core.c 63.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * NVM Express device driver
 * Copyright (c) 2011-2014, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 */

#include <linux/blkdev.h>
#include <linux/blk-mq.h>
17
#include <linux/delay.h>
18
#include <linux/errno.h>
19
#include <linux/hdreg.h>
20
#include <linux/kernel.h>
21 22
#include <linux/module.h>
#include <linux/list_sort.h>
23 24
#include <linux/slab.h>
#include <linux/types.h>
25 26 27 28
#include <linux/pr.h>
#include <linux/ptrace.h>
#include <linux/nvme_ioctl.h>
#include <linux/t10-pi.h>
29
#include <linux/pm_qos.h>
30 31
#include <scsi/sg.h>
#include <asm/unaligned.h>
32 33

#include "nvme.h"
S
Sagi Grimberg 已提交
34
#include "fabrics.h"
35

36 37
#define NVME_MINORS		(1U << MINORBITS)

38 39 40
unsigned char admin_timeout = 60;
module_param(admin_timeout, byte, 0644);
MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
41
EXPORT_SYMBOL_GPL(admin_timeout);
42 43 44 45

unsigned char nvme_io_timeout = 30;
module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
46
EXPORT_SYMBOL_GPL(nvme_io_timeout);
47 48 49 50 51

unsigned char shutdown_timeout = 5;
module_param(shutdown_timeout, byte, 0644);
MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");

52 53
static u8 nvme_max_retries = 5;
module_param_named(max_retries, nvme_max_retries, byte, 0644);
K
Keith Busch 已提交
54
MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
55

56 57 58
static int nvme_char_major;
module_param(nvme_char_major, int, 0);

59
static unsigned long default_ps_max_latency_us = 100000;
60 61 62 63
module_param(default_ps_max_latency_us, ulong, 0644);
MODULE_PARM_DESC(default_ps_max_latency_us,
		 "max power saving latency for new devices; use PM QOS to change per device");

64 65 66 67
static bool force_apst;
module_param(force_apst, bool, 0644);
MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");

68
static LIST_HEAD(nvme_ctrl_list);
M
Ming Lin 已提交
69
static DEFINE_SPINLOCK(dev_list_lock);
70

71 72
static struct class *nvme_class;

73
static blk_status_t nvme_error_status(struct request *req)
74 75 76
{
	switch (nvme_req(req)->status & 0x7ff) {
	case NVME_SC_SUCCESS:
77
		return BLK_STS_OK;
78
	case NVME_SC_CAP_EXCEEDED:
79
		return BLK_STS_NOSPC;
80
	case NVME_SC_ONCS_NOT_SUPPORTED:
81
		return BLK_STS_NOTSUPP;
82 83 84
	case NVME_SC_WRITE_FAULT:
	case NVME_SC_READ_ERROR:
	case NVME_SC_UNWRITTEN_BLOCK:
85 86 87
		return BLK_STS_MEDIUM;
	default:
		return BLK_STS_IOERR;
88 89 90
	}
}

91
static inline bool nvme_req_needs_retry(struct request *req)
92
{
93 94
	if (blk_noretry_request(req))
		return false;
95
	if (nvme_req(req)->status & NVME_SC_DNR)
96 97 98
		return false;
	if (jiffies - req->start_time >= req->timeout)
		return false;
99
	if (nvme_req(req)->retries >= nvme_max_retries)
100 101
		return false;
	return true;
102 103 104 105
}

void nvme_complete_rq(struct request *req)
{
106 107 108 109
	if (unlikely(nvme_req(req)->status && nvme_req_needs_retry(req))) {
		nvme_req(req)->retries++;
		blk_mq_requeue_request(req, !blk_mq_queue_stopped(req->q));
		return;
110 111
	}

112
	blk_mq_end_request(req, nvme_error_status(req));
113 114 115
}
EXPORT_SYMBOL_GPL(nvme_complete_rq);

116 117 118 119 120 121 122 123 124 125 126 127 128
void nvme_cancel_request(struct request *req, void *data, bool reserved)
{
	int status;

	if (!blk_mq_request_started(req))
		return;

	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
				"Cancelling I/O %d", req->tag);

	status = NVME_SC_ABORT_REQ;
	if (blk_queue_dying(req->q))
		status |= NVME_SC_DNR;
129
	nvme_req(req)->status = status;
130
	blk_mq_complete_request(req);
131

132 133 134
}
EXPORT_SYMBOL_GPL(nvme_cancel_request);

135 136 137
bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
		enum nvme_ctrl_state new_state)
{
138
	enum nvme_ctrl_state old_state;
139 140 141
	bool changed = false;

	spin_lock_irq(&ctrl->lock);
142 143

	old_state = ctrl->state;
144 145 146
	switch (new_state) {
	case NVME_CTRL_LIVE:
		switch (old_state) {
147
		case NVME_CTRL_NEW:
148
		case NVME_CTRL_RESETTING:
149
		case NVME_CTRL_RECONNECTING:
150 151 152 153 154 155 156 157 158
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
	case NVME_CTRL_RESETTING:
		switch (old_state) {
		case NVME_CTRL_NEW:
159 160 161 162 163 164 165 166 167 168
		case NVME_CTRL_LIVE:
		case NVME_CTRL_RECONNECTING:
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
	case NVME_CTRL_RECONNECTING:
		switch (old_state) {
169 170 171 172 173 174 175 176 177 178 179
		case NVME_CTRL_LIVE:
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
	case NVME_CTRL_DELETING:
		switch (old_state) {
		case NVME_CTRL_LIVE:
		case NVME_CTRL_RESETTING:
180
		case NVME_CTRL_RECONNECTING:
181 182 183 184 185 186
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
187 188 189 190 191 192 193 194 195
	case NVME_CTRL_DEAD:
		switch (old_state) {
		case NVME_CTRL_DELETING:
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
196 197 198 199 200 201 202
	default:
		break;
	}

	if (changed)
		ctrl->state = new_state;

203 204
	spin_unlock_irq(&ctrl->lock);

205 206 207 208
	return changed;
}
EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);

209 210 211 212
static void nvme_free_ns(struct kref *kref)
{
	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);

213 214
	if (ns->ndev)
		nvme_nvm_unregister(ns);
215

216 217 218 219 220
	if (ns->disk) {
		spin_lock(&dev_list_lock);
		ns->disk->private_data = NULL;
		spin_unlock(&dev_list_lock);
	}
221 222

	put_disk(ns->disk);
223 224
	ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
	nvme_put_ctrl(ns->ctrl);
225 226 227
	kfree(ns);
}

228
static void nvme_put_ns(struct nvme_ns *ns)
229 230 231 232 233 234 235 236 237 238
{
	kref_put(&ns->kref, nvme_free_ns);
}

static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
{
	struct nvme_ns *ns;

	spin_lock(&dev_list_lock);
	ns = disk->private_data;
239 240 241 242 243 244
	if (ns) {
		if (!kref_get_unless_zero(&ns->kref))
			goto fail;
		if (!try_module_get(ns->ctrl->ops->module))
			goto fail_put_ns;
	}
245 246 247
	spin_unlock(&dev_list_lock);

	return ns;
248 249 250 251 252 253

fail_put_ns:
	kref_put(&ns->kref, nvme_free_ns);
fail:
	spin_unlock(&dev_list_lock);
	return NULL;
254 255
}

256
struct request *nvme_alloc_request(struct request_queue *q,
257
		struct nvme_command *cmd, unsigned int flags, int qid)
258
{
259
	unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
260 261
	struct request *req;

262
	if (qid == NVME_QID_ANY) {
263
		req = blk_mq_alloc_request(q, op, flags);
264
	} else {
265
		req = blk_mq_alloc_request_hctx(q, op, flags,
266 267
				qid ? qid - 1 : 0);
	}
268
	if (IS_ERR(req))
269
		return req;
270 271

	req->cmd_flags |= REQ_FAILFAST_DRIVER;
272
	nvme_req(req)->cmd = cmd;
273

274 275
	return req;
}
276
EXPORT_SYMBOL_GPL(nvme_alloc_request);
277

M
Ming Lin 已提交
278 279 280 281 282 283 284 285
static inline void nvme_setup_flush(struct nvme_ns *ns,
		struct nvme_command *cmnd)
{
	memset(cmnd, 0, sizeof(*cmnd));
	cmnd->common.opcode = nvme_cmd_flush;
	cmnd->common.nsid = cpu_to_le32(ns->ns_id);
}

286
static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
M
Ming Lin 已提交
287 288
		struct nvme_command *cmnd)
{
289
	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
M
Ming Lin 已提交
290
	struct nvme_dsm_range *range;
291
	struct bio *bio;
M
Ming Lin 已提交
292

293
	range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
M
Ming Lin 已提交
294
	if (!range)
295
		return BLK_STS_RESOURCE;
M
Ming Lin 已提交
296

297 298 299 300 301 302 303 304 305 306 307 308
	__rq_for_each_bio(bio, req) {
		u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;

		range[n].cattr = cpu_to_le32(0);
		range[n].nlb = cpu_to_le32(nlb);
		range[n].slba = cpu_to_le64(slba);
		n++;
	}

	if (WARN_ON_ONCE(n != segments)) {
		kfree(range);
309
		return BLK_STS_IOERR;
310
	}
M
Ming Lin 已提交
311 312 313 314

	memset(cmnd, 0, sizeof(*cmnd));
	cmnd->dsm.opcode = nvme_cmd_dsm;
	cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
315
	cmnd->dsm.nr = cpu_to_le32(segments - 1);
M
Ming Lin 已提交
316 317
	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);

318 319
	req->special_vec.bv_page = virt_to_page(range);
	req->special_vec.bv_offset = offset_in_page(range);
320
	req->special_vec.bv_len = sizeof(*range) * segments;
321
	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
M
Ming Lin 已提交
322

323
	return BLK_STS_OK;
M
Ming Lin 已提交
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
}

static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req,
		struct nvme_command *cmnd)
{
	u16 control = 0;
	u32 dsmgmt = 0;

	if (req->cmd_flags & REQ_FUA)
		control |= NVME_RW_FUA;
	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
		control |= NVME_RW_LR;

	if (req->cmd_flags & REQ_RAHEAD)
		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;

	memset(cmnd, 0, sizeof(*cmnd));
	cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
	cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);

	if (ns->ms) {
		switch (ns->pi_type) {
		case NVME_NS_DPS_PI_TYPE3:
			control |= NVME_RW_PRINFO_PRCHK_GUARD;
			break;
		case NVME_NS_DPS_PI_TYPE1:
		case NVME_NS_DPS_PI_TYPE2:
			control |= NVME_RW_PRINFO_PRCHK_GUARD |
					NVME_RW_PRINFO_PRCHK_REF;
			cmnd->rw.reftag = cpu_to_le32(
					nvme_block_nr(ns, blk_rq_pos(req)));
			break;
		}
		if (!blk_integrity_rq(req))
			control |= NVME_RW_PRINFO_PRACT;
	}

	cmnd->rw.control = cpu_to_le16(control);
	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
}

367
blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
M
Ming Lin 已提交
368 369
		struct nvme_command *cmd)
{
370
	blk_status_t ret = BLK_STS_OK;
M
Ming Lin 已提交
371

372
	if (!(req->rq_flags & RQF_DONTPREP)) {
373
		nvme_req(req)->retries = 0;
374
		nvme_req(req)->flags = 0;
375 376 377
		req->rq_flags |= RQF_DONTPREP;
	}

378 379 380
	switch (req_op(req)) {
	case REQ_OP_DRV_IN:
	case REQ_OP_DRV_OUT:
381
		memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
382 383
		break;
	case REQ_OP_FLUSH:
M
Ming Lin 已提交
384
		nvme_setup_flush(ns, cmd);
385
		break;
386 387
	case REQ_OP_WRITE_ZEROES:
		/* currently only aliased to deallocate for a few ctrls: */
388
	case REQ_OP_DISCARD:
M
Ming Lin 已提交
389
		ret = nvme_setup_discard(ns, req, cmd);
390 391 392
		break;
	case REQ_OP_READ:
	case REQ_OP_WRITE:
M
Ming Lin 已提交
393
		nvme_setup_rw(ns, req, cmd);
394 395 396
		break;
	default:
		WARN_ON_ONCE(1);
397
		return BLK_STS_IOERR;
398
	}
M
Ming Lin 已提交
399

400
	cmd->common.command_id = req->tag;
M
Ming Lin 已提交
401 402 403 404
	return ret;
}
EXPORT_SYMBOL_GPL(nvme_setup_cmd);

405 406 407 408 409
/*
 * Returns 0 on success.  If the result is negative, it's a Linux error code;
 * if the result is positive, it's an NVM Express status code
 */
int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
410
		union nvme_result *result, void *buffer, unsigned bufflen,
411
		unsigned timeout, int qid, int at_head, int flags)
412 413 414 415
{
	struct request *req;
	int ret;

416
	req = nvme_alloc_request(q, cmd, flags, qid);
417 418 419 420 421
	if (IS_ERR(req))
		return PTR_ERR(req);

	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;

422 423 424 425
	if (buffer && bufflen) {
		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
		if (ret)
			goto out;
426 427
	}

428
	blk_execute_rq(req->q, NULL, req, at_head);
429 430
	if (result)
		*result = nvme_req(req)->result;
431 432 433 434
	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
		ret = -EINTR;
	else
		ret = nvme_req(req)->status;
435 436 437 438
 out:
	blk_mq_free_request(req);
	return ret;
}
439
EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
440 441 442 443

int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
		void *buffer, unsigned bufflen)
{
444 445
	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
			NVME_QID_ANY, 0, 0);
446
}
447
EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
448

449 450 451 452
int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
		void __user *ubuffer, unsigned bufflen,
		void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
		u32 *result, unsigned timeout)
453
{
454
	bool write = nvme_is_write(cmd);
455 456
	struct nvme_ns *ns = q->queuedata;
	struct gendisk *disk = ns ? ns->disk : NULL;
457
	struct request *req;
458 459
	struct bio *bio = NULL;
	void *meta = NULL;
460 461
	int ret;

462
	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
463 464 465 466 467 468
	if (IS_ERR(req))
		return PTR_ERR(req);

	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;

	if (ubuffer && bufflen) {
469 470 471 472 473 474
		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
				GFP_KERNEL);
		if (ret)
			goto out;
		bio = req->bio;

475 476 477 478 479 480 481 482
		if (!disk)
			goto submit;
		bio->bi_bdev = bdget_disk(disk, 0);
		if (!bio->bi_bdev) {
			ret = -ENODEV;
			goto out_unmap;
		}

483
		if (meta_buffer && meta_len) {
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
			struct bio_integrity_payload *bip;

			meta = kmalloc(meta_len, GFP_KERNEL);
			if (!meta) {
				ret = -ENOMEM;
				goto out_unmap;
			}

			if (write) {
				if (copy_from_user(meta, meta_buffer,
						meta_len)) {
					ret = -EFAULT;
					goto out_free_meta;
				}
			}

			bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
501 502
			if (IS_ERR(bip)) {
				ret = PTR_ERR(bip);
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
				goto out_free_meta;
			}

			bip->bip_iter.bi_size = meta_len;
			bip->bip_iter.bi_sector = meta_seed;

			ret = bio_integrity_add_page(bio, virt_to_page(meta),
					meta_len, offset_in_page(meta));
			if (ret != meta_len) {
				ret = -ENOMEM;
				goto out_free_meta;
			}
		}
	}
 submit:
	blk_execute_rq(req->q, disk, req, 0);
519 520 521 522
	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
		ret = -EINTR;
	else
		ret = nvme_req(req)->status;
523
	if (result)
524
		*result = le32_to_cpu(nvme_req(req)->result.u32);
525 526 527 528 529 530 531 532 533 534 535 536
	if (meta && !ret && !write) {
		if (copy_to_user(meta_buffer, meta, meta_len))
			ret = -EFAULT;
	}
 out_free_meta:
	kfree(meta);
 out_unmap:
	if (bio) {
		if (disk && bio->bi_bdev)
			bdput(bio->bi_bdev);
		blk_rq_unmap_user(bio);
	}
537 538 539 540 541
 out:
	blk_mq_free_request(req);
	return ret;
}

542 543 544 545 546 547 548 549
int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
		void __user *ubuffer, unsigned bufflen, u32 *result,
		unsigned timeout)
{
	return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
			result, timeout);
}

550
static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
S
Sagi Grimberg 已提交
551 552 553 554 555
{
	struct nvme_ctrl *ctrl = rq->end_io_data;

	blk_mq_free_request(rq);

556
	if (status) {
S
Sagi Grimberg 已提交
557
		dev_err(ctrl->device,
558 559
			"failed nvme_keep_alive_end_io error=%d\n",
				status);
S
Sagi Grimberg 已提交
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
		return;
	}

	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
}

static int nvme_keep_alive(struct nvme_ctrl *ctrl)
{
	struct nvme_command c;
	struct request *rq;

	memset(&c, 0, sizeof(c));
	c.common.opcode = nvme_admin_keep_alive;

	rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
			NVME_QID_ANY);
	if (IS_ERR(rq))
		return PTR_ERR(rq);

	rq->timeout = ctrl->kato * HZ;
	rq->end_io_data = ctrl;

	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);

	return 0;
}

static void nvme_keep_alive_work(struct work_struct *work)
{
	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
			struct nvme_ctrl, ka_work);

	if (nvme_keep_alive(ctrl)) {
		/* allocation failure, reset the controller */
		dev_err(ctrl->device, "keep-alive failed\n");
		ctrl->ops->reset_ctrl(ctrl);
		return;
	}
}

void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
{
	if (unlikely(ctrl->kato == 0))
		return;

	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
}
EXPORT_SYMBOL_GPL(nvme_start_keep_alive);

void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
{
	if (unlikely(ctrl->kato == 0))
		return;

	cancel_delayed_work_sync(&ctrl->ka_work);
}
EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);

619
int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
620 621 622 623 624 625
{
	struct nvme_command c = { };
	int error;

	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
	c.identify.opcode = nvme_admin_identify;
626
	c.identify.cns = NVME_ID_CNS_CTRL;
627 628 629 630 631 632 633 634 635 636 637 638

	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
	if (!*id)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
			sizeof(struct nvme_id_ctrl));
	if (error)
		kfree(*id);
	return error;
}

639 640 641 642 643
static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
{
	struct nvme_command c = { };

	c.identify.opcode = nvme_admin_identify;
644
	c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
645 646 647 648
	c.identify.nsid = cpu_to_le32(nsid);
	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
}

649
int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
650 651 652 653 654 655
		struct nvme_id_ns **id)
{
	struct nvme_command c = { };
	int error;

	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
656 657
	c.identify.opcode = nvme_admin_identify;
	c.identify.nsid = cpu_to_le32(nsid);
658
	c.identify.cns = NVME_ID_CNS_NS;
659 660 661 662 663 664 665 666 667 668 669 670

	*id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
	if (!*id)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
			sizeof(struct nvme_id_ns));
	if (error)
		kfree(*id);
	return error;
}

671
int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
672
		      void *buffer, size_t buflen, u32 *result)
673 674
{
	struct nvme_command c;
675
	union nvme_result res;
676
	int ret;
677 678 679 680 681 682

	memset(&c, 0, sizeof(c));
	c.features.opcode = nvme_admin_get_features;
	c.features.nsid = cpu_to_le32(nsid);
	c.features.fid = cpu_to_le32(fid);

683
	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, buffer, buflen, 0,
684
			NVME_QID_ANY, 0, 0);
685
	if (ret >= 0 && result)
686
		*result = le32_to_cpu(res.u32);
687
	return ret;
688 689
}

690
int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
691
		      void *buffer, size_t buflen, u32 *result)
692 693
{
	struct nvme_command c;
694
	union nvme_result res;
695
	int ret;
696 697 698 699 700 701

	memset(&c, 0, sizeof(c));
	c.features.opcode = nvme_admin_set_features;
	c.features.fid = cpu_to_le32(fid);
	c.features.dword11 = cpu_to_le32(dword11);

702
	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
703
			buffer, buflen, 0, NVME_QID_ANY, 0, 0);
704
	if (ret >= 0 && result)
705
		*result = le32_to_cpu(res.u32);
706
	return ret;
707 708
}

709
int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
{
	struct nvme_command c = { };
	int error;

	c.common.opcode = nvme_admin_get_log_page,
	c.common.nsid = cpu_to_le32(0xFFFFFFFF),
	c.common.cdw10[0] = cpu_to_le32(
			(((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
			 NVME_LOG_SMART),

	*log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
	if (!*log)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
			sizeof(struct nvme_smart_log));
	if (error)
		kfree(*log);
	return error;
}
730

C
Christoph Hellwig 已提交
731 732 733 734 735 736
int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
{
	u32 q_count = (*count - 1) | ((*count - 1) << 16);
	u32 result;
	int status, nr_io_queues;

737
	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
C
Christoph Hellwig 已提交
738
			&result);
739
	if (status < 0)
C
Christoph Hellwig 已提交
740 741
		return status;

742 743 744 745 746 747 748 749 750 751 752 753 754
	/*
	 * Degraded controllers might return an error when setting the queue
	 * count.  We still want to be able to bring them online and offer
	 * access to the admin queue, as that might be only way to fix them up.
	 */
	if (status > 0) {
		dev_err(ctrl->dev, "Could not set queue count (%d)\n", status);
		*count = 0;
	} else {
		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
		*count = min(*count, nr_io_queues);
	}

C
Christoph Hellwig 已提交
755 756
	return 0;
}
757
EXPORT_SYMBOL_GPL(nvme_set_queue_count);
C
Christoph Hellwig 已提交
758

759 760 761 762 763 764 765 766 767
static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
{
	struct nvme_user_io io;
	struct nvme_command c;
	unsigned length, meta_len;
	void __user *metadata;

	if (copy_from_user(&io, uio, sizeof(io)))
		return -EFAULT;
768 769
	if (io.flags)
		return -EINVAL;
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808

	switch (io.opcode) {
	case nvme_cmd_write:
	case nvme_cmd_read:
	case nvme_cmd_compare:
		break;
	default:
		return -EINVAL;
	}

	length = (io.nblocks + 1) << ns->lba_shift;
	meta_len = (io.nblocks + 1) * ns->ms;
	metadata = (void __user *)(uintptr_t)io.metadata;

	if (ns->ext) {
		length += meta_len;
		meta_len = 0;
	} else if (meta_len) {
		if ((io.metadata & 3) || !io.metadata)
			return -EINVAL;
	}

	memset(&c, 0, sizeof(c));
	c.rw.opcode = io.opcode;
	c.rw.flags = io.flags;
	c.rw.nsid = cpu_to_le32(ns->ns_id);
	c.rw.slba = cpu_to_le64(io.slba);
	c.rw.length = cpu_to_le16(io.nblocks);
	c.rw.control = cpu_to_le16(io.control);
	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
	c.rw.reftag = cpu_to_le32(io.reftag);
	c.rw.apptag = cpu_to_le16(io.apptag);
	c.rw.appmask = cpu_to_le16(io.appmask);

	return __nvme_submit_user_cmd(ns->queue, &c,
			(void __user *)(uintptr_t)io.addr, length,
			metadata, meta_len, io.slba, NULL, 0);
}

809
static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
810 811 812 813 814 815 816 817 818 819 820
			struct nvme_passthru_cmd __user *ucmd)
{
	struct nvme_passthru_cmd cmd;
	struct nvme_command c;
	unsigned timeout = 0;
	int status;

	if (!capable(CAP_SYS_ADMIN))
		return -EACCES;
	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
		return -EFAULT;
821 822
	if (cmd.flags)
		return -EINVAL;
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840

	memset(&c, 0, sizeof(c));
	c.common.opcode = cmd.opcode;
	c.common.flags = cmd.flags;
	c.common.nsid = cpu_to_le32(cmd.nsid);
	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);

	if (cmd.timeout_ms)
		timeout = msecs_to_jiffies(cmd.timeout_ms);

	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
841
			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
			&cmd.result, timeout);
	if (status >= 0) {
		if (put_user(cmd.result, &ucmd->result))
			return -EFAULT;
	}

	return status;
}

static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
		unsigned int cmd, unsigned long arg)
{
	struct nvme_ns *ns = bdev->bd_disk->private_data;

	switch (cmd) {
	case NVME_IOCTL_ID:
		force_successful_syscall_return();
		return ns->ns_id;
	case NVME_IOCTL_ADMIN_CMD:
		return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
	case NVME_IOCTL_IO_CMD:
		return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
	case NVME_IOCTL_SUBMIT_IO:
		return nvme_submit_io(ns, (void __user *)arg);
866
#ifdef CONFIG_BLK_DEV_NVME_SCSI
867 868 869 870
	case SG_GET_VERSION_NUM:
		return nvme_sg_get_version_num((void __user *)arg);
	case SG_IO:
		return nvme_sg_io(ns, (void __user *)arg);
871
#endif
872
	default:
873 874 875 876
#ifdef CONFIG_NVM
		if (ns->ndev)
			return nvme_nvm_ioctl(ns, cmd, arg);
#endif
877
		if (is_sed_ioctl(cmd))
878
			return sed_ioctl(ns->ctrl->opal_dev, cmd,
879
					 (void __user *) arg);
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
		return -ENOTTY;
	}
}

#ifdef CONFIG_COMPAT
static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
			unsigned int cmd, unsigned long arg)
{
	switch (cmd) {
	case SG_IO:
		return -ENOIOCTLCMD;
	}
	return nvme_ioctl(bdev, mode, cmd, arg);
}
#else
#define nvme_compat_ioctl	NULL
#endif

static int nvme_open(struct block_device *bdev, fmode_t mode)
{
	return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
}

static void nvme_release(struct gendisk *disk, fmode_t mode)
{
905 906 907 908
	struct nvme_ns *ns = disk->private_data;

	module_put(ns->ctrl->ops->module);
	nvme_put_ns(ns);
909 910 911 912 913 914 915 916 917 918 919 920
}

static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
	/* some standard values */
	geo->heads = 1 << 6;
	geo->sectors = 1 << 5;
	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
	return 0;
}

#ifdef CONFIG_BLK_DEV_INTEGRITY
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id,
		u16 bs)
{
	struct nvme_ns *ns = disk->private_data;
	u16 old_ms = ns->ms;
	u8 pi_type = 0;

	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);

	/* PI implementation requires metadata equal t10 pi tuple size */
	if (ns->ms == sizeof(struct t10_pi_tuple))
		pi_type = id->dps & NVME_NS_DPS_PI_MASK;

	if (blk_get_integrity(disk) &&
	    (ns->pi_type != pi_type || ns->ms != old_ms ||
	     bs != queue_logical_block_size(disk->queue) ||
	     (ns->ms && ns->ext)))
		blk_integrity_unregister(disk);

	ns->pi_type = pi_type;
}

944 945 946 947
static void nvme_init_integrity(struct nvme_ns *ns)
{
	struct blk_integrity integrity;

948
	memset(&integrity, 0, sizeof(integrity));
949 950 951
	switch (ns->pi_type) {
	case NVME_NS_DPS_PI_TYPE3:
		integrity.profile = &t10_pi_type3_crc;
952 953
		integrity.tag_size = sizeof(u16) + sizeof(u32);
		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
954 955 956 957
		break;
	case NVME_NS_DPS_PI_TYPE1:
	case NVME_NS_DPS_PI_TYPE2:
		integrity.profile = &t10_pi_type1_crc;
958 959
		integrity.tag_size = sizeof(u16);
		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
960 961 962 963 964 965 966 967 968 969
		break;
	default:
		integrity.profile = NULL;
		break;
	}
	integrity.tuple_size = ns->ms;
	blk_integrity_register(ns->disk, &integrity);
	blk_queue_max_integrity_segments(ns->queue, 1);
}
#else
970 971 972 973
static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id,
		u16 bs)
{
}
974 975 976 977 978 979 980
static void nvme_init_integrity(struct nvme_ns *ns)
{
}
#endif /* CONFIG_BLK_DEV_INTEGRITY */

static void nvme_config_discard(struct nvme_ns *ns)
{
981
	struct nvme_ctrl *ctrl = ns->ctrl;
982
	u32 logical_block_size = queue_logical_block_size(ns->queue);
983

984 985 986
	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
			NVME_DSM_MAX_RANGES);

987 988
	ns->queue->limits.discard_alignment = logical_block_size;
	ns->queue->limits.discard_granularity = logical_block_size;
989
	blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
990
	blk_queue_max_discard_segments(ns->queue, NVME_DSM_MAX_RANGES);
991
	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
992 993 994

	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
		blk_queue_max_write_zeroes_sectors(ns->queue, UINT_MAX);
995 996
}

997
static int nvme_revalidate_ns(struct nvme_ns *ns, struct nvme_id_ns **id)
998
{
999
	if (nvme_identify_ns(ns->ctrl, ns->ns_id, id)) {
1000
		dev_warn(ns->ctrl->dev, "%s: Identify failure\n", __func__);
1001 1002 1003
		return -ENODEV;
	}

1004 1005 1006
	if ((*id)->ncap == 0) {
		kfree(*id);
		return -ENODEV;
1007 1008
	}

1009
	if (ns->ctrl->vs >= NVME_VS(1, 1, 0))
1010
		memcpy(ns->eui, (*id)->eui64, sizeof(ns->eui));
1011
	if (ns->ctrl->vs >= NVME_VS(1, 2, 0))
1012 1013 1014 1015 1016 1017 1018 1019
		memcpy(ns->uuid, (*id)->nguid, sizeof(ns->uuid));

	return 0;
}

static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
{
	struct nvme_ns *ns = disk->private_data;
1020
	u16 bs;
1021 1022 1023 1024 1025

	/*
	 * If identify namespace failed, use default 512 byte block size so
	 * block layer can use before failing read/write for 0 capacity.
	 */
1026
	ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1027 1028 1029 1030 1031 1032
	if (ns->lba_shift == 0)
		ns->lba_shift = 9;
	bs = 1 << ns->lba_shift;

	blk_mq_freeze_queue(disk->queue);

1033 1034
	if (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)
		nvme_prep_integrity(disk, id, bs);
1035
	blk_queue_logical_block_size(ns->queue, bs);
K
Keith Busch 已提交
1036
	if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
1037 1038 1039 1040 1041 1042 1043 1044 1045
		nvme_init_integrity(ns);
	if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
		set_capacity(disk, 0);
	else
		set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));

	if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
		nvme_config_discard(ns);
	blk_mq_unfreeze_queue(disk->queue);
1046
}
1047

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
static int nvme_revalidate_disk(struct gendisk *disk)
{
	struct nvme_ns *ns = disk->private_data;
	struct nvme_id_ns *id = NULL;
	int ret;

	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
		set_capacity(disk, 0);
		return -ENODEV;
	}

	ret = nvme_revalidate_ns(ns, &id);
	if (ret)
		return ret;

	__nvme_revalidate_disk(disk, id);
1064
	kfree(id);
1065

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
	return 0;
}

static char nvme_pr_type(enum pr_type type)
{
	switch (type) {
	case PR_WRITE_EXCLUSIVE:
		return 1;
	case PR_EXCLUSIVE_ACCESS:
		return 2;
	case PR_WRITE_EXCLUSIVE_REG_ONLY:
		return 3;
	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
		return 4;
	case PR_WRITE_EXCLUSIVE_ALL_REGS:
		return 5;
	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
		return 6;
	default:
		return 0;
	}
};

static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
				u64 key, u64 sa_key, u8 op)
{
	struct nvme_ns *ns = bdev->bd_disk->private_data;
	struct nvme_command c;
	u8 data[16] = { 0, };

	put_unaligned_le64(key, &data[0]);
	put_unaligned_le64(sa_key, &data[8]);

	memset(&c, 0, sizeof(c));
	c.common.opcode = op;
	c.common.nsid = cpu_to_le32(ns->ns_id);
	c.common.cdw10[0] = cpu_to_le32(cdw10);

	return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
}

static int nvme_pr_register(struct block_device *bdev, u64 old,
		u64 new, unsigned flags)
{
	u32 cdw10;

	if (flags & ~PR_FL_IGNORE_KEY)
		return -EOPNOTSUPP;

	cdw10 = old ? 2 : 0;
	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
}

static int nvme_pr_reserve(struct block_device *bdev, u64 key,
		enum pr_type type, unsigned flags)
{
	u32 cdw10;

	if (flags & ~PR_FL_IGNORE_KEY)
		return -EOPNOTSUPP;

	cdw10 = nvme_pr_type(type) << 8;
	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
}

static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
		enum pr_type type, bool abort)
{
	u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
}

static int nvme_pr_clear(struct block_device *bdev, u64 key)
{
1143
	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
}

static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
{
	u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
}

static const struct pr_ops nvme_pr_ops = {
	.pr_register	= nvme_pr_register,
	.pr_reserve	= nvme_pr_reserve,
	.pr_release	= nvme_pr_release,
	.pr_preempt	= nvme_pr_preempt,
	.pr_clear	= nvme_pr_clear,
};

1161
#ifdef CONFIG_BLK_SED_OPAL
1162 1163
int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
		bool send)
1164
{
1165
	struct nvme_ctrl *ctrl = data;
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	struct nvme_command cmd;

	memset(&cmd, 0, sizeof(cmd));
	if (send)
		cmd.common.opcode = nvme_admin_security_send;
	else
		cmd.common.opcode = nvme_admin_security_recv;
	cmd.common.nsid = 0;
	cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
	cmd.common.cdw10[1] = cpu_to_le32(len);

	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
				      ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
}
EXPORT_SYMBOL_GPL(nvme_sec_submit);
#endif /* CONFIG_BLK_SED_OPAL */

1183
static const struct block_device_operations nvme_fops = {
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
	.owner		= THIS_MODULE,
	.ioctl		= nvme_ioctl,
	.compat_ioctl	= nvme_compat_ioctl,
	.open		= nvme_open,
	.release	= nvme_release,
	.getgeo		= nvme_getgeo,
	.revalidate_disk= nvme_revalidate_disk,
	.pr_ops		= &nvme_pr_ops,
};

1194 1195 1196 1197 1198 1199 1200 1201
static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
{
	unsigned long timeout =
		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
	int ret;

	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
K
Keith Busch 已提交
1202 1203
		if (csts == ~0)
			return -ENODEV;
1204 1205 1206 1207 1208 1209 1210
		if ((csts & NVME_CSTS_RDY) == bit)
			break;

		msleep(100);
		if (fatal_signal_pending(current))
			return -EINTR;
		if (time_after(jiffies, timeout)) {
1211
			dev_err(ctrl->device,
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
				"Device not ready; aborting %s\n", enabled ?
						"initialisation" : "reset");
			return -ENODEV;
		}
	}

	return ret;
}

/*
 * If the device has been passed off to us in an enabled state, just clear
 * the enabled bit.  The spec says we should set the 'shutdown notification
 * bits', but doing so may cause the device to complete commands to the
 * admin queue ... and we don't know what memory that might be pointing at!
 */
int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
{
	int ret;

	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
	ctrl->ctrl_config &= ~NVME_CC_ENABLE;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;
1237

1238
	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1239 1240
		msleep(NVME_QUIRK_DELAY_AMOUNT);

1241 1242
	return nvme_wait_ready(ctrl, cap, false);
}
1243
EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255

int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
{
	/*
	 * Default to a 4K page size, with the intention to update this
	 * path in the future to accomodate architectures with differing
	 * kernel and IO page sizes.
	 */
	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
	int ret;

	if (page_shift < dev_page_min) {
1256
		dev_err(ctrl->device,
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
			"Minimum device page size %u too large for host (%u)\n",
			1 << dev_page_min, 1 << page_shift);
		return -ENODEV;
	}

	ctrl->page_size = 1 << page_shift;

	ctrl->ctrl_config = NVME_CC_CSS_NVM;
	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
	ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
	ctrl->ctrl_config |= NVME_CC_ENABLE;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;
	return nvme_wait_ready(ctrl, cap, true);
}
1275
EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297

int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
{
	unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
	u32 csts;
	int ret;

	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;

	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
			break;

		msleep(100);
		if (fatal_signal_pending(current))
			return -EINTR;
		if (time_after(jiffies, timeout)) {
1298
			dev_err(ctrl->device,
1299 1300 1301 1302 1303 1304 1305
				"Device shutdown incomplete; abort shutdown\n");
			return -ENODEV;
		}
	}

	return ret;
}
1306
EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1307

1308 1309 1310
static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
		struct request_queue *q)
{
1311 1312
	bool vwc = false;

1313
	if (ctrl->max_hw_sectors) {
1314 1315 1316
		u32 max_segments =
			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;

1317
		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1318
		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1319
	}
K
Keith Busch 已提交
1320 1321
	if (ctrl->quirks & NVME_QUIRK_STRIPE_SIZE)
		blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1322
	blk_queue_virt_boundary(q, ctrl->page_size - 1);
1323 1324 1325
	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
		vwc = true;
	blk_queue_write_cache(q, vwc, vwc);
1326 1327
}

1328 1329 1330 1331 1332 1333 1334 1335 1336
static void nvme_configure_apst(struct nvme_ctrl *ctrl)
{
	/*
	 * APST (Autonomous Power State Transition) lets us program a
	 * table of power state transitions that the controller will
	 * perform automatically.  We configure it with a simple
	 * heuristic: we are willing to spend at most 2% of the time
	 * transitioning between power states.  Therefore, when running
	 * in any given state, we will enter the next lower-power
A
Andy Lutomirski 已提交
1337
	 * non-operational state after waiting 50 * (enlat + exlat)
1338
	 * microseconds, as long as that state's exit latency is under
1339 1340 1341 1342 1343 1344 1345 1346 1347
	 * the requested maximum latency.
	 *
	 * We will not autonomously enter any non-operational state for
	 * which the total latency exceeds ps_max_latency_us.  Users
	 * can set ps_max_latency_us to zero to turn off APST.
	 */

	unsigned apste;
	struct nvme_feat_auto_pst *table;
1348 1349
	u64 max_lat_us = 0;
	int max_ps = -1;
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	int ret;

	/*
	 * If APST isn't supported or if we haven't been initialized yet,
	 * then don't do anything.
	 */
	if (!ctrl->apsta)
		return;

	if (ctrl->npss > 31) {
		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
		return;
	}

	table = kzalloc(sizeof(*table), GFP_KERNEL);
	if (!table)
		return;

	if (ctrl->ps_max_latency_us == 0) {
		/* Turn off APST. */
		apste = 0;
1371
		dev_dbg(ctrl->device, "APST disabled\n");
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
	} else {
		__le64 target = cpu_to_le64(0);
		int state;

		/*
		 * Walk through all states from lowest- to highest-power.
		 * According to the spec, lower-numbered states use more
		 * power.  NPSS, despite the name, is the index of the
		 * lowest-power state, not the number of states.
		 */
		for (state = (int)ctrl->npss; state >= 0; state--) {
1383
			u64 total_latency_us, exit_latency_us, transition_ms;
1384 1385 1386 1387

			if (target)
				table->entries[state] = target;

1388 1389 1390 1391 1392 1393 1394 1395
			/*
			 * Don't allow transitions to the deepest state
			 * if it's quirked off.
			 */
			if (state == ctrl->npss &&
			    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
				continue;

1396 1397 1398 1399 1400 1401 1402 1403
			/*
			 * Is this state a useful non-operational state for
			 * higher-power states to autonomously transition to?
			 */
			if (!(ctrl->psd[state].flags &
			      NVME_PS_FLAGS_NON_OP_STATE))
				continue;

1404 1405 1406
			exit_latency_us =
				(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
			if (exit_latency_us > ctrl->ps_max_latency_us)
1407 1408
				continue;

1409 1410 1411 1412
			total_latency_us =
				exit_latency_us +
				le32_to_cpu(ctrl->psd[state].entry_lat);

1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
			/*
			 * This state is good.  Use it as the APST idle
			 * target for higher power states.
			 */
			transition_ms = total_latency_us + 19;
			do_div(transition_ms, 20);
			if (transition_ms > (1 << 24) - 1)
				transition_ms = (1 << 24) - 1;

			target = cpu_to_le64((state << 3) |
					     (transition_ms << 8));
1424 1425 1426 1427 1428 1429

			if (max_ps == -1)
				max_ps = state;

			if (total_latency_us > max_lat_us)
				max_lat_us = total_latency_us;
1430 1431 1432
		}

		apste = 1;
1433 1434 1435 1436 1437 1438 1439

		if (max_ps == -1) {
			dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
		} else {
			dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
				max_ps, max_lat_us, (int)sizeof(*table), table);
		}
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
	}

	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
				table, sizeof(*table), NULL);
	if (ret)
		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);

	kfree(table);
}

static void nvme_set_latency_tolerance(struct device *dev, s32 val)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
	u64 latency;

	switch (val) {
	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
	case PM_QOS_LATENCY_ANY:
		latency = U64_MAX;
		break;

	default:
		latency = val;
	}

	if (ctrl->ps_max_latency_us != latency) {
		ctrl->ps_max_latency_us = latency;
		nvme_configure_apst(ctrl);
	}
}

1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
struct nvme_core_quirk_entry {
	/*
	 * NVMe model and firmware strings are padded with spaces.  For
	 * simplicity, strings in the quirk table are padded with NULLs
	 * instead.
	 */
	u16 vid;
	const char *mn;
	const char *fr;
	unsigned long quirks;
};

static const struct nvme_core_quirk_entry core_quirks[] = {
1484
	{
1485 1486 1487 1488 1489 1490
		/*
		 * This Toshiba device seems to die using any APST states.  See:
		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
		 */
		.vid = 0x1179,
		.mn = "THNSF5256GPUK TOSHIBA",
1491
		.quirks = NVME_QUIRK_NO_APST,
1492
	}
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
};

/* match is null-terminated but idstr is space-padded. */
static bool string_matches(const char *idstr, const char *match, size_t len)
{
	size_t matchlen;

	if (!match)
		return true;

	matchlen = strlen(match);
	WARN_ON_ONCE(matchlen > len);

	if (memcmp(idstr, match, matchlen))
		return false;

	for (; matchlen < len; matchlen++)
		if (idstr[matchlen] != ' ')
			return false;

	return true;
}

static bool quirk_matches(const struct nvme_id_ctrl *id,
			  const struct nvme_core_quirk_entry *q)
{
	return q->vid == le16_to_cpu(id->vid) &&
		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
		string_matches(id->fr, q->fr, sizeof(id->fr));
}

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
/*
 * Initialize the cached copies of the Identify data and various controller
 * register in our nvme_ctrl structure.  This should be called as soon as
 * the admin queue is fully up and running.
 */
int nvme_init_identify(struct nvme_ctrl *ctrl)
{
	struct nvme_id_ctrl *id;
	u64 cap;
	int ret, page_shift;
1534
	u32 max_hw_sectors;
1535
	u8 prev_apsta;
1536

1537 1538
	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
	if (ret) {
1539
		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1540 1541 1542
		return ret;
	}

1543 1544
	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
	if (ret) {
1545
		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1546 1547 1548 1549
		return ret;
	}
	page_shift = NVME_CAP_MPSMIN(cap) + 12;

1550
	if (ctrl->vs >= NVME_VS(1, 1, 0))
1551 1552
		ctrl->subsystem = NVME_CAP_NSSRC(cap);

1553 1554
	ret = nvme_identify_ctrl(ctrl, &id);
	if (ret) {
1555
		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1556 1557 1558
		return -EIO;
	}

1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
	if (!ctrl->identified) {
		/*
		 * Check for quirks.  Quirk can depend on firmware version,
		 * so, in principle, the set of quirks present can change
		 * across a reset.  As a possible future enhancement, we
		 * could re-scan for quirks every time we reinitialize
		 * the device, but we'd have to make sure that the driver
		 * behaves intelligently if the quirks change.
		 */

		int i;

		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
			if (quirk_matches(id, &core_quirks[i]))
				ctrl->quirks |= core_quirks[i].quirks;
		}
	}

1577 1578 1579 1580 1581
	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
		dev_warn(ctrl->dev, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
	}

1582
	ctrl->oacs = le16_to_cpu(id->oacs);
1583
	ctrl->vid = le16_to_cpu(id->vid);
1584
	ctrl->oncs = le16_to_cpup(&id->oncs);
1585
	atomic_set(&ctrl->abort_limit, id->acl + 1);
1586
	ctrl->vwc = id->vwc;
M
Ming Lin 已提交
1587
	ctrl->cntlid = le16_to_cpup(&id->cntlid);
1588 1589 1590 1591
	memcpy(ctrl->serial, id->sn, sizeof(id->sn));
	memcpy(ctrl->model, id->mn, sizeof(id->mn));
	memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
	if (id->mdts)
1592
		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1593
	else
1594 1595 1596
		max_hw_sectors = UINT_MAX;
	ctrl->max_hw_sectors =
		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
1597

1598
	nvme_set_queue_limits(ctrl, ctrl->admin_q);
1599
	ctrl->sgls = le32_to_cpu(id->sgls);
S
Sagi Grimberg 已提交
1600
	ctrl->kas = le16_to_cpu(id->kas);
1601

1602 1603
	ctrl->npss = id->npss;
	prev_apsta = ctrl->apsta;
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
		if (force_apst && id->apsta) {
			dev_warn(ctrl->dev, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
			ctrl->apsta = 1;
		} else {
			ctrl->apsta = 0;
		}
	} else {
		ctrl->apsta = id->apsta;
	}
1614 1615
	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));

1616
	if (ctrl->ops->flags & NVME_F_FABRICS) {
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
		ctrl->icdoff = le16_to_cpu(id->icdoff);
		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
		ctrl->maxcmd = le16_to_cpu(id->maxcmd);

		/*
		 * In fabrics we need to verify the cntlid matches the
		 * admin connect
		 */
		if (ctrl->cntlid != le16_to_cpu(id->cntlid))
			ret = -EINVAL;
S
Sagi Grimberg 已提交
1628 1629 1630 1631 1632 1633

		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
			dev_err(ctrl->dev,
				"keep-alive support is mandatory for fabrics\n");
			ret = -EINVAL;
		}
1634 1635
	} else {
		ctrl->cntlid = le16_to_cpu(id->cntlid);
1636 1637
		ctrl->hmpre = le32_to_cpu(id->hmpre);
		ctrl->hmmin = le32_to_cpu(id->hmmin);
1638
	}
1639

1640
	kfree(id);
1641

1642 1643 1644 1645 1646 1647 1648
	if (ctrl->apsta && !prev_apsta)
		dev_pm_qos_expose_latency_tolerance(ctrl->device);
	else if (!ctrl->apsta && prev_apsta)
		dev_pm_qos_hide_latency_tolerance(ctrl->device);

	nvme_configure_apst(ctrl);

1649
	ctrl->identified = true;
1650

1651
	return ret;
1652
}
1653
EXPORT_SYMBOL_GPL(nvme_init_identify);
1654

1655
static int nvme_dev_open(struct inode *inode, struct file *file)
1656
{
1657 1658 1659
	struct nvme_ctrl *ctrl;
	int instance = iminor(inode);
	int ret = -ENODEV;
1660

1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
	spin_lock(&dev_list_lock);
	list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
		if (ctrl->instance != instance)
			continue;

		if (!ctrl->admin_q) {
			ret = -EWOULDBLOCK;
			break;
		}
		if (!kref_get_unless_zero(&ctrl->kref))
			break;
		file->private_data = ctrl;
		ret = 0;
		break;
	}
	spin_unlock(&dev_list_lock);

	return ret;
1679 1680
}

1681
static int nvme_dev_release(struct inode *inode, struct file *file)
1682
{
1683 1684 1685 1686
	nvme_put_ctrl(file->private_data);
	return 0;
}

1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
{
	struct nvme_ns *ns;
	int ret;

	mutex_lock(&ctrl->namespaces_mutex);
	if (list_empty(&ctrl->namespaces)) {
		ret = -ENOTTY;
		goto out_unlock;
	}

	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1700
		dev_warn(ctrl->device,
1701 1702 1703 1704 1705
			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
		ret = -EINVAL;
		goto out_unlock;
	}

1706
	dev_warn(ctrl->device,
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
	kref_get(&ns->kref);
	mutex_unlock(&ctrl->namespaces_mutex);

	ret = nvme_user_cmd(ctrl, ns, argp);
	nvme_put_ns(ns);
	return ret;

out_unlock:
	mutex_unlock(&ctrl->namespaces_mutex);
	return ret;
}

1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
		unsigned long arg)
{
	struct nvme_ctrl *ctrl = file->private_data;
	void __user *argp = (void __user *)arg;

	switch (cmd) {
	case NVME_IOCTL_ADMIN_CMD:
		return nvme_user_cmd(ctrl, NULL, argp);
	case NVME_IOCTL_IO_CMD:
1730
		return nvme_dev_user_cmd(ctrl, argp);
1731
	case NVME_IOCTL_RESET:
1732
		dev_warn(ctrl->device, "resetting controller\n");
1733 1734 1735
		return ctrl->ops->reset_ctrl(ctrl);
	case NVME_IOCTL_SUBSYS_RESET:
		return nvme_reset_subsystem(ctrl);
K
Keith Busch 已提交
1736 1737 1738
	case NVME_IOCTL_RESCAN:
		nvme_queue_scan(ctrl);
		return 0;
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
	default:
		return -ENOTTY;
	}
}

static const struct file_operations nvme_dev_fops = {
	.owner		= THIS_MODULE,
	.open		= nvme_dev_open,
	.release	= nvme_dev_release,
	.unlocked_ioctl	= nvme_dev_ioctl,
	.compat_ioctl	= nvme_dev_ioctl,
};

static ssize_t nvme_sysfs_reset(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
	int ret;

	ret = ctrl->ops->reset_ctrl(ctrl);
	if (ret < 0)
		return ret;
	return count;
1763
}
1764
static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1765

K
Keith Busch 已提交
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
static ssize_t nvme_sysfs_rescan(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	nvme_queue_scan(ctrl);
	return count;
}
static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);

1777 1778 1779
static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
1780
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
	struct nvme_ctrl *ctrl = ns->ctrl;
	int serial_len = sizeof(ctrl->serial);
	int model_len = sizeof(ctrl->model);

	if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
		return sprintf(buf, "eui.%16phN\n", ns->uuid);

	if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
		return sprintf(buf, "eui.%8phN\n", ns->eui);

	while (ctrl->serial[serial_len - 1] == ' ')
		serial_len--;
	while (ctrl->model[model_len - 1] == ' ')
		model_len--;

	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
		serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
}
static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);

1801 1802 1803
static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
1804
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1805 1806 1807 1808 1809 1810 1811
	return sprintf(buf, "%pU\n", ns->uuid);
}
static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);

static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
1812
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1813 1814 1815 1816 1817 1818 1819
	return sprintf(buf, "%8phd\n", ns->eui);
}
static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);

static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
1820
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1821 1822 1823 1824 1825
	return sprintf(buf, "%d\n", ns->ns_id);
}
static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);

static struct attribute *nvme_ns_attrs[] = {
1826
	&dev_attr_wwid.attr,
1827 1828 1829 1830 1831 1832
	&dev_attr_uuid.attr,
	&dev_attr_eui.attr,
	&dev_attr_nsid.attr,
	NULL,
};

M
Ming Lin 已提交
1833
static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj,
1834 1835 1836
		struct attribute *a, int n)
{
	struct device *dev = container_of(kobj, struct device, kobj);
1837
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851

	if (a == &dev_attr_uuid.attr) {
		if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
			return 0;
	}
	if (a == &dev_attr_eui.attr) {
		if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
			return 0;
	}
	return a->mode;
}

static const struct attribute_group nvme_ns_attr_group = {
	.attrs		= nvme_ns_attrs,
M
Ming Lin 已提交
1852
	.is_visible	= nvme_ns_attrs_are_visible,
1853 1854
};

M
Ming Lin 已提交
1855
#define nvme_show_str_function(field)						\
1856 1857 1858 1859 1860 1861 1862 1863
static ssize_t  field##_show(struct device *dev,				\
			    struct device_attribute *attr, char *buf)		\
{										\
        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
        return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field);	\
}										\
static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);

M
Ming Lin 已提交
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
#define nvme_show_int_function(field)						\
static ssize_t  field##_show(struct device *dev,				\
			    struct device_attribute *attr, char *buf)		\
{										\
        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
        return sprintf(buf, "%d\n", ctrl->field);	\
}										\
static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);

nvme_show_str_function(model);
nvme_show_str_function(serial);
nvme_show_str_function(firmware_rev);
nvme_show_int_function(cntlid);
1877

M
Ming Lin 已提交
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
static ssize_t nvme_sysfs_delete(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	if (device_remove_file_self(dev, attr))
		ctrl->ops->delete_ctrl(ctrl);
	return count;
}
static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);

static ssize_t nvme_sysfs_show_transport(struct device *dev,
					 struct device_attribute *attr,
					 char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
}
static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);

1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
static ssize_t nvme_sysfs_show_state(struct device *dev,
				     struct device_attribute *attr,
				     char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
	static const char *const state_name[] = {
		[NVME_CTRL_NEW]		= "new",
		[NVME_CTRL_LIVE]	= "live",
		[NVME_CTRL_RESETTING]	= "resetting",
		[NVME_CTRL_RECONNECTING]= "reconnecting",
		[NVME_CTRL_DELETING]	= "deleting",
		[NVME_CTRL_DEAD]	= "dead",
	};

	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
	    state_name[ctrl->state])
		return sprintf(buf, "%s\n", state_name[ctrl->state]);

	return sprintf(buf, "unknown state\n");
}

static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);

M
Ming Lin 已提交
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
					 struct device_attribute *attr,
					 char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "%s\n",
			ctrl->ops->get_subsysnqn(ctrl));
}
static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);

static ssize_t nvme_sysfs_show_address(struct device *dev,
					 struct device_attribute *attr,
					 char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
}
static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);

1944 1945
static struct attribute *nvme_dev_attrs[] = {
	&dev_attr_reset_controller.attr,
K
Keith Busch 已提交
1946
	&dev_attr_rescan_controller.attr,
1947 1948 1949
	&dev_attr_model.attr,
	&dev_attr_serial.attr,
	&dev_attr_firmware_rev.attr,
M
Ming Lin 已提交
1950
	&dev_attr_cntlid.attr,
M
Ming Lin 已提交
1951 1952 1953 1954
	&dev_attr_delete_controller.attr,
	&dev_attr_transport.attr,
	&dev_attr_subsysnqn.attr,
	&dev_attr_address.attr,
1955
	&dev_attr_state.attr,
1956 1957 1958
	NULL
};

M
Ming Lin 已提交
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
#define CHECK_ATTR(ctrl, a, name)		\
	if ((a) == &dev_attr_##name.attr &&	\
	    !(ctrl)->ops->get_##name)		\
		return 0

static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
		struct attribute *a, int n)
{
	struct device *dev = container_of(kobj, struct device, kobj);
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	if (a == &dev_attr_delete_controller.attr) {
		if (!ctrl->ops->delete_ctrl)
			return 0;
	}

	CHECK_ATTR(ctrl, a, subsysnqn);
	CHECK_ATTR(ctrl, a, address);

	return a->mode;
}

1981
static struct attribute_group nvme_dev_attrs_group = {
M
Ming Lin 已提交
1982 1983
	.attrs		= nvme_dev_attrs,
	.is_visible	= nvme_dev_attrs_are_visible,
1984 1985 1986 1987 1988 1989 1990
};

static const struct attribute_group *nvme_dev_attr_groups[] = {
	&nvme_dev_attrs_group,
	NULL,
};

1991 1992 1993 1994 1995 1996 1997 1998
static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);

	return nsa->ns_id - nsb->ns_id;
}

1999
static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2000
{
2001
	struct nvme_ns *ns, *ret = NULL;
2002

2003
	mutex_lock(&ctrl->namespaces_mutex);
2004
	list_for_each_entry(ns, &ctrl->namespaces, list) {
2005 2006 2007 2008 2009
		if (ns->ns_id == nsid) {
			kref_get(&ns->kref);
			ret = ns;
			break;
		}
2010 2011 2012
		if (ns->ns_id > nsid)
			break;
	}
2013 2014
	mutex_unlock(&ctrl->namespaces_mutex);
	return ret;
2015 2016 2017 2018 2019 2020
}

static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
	struct nvme_ns *ns;
	struct gendisk *disk;
2021 2022
	struct nvme_id_ns *id;
	char disk_name[DISK_NAME_LEN];
2023 2024 2025 2026 2027 2028
	int node = dev_to_node(ctrl->dev);

	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
	if (!ns)
		return;

2029 2030 2031 2032
	ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
	if (ns->instance < 0)
		goto out_free_ns;

2033 2034
	ns->queue = blk_mq_init_queue(ctrl->tagset);
	if (IS_ERR(ns->queue))
2035
		goto out_release_instance;
2036 2037 2038 2039 2040 2041 2042 2043 2044
	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
	ns->queue->queuedata = ns;
	ns->ctrl = ctrl;

	kref_init(&ns->kref);
	ns->ns_id = nsid;
	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */

	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2045
	nvme_set_queue_limits(ctrl, ns->queue);
2046

2047
	sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
2048

2049 2050 2051
	if (nvme_revalidate_ns(ns, &id))
		goto out_free_queue;

2052 2053 2054 2055 2056
	if (nvme_nvm_ns_supported(ns, id) &&
				nvme_nvm_register(ns, disk_name, node)) {
		dev_warn(ctrl->dev, "%s: LightNVM init failure\n", __func__);
		goto out_free_id;
	}
2057

2058 2059 2060
	disk = alloc_disk_node(0, node);
	if (!disk)
		goto out_free_id;
2061

2062 2063 2064 2065 2066 2067 2068 2069
	disk->fops = &nvme_fops;
	disk->private_data = ns;
	disk->queue = ns->queue;
	disk->flags = GENHD_FL_EXT_DEVT;
	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
	ns->disk = disk;

	__nvme_revalidate_disk(disk, id);
2070

2071 2072 2073 2074
	mutex_lock(&ctrl->namespaces_mutex);
	list_add_tail(&ns->list, &ctrl->namespaces);
	mutex_unlock(&ctrl->namespaces_mutex);

2075
	kref_get(&ctrl->kref);
2076 2077 2078

	kfree(id);

2079
	device_add_disk(ctrl->device, ns->disk);
2080 2081 2082 2083
	if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
					&nvme_ns_attr_group))
		pr_warn("%s: failed to create sysfs group for identification\n",
			ns->disk->disk_name);
2084 2085 2086
	if (ns->ndev && nvme_nvm_register_sysfs(ns))
		pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
			ns->disk->disk_name);
2087
	return;
2088 2089
 out_free_id:
	kfree(id);
2090 2091
 out_free_queue:
	blk_cleanup_queue(ns->queue);
2092 2093
 out_release_instance:
	ida_simple_remove(&ctrl->ns_ida, ns->instance);
2094 2095 2096 2097 2098 2099
 out_free_ns:
	kfree(ns);
}

static void nvme_ns_remove(struct nvme_ns *ns)
{
2100 2101
	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
		return;
2102

2103
	if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
2104 2105
		if (blk_get_integrity(ns->disk))
			blk_integrity_unregister(ns->disk);
2106 2107
		sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
					&nvme_ns_attr_group);
2108 2109
		if (ns->ndev)
			nvme_nvm_unregister_sysfs(ns);
2110 2111 2112
		del_gendisk(ns->disk);
		blk_cleanup_queue(ns->queue);
	}
2113 2114

	mutex_lock(&ns->ctrl->namespaces_mutex);
2115
	list_del_init(&ns->list);
2116 2117
	mutex_unlock(&ns->ctrl->namespaces_mutex);

2118 2119 2120
	nvme_put_ns(ns);
}

2121 2122 2123 2124
static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
	struct nvme_ns *ns;

2125
	ns = nvme_find_get_ns(ctrl, nsid);
2126
	if (ns) {
2127
		if (ns->disk && revalidate_disk(ns->disk))
2128
			nvme_ns_remove(ns);
2129
		nvme_put_ns(ns);
2130 2131 2132 2133
	} else
		nvme_alloc_ns(ctrl, nsid);
}

2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
					unsigned nsid)
{
	struct nvme_ns *ns, *next;

	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
		if (ns->ns_id > nsid)
			nvme_ns_remove(ns);
	}
}

2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
{
	struct nvme_ns *ns;
	__le32 *ns_list;
	unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
	int ret = 0;

	ns_list = kzalloc(0x1000, GFP_KERNEL);
	if (!ns_list)
		return -ENOMEM;

	for (i = 0; i < num_lists; i++) {
		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
		if (ret)
2159
			goto free;
2160 2161 2162 2163 2164 2165 2166 2167 2168

		for (j = 0; j < min(nn, 1024U); j++) {
			nsid = le32_to_cpu(ns_list[j]);
			if (!nsid)
				goto out;

			nvme_validate_ns(ctrl, nsid);

			while (++prev < nsid) {
2169 2170
				ns = nvme_find_get_ns(ctrl, prev);
				if (ns) {
2171
					nvme_ns_remove(ns);
2172 2173
					nvme_put_ns(ns);
				}
2174 2175 2176 2177 2178
			}
		}
		nn -= j;
	}
 out:
2179 2180
	nvme_remove_invalid_namespaces(ctrl, prev);
 free:
2181 2182 2183 2184
	kfree(ns_list);
	return ret;
}

2185
static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
2186 2187 2188
{
	unsigned i;

2189 2190 2191
	for (i = 1; i <= nn; i++)
		nvme_validate_ns(ctrl, i);

2192
	nvme_remove_invalid_namespaces(ctrl, nn);
2193 2194
}

2195
static void nvme_scan_work(struct work_struct *work)
2196
{
2197 2198
	struct nvme_ctrl *ctrl =
		container_of(work, struct nvme_ctrl, scan_work);
2199
	struct nvme_id_ctrl *id;
2200
	unsigned nn;
2201

2202 2203 2204
	if (ctrl->state != NVME_CTRL_LIVE)
		return;

2205 2206
	if (nvme_identify_ctrl(ctrl, &id))
		return;
2207 2208

	nn = le32_to_cpu(id->nn);
2209
	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
2210 2211 2212 2213
	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
		if (!nvme_scan_ns_list(ctrl, nn))
			goto done;
	}
2214
	nvme_scan_ns_sequential(ctrl, nn);
2215
 done:
2216
	mutex_lock(&ctrl->namespaces_mutex);
2217
	list_sort(NULL, &ctrl->namespaces, ns_cmp);
2218
	mutex_unlock(&ctrl->namespaces_mutex);
2219 2220
	kfree(id);
}
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231

void nvme_queue_scan(struct nvme_ctrl *ctrl)
{
	/*
	 * Do not queue new scan work when a controller is reset during
	 * removal.
	 */
	if (ctrl->state == NVME_CTRL_LIVE)
		schedule_work(&ctrl->scan_work);
}
EXPORT_SYMBOL_GPL(nvme_queue_scan);
2232

2233 2234 2235 2236 2237
/*
 * This function iterates the namespace list unlocked to allow recovery from
 * controller failure. It is up to the caller to ensure the namespace list is
 * not modified by scan work while this function is executing.
 */
2238 2239 2240 2241
void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns, *next;

2242 2243 2244 2245 2246 2247 2248 2249 2250
	/*
	 * The dead states indicates the controller was not gracefully
	 * disconnected. In that case, we won't be able to flush any data while
	 * removing the namespaces' disks; fail all the queues now to avoid
	 * potentially having to clean up the failed sync later.
	 */
	if (ctrl->state == NVME_CTRL_DEAD)
		nvme_kill_queues(ctrl);

2251 2252 2253
	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
		nvme_ns_remove(ns);
}
2254
EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
2255

2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
static void nvme_async_event_work(struct work_struct *work)
{
	struct nvme_ctrl *ctrl =
		container_of(work, struct nvme_ctrl, async_event_work);

	spin_lock_irq(&ctrl->lock);
	while (ctrl->event_limit > 0) {
		int aer_idx = --ctrl->event_limit;

		spin_unlock_irq(&ctrl->lock);
		ctrl->ops->submit_async_event(ctrl, aer_idx);
		spin_lock_irq(&ctrl->lock);
	}
	spin_unlock_irq(&ctrl->lock);
}

2272 2273
void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
		union nvme_result *res)
2274
{
2275 2276
	u32 result = le32_to_cpu(res->u32);
	bool done = true;
2277

2278 2279 2280 2281 2282
	switch (le16_to_cpu(status) >> 1) {
	case NVME_SC_SUCCESS:
		done = false;
		/*FALLTHRU*/
	case NVME_SC_ABORT_REQ:
2283 2284
		++ctrl->event_limit;
		schedule_work(&ctrl->async_event_work);
2285 2286 2287
		break;
	default:
		break;
2288 2289
	}

2290
	if (done)
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
		return;

	switch (result & 0xff07) {
	case NVME_AER_NOTICE_NS_CHANGED:
		dev_info(ctrl->device, "rescanning\n");
		nvme_queue_scan(ctrl);
		break;
	default:
		dev_warn(ctrl->device, "async event result %08x\n", result);
	}
}
EXPORT_SYMBOL_GPL(nvme_complete_async_event);

void nvme_queue_async_events(struct nvme_ctrl *ctrl)
{
	ctrl->event_limit = NVME_NR_AERS;
	schedule_work(&ctrl->async_event_work);
}
EXPORT_SYMBOL_GPL(nvme_queue_async_events);

2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
static DEFINE_IDA(nvme_instance_ida);

static int nvme_set_instance(struct nvme_ctrl *ctrl)
{
	int instance, error;

	do {
		if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
			return -ENODEV;

		spin_lock(&dev_list_lock);
		error = ida_get_new(&nvme_instance_ida, &instance);
		spin_unlock(&dev_list_lock);
	} while (error == -EAGAIN);

	if (error)
		return -ENODEV;

	ctrl->instance = instance;
	return 0;
}

static void nvme_release_instance(struct nvme_ctrl *ctrl)
{
	spin_lock(&dev_list_lock);
	ida_remove(&nvme_instance_ida, ctrl->instance);
	spin_unlock(&dev_list_lock);
}

2340
void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
2341
{
2342
	flush_work(&ctrl->async_event_work);
2343 2344 2345
	flush_work(&ctrl->scan_work);
	nvme_remove_namespaces(ctrl);

2346
	device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
2347 2348 2349 2350

	spin_lock(&dev_list_lock);
	list_del(&ctrl->node);
	spin_unlock(&dev_list_lock);
2351
}
2352
EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
2353 2354 2355 2356

static void nvme_free_ctrl(struct kref *kref)
{
	struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
2357 2358 2359

	put_device(ctrl->device);
	nvme_release_instance(ctrl);
2360
	ida_destroy(&ctrl->ns_ida);
2361 2362 2363 2364 2365 2366 2367 2368

	ctrl->ops->free_ctrl(ctrl);
}

void nvme_put_ctrl(struct nvme_ctrl *ctrl)
{
	kref_put(&ctrl->kref, nvme_free_ctrl);
}
2369
EXPORT_SYMBOL_GPL(nvme_put_ctrl);
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380

/*
 * Initialize a NVMe controller structures.  This needs to be called during
 * earliest initialization so that we have the initialized structured around
 * during probing.
 */
int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
		const struct nvme_ctrl_ops *ops, unsigned long quirks)
{
	int ret;

2381 2382
	ctrl->state = NVME_CTRL_NEW;
	spin_lock_init(&ctrl->lock);
2383
	INIT_LIST_HEAD(&ctrl->namespaces);
2384
	mutex_init(&ctrl->namespaces_mutex);
2385 2386 2387 2388
	kref_init(&ctrl->kref);
	ctrl->dev = dev;
	ctrl->ops = ops;
	ctrl->quirks = quirks;
2389
	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
2390
	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
2391 2392 2393 2394 2395

	ret = nvme_set_instance(ctrl);
	if (ret)
		goto out;

2396
	ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
2397
				MKDEV(nvme_char_major, ctrl->instance),
2398
				ctrl, nvme_dev_attr_groups,
2399
				"nvme%d", ctrl->instance);
2400 2401 2402 2403 2404
	if (IS_ERR(ctrl->device)) {
		ret = PTR_ERR(ctrl->device);
		goto out_release_instance;
	}
	get_device(ctrl->device);
2405
	ida_init(&ctrl->ns_ida);
2406 2407 2408 2409 2410

	spin_lock(&dev_list_lock);
	list_add_tail(&ctrl->node, &nvme_ctrl_list);
	spin_unlock(&dev_list_lock);

2411 2412 2413 2414 2415 2416 2417 2418
	/*
	 * Initialize latency tolerance controls.  The sysfs files won't
	 * be visible to userspace unless the device actually supports APST.
	 */
	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
		min(default_ps_max_latency_us, (unsigned long)S32_MAX));

2419 2420 2421 2422 2423 2424
	return 0;
out_release_instance:
	nvme_release_instance(ctrl);
out:
	return ret;
}
2425
EXPORT_SYMBOL_GPL(nvme_init_ctrl);
2426

2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
/**
 * nvme_kill_queues(): Ends all namespace queues
 * @ctrl: the dead controller that needs to end
 *
 * Call this function when the driver determines it is unable to get the
 * controller in a state capable of servicing IO.
 */
void nvme_kill_queues(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

2438
	mutex_lock(&ctrl->namespaces_mutex);
M
Ming Lei 已提交
2439 2440 2441 2442

	/* Forcibly start all queues to avoid having stuck requests */
	blk_mq_start_hw_queues(ctrl->admin_q);

2443
	list_for_each_entry(ns, &ctrl->namespaces, list) {
2444 2445 2446 2447
		/*
		 * Revalidating a dead namespace sets capacity to 0. This will
		 * end buffered writers dirtying pages that can't be synced.
		 */
2448 2449 2450
		if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
			continue;
		revalidate_disk(ns->disk);
2451
		blk_set_queue_dying(ns->queue);
2452 2453 2454 2455 2456 2457 2458

		/*
		 * Forcibly start all queues to avoid having stuck requests.
		 * Note that we must ensure the queues are not stopped
		 * when the final removal happens.
		 */
		blk_mq_start_hw_queues(ns->queue);
2459 2460 2461

		/* draining requests in requeue list */
		blk_mq_kick_requeue_list(ns->queue);
2462
	}
2463
	mutex_unlock(&ctrl->namespaces_mutex);
2464
}
2465
EXPORT_SYMBOL_GPL(nvme_kill_queues);
2466

K
Keith Busch 已提交
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
void nvme_unfreeze(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list)
		blk_mq_unfreeze_queue(ns->queue);
	mutex_unlock(&ctrl->namespaces_mutex);
}
EXPORT_SYMBOL_GPL(nvme_unfreeze);

void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
{
	struct nvme_ns *ns;

	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list) {
		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
		if (timeout <= 0)
			break;
	}
	mutex_unlock(&ctrl->namespaces_mutex);
}
EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);

void nvme_wait_freeze(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list)
		blk_mq_freeze_queue_wait(ns->queue);
	mutex_unlock(&ctrl->namespaces_mutex);
}
EXPORT_SYMBOL_GPL(nvme_wait_freeze);

void nvme_start_freeze(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list)
2509
		blk_freeze_queue_start(ns->queue);
K
Keith Busch 已提交
2510 2511 2512 2513
	mutex_unlock(&ctrl->namespaces_mutex);
}
EXPORT_SYMBOL_GPL(nvme_start_freeze);

2514
void nvme_stop_queues(struct nvme_ctrl *ctrl)
2515 2516 2517
{
	struct nvme_ns *ns;

2518
	mutex_lock(&ctrl->namespaces_mutex);
2519
	list_for_each_entry(ns, &ctrl->namespaces, list)
2520
		blk_mq_quiesce_queue(ns->queue);
2521
	mutex_unlock(&ctrl->namespaces_mutex);
2522
}
2523
EXPORT_SYMBOL_GPL(nvme_stop_queues);
2524

2525
void nvme_start_queues(struct nvme_ctrl *ctrl)
2526 2527 2528
{
	struct nvme_ns *ns;

2529 2530
	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list) {
2531 2532 2533
		blk_mq_start_stopped_hw_queues(ns->queue, true);
		blk_mq_kick_requeue_list(ns->queue);
	}
2534
	mutex_unlock(&ctrl->namespaces_mutex);
2535
}
2536
EXPORT_SYMBOL_GPL(nvme_start_queues);
2537

2538 2539 2540 2541
int __init nvme_core_init(void)
{
	int result;

2542 2543 2544
	result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
							&nvme_dev_fops);
	if (result < 0)
2545
		return result;
2546 2547 2548 2549 2550 2551 2552 2553 2554
	else if (result > 0)
		nvme_char_major = result;

	nvme_class = class_create(THIS_MODULE, "nvme");
	if (IS_ERR(nvme_class)) {
		result = PTR_ERR(nvme_class);
		goto unregister_chrdev;
	}

2555
	return 0;
2556 2557 2558 2559

 unregister_chrdev:
	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
	return result;
2560 2561 2562 2563
}

void nvme_core_exit(void)
{
2564 2565
	class_destroy(nvme_class);
	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2566
}
2567 2568 2569 2570 2571

MODULE_LICENSE("GPL");
MODULE_VERSION("1.0");
module_init(nvme_core_init);
module_exit(nvme_core_exit);