blk-mq.c 47.0 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
	unsigned int i;

43 44
	for (i = 0; i < hctx->ctx_map.map_size; i++)
		if (hctx->ctx_map.map[i].word)
45 46 47 48 49
			return true;

	return false;
}

50 51 52 53 54 55 56 57 58
static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
					      struct blk_mq_ctx *ctx)
{
	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
}

#define CTX_TO_BIT(hctx, ctx)	\
	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))

59 60 61 62 63 64
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
65 66 67 68 69 70 71 72 73 74 75 76
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
77 78 79 80
}

static int blk_mq_queue_enter(struct request_queue *q)
{
81 82
	while (true) {
		int ret;
83

84 85
		if (percpu_ref_tryget_live(&q->mq_usage_counter))
			return 0;
86

87 88 89 90 91 92 93
		ret = wait_event_interruptible(q->mq_freeze_wq,
				!q->mq_freeze_depth || blk_queue_dying(q));
		if (blk_queue_dying(q))
			return -ENODEV;
		if (ret)
			return ret;
	}
94 95 96 97
}

static void blk_mq_queue_exit(struct request_queue *q)
{
98 99 100 101 102 103 104 105 106
	percpu_ref_put(&q->mq_usage_counter);
}

static void blk_mq_usage_counter_release(struct percpu_ref *ref)
{
	struct request_queue *q =
		container_of(ref, struct request_queue, mq_usage_counter);

	wake_up_all(&q->mq_freeze_wq);
107 108
}

109 110 111 112 113
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
void blk_mq_freeze_queue(struct request_queue *q)
114
{
115 116
	bool freeze;

117
	spin_lock_irq(q->queue_lock);
118
	freeze = !q->mq_freeze_depth++;
119 120
	spin_unlock_irq(q->queue_lock);

121 122 123 124
	if (freeze) {
		percpu_ref_kill(&q->mq_usage_counter);
		blk_mq_run_queues(q, false);
	}
125
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
126 127
}

128 129
static void blk_mq_unfreeze_queue(struct request_queue *q)
{
130
	bool wake;
131 132

	spin_lock_irq(q->queue_lock);
133 134
	wake = !--q->mq_freeze_depth;
	WARN_ON_ONCE(q->mq_freeze_depth < 0);
135
	spin_unlock_irq(q->queue_lock);
136 137
	if (wake) {
		percpu_ref_reinit(&q->mq_usage_counter);
138
		wake_up_all(&q->mq_freeze_wq);
139
	}
140 141 142 143 144 145 146 147
}

bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

148 149
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			       struct request *rq, unsigned int rw_flags)
150
{
151 152 153
	if (blk_queue_io_stat(q))
		rw_flags |= REQ_IO_STAT;

154 155 156
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
157
	rq->mq_ctx = ctx;
158
	rq->cmd_flags |= rw_flags;
159 160 161 162 163 164
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
165
	rq->start_time = jiffies;
166 167
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
168
	set_start_time_ns(rq);
169 170 171 172 173 174 175 176 177 178
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

179 180
	rq->cmd = rq->__cmd;

181 182 183 184 185 186
	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
187 188
	rq->timeout = 0;

189 190 191 192
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

193 194 195
	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
}

196
static struct request *
197
__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
198 199 200 201
{
	struct request *rq;
	unsigned int tag;

202
	tag = blk_mq_get_tag(data);
203
	if (tag != BLK_MQ_TAG_FAIL) {
204
		rq = data->hctx->tags->rqs[tag];
205

206
		if (blk_mq_tag_busy(data->hctx)) {
207
			rq->cmd_flags = REQ_MQ_INFLIGHT;
208
			atomic_inc(&data->hctx->nr_active);
209 210 211
		}

		rq->tag = tag;
212
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
213 214 215 216 217 218
		return rq;
	}

	return NULL;
}

219 220
struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
		bool reserved)
221
{
222 223
	struct blk_mq_ctx *ctx;
	struct blk_mq_hw_ctx *hctx;
224
	struct request *rq;
225
	struct blk_mq_alloc_data alloc_data;
226
	int ret;
227

228 229 230
	ret = blk_mq_queue_enter(q);
	if (ret)
		return ERR_PTR(ret);
231

232 233
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);
234 235
	blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
			reserved, ctx, hctx);
236

237
	rq = __blk_mq_alloc_request(&alloc_data, rw);
238 239 240 241 242 243
	if (!rq && (gfp & __GFP_WAIT)) {
		__blk_mq_run_hw_queue(hctx);
		blk_mq_put_ctx(ctx);

		ctx = blk_mq_get_ctx(q);
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
244 245 246 247
		blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
				hctx);
		rq =  __blk_mq_alloc_request(&alloc_data, rw);
		ctx = alloc_data.ctx;
248 249
	}
	blk_mq_put_ctx(ctx);
250 251
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);
252 253
	return rq;
}
254
EXPORT_SYMBOL(blk_mq_alloc_request);
255 256 257 258 259 260 261

static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

262 263
	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
		atomic_dec(&hctx->nr_active);
264
	rq->cmd_flags = 0;
265

266
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
267
	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
	blk_mq_queue_exit(q);
}

void blk_mq_free_request(struct request *rq)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q = rq->q;

	ctx->rq_completed[rq_is_sync(rq)]++;

	hctx = q->mq_ops->map_queue(q, ctx->cpu);
	__blk_mq_free_request(hctx, ctx, rq);
}

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
/*
 * Clone all relevant state from a request that has been put on hold in
 * the flush state machine into the preallocated flush request that hangs
 * off the request queue.
 *
 * For a driver the flush request should be invisible, that's why we are
 * impersonating the original request here.
 */
void blk_mq_clone_flush_request(struct request *flush_rq,
		struct request *orig_rq)
{
	struct blk_mq_hw_ctx *hctx =
		orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);

	flush_rq->mq_ctx = orig_rq->mq_ctx;
	flush_rq->tag = orig_rq->tag;
	memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
		hctx->cmd_size);
}

303
inline void __blk_mq_end_request(struct request *rq, int error)
304
{
M
Ming Lei 已提交
305 306
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
307
	if (rq->end_io) {
308
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
309 310 311
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
312
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
313
	}
314
}
315
EXPORT_SYMBOL(__blk_mq_end_request);
316

317
void blk_mq_end_request(struct request *rq, int error)
318 319 320
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
321
	__blk_mq_end_request(rq, error);
322
}
323
EXPORT_SYMBOL(blk_mq_end_request);
324

325
static void __blk_mq_complete_request_remote(void *data)
326
{
327
	struct request *rq = data;
328

329
	rq->q->softirq_done_fn(rq);
330 331
}

332
static void blk_mq_ipi_complete_request(struct request *rq)
333 334
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
335
	bool shared = false;
336 337
	int cpu;

C
Christoph Hellwig 已提交
338
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
339 340 341
		rq->q->softirq_done_fn(rq);
		return;
	}
342 343

	cpu = get_cpu();
C
Christoph Hellwig 已提交
344 345 346 347
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
348
		rq->csd.func = __blk_mq_complete_request_remote;
349 350
		rq->csd.info = rq;
		rq->csd.flags = 0;
351
		smp_call_function_single_async(ctx->cpu, &rq->csd);
352
	} else {
353
		rq->q->softirq_done_fn(rq);
354
	}
355 356
	put_cpu();
}
357

358 359 360 361 362
void __blk_mq_complete_request(struct request *rq)
{
	struct request_queue *q = rq->q;

	if (!q->softirq_done_fn)
363
		blk_mq_end_request(rq, rq->errors);
364 365 366 367
	else
		blk_mq_ipi_complete_request(rq);
}

368 369 370 371 372 373 374 375 376 377
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
void blk_mq_complete_request(struct request *rq)
{
378 379 380
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
381
		return;
382 383
	if (!blk_mark_rq_complete(rq))
		__blk_mq_complete_request(rq);
384 385
}
EXPORT_SYMBOL(blk_mq_complete_request);
386

387
void blk_mq_start_request(struct request *rq)
388 389 390 391 392
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
393
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
394 395
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
396

397
	blk_add_timer(rq);
398

399 400 401 402 403 404
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

405 406 407 408 409 410
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
411 412 413 414
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
415 416 417 418 419 420 421 422 423

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
424
}
425
EXPORT_SYMBOL(blk_mq_start_request);
426

427
static void __blk_mq_requeue_request(struct request *rq)
428 429 430 431
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
432

433 434 435 436
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
437 438
}

439 440 441 442 443 444
void blk_mq_requeue_request(struct request *rq)
{
	__blk_mq_requeue_request(rq);
	blk_clear_rq_complete(rq);

	BUG_ON(blk_queued_rq(rq));
445
	blk_mq_add_to_requeue_list(rq, true);
446 447 448
}
EXPORT_SYMBOL(blk_mq_requeue_request);

449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
		container_of(work, struct request_queue, requeue_work);
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
			continue;

		rq->cmd_flags &= ~REQ_SOFTBARRIER;
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

476 477 478 479 480
	/*
	 * Use the start variant of queue running here, so that running
	 * the requeue work will kick stopped queues.
	 */
	blk_mq_start_hw_queues(q);
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
}

void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
		rq->cmd_flags |= REQ_SOFTBARRIER;
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
	kblockd_schedule_work(&q->requeue_work);
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

511
static inline bool is_flush_request(struct request *rq, unsigned int tag)
512
{
513 514 515 516 517 518 519
	return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
			rq->q->flush_rq->tag == tag);
}

struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
	struct request *rq = tags->rqs[tag];
520

521 522
	if (!is_flush_request(rq, tag))
		return rq;
523

524
	return rq->q->flush_rq;
525 526 527
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

528 529 530 531 532 533
struct blk_mq_timeout_data {
	unsigned long next;
	unsigned int next_set;
};

static void blk_mq_rq_timed_out(struct request *req)
534
{
535 536
	struct blk_mq_ops *ops = req->q->mq_ops;
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
537 538 539 540 541 542 543 544 545 546

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
547 548
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
549

550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
	if (ops->timeout)
		ret = ops->timeout(req);

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
567
}
568 569 570 571 572
		
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
573

574 575 576 577 578 579 580 581 582 583
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		return;

	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
			blk_mq_rq_timed_out(rq);
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
584 585 586
}

static void blk_mq_rq_timer(unsigned long priv)
587
{
588 589 590 591 592
	struct request_queue *q = (struct request_queue *)priv;
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
593
	struct blk_mq_hw_ctx *hctx;
594
	int i;
595

596 597 598 599 600 601 602 603
	queue_for_each_hw_ctx(q, hctx, i) {
		/*
		 * If not software queues are currently mapped to this
		 * hardware queue, there's nothing to check
		 */
		if (!hctx->nr_ctx || !hctx->tags)
			continue;

604
		blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
605
	}
606

607 608 609
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
610 611 612 613
	} else {
		queue_for_each_hw_ctx(q, hctx, i)
			blk_mq_tag_idle(hctx);
	}
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
	struct blk_mq_ctx *ctx;
	int i;

	for (i = 0; i < hctx->ctx_map.map_size; i++) {
		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
		unsigned int off, bit;

		if (!bm->word)
			continue;

		bit = 0;
		off = i * hctx->ctx_map.bits_per_word;
		do {
			bit = find_next_bit(&bm->word, bm->depth, bit);
			if (bit >= bm->depth)
				break;

			ctx = hctx->ctxs[bit + off];
			clear_bit(bit, &bm->word);
			spin_lock(&ctx->lock);
			list_splice_tail_init(&ctx->rq_list, list);
			spin_unlock(&ctx->lock);

			bit++;
		} while (1);
	}
}

689 690 691 692 693 694 695 696 697 698 699
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
700
	int queued;
701

702
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
703

704
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
705 706 707 708 709 710 711
		return;

	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
712
	flush_busy_ctxs(hctx, &rq_list);
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

	/*
	 * Now process all the entries, sending them to the driver.
	 */
728
	queued = 0;
729 730 731 732 733 734
	while (!list_empty(&rq_list)) {
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

C
Christoph Hellwig 已提交
735
		ret = q->mq_ops->queue_rq(hctx, rq, list_empty(&rq_list));
736 737 738 739 740 741
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
			continue;
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
742
			__blk_mq_requeue_request(rq);
743 744 745 746
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
747
			rq->errors = -EIO;
748
			blk_mq_end_request(rq, rq->errors);
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
	}

	if (!queued)
		hctx->dispatched[0]++;
	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
		hctx->dispatched[ilog2(queued) + 1]++;

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
	}
}

772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = hctx->next_cpu;

	if (--hctx->next_cpu_batch <= 0) {
		int next_cpu;

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

	return cpu;
}

796 797
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
798
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
799 800
		return;

801
	if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
802
		__blk_mq_run_hw_queue(hctx);
803
	else if (hctx->queue->nr_hw_queues == 1)
804
		kblockd_schedule_delayed_work(&hctx->run_work, 0);
805 806 807
	else {
		unsigned int cpu;

808
		cpu = blk_mq_hctx_next_cpu(hctx);
809
		kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
810
	}
811 812 813 814 815 816 817 818 819 820
}

void blk_mq_run_queues(struct request_queue *q, bool async)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
821
		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
822 823
			continue;

824
		preempt_disable();
825
		blk_mq_run_hw_queue(hctx, async);
826
		preempt_enable();
827 828 829 830 831 832
	}
}
EXPORT_SYMBOL(blk_mq_run_queues);

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
833 834
	cancel_delayed_work(&hctx->run_work);
	cancel_delayed_work(&hctx->delay_work);
835 836 837 838
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

839 840 841 842 843 844 845 846 847 848
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

849 850 851
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
852 853

	preempt_disable();
854
	blk_mq_run_hw_queue(hctx, false);
855
	preempt_enable();
856 857 858
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

859 860 861 862 863 864 865 866 867 868 869
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);


870
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
871 872 873 874 875 876 877 878 879
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
880
		preempt_disable();
881
		blk_mq_run_hw_queue(hctx, async);
882
		preempt_enable();
883 884 885 886
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

887
static void blk_mq_run_work_fn(struct work_struct *work)
888 889 890
{
	struct blk_mq_hw_ctx *hctx;

891
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
892

893 894 895
	__blk_mq_run_hw_queue(hctx);
}

896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	unsigned long tmo = msecs_to_jiffies(msecs);

	if (hctx->queue->nr_hw_queues == 1)
		kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
	else {
		unsigned int cpu;

915
		cpu = blk_mq_hctx_next_cpu(hctx);
916 917 918 919 920
		kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
	}
}
EXPORT_SYMBOL(blk_mq_delay_queue);

921
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
922
				    struct request *rq, bool at_head)
923 924 925
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

926 927
	trace_block_rq_insert(hctx->queue, rq);

928 929 930 931
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
932

933 934 935
	blk_mq_hctx_mark_pending(hctx, ctx);
}

936 937
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
		bool async)
938
{
939
	struct request_queue *q = rq->q;
940
	struct blk_mq_hw_ctx *hctx;
941 942 943 944 945
	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;

	current_ctx = blk_mq_get_ctx(q);
	if (!cpu_online(ctx->cpu))
		rq->mq_ctx = ctx = current_ctx;
946 947 948

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

949 950 951
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, at_head);
	spin_unlock(&ctx->lock);
952 953 954

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
955 956

	blk_mq_put_ctx(current_ctx);
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *current_ctx;

	trace_block_unplug(q, depth, !from_schedule);

	current_ctx = blk_mq_get_ctx(q);

	if (!cpu_online(ctx->cpu))
		ctx = current_ctx;
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->mq_ctx = ctx;
988
		__blk_mq_insert_request(hctx, rq, false);
989 990 991 992
	}
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
993
	blk_mq_put_ctx(current_ctx);
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1056

1057
	if (blk_do_io_stat(rq))
1058
		blk_account_io_start(rq, 1);
1059 1060
}

1061 1062 1063 1064 1065 1066
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1067 1068 1069
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1070
{
1071
	if (!hctx_allow_merges(hctx)) {
1072 1073 1074 1075 1076 1077 1078
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1079 1080
		struct request_queue *q = hctx->queue;

1081 1082 1083 1084 1085
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1086

1087 1088 1089
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1090
	}
1091
}
1092

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
struct blk_map_ctx {
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
};

static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
					  struct blk_map_ctx *data)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	int rw = bio_data_dir(bio);
1106
	struct blk_mq_alloc_data alloc_data;
1107

1108
	if (unlikely(blk_mq_queue_enter(q))) {
1109
		bio_endio(bio, -EIO);
1110
		return NULL;
1111 1112 1113 1114 1115
	}

	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1116
	if (rw_is_sync(bio->bi_rw))
S
Shaohua Li 已提交
1117
		rw |= REQ_SYNC;
1118

1119
	trace_block_getrq(q, bio, rw);
1120 1121 1122
	blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
			hctx);
	rq = __blk_mq_alloc_request(&alloc_data, rw);
1123
	if (unlikely(!rq)) {
1124
		__blk_mq_run_hw_queue(hctx);
1125 1126
		blk_mq_put_ctx(ctx);
		trace_block_sleeprq(q, bio, rw);
1127 1128

		ctx = blk_mq_get_ctx(q);
1129
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1130 1131 1132 1133 1134
		blk_mq_set_alloc_data(&alloc_data, q,
				__GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
		rq = __blk_mq_alloc_request(&alloc_data, rw);
		ctx = alloc_data.ctx;
		hctx = alloc_data.hctx;
1135 1136 1137
	}

	hctx->queued++;
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
	data->hctx = hctx;
	data->ctx = ctx;
	return rq;
}

/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	struct blk_map_ctx data;
	struct request *rq;

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
		bio_endio(bio, -EIO);
		return;
	}

	rq = blk_mq_map_request(q, bio, &data);
	if (unlikely(!rq))
		return;

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	if (is_sync) {
		int ret;

		blk_mq_bio_to_request(rq, bio);

		/*
		 * For OK queue, we are done. For error, kill it. Any other
		 * error (busy), just add it to our list as we previously
		 * would have done
		 */
C
Christoph Hellwig 已提交
1182
		ret = q->mq_ops->queue_rq(data.hctx, rq, true);
1183 1184 1185 1186 1187 1188 1189
		if (ret == BLK_MQ_RQ_QUEUE_OK)
			goto done;
		else {
			__blk_mq_requeue_request(rq);

			if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
				rq->errors = -EIO;
1190
				blk_mq_end_request(rq, rq->errors);
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
				goto done;
			}
		}
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
done:
	blk_mq_put_ctx(data.ctx);
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	unsigned int use_plug, request_count = 0;
	struct blk_map_ctx data;
	struct request *rq;

	/*
	 * If we have multiple hardware queues, just go directly to
	 * one of those for sync IO.
	 */
	use_plug = !is_flush_fua && !is_sync;

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
		bio_endio(bio, -EIO);
		return;
	}

	if (use_plug && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count))
		return;

	rq = blk_mq_map_request(q, bio, &data);
1240 1241
	if (unlikely(!rq))
		return;
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
	if (use_plug) {
		struct blk_plug *plug = current->plug;

		if (plug) {
			blk_mq_bio_to_request(rq, bio);
S
Shaohua Li 已提交
1259
			if (list_empty(&plug->mq_list))
1260 1261 1262 1263 1264 1265
				trace_block_plug(q);
			else if (request_count >= BLK_MAX_REQUEST_COUNT) {
				blk_flush_plug_list(plug, false);
				trace_block_plug(q);
			}
			list_add_tail(&rq->queuelist, &plug->mq_list);
1266
			blk_mq_put_ctx(data.ctx);
1267 1268 1269 1270
			return;
		}
	}

1271 1272 1273 1274 1275 1276 1277 1278 1279
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1280 1281
	}

1282
	blk_mq_put_ctx(data.ctx);
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
}

/*
 * Default mapping to a software queue, since we use one per CPU.
 */
struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
{
	return q->queue_hw_ctx[q->mq_map[cpu]];
}
EXPORT_SYMBOL(blk_mq_map_queue);

1294 1295
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1296
{
1297
	struct page *page;
1298

1299
	if (tags->rqs && set->ops->exit_request) {
1300
		int i;
1301

1302 1303
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1304
				continue;
1305 1306
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1307
			tags->rqs[i] = NULL;
1308
		}
1309 1310
	}

1311 1312
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1313
		list_del_init(&page->lru);
1314 1315 1316
		__free_pages(page, page->private);
	}

1317
	kfree(tags->rqs);
1318

1319
	blk_mq_free_tags(tags);
1320 1321 1322 1323
}

static size_t order_to_size(unsigned int order)
{
1324
	return (size_t)PAGE_SIZE << order;
1325 1326
}

1327 1328
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1329
{
1330
	struct blk_mq_tags *tags;
1331 1332 1333
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1334 1335 1336 1337
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
				set->numa_node);
	if (!tags)
		return NULL;
1338

1339 1340
	INIT_LIST_HEAD(&tags->page_list);

1341 1342 1343
	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
1344 1345 1346 1347
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1348 1349 1350 1351 1352

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1353
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1354
				cache_line_size());
1355
	left = rq_size * set->queue_depth;
1356

1357
	for (i = 0; i < set->queue_depth; ) {
1358 1359 1360 1361 1362 1363 1364 1365 1366
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

		while (left < order_to_size(this_order - 1) && this_order)
			this_order--;

		do {
1367 1368 1369
			page = alloc_pages_node(set->numa_node,
				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				this_order);
1370 1371 1372 1373 1374 1375 1376 1377 1378
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1379
			goto fail;
1380 1381

		page->private = this_order;
1382
		list_add_tail(&page->lru, &tags->page_list);
1383 1384 1385

		p = page_address(page);
		entries_per_page = order_to_size(this_order) / rq_size;
1386
		to_do = min(entries_per_page, set->queue_depth - i);
1387 1388
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1389
			tags->rqs[i] = p;
1390 1391
			tags->rqs[i]->atomic_flags = 0;
			tags->rqs[i]->cmd_flags = 0;
1392 1393 1394
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
1395 1396
						set->numa_node)) {
					tags->rqs[i] = NULL;
1397
					goto fail;
1398
				}
1399 1400
			}

1401 1402 1403 1404 1405
			p += rq_size;
			i++;
		}
	}

1406
	return tags;
1407

1408 1409 1410
fail:
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1411 1412
}

1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
{
	kfree(bitmap->map);
}

static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
{
	unsigned int bpw = 8, total, num_maps, i;

	bitmap->bits_per_word = bpw;

	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
					GFP_KERNEL, node);
	if (!bitmap->map)
		return -ENOMEM;

	bitmap->map_size = num_maps;

	total = nr_cpu_ids;
	for (i = 0; i < num_maps; i++) {
		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
		total -= bitmap->map[i].depth;
	}

	return 0;
}

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

	/*
	 * Move ctx entries to new CPU, if this one is going away.
	 */
	ctx = __blk_mq_get_ctx(q, cpu);

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
		return NOTIFY_OK;

	ctx = blk_mq_get_ctx(q);
	spin_lock(&ctx->lock);

	while (!list_empty(&tmp)) {
		struct request *rq;

		rq = list_first_entry(&tmp, struct request, queuelist);
		rq->mq_ctx = ctx;
		list_move_tail(&rq->queuelist, &ctx->rq_list);
	}

	hctx = q->mq_ops->map_queue(q, ctx->cpu);
	blk_mq_hctx_mark_pending(hctx, ctx);

	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, true);
	blk_mq_put_ctx(ctx);
	return NOTIFY_OK;
}

static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_tag_set *set = q->tag_set;

	if (set->tags[hctx->queue_num])
		return NOTIFY_OK;

	set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
	if (!set->tags[hctx->queue_num])
		return NOTIFY_STOP;

	hctx->tags = set->tags[hctx->queue_num];
	return NOTIFY_OK;
}

static int blk_mq_hctx_notify(void *data, unsigned long action,
			      unsigned int cpu)
{
	struct blk_mq_hw_ctx *hctx = data;

	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
		return blk_mq_hctx_cpu_offline(hctx, cpu);
	else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
		return blk_mq_hctx_cpu_online(hctx, cpu);

	return NOTIFY_OK;
}

M
Ming Lei 已提交
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;

1522 1523
		blk_mq_tag_idle(hctx);

M
Ming Lei 已提交
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
		if (set->ops->exit_hctx)
			set->ops->exit_hctx(hctx, i);

		blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
		kfree(hctx->ctxs);
		blk_mq_free_bitmap(&hctx->ctx_map);
	}

}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		free_cpumask_var(hctx->cpumask);
1542
		kfree(hctx);
M
Ming Lei 已提交
1543 1544 1545
	}
}

1546
static int blk_mq_init_hw_queues(struct request_queue *q,
1547
		struct blk_mq_tag_set *set)
1548 1549
{
	struct blk_mq_hw_ctx *hctx;
M
Ming Lei 已提交
1550
	unsigned int i;
1551 1552 1553 1554 1555 1556 1557 1558 1559

	/*
	 * Initialize hardware queues
	 */
	queue_for_each_hw_ctx(q, hctx, i) {
		int node;

		node = hctx->numa_node;
		if (node == NUMA_NO_NODE)
1560
			node = hctx->numa_node = set->numa_node;
1561

1562 1563
		INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
		INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1564 1565 1566 1567
		spin_lock_init(&hctx->lock);
		INIT_LIST_HEAD(&hctx->dispatch);
		hctx->queue = q;
		hctx->queue_num = i;
1568 1569
		hctx->flags = set->flags;
		hctx->cmd_size = set->cmd_size;
1570 1571 1572 1573 1574

		blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
						blk_mq_hctx_notify, hctx);
		blk_mq_register_cpu_notifier(&hctx->cpu_notifier);

1575
		hctx->tags = set->tags[i];
1576 1577

		/*
1578
		 * Allocate space for all possible cpus to avoid allocation at
1579 1580 1581 1582 1583 1584 1585
		 * runtime
		 */
		hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
						GFP_KERNEL, node);
		if (!hctx->ctxs)
			break;

1586
		if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1587 1588 1589 1590
			break;

		hctx->nr_ctx = 0;

1591 1592
		if (set->ops->init_hctx &&
		    set->ops->init_hctx(hctx, set->driver_data, i))
1593 1594 1595 1596 1597 1598 1599 1600 1601
			break;
	}

	if (i == q->nr_hw_queues)
		return 0;

	/*
	 * Init failed
	 */
M
Ming Lei 已提交
1602
	blk_mq_exit_hw_queues(q, set, i);
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625

	return 1;
}

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

1626 1627 1628 1629
		hctx = q->mq_ops->map_queue(q, i);
		cpumask_set_cpu(i, hctx->cpumask);
		hctx->nr_ctx++;

1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
			hctx->numa_node = cpu_to_node(i);
	}
}

static void blk_mq_map_swqueue(struct request_queue *q)
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;

	queue_for_each_hw_ctx(q, hctx, i) {
1646
		cpumask_clear(hctx->cpumask);
1647 1648 1649 1650 1651 1652 1653 1654
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
	queue_for_each_ctx(q, ctx, i) {
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1655 1656 1657
		if (!cpu_online(i))
			continue;

1658
		hctx = q->mq_ops->map_queue(q, i);
1659
		cpumask_set_cpu(i, hctx->cpumask);
1660 1661 1662
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1663 1664

	queue_for_each_hw_ctx(q, hctx, i) {
1665
		/*
1666 1667
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
		 */
		if (!hctx->nr_ctx) {
			struct blk_mq_tag_set *set = q->tag_set;

			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
				hctx->tags = NULL;
			}
			continue;
		}

		/*
		 * Initialize batch roundrobin counts
		 */
1683 1684 1685
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1686 1687
}

1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q;
	bool shared;
	int i;

	if (set->tag_list.next == set->tag_list.prev)
		shared = false;
	else
		shared = true;

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);

		queue_for_each_hw_ctx(q, hctx, i) {
			if (shared)
				hctx->flags |= BLK_MQ_F_TAG_SHARED;
			else
				hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
		}
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
	blk_mq_update_tag_set_depth(set);
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
	list_add_tail(&q->tag_set_list, &set->tag_list);
	blk_mq_update_tag_set_depth(set);
	mutex_unlock(&set->tag_list_lock);
}

1734
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1735 1736
{
	struct blk_mq_hw_ctx **hctxs;
1737
	struct blk_mq_ctx __percpu *ctx;
1738
	struct request_queue *q;
1739
	unsigned int *map;
1740 1741 1742 1743 1744 1745
	int i;

	ctx = alloc_percpu(struct blk_mq_ctx);
	if (!ctx)
		return ERR_PTR(-ENOMEM);

1746 1747
	hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
			set->numa_node);
1748 1749 1750 1751

	if (!hctxs)
		goto err_percpu;

1752 1753 1754 1755
	map = blk_mq_make_queue_map(set);
	if (!map)
		goto err_map;

1756
	for (i = 0; i < set->nr_hw_queues; i++) {
1757 1758
		int node = blk_mq_hw_queue_to_node(map, i);

1759 1760
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
1761 1762 1763
		if (!hctxs[i])
			goto err_hctxs;

1764 1765 1766
		if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
			goto err_hctxs;

1767
		atomic_set(&hctxs[i]->nr_active, 0);
1768
		hctxs[i]->numa_node = node;
1769 1770 1771
		hctxs[i]->queue_num = i;
	}

1772
	q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1773 1774 1775
	if (!q)
		goto err_hctxs;

1776
	if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release))
1777 1778
		goto err_map;

1779 1780 1781 1782
	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
	blk_queue_rq_timeout(q, 30000);

	q->nr_queues = nr_cpu_ids;
1783
	q->nr_hw_queues = set->nr_hw_queues;
1784
	q->mq_map = map;
1785 1786 1787 1788

	q->queue_ctx = ctx;
	q->queue_hw_ctx = hctxs;

1789
	q->mq_ops = set->ops;
1790
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1791

1792 1793 1794
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

1795 1796
	q->sg_reserved_size = INT_MAX;

1797 1798 1799 1800
	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

1801 1802 1803 1804 1805
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

1806 1807
	if (set->timeout)
		blk_queue_rq_timeout(q, set->timeout);
1808

1809 1810 1811 1812 1813
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

1814 1815
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
1816

1817
	blk_mq_init_flush(q);
1818
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1819

1820 1821 1822
	q->flush_rq = kzalloc(round_up(sizeof(struct request) +
				set->cmd_size, cache_line_size()),
				GFP_KERNEL);
1823
	if (!q->flush_rq)
1824 1825
		goto err_hw;

1826
	if (blk_mq_init_hw_queues(q, set))
1827 1828
		goto err_flush_rq;

1829 1830 1831 1832
	mutex_lock(&all_q_mutex);
	list_add_tail(&q->all_q_node, &all_q_list);
	mutex_unlock(&all_q_mutex);

1833 1834
	blk_mq_add_queue_tag_set(set, q);

1835 1836
	blk_mq_map_swqueue(q);

1837
	return q;
1838 1839 1840

err_flush_rq:
	kfree(q->flush_rq);
1841 1842 1843
err_hw:
	blk_cleanup_queue(q);
err_hctxs:
1844
	kfree(map);
1845
	for (i = 0; i < set->nr_hw_queues; i++) {
1846 1847
		if (!hctxs[i])
			break;
1848
		free_cpumask_var(hctxs[i]->cpumask);
1849
		kfree(hctxs[i]);
1850
	}
1851
err_map:
1852 1853 1854 1855 1856 1857 1858 1859 1860
	kfree(hctxs);
err_percpu:
	free_percpu(ctx);
	return ERR_PTR(-ENOMEM);
}
EXPORT_SYMBOL(blk_mq_init_queue);

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
1861
	struct blk_mq_tag_set	*set = q->tag_set;
1862

1863 1864
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
1865 1866
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
1867

1868
	percpu_ref_exit(&q->mq_usage_counter);
1869

1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
	free_percpu(q->queue_ctx);
	kfree(q->queue_hw_ctx);
	kfree(q->mq_map);

	q->queue_ctx = NULL;
	q->queue_hw_ctx = NULL;
	q->mq_map = NULL;

	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);
}

/* Basically redo blk_mq_init_queue with queue frozen */
1884
static void blk_mq_queue_reinit(struct request_queue *q)
1885 1886 1887
{
	blk_mq_freeze_queue(q);

1888 1889
	blk_mq_sysfs_unregister(q);

1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);

	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

	blk_mq_map_swqueue(q);

1900 1901
	blk_mq_sysfs_register(q);

1902 1903 1904
	blk_mq_unfreeze_queue(q);
}

1905 1906
static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
				      unsigned long action, void *hcpu)
1907 1908 1909 1910
{
	struct request_queue *q;

	/*
1911 1912 1913 1914
	 * Before new mappings are established, hotadded cpu might already
	 * start handling requests. This doesn't break anything as we map
	 * offline CPUs to first hardware queue. We will re-init the queue
	 * below to get optimal settings.
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
	 */
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
	    action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
		return NOTIFY_OK;

	mutex_lock(&all_q_mutex);
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_queue_reinit(q);
	mutex_unlock(&all_q_mutex);
	return NOTIFY_OK;
}

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

1981 1982 1983 1984 1985 1986
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
1987 1988 1989 1990
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
	if (!set->nr_hw_queues)
		return -EINVAL;
1991
	if (!set->queue_depth)
1992 1993 1994 1995
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

1996
	if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
1997 1998
		return -EINVAL;

1999 2000 2001 2002 2003
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2004

M
Ming Lei 已提交
2005 2006
	set->tags = kmalloc_node(set->nr_hw_queues *
				 sizeof(struct blk_mq_tags *),
2007 2008
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2009
		return -ENOMEM;
2010

2011 2012
	if (blk_mq_alloc_rq_maps(set))
		goto enomem;
2013

2014 2015 2016
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2017
	return 0;
2018
enomem:
2019 2020
	kfree(set->tags);
	set->tags = NULL;
2021 2022 2023 2024 2025 2026 2027 2028
	return -ENOMEM;
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2029 2030 2031 2032 2033
	for (i = 0; i < set->nr_hw_queues; i++) {
		if (set->tags[i])
			blk_mq_free_rq_map(set, set->tags[i], i);
	}

M
Ming Lei 已提交
2034
	kfree(set->tags);
2035
	set->tags = NULL;
2036 2037 2038
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2071 2072 2073 2074
static int __init blk_mq_init(void)
{
	blk_mq_cpu_init();

2075
	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2076 2077 2078 2079

	return 0;
}
subsys_initcall(blk_mq_init);