blk-mq.c 49.9 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
23
#include <linux/crash_dump.h>
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
	unsigned int i;

44 45
	for (i = 0; i < hctx->ctx_map.map_size; i++)
		if (hctx->ctx_map.map[i].word)
46 47 48 49 50
			return true;

	return false;
}

51 52 53 54 55 56 57 58 59
static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
					      struct blk_mq_ctx *ctx)
{
	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
}

#define CTX_TO_BIT(hctx, ctx)	\
	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))

60 61 62 63 64 65
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
66 67 68 69 70 71 72 73 74 75 76 77
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
78 79 80 81
}

static int blk_mq_queue_enter(struct request_queue *q)
{
82 83
	while (true) {
		int ret;
84

85 86
		if (percpu_ref_tryget_live(&q->mq_usage_counter))
			return 0;
87

88 89 90 91 92 93 94
		ret = wait_event_interruptible(q->mq_freeze_wq,
				!q->mq_freeze_depth || blk_queue_dying(q));
		if (blk_queue_dying(q))
			return -ENODEV;
		if (ret)
			return ret;
	}
95 96 97 98
}

static void blk_mq_queue_exit(struct request_queue *q)
{
99 100 101 102 103 104 105 106 107
	percpu_ref_put(&q->mq_usage_counter);
}

static void blk_mq_usage_counter_release(struct percpu_ref *ref)
{
	struct request_queue *q =
		container_of(ref, struct request_queue, mq_usage_counter);

	wake_up_all(&q->mq_freeze_wq);
108 109
}

110
void blk_mq_freeze_queue_start(struct request_queue *q)
111
{
112 113
	bool freeze;

114
	spin_lock_irq(q->queue_lock);
115
	freeze = !q->mq_freeze_depth++;
116 117
	spin_unlock_irq(q->queue_lock);

118
	if (freeze) {
119
		percpu_ref_kill(&q->mq_usage_counter);
120 121
		blk_mq_run_queues(q, false);
	}
122
}
123
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
124 125 126

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
127
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
128 129
}

130 131 132 133 134 135 136 137 138
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
void blk_mq_freeze_queue(struct request_queue *q)
{
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
139
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
140

141
void blk_mq_unfreeze_queue(struct request_queue *q)
142
{
143
	bool wake;
144 145

	spin_lock_irq(q->queue_lock);
146 147
	wake = !--q->mq_freeze_depth;
	WARN_ON_ONCE(q->mq_freeze_depth < 0);
148
	spin_unlock_irq(q->queue_lock);
149 150
	if (wake) {
		percpu_ref_reinit(&q->mq_usage_counter);
151
		wake_up_all(&q->mq_freeze_wq);
152
	}
153
}
154
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
155

156 157 158 159 160 161 162 163 164 165
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

166 167 168 169 170 171
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

172 173
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			       struct request *rq, unsigned int rw_flags)
174
{
175 176 177
	if (blk_queue_io_stat(q))
		rw_flags |= REQ_IO_STAT;

178 179 180
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
181
	rq->mq_ctx = ctx;
182
	rq->cmd_flags |= rw_flags;
183 184 185 186 187 188
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
189
	rq->start_time = jiffies;
190 191
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
192
	set_start_time_ns(rq);
193 194 195 196 197 198 199 200 201 202
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

203 204
	rq->cmd = rq->__cmd;

205 206 207 208 209 210
	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
211 212
	rq->timeout = 0;

213 214 215 216
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

217 218 219
	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
}

220
static struct request *
221
__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
222 223 224 225
{
	struct request *rq;
	unsigned int tag;

226
	tag = blk_mq_get_tag(data);
227
	if (tag != BLK_MQ_TAG_FAIL) {
228
		rq = data->hctx->tags->rqs[tag];
229

230
		if (blk_mq_tag_busy(data->hctx)) {
231
			rq->cmd_flags = REQ_MQ_INFLIGHT;
232
			atomic_inc(&data->hctx->nr_active);
233 234 235
		}

		rq->tag = tag;
236
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
237 238 239 240 241 242
		return rq;
	}

	return NULL;
}

243 244
struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
		bool reserved)
245
{
246 247
	struct blk_mq_ctx *ctx;
	struct blk_mq_hw_ctx *hctx;
248
	struct request *rq;
249
	struct blk_mq_alloc_data alloc_data;
250
	int ret;
251

252 253 254
	ret = blk_mq_queue_enter(q);
	if (ret)
		return ERR_PTR(ret);
255

256 257
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);
258 259
	blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
			reserved, ctx, hctx);
260

261
	rq = __blk_mq_alloc_request(&alloc_data, rw);
262 263 264 265 266 267
	if (!rq && (gfp & __GFP_WAIT)) {
		__blk_mq_run_hw_queue(hctx);
		blk_mq_put_ctx(ctx);

		ctx = blk_mq_get_ctx(q);
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
268 269 270 271
		blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
				hctx);
		rq =  __blk_mq_alloc_request(&alloc_data, rw);
		ctx = alloc_data.ctx;
272 273
	}
	blk_mq_put_ctx(ctx);
K
Keith Busch 已提交
274 275
	if (!rq) {
		blk_mq_queue_exit(q);
276
		return ERR_PTR(-EWOULDBLOCK);
K
Keith Busch 已提交
277
	}
278 279
	return rq;
}
280
EXPORT_SYMBOL(blk_mq_alloc_request);
281 282 283 284 285 286 287

static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

288 289
	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
		atomic_dec(&hctx->nr_active);
290
	rq->cmd_flags = 0;
291

292
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
293
	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
294 295 296
	blk_mq_queue_exit(q);
}

297
void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
298 299 300 301 302
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
	__blk_mq_free_request(hctx, ctx, rq);
303 304 305 306 307 308 309 310 311 312 313

}
EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);

void blk_mq_free_request(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q = rq->q;

	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
	blk_mq_free_hctx_request(hctx, rq);
314
}
J
Jens Axboe 已提交
315
EXPORT_SYMBOL_GPL(blk_mq_free_request);
316

317
inline void __blk_mq_end_request(struct request *rq, int error)
318
{
M
Ming Lei 已提交
319 320
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
321
	if (rq->end_io) {
322
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
323 324 325
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
326
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
327
	}
328
}
329
EXPORT_SYMBOL(__blk_mq_end_request);
330

331
void blk_mq_end_request(struct request *rq, int error)
332 333 334
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
335
	__blk_mq_end_request(rq, error);
336
}
337
EXPORT_SYMBOL(blk_mq_end_request);
338

339
static void __blk_mq_complete_request_remote(void *data)
340
{
341
	struct request *rq = data;
342

343
	rq->q->softirq_done_fn(rq);
344 345
}

346
static void blk_mq_ipi_complete_request(struct request *rq)
347 348
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
349
	bool shared = false;
350 351
	int cpu;

C
Christoph Hellwig 已提交
352
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
353 354 355
		rq->q->softirq_done_fn(rq);
		return;
	}
356 357

	cpu = get_cpu();
C
Christoph Hellwig 已提交
358 359 360 361
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
362
		rq->csd.func = __blk_mq_complete_request_remote;
363 364
		rq->csd.info = rq;
		rq->csd.flags = 0;
365
		smp_call_function_single_async(ctx->cpu, &rq->csd);
366
	} else {
367
		rq->q->softirq_done_fn(rq);
368
	}
369 370
	put_cpu();
}
371

372 373 374 375 376
void __blk_mq_complete_request(struct request *rq)
{
	struct request_queue *q = rq->q;

	if (!q->softirq_done_fn)
377
		blk_mq_end_request(rq, rq->errors);
378 379 380 381
	else
		blk_mq_ipi_complete_request(rq);
}

382 383 384 385 386 387 388 389 390 391
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
void blk_mq_complete_request(struct request *rq)
{
392 393 394
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
395
		return;
396 397
	if (!blk_mark_rq_complete(rq))
		__blk_mq_complete_request(rq);
398 399
}
EXPORT_SYMBOL(blk_mq_complete_request);
400

401
void blk_mq_start_request(struct request *rq)
402 403 404 405 406
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
407
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
408 409
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
410

411
	blk_add_timer(rq);
412

413 414 415 416 417 418
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

419 420 421 422 423 424
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
425 426 427 428
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
429 430 431 432 433 434 435 436 437

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
438
}
439
EXPORT_SYMBOL(blk_mq_start_request);
440

441
static void __blk_mq_requeue_request(struct request *rq)
442 443 444 445
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
446

447 448 449 450
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
451 452
}

453 454 455 456 457
void blk_mq_requeue_request(struct request *rq)
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
458
	blk_mq_add_to_requeue_list(rq, true);
459 460 461
}
EXPORT_SYMBOL(blk_mq_requeue_request);

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
		container_of(work, struct request_queue, requeue_work);
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
			continue;

		rq->cmd_flags &= ~REQ_SOFTBARRIER;
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

489 490 491 492 493
	/*
	 * Use the start variant of queue running here, so that running
	 * the requeue work will kick stopped queues.
	 */
	blk_mq_start_hw_queues(q);
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
}

void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
		rq->cmd_flags |= REQ_SOFTBARRIER;
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
	kblockd_schedule_work(&q->requeue_work);
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

524 525
static inline bool is_flush_request(struct request *rq,
		struct blk_flush_queue *fq, unsigned int tag)
526
{
527
	return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
528
			fq->flush_rq->tag == tag);
529 530 531 532 533
}

struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
	struct request *rq = tags->rqs[tag];
534 535
	/* mq_ctx of flush rq is always cloned from the corresponding req */
	struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
536

537
	if (!is_flush_request(rq, fq, tag))
538
		return rq;
539

540
	return fq->flush_rq;
541 542 543
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

544
struct blk_mq_timeout_data {
545 546
	unsigned long next;
	unsigned int next_set;
547 548
};

549
void blk_mq_rq_timed_out(struct request *req, bool reserved)
550
{
551 552
	struct blk_mq_ops *ops = req->q->mq_ops;
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
553 554 555 556 557 558 559 560 561 562

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
563 564
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
565

566
	if (ops->timeout)
567
		ret = ops->timeout(req, reserved);
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
583
}
584 585 586 587 588
		
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
589

590 591
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		return;
592

593 594
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
595
			blk_mq_rq_timed_out(rq, reserved);
596 597 598 599
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
600 601
}

602
static void blk_mq_rq_timer(unsigned long priv)
603
{
604 605 606 607 608
	struct request_queue *q = (struct request_queue *)priv;
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
609
	struct blk_mq_hw_ctx *hctx;
610
	int i;
611

612 613 614 615 616
	queue_for_each_hw_ctx(q, hctx, i) {
		/*
		 * If not software queues are currently mapped to this
		 * hardware queue, there's nothing to check
		 */
617
		if (!blk_mq_hw_queue_mapped(hctx))
618 619
			continue;

620
		blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
621
	}
622

623 624 625
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
626 627 628 629
	} else {
		queue_for_each_hw_ctx(q, hctx, i)
			blk_mq_tag_idle(hctx);
	}
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
	struct blk_mq_ctx *ctx;
	int i;

	for (i = 0; i < hctx->ctx_map.map_size; i++) {
		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
		unsigned int off, bit;

		if (!bm->word)
			continue;

		bit = 0;
		off = i * hctx->ctx_map.bits_per_word;
		do {
			bit = find_next_bit(&bm->word, bm->depth, bit);
			if (bit >= bm->depth)
				break;

			ctx = hctx->ctxs[bit + off];
			clear_bit(bit, &bm->word);
			spin_lock(&ctx->lock);
			list_splice_tail_init(&ctx->rq_list, list);
			spin_unlock(&ctx->lock);

			bit++;
		} while (1);
	}
}

705 706 707 708 709 710 711 712 713 714 715
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
716 717
	LIST_HEAD(driver_list);
	struct list_head *dptr;
718
	int queued;
719

720
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
721

722
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
723 724 725 726 727 728 729
		return;

	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
730
	flush_busy_ctxs(hctx, &rq_list);
731 732 733 734 735 736 737 738 739 740 741 742

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

743 744 745 746 747 748
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

749 750 751
	/*
	 * Now process all the entries, sending them to the driver.
	 */
752
	queued = 0;
753
	while (!list_empty(&rq_list)) {
754
		struct blk_mq_queue_data bd;
755 756 757 758 759
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

760 761 762 763 764
		bd.rq = rq;
		bd.list = dptr;
		bd.last = list_empty(&rq_list);

		ret = q->mq_ops->queue_rq(hctx, &bd);
765 766 767 768 769 770
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
			continue;
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
771
			__blk_mq_requeue_request(rq);
772 773 774 775
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
776
			rq->errors = -EIO;
777
			blk_mq_end_request(rq, rq->errors);
778 779 780 781 782
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
783 784 785 786 787 788 789

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
		if (!dptr && rq_list.next != rq_list.prev)
			dptr = &driver_list;
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
	}

	if (!queued)
		hctx->dispatched[0]++;
	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
		hctx->dispatched[ilog2(queued) + 1]++;

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
	}
}

808 809 810 811 812 813 814 815
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
816 817
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
818 819

	if (--hctx->next_cpu_batch <= 0) {
820
		int cpu = hctx->next_cpu, next_cpu;
821 822 823 824 825 826 827

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
828 829

		return cpu;
830 831
	}

832
	return hctx->next_cpu;
833 834
}

835 836
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
837 838
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
	    !blk_mq_hw_queue_mapped(hctx)))
839 840
		return;

841
	if (!async) {
842 843
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
844
			__blk_mq_run_hw_queue(hctx);
845
			put_cpu();
846 847
			return;
		}
848

849
		put_cpu();
850
	}
851

852 853
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->run_work, 0);
854 855 856 857 858 859 860 861 862 863
}

void blk_mq_run_queues(struct request_queue *q, bool async)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
864
		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
865 866 867 868 869 870 871 872 873
			continue;

		blk_mq_run_hw_queue(hctx, async);
	}
}
EXPORT_SYMBOL(blk_mq_run_queues);

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
874 875
	cancel_delayed_work(&hctx->run_work);
	cancel_delayed_work(&hctx->delay_work);
876 877 878 879
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

880 881 882 883 884 885 886 887 888 889
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

890 891 892
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
893

894
	blk_mq_run_hw_queue(hctx, false);
895 896 897
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

898 899 900 901 902 903 904 905 906 907 908
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);


909
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
910 911 912 913 914 915 916 917 918
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
919
		blk_mq_run_hw_queue(hctx, async);
920 921 922 923
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

924
static void blk_mq_run_work_fn(struct work_struct *work)
925 926 927
{
	struct blk_mq_hw_ctx *hctx;

928
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
929

930 931 932
	__blk_mq_run_hw_queue(hctx);
}

933 934 935 936 937 938 939 940 941 942 943 944
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
945 946
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
947

948 949
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
950 951 952
}
EXPORT_SYMBOL(blk_mq_delay_queue);

953
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
954
				    struct request *rq, bool at_head)
955 956 957
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

958 959
	trace_block_rq_insert(hctx->queue, rq);

960 961 962 963
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
964

965 966 967
	blk_mq_hctx_mark_pending(hctx, ctx);
}

968 969
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
		bool async)
970
{
971
	struct request_queue *q = rq->q;
972
	struct blk_mq_hw_ctx *hctx;
973 974 975 976 977
	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;

	current_ctx = blk_mq_get_ctx(q);
	if (!cpu_online(ctx->cpu))
		rq->mq_ctx = ctx = current_ctx;
978 979 980

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

981 982 983
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, at_head);
	spin_unlock(&ctx->lock);
984 985 986

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
987 988

	blk_mq_put_ctx(current_ctx);
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *current_ctx;

	trace_block_unplug(q, depth, !from_schedule);

	current_ctx = blk_mq_get_ctx(q);

	if (!cpu_online(ctx->cpu))
		ctx = current_ctx;
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->mq_ctx = ctx;
1020
		__blk_mq_insert_request(hctx, rq, false);
1021 1022 1023 1024
	}
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
1025
	blk_mq_put_ctx(current_ctx);
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1088

1089
	if (blk_do_io_stat(rq))
1090
		blk_account_io_start(rq, 1);
1091 1092
}

1093 1094 1095 1096 1097 1098
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1099 1100 1101
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1102
{
1103
	if (!hctx_allow_merges(hctx)) {
1104 1105 1106 1107 1108 1109 1110
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1111 1112
		struct request_queue *q = hctx->queue;

1113 1114 1115 1116 1117
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1118

1119 1120 1121
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1122
	}
1123
}
1124

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
struct blk_map_ctx {
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
};

static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
					  struct blk_map_ctx *data)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	int rw = bio_data_dir(bio);
1138
	struct blk_mq_alloc_data alloc_data;
1139

1140
	if (unlikely(blk_mq_queue_enter(q))) {
1141
		bio_endio(bio, -EIO);
1142
		return NULL;
1143 1144 1145 1146 1147
	}

	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1148
	if (rw_is_sync(bio->bi_rw))
S
Shaohua Li 已提交
1149
		rw |= REQ_SYNC;
1150

1151
	trace_block_getrq(q, bio, rw);
1152 1153 1154
	blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
			hctx);
	rq = __blk_mq_alloc_request(&alloc_data, rw);
1155
	if (unlikely(!rq)) {
1156
		__blk_mq_run_hw_queue(hctx);
1157 1158
		blk_mq_put_ctx(ctx);
		trace_block_sleeprq(q, bio, rw);
1159 1160

		ctx = blk_mq_get_ctx(q);
1161
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1162 1163 1164 1165 1166
		blk_mq_set_alloc_data(&alloc_data, q,
				__GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
		rq = __blk_mq_alloc_request(&alloc_data, rw);
		ctx = alloc_data.ctx;
		hctx = alloc_data.hctx;
1167 1168 1169
	}

	hctx->queued++;
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
	data->hctx = hctx;
	data->ctx = ctx;
	return rq;
}

/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	struct blk_map_ctx data;
	struct request *rq;

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
		bio_endio(bio, -EIO);
		return;
	}

	rq = blk_mq_map_request(q, bio, &data);
	if (unlikely(!rq))
		return;

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

1204 1205 1206 1207 1208 1209
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
	if (is_sync && !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1210 1211 1212 1213 1214
		struct blk_mq_queue_data bd = {
			.rq = rq,
			.list = NULL,
			.last = 1
		};
1215 1216 1217 1218 1219 1220 1221 1222 1223
		int ret;

		blk_mq_bio_to_request(rq, bio);

		/*
		 * For OK queue, we are done. For error, kill it. Any other
		 * error (busy), just add it to our list as we previously
		 * would have done
		 */
1224
		ret = q->mq_ops->queue_rq(data.hctx, &bd);
1225 1226 1227 1228 1229 1230 1231
		if (ret == BLK_MQ_RQ_QUEUE_OK)
			goto done;
		else {
			__blk_mq_requeue_request(rq);

			if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
				rq->errors = -EIO;
1232
				blk_mq_end_request(rq, rq->errors);
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
				goto done;
			}
		}
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
done:
	blk_mq_put_ctx(data.ctx);
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	unsigned int use_plug, request_count = 0;
	struct blk_map_ctx data;
	struct request *rq;

	/*
	 * If we have multiple hardware queues, just go directly to
	 * one of those for sync IO.
	 */
	use_plug = !is_flush_fua && !is_sync;

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
		bio_endio(bio, -EIO);
		return;
	}

	if (use_plug && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count))
		return;

	rq = blk_mq_map_request(q, bio, &data);
1282 1283
	if (unlikely(!rq))
		return;
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
	if (use_plug) {
		struct blk_plug *plug = current->plug;

		if (plug) {
			blk_mq_bio_to_request(rq, bio);
S
Shaohua Li 已提交
1301
			if (list_empty(&plug->mq_list))
1302 1303 1304 1305 1306 1307
				trace_block_plug(q);
			else if (request_count >= BLK_MAX_REQUEST_COUNT) {
				blk_flush_plug_list(plug, false);
				trace_block_plug(q);
			}
			list_add_tail(&rq->queuelist, &plug->mq_list);
1308
			blk_mq_put_ctx(data.ctx);
1309 1310 1311 1312
			return;
		}
	}

1313 1314 1315 1316 1317 1318 1319 1320 1321
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1322 1323
	}

1324
	blk_mq_put_ctx(data.ctx);
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
}

/*
 * Default mapping to a software queue, since we use one per CPU.
 */
struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
{
	return q->queue_hw_ctx[q->mq_map[cpu]];
}
EXPORT_SYMBOL(blk_mq_map_queue);

1336 1337
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1338
{
1339
	struct page *page;
1340

1341
	if (tags->rqs && set->ops->exit_request) {
1342
		int i;
1343

1344 1345
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1346
				continue;
1347 1348
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1349
			tags->rqs[i] = NULL;
1350
		}
1351 1352
	}

1353 1354
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1355
		list_del_init(&page->lru);
1356 1357 1358
		__free_pages(page, page->private);
	}

1359
	kfree(tags->rqs);
1360

1361
	blk_mq_free_tags(tags);
1362 1363 1364 1365
}

static size_t order_to_size(unsigned int order)
{
1366
	return (size_t)PAGE_SIZE << order;
1367 1368
}

1369 1370
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1371
{
1372
	struct blk_mq_tags *tags;
1373 1374 1375
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1376 1377 1378 1379
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
				set->numa_node);
	if (!tags)
		return NULL;
1380

1381 1382
	INIT_LIST_HEAD(&tags->page_list);

1383 1384 1385
	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
1386 1387 1388 1389
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1390 1391 1392 1393 1394

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1395
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1396
				cache_line_size());
1397
	left = rq_size * set->queue_depth;
1398

1399
	for (i = 0; i < set->queue_depth; ) {
1400 1401 1402 1403 1404 1405 1406 1407 1408
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

		while (left < order_to_size(this_order - 1) && this_order)
			this_order--;

		do {
1409 1410 1411
			page = alloc_pages_node(set->numa_node,
				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				this_order);
1412 1413 1414 1415 1416 1417 1418 1419 1420
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1421
			goto fail;
1422 1423

		page->private = this_order;
1424
		list_add_tail(&page->lru, &tags->page_list);
1425 1426 1427

		p = page_address(page);
		entries_per_page = order_to_size(this_order) / rq_size;
1428
		to_do = min(entries_per_page, set->queue_depth - i);
1429 1430
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1431
			tags->rqs[i] = p;
1432 1433
			tags->rqs[i]->atomic_flags = 0;
			tags->rqs[i]->cmd_flags = 0;
1434 1435 1436
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
1437 1438
						set->numa_node)) {
					tags->rqs[i] = NULL;
1439
					goto fail;
1440
				}
1441 1442
			}

1443 1444 1445 1446 1447
			p += rq_size;
			i++;
		}
	}

1448
	return tags;
1449

1450 1451 1452
fail:
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1453 1454
}

1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
{
	kfree(bitmap->map);
}

static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
{
	unsigned int bpw = 8, total, num_maps, i;

	bitmap->bits_per_word = bpw;

	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
					GFP_KERNEL, node);
	if (!bitmap->map)
		return -ENOMEM;

	bitmap->map_size = num_maps;

	total = nr_cpu_ids;
	for (i = 0; i < num_maps; i++) {
		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
		total -= bitmap->map[i].depth;
	}

	return 0;
}

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

	/*
	 * Move ctx entries to new CPU, if this one is going away.
	 */
	ctx = __blk_mq_get_ctx(q, cpu);

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
		return NOTIFY_OK;

	ctx = blk_mq_get_ctx(q);
	spin_lock(&ctx->lock);

	while (!list_empty(&tmp)) {
		struct request *rq;

		rq = list_first_entry(&tmp, struct request, queuelist);
		rq->mq_ctx = ctx;
		list_move_tail(&rq->queuelist, &ctx->rq_list);
	}

	hctx = q->mq_ops->map_queue(q, ctx->cpu);
	blk_mq_hctx_mark_pending(hctx, ctx);

	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, true);
	blk_mq_put_ctx(ctx);
	return NOTIFY_OK;
}

static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_tag_set *set = q->tag_set;

	if (set->tags[hctx->queue_num])
		return NOTIFY_OK;

	set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
	if (!set->tags[hctx->queue_num])
		return NOTIFY_STOP;

	hctx->tags = set->tags[hctx->queue_num];
	return NOTIFY_OK;
}

static int blk_mq_hctx_notify(void *data, unsigned long action,
			      unsigned int cpu)
{
	struct blk_mq_hw_ctx *hctx = data;

	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
		return blk_mq_hctx_cpu_offline(hctx, cpu);
	else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
		return blk_mq_hctx_cpu_online(hctx, cpu);

	return NOTIFY_OK;
}

1554 1555 1556 1557
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1558 1559
	unsigned flush_start_tag = set->queue_depth;

1560 1561
	blk_mq_tag_idle(hctx);

1562 1563 1564 1565 1566
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1567 1568 1569 1570
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1571
	blk_free_flush_queue(hctx->fq);
1572 1573 1574 1575
	kfree(hctx->ctxs);
	blk_mq_free_bitmap(&hctx->ctx_map);
}

M
Ming Lei 已提交
1576 1577 1578 1579 1580 1581 1582 1583 1584
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1585
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		free_cpumask_var(hctx->cpumask);
1597
		kfree(hctx);
M
Ming Lei 已提交
1598 1599 1600
	}
}

1601 1602 1603
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1604
{
1605
	int node;
1606
	unsigned flush_start_tag = set->queue_depth;
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
	hctx->flags = set->flags;
	hctx->cmd_size = set->cmd_size;

	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
					blk_mq_hctx_notify, hctx);
	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);

	hctx->tags = set->tags[hctx_idx];
1626 1627

	/*
1628 1629
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1630
	 */
1631 1632 1633 1634
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1635

1636 1637
	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
		goto free_ctxs;
1638

1639
	hctx->nr_ctx = 0;
1640

1641 1642 1643
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1644

1645 1646 1647
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1648

1649 1650 1651 1652 1653
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1654

1655
	return 0;
1656

1657 1658 1659 1660 1661
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1662 1663 1664 1665 1666 1667
 free_bitmap:
	blk_mq_free_bitmap(&hctx->ctx_map);
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1668

1669 1670
	return -1;
}
1671

1672 1673 1674 1675 1676
static int blk_mq_init_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
1677

1678 1679 1680 1681 1682
	/*
	 * Initialize hardware queues
	 */
	queue_for_each_hw_ctx(q, hctx, i) {
		if (blk_mq_init_hctx(q, set, hctx, i))
1683 1684 1685 1686 1687 1688 1689 1690 1691
			break;
	}

	if (i == q->nr_hw_queues)
		return 0;

	/*
	 * Init failed
	 */
M
Ming Lei 已提交
1692
	blk_mq_exit_hw_queues(q, set, i);
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715

	return 1;
}

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

1716 1717 1718 1719
		hctx = q->mq_ops->map_queue(q, i);
		cpumask_set_cpu(i, hctx->cpumask);
		hctx->nr_ctx++;

1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
			hctx->numa_node = cpu_to_node(i);
	}
}

static void blk_mq_map_swqueue(struct request_queue *q)
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;

	queue_for_each_hw_ctx(q, hctx, i) {
1736
		cpumask_clear(hctx->cpumask);
1737 1738 1739 1740 1741 1742 1743 1744
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
	queue_for_each_ctx(q, ctx, i) {
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1745 1746 1747
		if (!cpu_online(i))
			continue;

1748
		hctx = q->mq_ops->map_queue(q, i);
1749
		cpumask_set_cpu(i, hctx->cpumask);
1750 1751 1752
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1753 1754

	queue_for_each_hw_ctx(q, hctx, i) {
1755
		/*
1756 1757
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
		 */
		if (!hctx->nr_ctx) {
			struct blk_mq_tag_set *set = q->tag_set;

			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
				hctx->tags = NULL;
			}
			continue;
		}

		/*
		 * Initialize batch roundrobin counts
		 */
1773 1774 1775
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1776 1777
}

1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q;
	bool shared;
	int i;

	if (set->tag_list.next == set->tag_list.prev)
		shared = false;
	else
		shared = true;

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);

		queue_for_each_hw_ctx(q, hctx, i) {
			if (shared)
				hctx->flags |= BLK_MQ_F_TAG_SHARED;
			else
				hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
		}
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
	blk_mq_update_tag_set_depth(set);
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
	list_add_tail(&q->tag_set_list, &set->tag_list);
	blk_mq_update_tag_set_depth(set);
	mutex_unlock(&set->tag_list_lock);
}

1824
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1825 1826
{
	struct blk_mq_hw_ctx **hctxs;
1827
	struct blk_mq_ctx __percpu *ctx;
1828
	struct request_queue *q;
1829
	unsigned int *map;
1830 1831 1832 1833 1834 1835
	int i;

	ctx = alloc_percpu(struct blk_mq_ctx);
	if (!ctx)
		return ERR_PTR(-ENOMEM);

1836 1837
	hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
			set->numa_node);
1838 1839 1840 1841

	if (!hctxs)
		goto err_percpu;

1842 1843 1844 1845
	map = blk_mq_make_queue_map(set);
	if (!map)
		goto err_map;

1846
	for (i = 0; i < set->nr_hw_queues; i++) {
1847 1848
		int node = blk_mq_hw_queue_to_node(map, i);

1849 1850
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
1851 1852 1853
		if (!hctxs[i])
			goto err_hctxs;

1854 1855
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
						node))
1856 1857
			goto err_hctxs;

1858
		atomic_set(&hctxs[i]->nr_active, 0);
1859
		hctxs[i]->numa_node = node;
1860 1861 1862
		hctxs[i]->queue_num = i;
	}

1863
	q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1864 1865 1866
	if (!q)
		goto err_hctxs;

1867 1868 1869 1870
	/*
	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
	 * See blk_register_queue() for details.
	 */
1871
	if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
1872
			    PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1873 1874
		goto err_map;

1875 1876 1877 1878
	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
	blk_queue_rq_timeout(q, 30000);

	q->nr_queues = nr_cpu_ids;
1879
	q->nr_hw_queues = set->nr_hw_queues;
1880
	q->mq_map = map;
1881 1882 1883 1884

	q->queue_ctx = ctx;
	q->queue_hw_ctx = hctxs;

1885
	q->mq_ops = set->ops;
1886
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1887

1888 1889 1890
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

1891 1892
	q->sg_reserved_size = INT_MAX;

1893 1894 1895 1896
	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

1897 1898 1899 1900 1901
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

1902 1903
	if (set->timeout)
		blk_queue_rq_timeout(q, set->timeout);
1904

1905 1906 1907 1908 1909
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

1910 1911
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
1912

1913
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1914

1915
	if (blk_mq_init_hw_queues(q, set))
1916
		goto err_hw;
1917

1918 1919 1920 1921
	mutex_lock(&all_q_mutex);
	list_add_tail(&q->all_q_node, &all_q_list);
	mutex_unlock(&all_q_mutex);

1922 1923
	blk_mq_add_queue_tag_set(set, q);

1924 1925
	blk_mq_map_swqueue(q);

1926
	return q;
1927

1928 1929 1930
err_hw:
	blk_cleanup_queue(q);
err_hctxs:
1931
	kfree(map);
1932
	for (i = 0; i < set->nr_hw_queues; i++) {
1933 1934
		if (!hctxs[i])
			break;
1935
		free_cpumask_var(hctxs[i]->cpumask);
1936
		kfree(hctxs[i]);
1937
	}
1938
err_map:
1939 1940 1941 1942 1943 1944 1945 1946 1947
	kfree(hctxs);
err_percpu:
	free_percpu(ctx);
	return ERR_PTR(-ENOMEM);
}
EXPORT_SYMBOL(blk_mq_init_queue);

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
1948
	struct blk_mq_tag_set	*set = q->tag_set;
1949

1950 1951
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
1952 1953
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
1954

1955
	percpu_ref_exit(&q->mq_usage_counter);
1956

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
	free_percpu(q->queue_ctx);
	kfree(q->queue_hw_ctx);
	kfree(q->mq_map);

	q->queue_ctx = NULL;
	q->queue_hw_ctx = NULL;
	q->mq_map = NULL;

	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);
}

/* Basically redo blk_mq_init_queue with queue frozen */
1971
static void blk_mq_queue_reinit(struct request_queue *q)
1972
{
1973
	WARN_ON_ONCE(!q->mq_freeze_depth);
1974

1975 1976
	blk_mq_sysfs_unregister(q);

1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);

	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

	blk_mq_map_swqueue(q);

1987
	blk_mq_sysfs_register(q);
1988 1989
}

1990 1991
static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
				      unsigned long action, void *hcpu)
1992 1993 1994 1995
{
	struct request_queue *q;

	/*
1996 1997 1998 1999
	 * Before new mappings are established, hotadded cpu might already
	 * start handling requests. This doesn't break anything as we map
	 * offline CPUs to first hardware queue. We will re-init the queue
	 * below to get optimal settings.
2000 2001 2002 2003 2004 2005
	 */
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
	    action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
		return NOTIFY_OK;

	mutex_lock(&all_q_mutex);
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_wait(q);

2019 2020
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_queue_reinit(q);
2021 2022 2023 2024

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2025 2026 2027 2028
	mutex_unlock(&all_q_mutex);
	return NOTIFY_OK;
}

2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2083 2084 2085 2086 2087 2088
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2089 2090
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
B
Bart Van Assche 已提交
2091 2092
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2093 2094
	if (!set->nr_hw_queues)
		return -EINVAL;
2095
	if (!set->queue_depth)
2096 2097 2098 2099
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

2100
	if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
2101 2102
		return -EINVAL;

2103 2104 2105 2106 2107
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2108

2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}

M
Ming Lei 已提交
2119 2120
	set->tags = kmalloc_node(set->nr_hw_queues *
				 sizeof(struct blk_mq_tags *),
2121 2122
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2123
		return -ENOMEM;
2124

2125 2126
	if (blk_mq_alloc_rq_maps(set))
		goto enomem;
2127

2128 2129 2130
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2131
	return 0;
2132
enomem:
2133 2134
	kfree(set->tags);
	set->tags = NULL;
2135 2136 2137 2138 2139 2140 2141 2142
	return -ENOMEM;
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2143 2144 2145 2146 2147
	for (i = 0; i < set->nr_hw_queues; i++) {
		if (set->tags[i])
			blk_mq_free_rq_map(set, set->tags[i], i);
	}

M
Ming Lei 已提交
2148
	kfree(set->tags);
2149
	set->tags = NULL;
2150 2151 2152
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2185 2186 2187 2188
static int __init blk_mq_init(void)
{
	blk_mq_cpu_init();

2189
	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2190 2191 2192 2193

	return 0;
}
subsys_initcall(blk_mq_init);