blk-mq.c 50.0 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
23
#include <linux/crash_dump.h>
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
	unsigned int i;

44 45
	for (i = 0; i < hctx->ctx_map.map_size; i++)
		if (hctx->ctx_map.map[i].word)
46 47 48 49 50
			return true;

	return false;
}

51 52 53 54 55 56 57 58 59
static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
					      struct blk_mq_ctx *ctx)
{
	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
}

#define CTX_TO_BIT(hctx, ctx)	\
	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))

60 61 62 63 64 65
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
66 67 68 69 70 71 72 73 74 75 76 77
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
78 79 80 81
}

static int blk_mq_queue_enter(struct request_queue *q)
{
82 83
	while (true) {
		int ret;
84

85 86
		if (percpu_ref_tryget_live(&q->mq_usage_counter))
			return 0;
87

88 89 90 91 92 93 94
		ret = wait_event_interruptible(q->mq_freeze_wq,
				!q->mq_freeze_depth || blk_queue_dying(q));
		if (blk_queue_dying(q))
			return -ENODEV;
		if (ret)
			return ret;
	}
95 96 97 98
}

static void blk_mq_queue_exit(struct request_queue *q)
{
99 100 101 102 103 104 105 106 107
	percpu_ref_put(&q->mq_usage_counter);
}

static void blk_mq_usage_counter_release(struct percpu_ref *ref)
{
	struct request_queue *q =
		container_of(ref, struct request_queue, mq_usage_counter);

	wake_up_all(&q->mq_freeze_wq);
108 109
}

110
void blk_mq_freeze_queue_start(struct request_queue *q)
111
{
112 113
	bool freeze;

114
	spin_lock_irq(q->queue_lock);
115
	freeze = !q->mq_freeze_depth++;
116 117
	spin_unlock_irq(q->queue_lock);

118
	if (freeze) {
119
		percpu_ref_kill(&q->mq_usage_counter);
120 121
		blk_mq_run_queues(q, false);
	}
122
}
123
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
124 125 126

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
127
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
128 129
}

130 131 132 133 134 135 136 137 138 139
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
void blk_mq_freeze_queue(struct request_queue *q)
{
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}

140
void blk_mq_unfreeze_queue(struct request_queue *q)
141
{
142
	bool wake;
143 144

	spin_lock_irq(q->queue_lock);
145 146
	wake = !--q->mq_freeze_depth;
	WARN_ON_ONCE(q->mq_freeze_depth < 0);
147
	spin_unlock_irq(q->queue_lock);
148 149
	if (wake) {
		percpu_ref_reinit(&q->mq_usage_counter);
150
		wake_up_all(&q->mq_freeze_wq);
151
	}
152
}
153
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
154

155 156 157 158 159 160 161 162
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
163 164 165 166 167 168 169

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
170 171
}

172 173 174 175 176 177
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

178 179
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			       struct request *rq, unsigned int rw_flags)
180
{
181 182 183
	if (blk_queue_io_stat(q))
		rw_flags |= REQ_IO_STAT;

184 185 186
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
187
	rq->mq_ctx = ctx;
188
	rq->cmd_flags |= rw_flags;
189 190 191 192 193 194
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
195
	rq->start_time = jiffies;
196 197
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
198
	set_start_time_ns(rq);
199 200 201 202 203 204 205 206 207 208
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

209 210
	rq->cmd = rq->__cmd;

211 212 213 214 215 216
	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
217 218
	rq->timeout = 0;

219 220 221 222
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

223 224 225
	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
}

226
static struct request *
227
__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
228 229 230 231
{
	struct request *rq;
	unsigned int tag;

232
	tag = blk_mq_get_tag(data);
233
	if (tag != BLK_MQ_TAG_FAIL) {
234
		rq = data->hctx->tags->rqs[tag];
235

236
		if (blk_mq_tag_busy(data->hctx)) {
237
			rq->cmd_flags = REQ_MQ_INFLIGHT;
238
			atomic_inc(&data->hctx->nr_active);
239 240 241
		}

		rq->tag = tag;
242
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
243 244 245 246 247 248
		return rq;
	}

	return NULL;
}

249 250
struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
		bool reserved)
251
{
252 253
	struct blk_mq_ctx *ctx;
	struct blk_mq_hw_ctx *hctx;
254
	struct request *rq;
255
	struct blk_mq_alloc_data alloc_data;
256
	int ret;
257

258 259 260
	ret = blk_mq_queue_enter(q);
	if (ret)
		return ERR_PTR(ret);
261

262 263
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);
264 265
	blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
			reserved, ctx, hctx);
266

267
	rq = __blk_mq_alloc_request(&alloc_data, rw);
268 269 270 271 272 273
	if (!rq && (gfp & __GFP_WAIT)) {
		__blk_mq_run_hw_queue(hctx);
		blk_mq_put_ctx(ctx);

		ctx = blk_mq_get_ctx(q);
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
274 275 276 277
		blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
				hctx);
		rq =  __blk_mq_alloc_request(&alloc_data, rw);
		ctx = alloc_data.ctx;
278 279
	}
	blk_mq_put_ctx(ctx);
K
Keith Busch 已提交
280 281
	if (!rq) {
		blk_mq_queue_exit(q);
282
		return ERR_PTR(-EWOULDBLOCK);
K
Keith Busch 已提交
283
	}
284 285
	return rq;
}
286
EXPORT_SYMBOL(blk_mq_alloc_request);
287 288 289 290 291 292 293

static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

294 295
	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
		atomic_dec(&hctx->nr_active);
296
	rq->cmd_flags = 0;
297

298
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
299
	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
300 301 302
	blk_mq_queue_exit(q);
}

303
void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
304 305 306 307 308
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
	__blk_mq_free_request(hctx, ctx, rq);
309 310 311 312 313 314 315 316 317 318 319

}
EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);

void blk_mq_free_request(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q = rq->q;

	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
	blk_mq_free_hctx_request(hctx, rq);
320
}
J
Jens Axboe 已提交
321
EXPORT_SYMBOL_GPL(blk_mq_free_request);
322

323
inline void __blk_mq_end_request(struct request *rq, int error)
324
{
M
Ming Lei 已提交
325 326
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
327
	if (rq->end_io) {
328
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
329 330 331
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
332
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
333
	}
334
}
335
EXPORT_SYMBOL(__blk_mq_end_request);
336

337
void blk_mq_end_request(struct request *rq, int error)
338 339 340
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
341
	__blk_mq_end_request(rq, error);
342
}
343
EXPORT_SYMBOL(blk_mq_end_request);
344

345
static void __blk_mq_complete_request_remote(void *data)
346
{
347
	struct request *rq = data;
348

349
	rq->q->softirq_done_fn(rq);
350 351
}

352
static void blk_mq_ipi_complete_request(struct request *rq)
353 354
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
355
	bool shared = false;
356 357
	int cpu;

C
Christoph Hellwig 已提交
358
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
359 360 361
		rq->q->softirq_done_fn(rq);
		return;
	}
362 363

	cpu = get_cpu();
C
Christoph Hellwig 已提交
364 365 366 367
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
368
		rq->csd.func = __blk_mq_complete_request_remote;
369 370
		rq->csd.info = rq;
		rq->csd.flags = 0;
371
		smp_call_function_single_async(ctx->cpu, &rq->csd);
372
	} else {
373
		rq->q->softirq_done_fn(rq);
374
	}
375 376
	put_cpu();
}
377

378 379 380 381 382
void __blk_mq_complete_request(struct request *rq)
{
	struct request_queue *q = rq->q;

	if (!q->softirq_done_fn)
383
		blk_mq_end_request(rq, rq->errors);
384 385 386 387
	else
		blk_mq_ipi_complete_request(rq);
}

388 389 390 391 392 393 394 395 396 397
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
void blk_mq_complete_request(struct request *rq)
{
398 399 400
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
401
		return;
402 403
	if (!blk_mark_rq_complete(rq))
		__blk_mq_complete_request(rq);
404 405
}
EXPORT_SYMBOL(blk_mq_complete_request);
406

407
void blk_mq_start_request(struct request *rq)
408 409 410 411 412
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
413
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
414 415
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
416

417
	blk_add_timer(rq);
418

419 420 421 422 423 424
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

425 426 427 428 429 430
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
431 432 433 434
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
435 436 437 438 439 440 441 442 443

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
444
}
445
EXPORT_SYMBOL(blk_mq_start_request);
446

447
static void __blk_mq_requeue_request(struct request *rq)
448 449 450 451
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
452

453 454 455 456
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
457 458
}

459 460 461 462 463
void blk_mq_requeue_request(struct request *rq)
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
464
	blk_mq_add_to_requeue_list(rq, true);
465 466 467
}
EXPORT_SYMBOL(blk_mq_requeue_request);

468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
		container_of(work, struct request_queue, requeue_work);
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
			continue;

		rq->cmd_flags &= ~REQ_SOFTBARRIER;
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

495 496 497 498 499
	/*
	 * Use the start variant of queue running here, so that running
	 * the requeue work will kick stopped queues.
	 */
	blk_mq_start_hw_queues(q);
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
}

void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
		rq->cmd_flags |= REQ_SOFTBARRIER;
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
	kblockd_schedule_work(&q->requeue_work);
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

530 531
static inline bool is_flush_request(struct request *rq,
		struct blk_flush_queue *fq, unsigned int tag)
532
{
533
	return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
534
			fq->flush_rq->tag == tag);
535 536 537 538 539
}

struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
	struct request *rq = tags->rqs[tag];
540 541
	/* mq_ctx of flush rq is always cloned from the corresponding req */
	struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
542

543
	if (!is_flush_request(rq, fq, tag))
544
		return rq;
545

546
	return fq->flush_rq;
547 548 549
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

550
struct blk_mq_timeout_data {
551 552
	unsigned long next;
	unsigned int next_set;
553 554
};

555
void blk_mq_rq_timed_out(struct request *req, bool reserved)
556
{
557 558
	struct blk_mq_ops *ops = req->q->mq_ops;
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
559 560 561 562 563 564 565 566 567 568

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
569 570
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
571

572
	if (ops->timeout)
573
		ret = ops->timeout(req, reserved);
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
589
}
590 591 592 593 594
		
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
595

596 597
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		return;
598

599 600
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
601
			blk_mq_rq_timed_out(rq, reserved);
602 603 604 605
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
606 607
}

608
static void blk_mq_rq_timer(unsigned long priv)
609
{
610 611 612 613 614
	struct request_queue *q = (struct request_queue *)priv;
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
615
	struct blk_mq_hw_ctx *hctx;
616
	int i;
617

618 619 620 621 622
	queue_for_each_hw_ctx(q, hctx, i) {
		/*
		 * If not software queues are currently mapped to this
		 * hardware queue, there's nothing to check
		 */
623
		if (!blk_mq_hw_queue_mapped(hctx))
624 625
			continue;

626
		blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
627
	}
628

629 630 631
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
632 633 634 635
	} else {
		queue_for_each_hw_ctx(q, hctx, i)
			blk_mq_tag_idle(hctx);
	}
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
	struct blk_mq_ctx *ctx;
	int i;

	for (i = 0; i < hctx->ctx_map.map_size; i++) {
		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
		unsigned int off, bit;

		if (!bm->word)
			continue;

		bit = 0;
		off = i * hctx->ctx_map.bits_per_word;
		do {
			bit = find_next_bit(&bm->word, bm->depth, bit);
			if (bit >= bm->depth)
				break;

			ctx = hctx->ctxs[bit + off];
			clear_bit(bit, &bm->word);
			spin_lock(&ctx->lock);
			list_splice_tail_init(&ctx->rq_list, list);
			spin_unlock(&ctx->lock);

			bit++;
		} while (1);
	}
}

711 712 713 714 715 716 717 718 719 720 721
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
722 723
	LIST_HEAD(driver_list);
	struct list_head *dptr;
724
	int queued;
725

726
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
727

728
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
729 730 731 732 733 734 735
		return;

	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
736
	flush_busy_ctxs(hctx, &rq_list);
737 738 739 740 741 742 743 744 745 746 747 748

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

749 750 751 752 753 754
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

755 756 757
	/*
	 * Now process all the entries, sending them to the driver.
	 */
758
	queued = 0;
759
	while (!list_empty(&rq_list)) {
760
		struct blk_mq_queue_data bd;
761 762 763 764 765
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

766 767 768 769 770
		bd.rq = rq;
		bd.list = dptr;
		bd.last = list_empty(&rq_list);

		ret = q->mq_ops->queue_rq(hctx, &bd);
771 772 773 774 775 776
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
			continue;
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
777
			__blk_mq_requeue_request(rq);
778 779 780 781
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
782
			rq->errors = -EIO;
783
			blk_mq_end_request(rq, rq->errors);
784 785 786 787 788
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
789 790 791 792 793 794 795

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
		if (!dptr && rq_list.next != rq_list.prev)
			dptr = &driver_list;
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
	}

	if (!queued)
		hctx->dispatched[0]++;
	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
		hctx->dispatched[ilog2(queued) + 1]++;

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
	}
}

814 815 816 817 818 819 820 821
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
822 823
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
824 825

	if (--hctx->next_cpu_batch <= 0) {
826
		int cpu = hctx->next_cpu, next_cpu;
827 828 829 830 831 832 833

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
834 835

		return cpu;
836 837
	}

838
	return hctx->next_cpu;
839 840
}

841 842
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
843 844
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
	    !blk_mq_hw_queue_mapped(hctx)))
845 846
		return;

847
	if (!async) {
848 849
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
850
			__blk_mq_run_hw_queue(hctx);
851
			put_cpu();
852 853
			return;
		}
854

855
		put_cpu();
856
	}
857

858 859
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->run_work, 0);
860 861 862 863 864 865 866 867 868 869
}

void blk_mq_run_queues(struct request_queue *q, bool async)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
870
		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
871 872 873 874 875 876 877 878 879
			continue;

		blk_mq_run_hw_queue(hctx, async);
	}
}
EXPORT_SYMBOL(blk_mq_run_queues);

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
880 881
	cancel_delayed_work(&hctx->run_work);
	cancel_delayed_work(&hctx->delay_work);
882 883 884 885
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

886 887 888 889 890 891 892 893 894 895
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

896 897 898
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
899

900
	blk_mq_run_hw_queue(hctx, false);
901 902 903
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

904 905 906 907 908 909 910 911 912 913 914
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);


915
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
916 917 918 919 920 921 922 923 924
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
925
		blk_mq_run_hw_queue(hctx, async);
926 927 928 929
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

930
static void blk_mq_run_work_fn(struct work_struct *work)
931 932 933
{
	struct blk_mq_hw_ctx *hctx;

934
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
935

936 937 938
	__blk_mq_run_hw_queue(hctx);
}

939 940 941 942 943 944 945 946 947 948 949 950
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
951 952
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
953

954 955
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
956 957 958
}
EXPORT_SYMBOL(blk_mq_delay_queue);

959
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
960
				    struct request *rq, bool at_head)
961 962 963
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

964 965
	trace_block_rq_insert(hctx->queue, rq);

966 967 968 969
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
970

971 972 973
	blk_mq_hctx_mark_pending(hctx, ctx);
}

974 975
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
		bool async)
976
{
977
	struct request_queue *q = rq->q;
978
	struct blk_mq_hw_ctx *hctx;
979 980 981 982 983
	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;

	current_ctx = blk_mq_get_ctx(q);
	if (!cpu_online(ctx->cpu))
		rq->mq_ctx = ctx = current_ctx;
984 985 986

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

987 988 989
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, at_head);
	spin_unlock(&ctx->lock);
990 991 992

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
993 994

	blk_mq_put_ctx(current_ctx);
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *current_ctx;

	trace_block_unplug(q, depth, !from_schedule);

	current_ctx = blk_mq_get_ctx(q);

	if (!cpu_online(ctx->cpu))
		ctx = current_ctx;
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->mq_ctx = ctx;
1026
		__blk_mq_insert_request(hctx, rq, false);
1027 1028 1029 1030
	}
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
1031
	blk_mq_put_ctx(current_ctx);
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1094

1095
	if (blk_do_io_stat(rq))
1096
		blk_account_io_start(rq, 1);
1097 1098
}

1099 1100 1101 1102 1103 1104
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1105 1106 1107
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1108
{
1109
	if (!hctx_allow_merges(hctx)) {
1110 1111 1112 1113 1114 1115 1116
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1117 1118
		struct request_queue *q = hctx->queue;

1119 1120 1121 1122 1123
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1124

1125 1126 1127
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1128
	}
1129
}
1130

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
struct blk_map_ctx {
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
};

static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
					  struct blk_map_ctx *data)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	int rw = bio_data_dir(bio);
1144
	struct blk_mq_alloc_data alloc_data;
1145

1146
	if (unlikely(blk_mq_queue_enter(q))) {
1147
		bio_endio(bio, -EIO);
1148
		return NULL;
1149 1150 1151 1152 1153
	}

	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1154
	if (rw_is_sync(bio->bi_rw))
S
Shaohua Li 已提交
1155
		rw |= REQ_SYNC;
1156

1157
	trace_block_getrq(q, bio, rw);
1158 1159 1160
	blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
			hctx);
	rq = __blk_mq_alloc_request(&alloc_data, rw);
1161
	if (unlikely(!rq)) {
1162
		__blk_mq_run_hw_queue(hctx);
1163 1164
		blk_mq_put_ctx(ctx);
		trace_block_sleeprq(q, bio, rw);
1165 1166

		ctx = blk_mq_get_ctx(q);
1167
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1168 1169 1170 1171 1172
		blk_mq_set_alloc_data(&alloc_data, q,
				__GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
		rq = __blk_mq_alloc_request(&alloc_data, rw);
		ctx = alloc_data.ctx;
		hctx = alloc_data.hctx;
1173 1174 1175
	}

	hctx->queued++;
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
	data->hctx = hctx;
	data->ctx = ctx;
	return rq;
}

/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	struct blk_map_ctx data;
	struct request *rq;

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
		bio_endio(bio, -EIO);
		return;
	}

	rq = blk_mq_map_request(q, bio, &data);
	if (unlikely(!rq))
		return;

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

1210 1211 1212 1213 1214 1215
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
	if (is_sync && !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1216 1217 1218 1219 1220
		struct blk_mq_queue_data bd = {
			.rq = rq,
			.list = NULL,
			.last = 1
		};
1221 1222 1223 1224 1225 1226 1227 1228 1229
		int ret;

		blk_mq_bio_to_request(rq, bio);

		/*
		 * For OK queue, we are done. For error, kill it. Any other
		 * error (busy), just add it to our list as we previously
		 * would have done
		 */
1230
		ret = q->mq_ops->queue_rq(data.hctx, &bd);
1231 1232 1233 1234 1235 1236 1237
		if (ret == BLK_MQ_RQ_QUEUE_OK)
			goto done;
		else {
			__blk_mq_requeue_request(rq);

			if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
				rq->errors = -EIO;
1238
				blk_mq_end_request(rq, rq->errors);
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
				goto done;
			}
		}
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
done:
	blk_mq_put_ctx(data.ctx);
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	unsigned int use_plug, request_count = 0;
	struct blk_map_ctx data;
	struct request *rq;

	/*
	 * If we have multiple hardware queues, just go directly to
	 * one of those for sync IO.
	 */
	use_plug = !is_flush_fua && !is_sync;

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
		bio_endio(bio, -EIO);
		return;
	}

	if (use_plug && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count))
		return;

	rq = blk_mq_map_request(q, bio, &data);
1288 1289
	if (unlikely(!rq))
		return;
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
	if (use_plug) {
		struct blk_plug *plug = current->plug;

		if (plug) {
			blk_mq_bio_to_request(rq, bio);
S
Shaohua Li 已提交
1307
			if (list_empty(&plug->mq_list))
1308 1309 1310 1311 1312 1313
				trace_block_plug(q);
			else if (request_count >= BLK_MAX_REQUEST_COUNT) {
				blk_flush_plug_list(plug, false);
				trace_block_plug(q);
			}
			list_add_tail(&rq->queuelist, &plug->mq_list);
1314
			blk_mq_put_ctx(data.ctx);
1315 1316 1317 1318
			return;
		}
	}

1319 1320 1321 1322 1323 1324 1325 1326 1327
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1328 1329
	}

1330
	blk_mq_put_ctx(data.ctx);
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
}

/*
 * Default mapping to a software queue, since we use one per CPU.
 */
struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
{
	return q->queue_hw_ctx[q->mq_map[cpu]];
}
EXPORT_SYMBOL(blk_mq_map_queue);

1342 1343
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1344
{
1345
	struct page *page;
1346

1347
	if (tags->rqs && set->ops->exit_request) {
1348
		int i;
1349

1350 1351
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1352
				continue;
1353 1354
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1355
			tags->rqs[i] = NULL;
1356
		}
1357 1358
	}

1359 1360
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1361
		list_del_init(&page->lru);
1362 1363 1364
		__free_pages(page, page->private);
	}

1365
	kfree(tags->rqs);
1366

1367
	blk_mq_free_tags(tags);
1368 1369 1370 1371
}

static size_t order_to_size(unsigned int order)
{
1372
	return (size_t)PAGE_SIZE << order;
1373 1374
}

1375 1376
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1377
{
1378
	struct blk_mq_tags *tags;
1379 1380 1381
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1382 1383 1384 1385
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
				set->numa_node);
	if (!tags)
		return NULL;
1386

1387 1388
	INIT_LIST_HEAD(&tags->page_list);

1389 1390 1391
	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
1392 1393 1394 1395
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1396 1397 1398 1399 1400

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1401
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1402
				cache_line_size());
1403
	left = rq_size * set->queue_depth;
1404

1405
	for (i = 0; i < set->queue_depth; ) {
1406 1407 1408 1409 1410 1411 1412 1413 1414
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

		while (left < order_to_size(this_order - 1) && this_order)
			this_order--;

		do {
1415 1416 1417
			page = alloc_pages_node(set->numa_node,
				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				this_order);
1418 1419 1420 1421 1422 1423 1424 1425 1426
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1427
			goto fail;
1428 1429

		page->private = this_order;
1430
		list_add_tail(&page->lru, &tags->page_list);
1431 1432 1433

		p = page_address(page);
		entries_per_page = order_to_size(this_order) / rq_size;
1434
		to_do = min(entries_per_page, set->queue_depth - i);
1435 1436
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1437
			tags->rqs[i] = p;
1438 1439
			tags->rqs[i]->atomic_flags = 0;
			tags->rqs[i]->cmd_flags = 0;
1440 1441 1442
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
1443 1444
						set->numa_node)) {
					tags->rqs[i] = NULL;
1445
					goto fail;
1446
				}
1447 1448
			}

1449 1450 1451 1452 1453
			p += rq_size;
			i++;
		}
	}

1454
	return tags;
1455

1456 1457 1458
fail:
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1459 1460
}

1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
{
	kfree(bitmap->map);
}

static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
{
	unsigned int bpw = 8, total, num_maps, i;

	bitmap->bits_per_word = bpw;

	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
					GFP_KERNEL, node);
	if (!bitmap->map)
		return -ENOMEM;

	bitmap->map_size = num_maps;

	total = nr_cpu_ids;
	for (i = 0; i < num_maps; i++) {
		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
		total -= bitmap->map[i].depth;
	}

	return 0;
}

1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

	/*
	 * Move ctx entries to new CPU, if this one is going away.
	 */
	ctx = __blk_mq_get_ctx(q, cpu);

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
		return NOTIFY_OK;

	ctx = blk_mq_get_ctx(q);
	spin_lock(&ctx->lock);

	while (!list_empty(&tmp)) {
		struct request *rq;

		rq = list_first_entry(&tmp, struct request, queuelist);
		rq->mq_ctx = ctx;
		list_move_tail(&rq->queuelist, &ctx->rq_list);
	}

	hctx = q->mq_ops->map_queue(q, ctx->cpu);
	blk_mq_hctx_mark_pending(hctx, ctx);

	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, true);
	blk_mq_put_ctx(ctx);
	return NOTIFY_OK;
}

static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_tag_set *set = q->tag_set;

	if (set->tags[hctx->queue_num])
		return NOTIFY_OK;

	set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
	if (!set->tags[hctx->queue_num])
		return NOTIFY_STOP;

	hctx->tags = set->tags[hctx->queue_num];
	return NOTIFY_OK;
}

static int blk_mq_hctx_notify(void *data, unsigned long action,
			      unsigned int cpu)
{
	struct blk_mq_hw_ctx *hctx = data;

	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
		return blk_mq_hctx_cpu_offline(hctx, cpu);
	else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
		return blk_mq_hctx_cpu_online(hctx, cpu);

	return NOTIFY_OK;
}

1560 1561 1562 1563
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1564 1565
	unsigned flush_start_tag = set->queue_depth;

1566 1567
	blk_mq_tag_idle(hctx);

1568 1569 1570 1571 1572
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1573 1574 1575 1576
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1577
	blk_free_flush_queue(hctx->fq);
1578 1579 1580 1581
	kfree(hctx->ctxs);
	blk_mq_free_bitmap(&hctx->ctx_map);
}

M
Ming Lei 已提交
1582 1583 1584 1585 1586 1587 1588 1589 1590
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1591
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		free_cpumask_var(hctx->cpumask);
1603
		kfree(hctx);
M
Ming Lei 已提交
1604 1605 1606
	}
}

1607 1608 1609
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1610
{
1611
	int node;
1612
	unsigned flush_start_tag = set->queue_depth;
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
	hctx->flags = set->flags;

	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
					blk_mq_hctx_notify, hctx);
	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);

	hctx->tags = set->tags[hctx_idx];
1631 1632

	/*
1633 1634
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1635
	 */
1636 1637 1638 1639
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1640

1641 1642
	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
		goto free_ctxs;
1643

1644
	hctx->nr_ctx = 0;
1645

1646 1647 1648
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1649

1650 1651 1652
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1653

1654 1655 1656 1657 1658
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1659

1660
	return 0;
1661

1662 1663 1664 1665 1666
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1667 1668 1669 1670 1671 1672
 free_bitmap:
	blk_mq_free_bitmap(&hctx->ctx_map);
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1673

1674 1675
	return -1;
}
1676

1677 1678 1679 1680 1681
static int blk_mq_init_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
1682

1683 1684 1685 1686 1687
	/*
	 * Initialize hardware queues
	 */
	queue_for_each_hw_ctx(q, hctx, i) {
		if (blk_mq_init_hctx(q, set, hctx, i))
1688 1689 1690 1691 1692 1693 1694 1695 1696
			break;
	}

	if (i == q->nr_hw_queues)
		return 0;

	/*
	 * Init failed
	 */
M
Ming Lei 已提交
1697
	blk_mq_exit_hw_queues(q, set, i);
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720

	return 1;
}

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

1721 1722 1723 1724
		hctx = q->mq_ops->map_queue(q, i);
		cpumask_set_cpu(i, hctx->cpumask);
		hctx->nr_ctx++;

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
			hctx->numa_node = cpu_to_node(i);
	}
}

static void blk_mq_map_swqueue(struct request_queue *q)
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;

	queue_for_each_hw_ctx(q, hctx, i) {
1741
		cpumask_clear(hctx->cpumask);
1742 1743 1744 1745 1746 1747 1748 1749
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
	queue_for_each_ctx(q, ctx, i) {
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1750 1751 1752
		if (!cpu_online(i))
			continue;

1753
		hctx = q->mq_ops->map_queue(q, i);
1754
		cpumask_set_cpu(i, hctx->cpumask);
1755 1756 1757
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1758 1759

	queue_for_each_hw_ctx(q, hctx, i) {
1760
		/*
1761 1762
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
		 */
		if (!hctx->nr_ctx) {
			struct blk_mq_tag_set *set = q->tag_set;

			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
				hctx->tags = NULL;
			}
			continue;
		}

		/*
		 * Initialize batch roundrobin counts
		 */
1778 1779 1780
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1781 1782
}

1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q;
	bool shared;
	int i;

	if (set->tag_list.next == set->tag_list.prev)
		shared = false;
	else
		shared = true;

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);

		queue_for_each_hw_ctx(q, hctx, i) {
			if (shared)
				hctx->flags |= BLK_MQ_F_TAG_SHARED;
			else
				hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
		}
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
	blk_mq_update_tag_set_depth(set);
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
	list_add_tail(&q->tag_set_list, &set->tag_list);
	blk_mq_update_tag_set_depth(set);
	mutex_unlock(&set->tag_list_lock);
}

1829
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1830 1831
{
	struct blk_mq_hw_ctx **hctxs;
1832
	struct blk_mq_ctx __percpu *ctx;
1833
	struct request_queue *q;
1834
	unsigned int *map;
1835 1836 1837 1838 1839 1840
	int i;

	ctx = alloc_percpu(struct blk_mq_ctx);
	if (!ctx)
		return ERR_PTR(-ENOMEM);

1841 1842
	hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
			set->numa_node);
1843 1844 1845 1846

	if (!hctxs)
		goto err_percpu;

1847 1848 1849 1850
	map = blk_mq_make_queue_map(set);
	if (!map)
		goto err_map;

1851
	for (i = 0; i < set->nr_hw_queues; i++) {
1852 1853
		int node = blk_mq_hw_queue_to_node(map, i);

1854 1855
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
1856 1857 1858
		if (!hctxs[i])
			goto err_hctxs;

1859 1860
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
						node))
1861 1862
			goto err_hctxs;

1863
		atomic_set(&hctxs[i]->nr_active, 0);
1864
		hctxs[i]->numa_node = node;
1865 1866 1867
		hctxs[i]->queue_num = i;
	}

1868
	q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1869 1870 1871
	if (!q)
		goto err_hctxs;

1872 1873 1874 1875
	/*
	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
	 * See blk_register_queue() for details.
	 */
1876
	if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
1877
			    PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1878 1879
		goto err_map;

1880 1881 1882 1883
	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
	blk_queue_rq_timeout(q, 30000);

	q->nr_queues = nr_cpu_ids;
1884
	q->nr_hw_queues = set->nr_hw_queues;
1885
	q->mq_map = map;
1886 1887 1888 1889

	q->queue_ctx = ctx;
	q->queue_hw_ctx = hctxs;

1890
	q->mq_ops = set->ops;
1891
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1892

1893 1894 1895
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

1896 1897
	q->sg_reserved_size = INT_MAX;

1898 1899 1900 1901
	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

1902 1903 1904 1905 1906
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

1907 1908
	if (set->timeout)
		blk_queue_rq_timeout(q, set->timeout);
1909

1910 1911 1912 1913 1914
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

1915 1916
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
1917

1918
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1919

1920
	if (blk_mq_init_hw_queues(q, set))
1921
		goto err_hw;
1922

1923 1924 1925 1926
	mutex_lock(&all_q_mutex);
	list_add_tail(&q->all_q_node, &all_q_list);
	mutex_unlock(&all_q_mutex);

1927 1928
	blk_mq_add_queue_tag_set(set, q);

1929 1930
	blk_mq_map_swqueue(q);

1931
	return q;
1932

1933 1934 1935
err_hw:
	blk_cleanup_queue(q);
err_hctxs:
1936
	kfree(map);
1937
	for (i = 0; i < set->nr_hw_queues; i++) {
1938 1939
		if (!hctxs[i])
			break;
1940
		free_cpumask_var(hctxs[i]->cpumask);
1941
		kfree(hctxs[i]);
1942
	}
1943
err_map:
1944 1945 1946 1947 1948 1949 1950 1951 1952
	kfree(hctxs);
err_percpu:
	free_percpu(ctx);
	return ERR_PTR(-ENOMEM);
}
EXPORT_SYMBOL(blk_mq_init_queue);

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
1953
	struct blk_mq_tag_set	*set = q->tag_set;
1954

1955 1956
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
1957 1958
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
1959

1960
	percpu_ref_exit(&q->mq_usage_counter);
1961

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
	free_percpu(q->queue_ctx);
	kfree(q->queue_hw_ctx);
	kfree(q->mq_map);

	q->queue_ctx = NULL;
	q->queue_hw_ctx = NULL;
	q->mq_map = NULL;

	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);
}

/* Basically redo blk_mq_init_queue with queue frozen */
1976
static void blk_mq_queue_reinit(struct request_queue *q)
1977
{
1978
	WARN_ON_ONCE(!q->mq_freeze_depth);
1979

1980 1981
	blk_mq_sysfs_unregister(q);

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);

	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

	blk_mq_map_swqueue(q);

1992
	blk_mq_sysfs_register(q);
1993 1994
}

1995 1996
static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
				      unsigned long action, void *hcpu)
1997 1998 1999 2000
{
	struct request_queue *q;

	/*
2001 2002 2003 2004
	 * Before new mappings are established, hotadded cpu might already
	 * start handling requests. This doesn't break anything as we map
	 * offline CPUs to first hardware queue. We will re-init the queue
	 * below to get optimal settings.
2005 2006 2007 2008 2009 2010
	 */
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
	    action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
		return NOTIFY_OK;

	mutex_lock(&all_q_mutex);
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_wait(q);

2024 2025
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_queue_reinit(q);
2026 2027 2028 2029

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2030 2031 2032 2033
	mutex_unlock(&all_q_mutex);
	return NOTIFY_OK;
}

2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2088 2089 2090 2091 2092 2093
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2094 2095
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
B
Bart Van Assche 已提交
2096 2097
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2098 2099
	if (!set->nr_hw_queues)
		return -EINVAL;
2100
	if (!set->queue_depth)
2101 2102 2103 2104
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

2105
	if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
2106 2107
		return -EINVAL;

2108 2109 2110 2111 2112
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2113

2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}

M
Ming Lei 已提交
2124 2125
	set->tags = kmalloc_node(set->nr_hw_queues *
				 sizeof(struct blk_mq_tags *),
2126 2127
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2128
		return -ENOMEM;
2129

2130 2131
	if (blk_mq_alloc_rq_maps(set))
		goto enomem;
2132

2133 2134 2135
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2136
	return 0;
2137
enomem:
2138 2139
	kfree(set->tags);
	set->tags = NULL;
2140 2141 2142 2143 2144 2145 2146 2147
	return -ENOMEM;
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2148 2149 2150 2151 2152
	for (i = 0; i < set->nr_hw_queues; i++) {
		if (set->tags[i])
			blk_mq_free_rq_map(set, set->tags[i], i);
	}

M
Ming Lei 已提交
2153
	kfree(set->tags);
2154
	set->tags = NULL;
2155 2156 2157
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2190 2191 2192 2193
static int __init blk_mq_init(void)
{
	blk_mq_cpu_init();

2194
	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2195 2196 2197 2198

	return 0;
}
subsys_initcall(blk_mq_init);