_q_list);
2123
	blk_mq_add_queue_tag_set(set, q);
2124
	blk_mq_map_swqueue(q, cpu_online_mask);
2125

2126
	mutex_unlock(&all_q_mutex);
2127
	put_online_cpus();
2128

2129
	return q;
2130

2131
err_hctxs:
K
Keith Busch 已提交
2132
	kfree(q->mq_map);
2133
err_map:
K
Keith Busch 已提交
2134
	kfree(q->queue_hw_ctx);
2135
err_percpu:
K
Keith Busch 已提交
2136
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2137 2138
err_exit:
	q->mq_ops = NULL;
2139 2140
	return ERR_PTR(-ENOMEM);
}
2141
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2142 2143 2144

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2145
	struct blk_mq_tag_set	*set = q->tag_set;
2146

2147 2148 2149 2150
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2151 2152
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2153 2154
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
2155 2156 2157
}

/* Basically redo blk_mq_init_queue with queue frozen */
2158 2159
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2160
{
2161
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2162

2163 2164
	blk_mq_sysfs_unregister(q);

2165
	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2166 2167 2168 2169 2170 2171 2172

	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2173
	blk_mq_map_swqueue(q, online_mask);
2174

2175
	blk_mq_sysfs_register(q);
2176 2177
}

2178 2179
static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
				      unsigned long action, void *hcpu)
2180 2181
{
	struct request_queue *q;
2182 2183 2184 2185 2186 2187 2188
	int cpu = (unsigned long)hcpu;
	/*
	 * New online cpumask which is going to be set in this hotplug event.
	 * Declare this cpumasks as global as cpu-hotplug operation is invoked
	 * one-by-one and dynamically allocating this could result in a failure.
	 */
	static struct cpumask online_new;
2189 2190

	/*
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
	 * Before hotadded cpu starts handling requests, new mappings must
	 * be established.  Otherwise, these requests in hw queue might
	 * never be dispatched.
	 *
	 * For example, there is a single hw queue (hctx) and two CPU queues
	 * (ctx0 for CPU0, and ctx1 for CPU1).
	 *
	 * Now CPU1 is just onlined and a request is inserted into
	 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
	 * still zero.
	 *
	 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
	 * set in pending bitmap and tries to retrieve requests in
	 * hctx->ctxs[0]->rq_list.  But htx->ctxs[0] is a pointer to ctx0,
	 * so the request in ctx1->rq_list is ignored.
2206
	 */
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DEAD:
	case CPU_UP_CANCELED:
		cpumask_copy(&online_new, cpu_online_mask);
		break;
	case CPU_UP_PREPARE:
		cpumask_copy(&online_new, cpu_online_mask);
		cpumask_set_cpu(cpu, &online_new);
		break;
	default:
2217
		return NOTIFY_OK;
2218
	}
2219 2220

	mutex_lock(&all_q_mutex);
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230

	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2231
	list_for_each_entry(q, &all_q_list, all_q_node) {
2232 2233
		blk_mq_freeze_queue_wait(q);

2234 2235 2236 2237 2238 2239 2240
		/*
		 * timeout handler can't touch hw queue during the
		 * reinitialization
		 */
		del_timer_sync(&q->timeout);
	}

2241
	list_for_each_entry(q, &all_q_list, all_q_node)
2242
		blk_mq_queue_reinit(q, &online_new);
2243 2244 2245 2246

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2247 2248 2249 2250
	mutex_unlock(&all_q_mutex);
	return NOTIFY_OK;
}

2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

K
Keith Busch 已提交
2305 2306 2307 2308 2309 2310
struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
{
	return tags->cpumask;
}
EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);

2311 2312 2313 2314 2315 2316
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2317 2318
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
B
Bart Van Assche 已提交
2319 2320
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2321 2322
	if (!set->nr_hw_queues)
		return -EINVAL;
2323
	if (!set->queue_depth)
2324 2325 2326 2327
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

2328
	if (!set->ops->queue_rq || !set->ops->map_queue)
2329 2330
		return -EINVAL;

2331 2332 2333 2334 2335
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2336

2337 2338 2339 2340 2341 2342 2343 2344 2345
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2346 2347 2348 2349 2350
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2351

K
Keith Busch 已提交
2352
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2353 2354
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2355
		return -ENOMEM;
2356

2357 2358
	if (blk_mq_alloc_rq_maps(set))
		goto enomem;
2359

2360 2361 2362
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2363
	return 0;
2364
enomem:
2365 2366
	kfree(set->tags);
	set->tags = NULL;
2367 2368 2369 2370 2371 2372 2373 2374
	return -ENOMEM;
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

K
Keith Busch 已提交
2375
	for (i = 0; i < nr_cpu_ids; i++) {
2376
		if (set->tags[i])
2377 2378 2379
			blk_mq_free_rq_map(set, set->tags[i], i);
	}

M
Ming Lei 已提交
2380
	kfree(set->tags);
2381
	set->tags = NULL;
2382 2383 2384
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2396 2397
		if (!hctx->tags)
			continue;
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

K
Keith Busch 已提交
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);

		if (q->nr_hw_queues > 1)
			blk_queue_make_request(q, blk_mq_make_request);
		else
			blk_queue_make_request(q, blk_sq_make_request);

		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2448 2449 2450 2451
static int __init blk_mq_init(void)
{
	blk_mq_cpu_init();

2452
	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2453 2454 2455 2456

	return 0;
}
subsys_initcall(blk_mq_init);