blk-mq.c 47.8 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
23
#include <linux/crash_dump.h>
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
	unsigned int i;

44 45
	for (i = 0; i < hctx->ctx_map.map_size; i++)
		if (hctx->ctx_map.map[i].word)
46 47 48 49 50
			return true;

	return false;
}

51 52 53 54 55 56 57 58 59
static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
					      struct blk_mq_ctx *ctx)
{
	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
}

#define CTX_TO_BIT(hctx, ctx)	\
	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))

60 61 62 63 64 65
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
66 67 68 69 70 71 72 73 74 75 76 77
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
78 79 80 81
}

static int blk_mq_queue_enter(struct request_queue *q)
{
82 83
	while (true) {
		int ret;
84

85 86
		if (percpu_ref_tryget_live(&q->mq_usage_counter))
			return 0;
87

88 89 90 91 92 93 94
		ret = wait_event_interruptible(q->mq_freeze_wq,
				!q->mq_freeze_depth || blk_queue_dying(q));
		if (blk_queue_dying(q))
			return -ENODEV;
		if (ret)
			return ret;
	}
95 96 97 98
}

static void blk_mq_queue_exit(struct request_queue *q)
{
99 100 101 102 103 104 105 106 107
	percpu_ref_put(&q->mq_usage_counter);
}

static void blk_mq_usage_counter_release(struct percpu_ref *ref)
{
	struct request_queue *q =
		container_of(ref, struct request_queue, mq_usage_counter);

	wake_up_all(&q->mq_freeze_wq);
108 109
}

110 111 112 113 114
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
void blk_mq_freeze_queue(struct request_queue *q)
115
{
116 117
	bool freeze;

118
	spin_lock_irq(q->queue_lock);
119
	freeze = !q->mq_freeze_depth++;
120 121
	spin_unlock_irq(q->queue_lock);

122 123 124 125
	if (freeze) {
		percpu_ref_kill(&q->mq_usage_counter);
		blk_mq_run_queues(q, false);
	}
126
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
127 128
}

129 130
static void blk_mq_unfreeze_queue(struct request_queue *q)
{
131
	bool wake;
132 133

	spin_lock_irq(q->queue_lock);
134 135
	wake = !--q->mq_freeze_depth;
	WARN_ON_ONCE(q->mq_freeze_depth < 0);
136
	spin_unlock_irq(q->queue_lock);
137 138
	if (wake) {
		percpu_ref_reinit(&q->mq_usage_counter);
139
		wake_up_all(&q->mq_freeze_wq);
140
	}
141 142 143 144 145 146 147 148
}

bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

149 150
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			       struct request *rq, unsigned int rw_flags)
151
{
152 153 154
	if (blk_queue_io_stat(q))
		rw_flags |= REQ_IO_STAT;

155 156 157
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
158
	rq->mq_ctx = ctx;
159
	rq->cmd_flags |= rw_flags;
160 161 162 163 164 165
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
166
	rq->start_time = jiffies;
167 168
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
169
	set_start_time_ns(rq);
170 171 172 173 174 175 176 177 178 179
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

180 181
	rq->cmd = rq->__cmd;

182 183 184 185 186 187
	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
188 189
	rq->timeout = 0;

190 191 192 193
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

194 195 196
	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
}

197
static struct request *
198
__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
199 200 201 202
{
	struct request *rq;
	unsigned int tag;

203
	tag = blk_mq_get_tag(data);
204
	if (tag != BLK_MQ_TAG_FAIL) {
205
		rq = data->hctx->tags->rqs[tag];
206

207
		if (blk_mq_tag_busy(data->hctx)) {
208
			rq->cmd_flags = REQ_MQ_INFLIGHT;
209
			atomic_inc(&data->hctx->nr_active);
210 211 212
		}

		rq->tag = tag;
213
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
214 215 216 217 218 219
		return rq;
	}

	return NULL;
}

220 221
struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
		bool reserved)
222
{
223 224
	struct blk_mq_ctx *ctx;
	struct blk_mq_hw_ctx *hctx;
225
	struct request *rq;
226
	struct blk_mq_alloc_data alloc_data;
227
	int ret;
228

229 230 231
	ret = blk_mq_queue_enter(q);
	if (ret)
		return ERR_PTR(ret);
232

233 234
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);
235 236
	blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
			reserved, ctx, hctx);
237

238
	rq = __blk_mq_alloc_request(&alloc_data, rw);
239 240 241 242 243 244
	if (!rq && (gfp & __GFP_WAIT)) {
		__blk_mq_run_hw_queue(hctx);
		blk_mq_put_ctx(ctx);

		ctx = blk_mq_get_ctx(q);
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
245 246 247 248
		blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
				hctx);
		rq =  __blk_mq_alloc_request(&alloc_data, rw);
		ctx = alloc_data.ctx;
249 250
	}
	blk_mq_put_ctx(ctx);
251 252
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);
253 254
	return rq;
}
255
EXPORT_SYMBOL(blk_mq_alloc_request);
256 257 258 259 260 261 262

static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

263 264
	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
		atomic_dec(&hctx->nr_active);
265
	rq->cmd_flags = 0;
266

267
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
268
	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
	blk_mq_queue_exit(q);
}

void blk_mq_free_request(struct request *rq)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q = rq->q;

	ctx->rq_completed[rq_is_sync(rq)]++;

	hctx = q->mq_ops->map_queue(q, ctx->cpu);
	__blk_mq_free_request(hctx, ctx, rq);
}

284
inline void __blk_mq_end_request(struct request *rq, int error)
285
{
M
Ming Lei 已提交
286 287
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
288
	if (rq->end_io) {
289
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
290 291 292
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
293
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
294
	}
295
}
296
EXPORT_SYMBOL(__blk_mq_end_request);
297

298
void blk_mq_end_request(struct request *rq, int error)
299 300 301
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
302
	__blk_mq_end_request(rq, error);
303
}
304
EXPORT_SYMBOL(blk_mq_end_request);
305

306
static void __blk_mq_complete_request_remote(void *data)
307
{
308
	struct request *rq = data;
309

310
	rq->q->softirq_done_fn(rq);
311 312
}

313
static void blk_mq_ipi_complete_request(struct request *rq)
314 315
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
316
	bool shared = false;
317 318
	int cpu;

C
Christoph Hellwig 已提交
319
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
320 321 322
		rq->q->softirq_done_fn(rq);
		return;
	}
323 324

	cpu = get_cpu();
C
Christoph Hellwig 已提交
325 326 327 328
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
329
		rq->csd.func = __blk_mq_complete_request_remote;
330 331
		rq->csd.info = rq;
		rq->csd.flags = 0;
332
		smp_call_function_single_async(ctx->cpu, &rq->csd);
333
	} else {
334
		rq->q->softirq_done_fn(rq);
335
	}
336 337
	put_cpu();
}
338

339 340 341 342 343
void __blk_mq_complete_request(struct request *rq)
{
	struct request_queue *q = rq->q;

	if (!q->softirq_done_fn)
344
		blk_mq_end_request(rq, rq->errors);
345 346 347 348
	else
		blk_mq_ipi_complete_request(rq);
}

349 350 351 352 353 354 355 356 357 358
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
void blk_mq_complete_request(struct request *rq)
{
359 360 361
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
362
		return;
363 364
	if (!blk_mark_rq_complete(rq))
		__blk_mq_complete_request(rq);
365 366
}
EXPORT_SYMBOL(blk_mq_complete_request);
367

368
void blk_mq_start_request(struct request *rq)
369 370 371 372 373
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
374
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
375 376
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
377

378
	blk_add_timer(rq);
379

380 381 382 383 384 385
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

386 387 388 389 390 391
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
392 393 394 395
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
396 397 398 399 400 401 402 403 404

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
405
}
406
EXPORT_SYMBOL(blk_mq_start_request);
407

408
static void __blk_mq_requeue_request(struct request *rq)
409 410 411 412
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
413

414 415 416 417
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
418 419
}

420 421 422 423 424
void blk_mq_requeue_request(struct request *rq)
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
425
	blk_mq_add_to_requeue_list(rq, true);
426 427 428
}
EXPORT_SYMBOL(blk_mq_requeue_request);

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
		container_of(work, struct request_queue, requeue_work);
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
			continue;

		rq->cmd_flags &= ~REQ_SOFTBARRIER;
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

456 457 458 459 460
	/*
	 * Use the start variant of queue running here, so that running
	 * the requeue work will kick stopped queues.
	 */
	blk_mq_start_hw_queues(q);
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
}

void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
		rq->cmd_flags |= REQ_SOFTBARRIER;
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
	kblockd_schedule_work(&q->requeue_work);
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

491 492
static inline bool is_flush_request(struct request *rq,
		struct blk_flush_queue *fq, unsigned int tag)
493
{
494
	return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
495
			fq->flush_rq->tag == tag);
496 497 498 499 500
}

struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
	struct request *rq = tags->rqs[tag];
501 502
	/* mq_ctx of flush rq is always cloned from the corresponding req */
	struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
503

504
	if (!is_flush_request(rq, fq, tag))
505
		return rq;
506

507
	return fq->flush_rq;
508 509 510
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

511 512 513 514 515
struct blk_mq_timeout_data {
	unsigned long next;
	unsigned int next_set;
};

516
void blk_mq_rq_timed_out(struct request *req, bool reserved)
517
{
518 519
	struct blk_mq_ops *ops = req->q->mq_ops;
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
520 521 522 523 524 525 526 527 528 529

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
530 531
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
532

533
	if (ops->timeout)
534
		ret = ops->timeout(req, reserved);
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
550
}
551 552 553 554 555
		
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
556

557 558 559 560 561
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		return;

	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
562
			blk_mq_rq_timed_out(rq, reserved);
563 564 565 566
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
567 568 569
}

static void blk_mq_rq_timer(unsigned long priv)
570
{
571 572 573 574 575
	struct request_queue *q = (struct request_queue *)priv;
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
576
	struct blk_mq_hw_ctx *hctx;
577
	int i;
578

579 580 581 582 583 584 585 586
	queue_for_each_hw_ctx(q, hctx, i) {
		/*
		 * If not software queues are currently mapped to this
		 * hardware queue, there's nothing to check
		 */
		if (!hctx->nr_ctx || !hctx->tags)
			continue;

587
		blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
588
	}
589

590 591 592
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
593 594 595 596
	} else {
		queue_for_each_hw_ctx(q, hctx, i)
			blk_mq_tag_idle(hctx);
	}
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
	struct blk_mq_ctx *ctx;
	int i;

	for (i = 0; i < hctx->ctx_map.map_size; i++) {
		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
		unsigned int off, bit;

		if (!bm->word)
			continue;

		bit = 0;
		off = i * hctx->ctx_map.bits_per_word;
		do {
			bit = find_next_bit(&bm->word, bm->depth, bit);
			if (bit >= bm->depth)
				break;

			ctx = hctx->ctxs[bit + off];
			clear_bit(bit, &bm->word);
			spin_lock(&ctx->lock);
			list_splice_tail_init(&ctx->rq_list, list);
			spin_unlock(&ctx->lock);

			bit++;
		} while (1);
	}
}

672 673 674 675 676 677 678 679 680 681 682
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
683
	int queued;
684

685
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
686

687
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
688 689 690 691 692 693 694
		return;

	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
695
	flush_busy_ctxs(hctx, &rq_list);
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

	/*
	 * Now process all the entries, sending them to the driver.
	 */
711
	queued = 0;
712 713 714 715 716 717
	while (!list_empty(&rq_list)) {
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

C
Christoph Hellwig 已提交
718
		ret = q->mq_ops->queue_rq(hctx, rq, list_empty(&rq_list));
719 720 721 722 723 724
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
			continue;
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
725
			__blk_mq_requeue_request(rq);
726 727 728 729
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
730
			rq->errors = -EIO;
731
			blk_mq_end_request(rq, rq->errors);
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
	}

	if (!queued)
		hctx->dispatched[0]++;
	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
		hctx->dispatched[ilog2(queued) + 1]++;

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
	}
}

755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = hctx->next_cpu;

	if (--hctx->next_cpu_batch <= 0) {
		int next_cpu;

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

	return cpu;
}

779 780
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
781
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
782 783
		return;

784
	if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
785
		__blk_mq_run_hw_queue(hctx);
786
	else if (hctx->queue->nr_hw_queues == 1)
787
		kblockd_schedule_delayed_work(&hctx->run_work, 0);
788 789 790
	else {
		unsigned int cpu;

791
		cpu = blk_mq_hctx_next_cpu(hctx);
792
		kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
793
	}
794 795 796 797 798 799 800 801 802 803
}

void blk_mq_run_queues(struct request_queue *q, bool async)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
804
		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
805 806
			continue;

807
		preempt_disable();
808
		blk_mq_run_hw_queue(hctx, async);
809
		preempt_enable();
810 811 812 813 814 815
	}
}
EXPORT_SYMBOL(blk_mq_run_queues);

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
816 817
	cancel_delayed_work(&hctx->run_work);
	cancel_delayed_work(&hctx->delay_work);
818 819 820 821
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

822 823 824 825 826 827 828 829 830 831
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

832 833 834
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
835 836

	preempt_disable();
837
	blk_mq_run_hw_queue(hctx, false);
838
	preempt_enable();
839 840 841
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

842 843 844 845 846 847 848 849 850 851 852
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);


853
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
854 855 856 857 858 859 860 861 862
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
863
		preempt_disable();
864
		blk_mq_run_hw_queue(hctx, async);
865
		preempt_enable();
866 867 868 869
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

870
static void blk_mq_run_work_fn(struct work_struct *work)
871 872 873
{
	struct blk_mq_hw_ctx *hctx;

874
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
875

876 877 878
	__blk_mq_run_hw_queue(hctx);
}

879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	unsigned long tmo = msecs_to_jiffies(msecs);

	if (hctx->queue->nr_hw_queues == 1)
		kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
	else {
		unsigned int cpu;

898
		cpu = blk_mq_hctx_next_cpu(hctx);
899 900 901 902 903
		kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
	}
}
EXPORT_SYMBOL(blk_mq_delay_queue);

904
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
905
				    struct request *rq, bool at_head)
906 907 908
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

909 910
	trace_block_rq_insert(hctx->queue, rq);

911 912 913 914
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
915

916 917 918
	blk_mq_hctx_mark_pending(hctx, ctx);
}

919 920
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
		bool async)
921
{
922
	struct request_queue *q = rq->q;
923
	struct blk_mq_hw_ctx *hctx;
924 925 926 927 928
	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;

	current_ctx = blk_mq_get_ctx(q);
	if (!cpu_online(ctx->cpu))
		rq->mq_ctx = ctx = current_ctx;
929 930 931

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

932 933 934
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, at_head);
	spin_unlock(&ctx->lock);
935 936 937

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
938 939

	blk_mq_put_ctx(current_ctx);
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *current_ctx;

	trace_block_unplug(q, depth, !from_schedule);

	current_ctx = blk_mq_get_ctx(q);

	if (!cpu_online(ctx->cpu))
		ctx = current_ctx;
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->mq_ctx = ctx;
971
		__blk_mq_insert_request(hctx, rq, false);
972 973 974 975
	}
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
976
	blk_mq_put_ctx(current_ctx);
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1039

1040
	if (blk_do_io_stat(rq))
1041
		blk_account_io_start(rq, 1);
1042 1043
}

1044 1045 1046 1047 1048 1049
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1050 1051 1052
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1053
{
1054
	if (!hctx_allow_merges(hctx)) {
1055 1056 1057 1058 1059 1060 1061
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1062 1063
		struct request_queue *q = hctx->queue;

1064 1065 1066 1067 1068
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1069

1070 1071 1072
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1073
	}
1074
}
1075

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
struct blk_map_ctx {
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
};

static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
					  struct blk_map_ctx *data)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	int rw = bio_data_dir(bio);
1089
	struct blk_mq_alloc_data alloc_data;
1090

1091
	if (unlikely(blk_mq_queue_enter(q))) {
1092
		bio_endio(bio, -EIO);
1093
		return NULL;
1094 1095 1096 1097 1098
	}

	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1099
	if (rw_is_sync(bio->bi_rw))
S
Shaohua Li 已提交
1100
		rw |= REQ_SYNC;
1101

1102
	trace_block_getrq(q, bio, rw);
1103 1104 1105
	blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
			hctx);
	rq = __blk_mq_alloc_request(&alloc_data, rw);
1106
	if (unlikely(!rq)) {
1107
		__blk_mq_run_hw_queue(hctx);
1108 1109
		blk_mq_put_ctx(ctx);
		trace_block_sleeprq(q, bio, rw);
1110 1111

		ctx = blk_mq_get_ctx(q);
1112
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1113 1114 1115 1116 1117
		blk_mq_set_alloc_data(&alloc_data, q,
				__GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
		rq = __blk_mq_alloc_request(&alloc_data, rw);
		ctx = alloc_data.ctx;
		hctx = alloc_data.hctx;
1118 1119 1120
	}

	hctx->queued++;
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
	data->hctx = hctx;
	data->ctx = ctx;
	return rq;
}

/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	struct blk_map_ctx data;
	struct request *rq;

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
		bio_endio(bio, -EIO);
		return;
	}

	rq = blk_mq_map_request(q, bio, &data);
	if (unlikely(!rq))
		return;

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	if (is_sync) {
		int ret;

		blk_mq_bio_to_request(rq, bio);

		/*
		 * For OK queue, we are done. For error, kill it. Any other
		 * error (busy), just add it to our list as we previously
		 * would have done
		 */
C
Christoph Hellwig 已提交
1165
		ret = q->mq_ops->queue_rq(data.hctx, rq, true);
1166 1167 1168 1169 1170 1171 1172
		if (ret == BLK_MQ_RQ_QUEUE_OK)
			goto done;
		else {
			__blk_mq_requeue_request(rq);

			if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
				rq->errors = -EIO;
1173
				blk_mq_end_request(rq, rq->errors);
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
				goto done;
			}
		}
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
done:
	blk_mq_put_ctx(data.ctx);
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	unsigned int use_plug, request_count = 0;
	struct blk_map_ctx data;
	struct request *rq;

	/*
	 * If we have multiple hardware queues, just go directly to
	 * one of those for sync IO.
	 */
	use_plug = !is_flush_fua && !is_sync;

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
		bio_endio(bio, -EIO);
		return;
	}

	if (use_plug && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count))
		return;

	rq = blk_mq_map_request(q, bio, &data);
1223 1224
	if (unlikely(!rq))
		return;
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
	if (use_plug) {
		struct blk_plug *plug = current->plug;

		if (plug) {
			blk_mq_bio_to_request(rq, bio);
S
Shaohua Li 已提交
1242
			if (list_empty(&plug->mq_list))
1243 1244 1245 1246 1247 1248
				trace_block_plug(q);
			else if (request_count >= BLK_MAX_REQUEST_COUNT) {
				blk_flush_plug_list(plug, false);
				trace_block_plug(q);
			}
			list_add_tail(&rq->queuelist, &plug->mq_list);
1249
			blk_mq_put_ctx(data.ctx);
1250 1251 1252 1253
			return;
		}
	}

1254 1255 1256 1257 1258 1259 1260 1261 1262
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1263 1264
	}

1265
	blk_mq_put_ctx(data.ctx);
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
}

/*
 * Default mapping to a software queue, since we use one per CPU.
 */
struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
{
	return q->queue_hw_ctx[q->mq_map[cpu]];
}
EXPORT_SYMBOL(blk_mq_map_queue);

1277 1278
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1279
{
1280
	struct page *page;
1281

1282
	if (tags->rqs && set->ops->exit_request) {
1283
		int i;
1284

1285 1286
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1287
				continue;
1288 1289
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1290
			tags->rqs[i] = NULL;
1291
		}
1292 1293
	}

1294 1295
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1296
		list_del_init(&page->lru);
1297 1298 1299
		__free_pages(page, page->private);
	}

1300
	kfree(tags->rqs);
1301

1302
	blk_mq_free_tags(tags);
1303 1304 1305 1306
}

static size_t order_to_size(unsigned int order)
{
1307
	return (size_t)PAGE_SIZE << order;
1308 1309
}

1310 1311
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1312
{
1313
	struct blk_mq_tags *tags;
1314 1315 1316
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1317 1318 1319 1320
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
				set->numa_node);
	if (!tags)
		return NULL;
1321

1322 1323
	INIT_LIST_HEAD(&tags->page_list);

1324 1325 1326
	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
1327 1328 1329 1330
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1331 1332 1333 1334 1335

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1336
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1337
				cache_line_size());
1338
	left = rq_size * set->queue_depth;
1339

1340
	for (i = 0; i < set->queue_depth; ) {
1341 1342 1343 1344 1345 1346 1347 1348 1349
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

		while (left < order_to_size(this_order - 1) && this_order)
			this_order--;

		do {
1350 1351 1352
			page = alloc_pages_node(set->numa_node,
				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				this_order);
1353 1354 1355 1356 1357 1358 1359 1360 1361
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1362
			goto fail;
1363 1364

		page->private = this_order;
1365
		list_add_tail(&page->lru, &tags->page_list);
1366 1367 1368

		p = page_address(page);
		entries_per_page = order_to_size(this_order) / rq_size;
1369
		to_do = min(entries_per_page, set->queue_depth - i);
1370 1371
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1372
			tags->rqs[i] = p;
1373 1374
			tags->rqs[i]->atomic_flags = 0;
			tags->rqs[i]->cmd_flags = 0;
1375 1376 1377
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
1378 1379
						set->numa_node)) {
					tags->rqs[i] = NULL;
1380
					goto fail;
1381
				}
1382 1383
			}

1384 1385 1386 1387 1388
			p += rq_size;
			i++;
		}
	}

1389
	return tags;
1390

1391 1392 1393
fail:
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1394 1395
}

1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
{
	kfree(bitmap->map);
}

static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
{
	unsigned int bpw = 8, total, num_maps, i;

	bitmap->bits_per_word = bpw;

	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
					GFP_KERNEL, node);
	if (!bitmap->map)
		return -ENOMEM;

	bitmap->map_size = num_maps;

	total = nr_cpu_ids;
	for (i = 0; i < num_maps; i++) {
		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
		total -= bitmap->map[i].depth;
	}

	return 0;
}

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

	/*
	 * Move ctx entries to new CPU, if this one is going away.
	 */
	ctx = __blk_mq_get_ctx(q, cpu);

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
		return NOTIFY_OK;

	ctx = blk_mq_get_ctx(q);
	spin_lock(&ctx->lock);

	while (!list_empty(&tmp)) {
		struct request *rq;

		rq = list_first_entry(&tmp, struct request, queuelist);
		rq->mq_ctx = ctx;
		list_move_tail(&rq->queuelist, &ctx->rq_list);
	}

	hctx = q->mq_ops->map_queue(q, ctx->cpu);
	blk_mq_hctx_mark_pending(hctx, ctx);

	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, true);
	blk_mq_put_ctx(ctx);
	return NOTIFY_OK;
}

static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_tag_set *set = q->tag_set;

	if (set->tags[hctx->queue_num])
		return NOTIFY_OK;

	set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
	if (!set->tags[hctx->queue_num])
		return NOTIFY_STOP;

	hctx->tags = set->tags[hctx->queue_num];
	return NOTIFY_OK;
}

static int blk_mq_hctx_notify(void *data, unsigned long action,
			      unsigned int cpu)
{
	struct blk_mq_hw_ctx *hctx = data;

	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
		return blk_mq_hctx_cpu_offline(hctx, cpu);
	else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
		return blk_mq_hctx_cpu_online(hctx, cpu);

	return NOTIFY_OK;
}

1495 1496 1497 1498
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1499 1500
	unsigned flush_start_tag = set->queue_depth;

1501 1502
	blk_mq_tag_idle(hctx);

1503 1504 1505 1506 1507
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1508 1509 1510 1511
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1512
	blk_free_flush_queue(hctx->fq);
1513 1514 1515 1516
	kfree(hctx->ctxs);
	blk_mq_free_bitmap(&hctx->ctx_map);
}

M
Ming Lei 已提交
1517 1518 1519 1520 1521 1522 1523 1524 1525
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1526
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		free_cpumask_var(hctx->cpumask);
1538
		kfree(hctx);
M
Ming Lei 已提交
1539 1540 1541
	}
}

1542 1543 1544
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1545
{
1546
	int node;
1547
	unsigned flush_start_tag = set->queue_depth;
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
	hctx->flags = set->flags;
	hctx->cmd_size = set->cmd_size;

	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
					blk_mq_hctx_notify, hctx);
	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);

	hctx->tags = set->tags[hctx_idx];
1567 1568

	/*
1569 1570
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1571
	 */
1572 1573 1574 1575
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1576

1577 1578
	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
		goto free_ctxs;
1579

1580
	hctx->nr_ctx = 0;
1581

1582 1583 1584
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1585

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;

	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;

1596
	return 0;
1597

1598 1599 1600 1601 1602
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1603 1604 1605 1606 1607 1608
 free_bitmap:
	blk_mq_free_bitmap(&hctx->ctx_map);
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1609

1610 1611
	return -1;
}
1612

1613 1614 1615 1616 1617
static int blk_mq_init_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
1618

1619 1620 1621 1622 1623
	/*
	 * Initialize hardware queues
	 */
	queue_for_each_hw_ctx(q, hctx, i) {
		if (blk_mq_init_hctx(q, set, hctx, i))
1624 1625 1626 1627 1628 1629 1630 1631 1632
			break;
	}

	if (i == q->nr_hw_queues)
		return 0;

	/*
	 * Init failed
	 */
M
Ming Lei 已提交
1633
	blk_mq_exit_hw_queues(q, set, i);
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656

	return 1;
}

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

1657 1658 1659 1660
		hctx = q->mq_ops->map_queue(q, i);
		cpumask_set_cpu(i, hctx->cpumask);
		hctx->nr_ctx++;

1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
			hctx->numa_node = cpu_to_node(i);
	}
}

static void blk_mq_map_swqueue(struct request_queue *q)
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;

	queue_for_each_hw_ctx(q, hctx, i) {
1677
		cpumask_clear(hctx->cpumask);
1678 1679 1680 1681 1682 1683 1684 1685
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
	queue_for_each_ctx(q, ctx, i) {
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1686 1687 1688
		if (!cpu_online(i))
			continue;

1689
		hctx = q->mq_ops->map_queue(q, i);
1690
		cpumask_set_cpu(i, hctx->cpumask);
1691 1692 1693
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1694 1695

	queue_for_each_hw_ctx(q, hctx, i) {
1696
		/*
1697 1698
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
		 */
		if (!hctx->nr_ctx) {
			struct blk_mq_tag_set *set = q->tag_set;

			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
				hctx->tags = NULL;
			}
			continue;
		}

		/*
		 * Initialize batch roundrobin counts
		 */
1714 1715 1716
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1717 1718
}

1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q;
	bool shared;
	int i;

	if (set->tag_list.next == set->tag_list.prev)
		shared = false;
	else
		shared = true;

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);

		queue_for_each_hw_ctx(q, hctx, i) {
			if (shared)
				hctx->flags |= BLK_MQ_F_TAG_SHARED;
			else
				hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
		}
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
	blk_mq_update_tag_set_depth(set);
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
	list_add_tail(&q->tag_set_list, &set->tag_list);
	blk_mq_update_tag_set_depth(set);
	mutex_unlock(&set->tag_list_lock);
}

1765
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1766 1767
{
	struct blk_mq_hw_ctx **hctxs;
1768
	struct blk_mq_ctx __percpu *ctx;
1769
	struct request_queue *q;
1770
	unsigned int *map;
1771 1772 1773 1774 1775 1776
	int i;

	ctx = alloc_percpu(struct blk_mq_ctx);
	if (!ctx)
		return ERR_PTR(-ENOMEM);

1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}

1787 1788
	hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
			set->numa_node);
1789 1790 1791 1792

	if (!hctxs)
		goto err_percpu;

1793 1794 1795 1796
	map = blk_mq_make_queue_map(set);
	if (!map)
		goto err_map;

1797
	for (i = 0; i < set->nr_hw_queues; i++) {
1798 1799
		int node = blk_mq_hw_queue_to_node(map, i);

1800 1801
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
1802 1803 1804
		if (!hctxs[i])
			goto err_hctxs;

1805 1806 1807
		if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
			goto err_hctxs;

1808
		atomic_set(&hctxs[i]->nr_active, 0);
1809
		hctxs[i]->numa_node = node;
1810 1811 1812
		hctxs[i]->queue_num = i;
	}

1813
	q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1814 1815 1816
	if (!q)
		goto err_hctxs;

1817
	if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release))
1818 1819
		goto err_map;

1820 1821 1822 1823
	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
	blk_queue_rq_timeout(q, 30000);

	q->nr_queues = nr_cpu_ids;
1824
	q->nr_hw_queues = set->nr_hw_queues;
1825
	q->mq_map = map;
1826 1827 1828 1829

	q->queue_ctx = ctx;
	q->queue_hw_ctx = hctxs;

1830
	q->mq_ops = set->ops;
1831
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1832

1833 1834 1835
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

1836 1837
	q->sg_reserved_size = INT_MAX;

1838 1839 1840 1841
	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

1842 1843 1844 1845 1846
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

1847 1848
	if (set->timeout)
		blk_queue_rq_timeout(q, set->timeout);
1849

1850 1851 1852 1853 1854
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

1855 1856
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
1857

1858
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1859

1860
	if (blk_mq_init_hw_queues(q, set))
1861
		goto err_hw;
1862

1863 1864 1865 1866
	mutex_lock(&all_q_mutex);
	list_add_tail(&q->all_q_node, &all_q_list);
	mutex_unlock(&all_q_mutex);

1867 1868
	blk_mq_add_queue_tag_set(set, q);

1869 1870
	blk_mq_map_swqueue(q);

1871
	return q;
1872

1873 1874 1875
err_hw:
	blk_cleanup_queue(q);
err_hctxs:
1876
	kfree(map);
1877
	for (i = 0; i < set->nr_hw_queues; i++) {
1878 1879
		if (!hctxs[i])
			break;
1880
		free_cpumask_var(hctxs[i]->cpumask);
1881
		kfree(hctxs[i]);
1882
	}
1883
err_map:
1884 1885 1886 1887 1888 1889 1890 1891 1892
	kfree(hctxs);
err_percpu:
	free_percpu(ctx);
	return ERR_PTR(-ENOMEM);
}
EXPORT_SYMBOL(blk_mq_init_queue);

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
1893
	struct blk_mq_tag_set	*set = q->tag_set;
1894

1895 1896
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
1897 1898
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
1899

1900
	percpu_ref_exit(&q->mq_usage_counter);
1901

1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
	free_percpu(q->queue_ctx);
	kfree(q->queue_hw_ctx);
	kfree(q->mq_map);

	q->queue_ctx = NULL;
	q->queue_hw_ctx = NULL;
	q->mq_map = NULL;

	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);
}

/* Basically redo blk_mq_init_queue with queue frozen */
1916
static void blk_mq_queue_reinit(struct request_queue *q)
1917 1918 1919
{
	blk_mq_freeze_queue(q);

1920 1921
	blk_mq_sysfs_unregister(q);

1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);

	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

	blk_mq_map_swqueue(q);

1932 1933
	blk_mq_sysfs_register(q);

1934 1935 1936
	blk_mq_unfreeze_queue(q);
}

1937 1938
static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
				      unsigned long action, void *hcpu)
1939 1940 1941 1942
{
	struct request_queue *q;

	/*
1943 1944 1945 1946
	 * Before new mappings are established, hotadded cpu might already
	 * start handling requests. This doesn't break anything as we map
	 * offline CPUs to first hardware queue. We will re-init the queue
	 * below to get optimal settings.
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
	 */
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
	    action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
		return NOTIFY_OK;

	mutex_lock(&all_q_mutex);
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_queue_reinit(q);
	mutex_unlock(&all_q_mutex);
	return NOTIFY_OK;
}

1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2013 2014 2015 2016 2017 2018
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2019 2020 2021 2022
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
	if (!set->nr_hw_queues)
		return -EINVAL;
2023
	if (!set->queue_depth)
2024 2025 2026 2027
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

2028
	if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
2029 2030
		return -EINVAL;

2031 2032 2033 2034 2035
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2036

M
Ming Lei 已提交
2037 2038
	set->tags = kmalloc_node(set->nr_hw_queues *
				 sizeof(struct blk_mq_tags *),
2039 2040
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2041
		return -ENOMEM;
2042

2043 2044
	if (blk_mq_alloc_rq_maps(set))
		goto enomem;
2045

2046 2047 2048
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2049
	return 0;
2050
enomem:
2051 2052
	kfree(set->tags);
	set->tags = NULL;
2053 2054 2055 2056 2057 2058 2059 2060
	return -ENOMEM;
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2061 2062 2063 2064 2065
	for (i = 0; i < set->nr_hw_queues; i++) {
		if (set->tags[i])
			blk_mq_free_rq_map(set, set->tags[i], i);
	}

M
Ming Lei 已提交
2066
	kfree(set->tags);
2067
	set->tags = NULL;
2068 2069 2070
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2103 2104 2105 2106
static int __init blk_mq_init(void)
{
	blk_mq_cpu_init();

2107
	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2108 2109 2110 2111

	return 0;
}
subsys_initcall(blk_mq_init);