blk-mq.c 68.4 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39 40 41 42

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

43 44
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
45
static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync);
46

47 48 49 50
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
51
	ddir = rq_data_dir(rq);
52 53 54 55 56 57 58 59 60 61 62 63
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

64 65 66
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
67
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
68
{
69 70 71
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
72 73
}

74 75 76 77 78 79
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
80 81
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
82 83 84 85 86
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
87
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
88 89
}

90
void blk_freeze_queue_start(struct request_queue *q)
91
{
92
	int freeze_depth;
93

94 95
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
96
		percpu_ref_kill(&q->q_usage_counter);
97
		blk_mq_run_hw_queues(q, false);
98
	}
99
}
100
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
101

102
void blk_mq_freeze_queue_wait(struct request_queue *q)
103
{
104
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
105
}
106
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
107

108 109 110 111 112 113 114 115
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
116

117 118 119 120
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
121
void blk_freeze_queue(struct request_queue *q)
122
{
123 124 125 126 127 128 129
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
130
	blk_freeze_queue_start(q);
131 132
	blk_mq_freeze_queue_wait(q);
}
133 134 135 136 137 138 139 140 141

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
142
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
143

144
void blk_mq_unfreeze_queue(struct request_queue *q)
145
{
146
	int freeze_depth;
147

148 149 150
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
151
		percpu_ref_reinit(&q->q_usage_counter);
152
		wake_up_all(&q->mq_freeze_wq);
153
	}
154
}
155
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
156

157 158 159 160 161 162 163 164 165 166 167 168 169 170
/**
 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
 * callback function is invoked. Additionally, it is not prevented that
 * new queue_rq() calls occur unless the queue has been stopped first.
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

171
	__blk_mq_stop_hw_queues(q, true);
172 173 174 175 176 177 178 179 180 181 182 183

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
			synchronize_srcu(&hctx->queue_rq_srcu);
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

184 185 186 187 188 189 190 191
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
192 193 194 195 196 197 198

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
199 200
}

201 202 203 204 205 206
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

207 208
void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			struct request *rq, unsigned int op)
209
{
210 211 212
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
213
	rq->mq_ctx = ctx;
214
	rq->cmd_flags = op;
215 216
	if (blk_queue_io_stat(q))
		rq->rq_flags |= RQF_IO_STAT;
217 218 219 220 221 222
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
223
	rq->start_time = jiffies;
224 225
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
226
	set_start_time_ns(rq);
227 228 229 230 231 232 233 234 235 236 237
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
238 239
	rq->timeout = 0;

240 241 242 243
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

244
	ctx->rq_dispatched[op_is_sync(op)]++;
245
}
246
EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
247

248 249
struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
				       unsigned int op)
250 251 252 253
{
	struct request *rq;
	unsigned int tag;

254
	tag = blk_mq_get_tag(data);
255
	if (tag != BLK_MQ_TAG_FAIL) {
256 257 258
		struct blk_mq_tags *tags = blk_mq_tags_from_data(data);

		rq = tags->static_rqs[tag];
259

260 261 262 263
		if (data->flags & BLK_MQ_REQ_INTERNAL) {
			rq->tag = -1;
			rq->internal_tag = tag;
		} else {
264 265 266 267
			if (blk_mq_tag_busy(data->hctx)) {
				rq->rq_flags = RQF_MQ_INFLIGHT;
				atomic_inc(&data->hctx->nr_active);
			}
268 269
			rq->tag = tag;
			rq->internal_tag = -1;
270
			data->hctx->tags->rqs[rq->tag] = rq;
271 272
		}

273
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
274 275 276 277 278
		return rq;
	}

	return NULL;
}
279
EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
280

281 282
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
283
{
284
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
285
	struct request *rq;
286
	int ret;
287

288
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
289 290
	if (ret)
		return ERR_PTR(ret);
291

292
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
293

294 295 296 297
	blk_mq_put_ctx(alloc_data.ctx);
	blk_queue_exit(q);

	if (!rq)
298
		return ERR_PTR(-EWOULDBLOCK);
299 300 301 302

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
303 304
	return rq;
}
305
EXPORT_SYMBOL(blk_mq_alloc_request);
306

M
Ming Lin 已提交
307 308 309
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
310
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
311
	struct request *rq;
312
	unsigned int cpu;
M
Ming Lin 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

331 332 333 334
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
335 336 337 338
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
339
	}
340 341
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
342

343
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
344 345

	blk_queue_exit(q);
346 347 348 349 350

	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
351 352 353
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

354 355
void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			     struct request *rq)
356
{
357
	const int sched_tag = rq->internal_tag;
358 359
	struct request_queue *q = rq->q;

360
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
361
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
362 363

	wbt_done(q->rq_wb, &rq->issue_stat);
364
	rq->rq_flags = 0;
365

366
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
367
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
368 369 370
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
371
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
372
	blk_mq_sched_restart(hctx);
373
	blk_queue_exit(q);
374 375
}

376
static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
377
				     struct request *rq)
378 379 380 381
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
382 383 384 385 386 387
	__blk_mq_finish_request(hctx, ctx, rq);
}

void blk_mq_finish_request(struct request *rq)
{
	blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
388
}
O
Omar Sandoval 已提交
389
EXPORT_SYMBOL_GPL(blk_mq_finish_request);
390 391 392

void blk_mq_free_request(struct request *rq)
{
393
	blk_mq_sched_put_request(rq);
394
}
J
Jens Axboe 已提交
395
EXPORT_SYMBOL_GPL(blk_mq_free_request);
396

397
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
398
{
M
Ming Lei 已提交
399 400
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
401
	if (rq->end_io) {
J
Jens Axboe 已提交
402
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
403
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
404 405 406
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
407
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
408
	}
409
}
410
EXPORT_SYMBOL(__blk_mq_end_request);
411

412
void blk_mq_end_request(struct request *rq, blk_status_t error)
413 414 415
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
416
	__blk_mq_end_request(rq, error);
417
}
418
EXPORT_SYMBOL(blk_mq_end_request);
419

420
static void __blk_mq_complete_request_remote(void *data)
421
{
422
	struct request *rq = data;
423

424
	rq->q->softirq_done_fn(rq);
425 426
}

427
static void __blk_mq_complete_request(struct request *rq)
428 429
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
430
	bool shared = false;
431 432
	int cpu;

433 434 435 436 437 438 439
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
440
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
441 442 443
		rq->q->softirq_done_fn(rq);
		return;
	}
444 445

	cpu = get_cpu();
C
Christoph Hellwig 已提交
446 447 448 449
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
450
		rq->csd.func = __blk_mq_complete_request_remote;
451 452
		rq->csd.info = rq;
		rq->csd.flags = 0;
453
		smp_call_function_single_async(ctx->cpu, &rq->csd);
454
	} else {
455
		rq->q->softirq_done_fn(rq);
456
	}
457 458
	put_cpu();
}
459 460 461 462 463 464 465 466 467

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
468
void blk_mq_complete_request(struct request *rq)
469
{
470 471 472
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
473
		return;
474
	if (!blk_mark_rq_complete(rq))
475
		__blk_mq_complete_request(rq);
476 477
}
EXPORT_SYMBOL(blk_mq_complete_request);
478

479 480 481 482 483 484
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

485
void blk_mq_start_request(struct request *rq)
486 487 488
{
	struct request_queue *q = rq->q;

489 490
	blk_mq_sched_started_request(rq);

491 492
	trace_block_rq_issue(q, rq);

493
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
494
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
495
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
496
		wbt_issue(q->rq_wb, &rq->issue_stat);
497 498
	}

499
	blk_add_timer(rq);
500

501 502 503 504 505 506
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

507 508 509 510 511 512
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
513 514 515 516
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
517 518 519 520 521 522 523 524 525

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
526
}
527
EXPORT_SYMBOL(blk_mq_start_request);
528

529 530
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
531
 * flag isn't set yet, so there may be race with timeout handler,
532 533 534 535 536 537
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
538
static void __blk_mq_requeue_request(struct request *rq)
539 540 541 542
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
543
	wbt_requeue(q->rq_wb, &rq->issue_stat);
544
	blk_mq_sched_requeue_request(rq);
545

546 547 548 549
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
550 551
}

552
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
553 554 555 556
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
557
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
558 559 560
}
EXPORT_SYMBOL(blk_mq_requeue_request);

561 562 563
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
564
		container_of(work, struct request_queue, requeue_work.work);
565 566 567 568 569 570 571 572 573
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
574
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
575 576
			continue;

577
		rq->rq_flags &= ~RQF_SOFTBARRIER;
578
		list_del_init(&rq->queuelist);
579
		blk_mq_sched_insert_request(rq, true, false, false, true);
580 581 582 583 584
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
585
		blk_mq_sched_insert_request(rq, false, false, false, true);
586 587
	}

588
	blk_mq_run_hw_queues(q, false);
589 590
}

591 592
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
593 594 595 596 597 598 599 600
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
601
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
602 603 604

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
605
		rq->rq_flags |= RQF_SOFTBARRIER;
606 607 608 609 610
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
611 612 613

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
614 615 616 617 618
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
619
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
620 621 622
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

623 624 625 626 627 628 629 630
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

631 632
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
633 634
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
635
		return tags->rqs[tag];
636
	}
637 638

	return NULL;
639 640 641
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

642
struct blk_mq_timeout_data {
643 644
	unsigned long next;
	unsigned int next_set;
645 646
};

647
void blk_mq_rq_timed_out(struct request *req, bool reserved)
648
{
J
Jens Axboe 已提交
649
	const struct blk_mq_ops *ops = req->q->mq_ops;
650
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
651 652 653 654 655 656 657

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
658
	 * both flags will get cleared. So check here again, and ignore
659 660
	 * a timeout event with a request that isn't active.
	 */
661 662
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
663

664
	if (ops->timeout)
665
		ret = ops->timeout(req, reserved);
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
681
}
682

683 684 685 686
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
687

688
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
689
		return;
690

691 692 693 694 695 696 697 698 699 700 701 702 703
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
704 705
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
706
			blk_mq_rq_timed_out(rq, reserved);
707 708 709 710
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
711 712
}

713
static void blk_mq_timeout_work(struct work_struct *work)
714
{
715 716
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
717 718 719 720 721
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
722

723 724 725 726 727 728 729 730 731
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
732
	 * blk_freeze_queue_start, and the moment the last request is
733 734 735 736
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
737 738
		return;

739
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
740

741 742 743
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
744
	} else {
745 746
		struct blk_mq_hw_ctx *hctx;

747 748 749 750 751
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
752
	}
753
	blk_queue_exit(q);
754 755
}

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

774 775 776 777
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
778
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
779
{
780 781 782 783
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
784

785
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
786
}
787
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
788

789 790 791 792
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
793

794
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
795 796
}

797 798
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
799 800 801 802 803 804 805
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

806 807
	might_sleep_if(wait);

808 809
	if (rq->tag != -1)
		goto done;
810

811 812 813
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

814 815
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
816 817 818 819
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
820 821 822
		data.hctx->tags->rqs[rq->tag] = rq;
	}

823 824 825 826
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
827 828
}

829 830
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
831 832 833 834 835 836 837 838 839 840
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

	list_del(&wait->task_list);
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

923
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
924
{
925
	struct blk_mq_hw_ctx *hctx;
926
	struct request *rq;
927
	int errors, queued;
928

929 930 931
	if (list_empty(list))
		return false;

932 933 934
	/*
	 * Now process all the entries, sending them to the driver.
	 */
935
	errors = queued = 0;
936
	do {
937
		struct blk_mq_queue_data bd;
938
		blk_status_t ret;
939

940
		rq = list_first_entry(list, struct request, queuelist);
941 942 943
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
944 945

			/*
946 947
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
948
			 */
949 950 951 952 953 954 955 956 957
			if (!blk_mq_dispatch_wait_add(hctx))
				break;

			/*
			 * It's possible that a tag was freed in the window
			 * between the allocation failure and adding the
			 * hardware queue to the wait queue.
			 */
			if (!blk_mq_get_driver_tag(rq, &hctx, false))
958
				break;
959
		}
960

961 962
		list_del_init(&rq->queuelist);

963
		bd.rq = rq;
964 965 966 967 968 969 970 971 972 973 974 975 976

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
977 978

		ret = q->mq_ops->queue_rq(hctx, &bd);
979
		if (ret == BLK_STS_RESOURCE) {
980
			blk_mq_put_driver_tag_hctx(hctx, rq);
981
			list_add(&rq->queuelist, list);
982
			__blk_mq_requeue_request(rq);
983
			break;
984 985 986
		}

		if (unlikely(ret != BLK_STS_OK)) {
987
			errors++;
988
			blk_mq_end_request(rq, BLK_STS_IOERR);
989
			continue;
990 991
		}

992
		queued++;
993
	} while (!list_empty(list));
994

995
	hctx->dispatched[queued_to_index(queued)]++;
996 997 998 999 1000

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1001
	if (!list_empty(list)) {
1002
		/*
1003 1004
		 * If an I/O scheduler has been configured and we got a driver
		 * tag for the next request already, free it again.
1005 1006 1007 1008
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

1009
		spin_lock(&hctx->lock);
1010
		list_splice_init(list, &hctx->dispatch);
1011
		spin_unlock(&hctx->lock);
1012

1013
		/*
1014 1015 1016
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1017
		 *
1018 1019 1020 1021
		 * If TAG_WAITING is set that means that an I/O scheduler has
		 * been configured and another thread is waiting for a driver
		 * tag. To guarantee fairness, do not rerun this hardware queue
		 * but let the other thread grab the driver tag.
1022
		 *
1023 1024 1025 1026 1027 1028 1029
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1030
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1031
		 *   and dm-rq.
1032
		 */
1033 1034
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1035
			blk_mq_run_hw_queue(hctx, true);
1036
	}
1037

1038
	return (queued + errors) != 0;
1039 1040
}

1041 1042 1043 1044 1045 1046 1047 1048 1049
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1050
		blk_mq_sched_dispatch_requests(hctx);
1051 1052
		rcu_read_unlock();
	} else {
1053 1054
		might_sleep();

1055
		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1056
		blk_mq_sched_dispatch_requests(hctx);
1057 1058 1059 1060
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1061 1062 1063 1064 1065 1066 1067 1068
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1069 1070
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1071 1072

	if (--hctx->next_cpu_batch <= 0) {
1073
		int next_cpu;
1074 1075 1076 1077 1078 1079 1080 1081 1082

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1083
	return hctx->next_cpu;
1084 1085
}

1086 1087
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1088
{
1089 1090
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
1091 1092
		return;

1093
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1094 1095
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1096
			__blk_mq_run_hw_queue(hctx);
1097
			put_cpu();
1098 1099
			return;
		}
1100

1101
		put_cpu();
1102
	}
1103

1104 1105 1106
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work,
					 msecs_to_jiffies(msecs));
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	__blk_mq_delay_run_hw_queue(hctx, async, 0);
1118
}
O
Omar Sandoval 已提交
1119
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1120

1121
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1122 1123 1124 1125 1126
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1127
		if (!blk_mq_hctx_has_pending(hctx) ||
1128
		    blk_mq_hctx_stopped(hctx))
1129 1130
			continue;

1131
		blk_mq_run_hw_queue(hctx, async);
1132 1133
	}
}
1134
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1135

1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1156
static void __blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx, bool sync)
1157
{
1158 1159 1160 1161 1162
	if (sync)
		cancel_delayed_work_sync(&hctx->run_work);
	else
		cancel_delayed_work(&hctx->run_work);

1163 1164
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
1165 1166 1167 1168 1169

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	__blk_mq_stop_hw_queue(hctx, false);
}
1170 1171
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

1172
static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync)
1173 1174 1175 1176 1177
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
1178 1179 1180 1181 1182 1183
		__blk_mq_stop_hw_queue(hctx, sync);
}

void blk_mq_stop_hw_queues(struct request_queue *q)
{
	__blk_mq_stop_hw_queues(q, false);
1184 1185 1186
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1187 1188 1189
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1190

1191
	blk_mq_run_hw_queue(hctx, false);
1192 1193 1194
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1215
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1216 1217 1218 1219
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1220 1221
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1222 1223 1224
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1225
static void blk_mq_run_work_fn(struct work_struct *work)
1226 1227 1228
{
	struct blk_mq_hw_ctx *hctx;

1229
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1230

1231 1232 1233 1234 1235 1236 1237 1238
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1239

1240 1241 1242
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1243 1244 1245 1246

	__blk_mq_run_hw_queue(hctx);
}

1247 1248 1249

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1250 1251
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1252

1253 1254 1255 1256 1257
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1258
	blk_mq_stop_hw_queue(hctx);
1259 1260 1261 1262
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1263 1264 1265
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1266 1267 1268
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1269
{
J
Jens Axboe 已提交
1270 1271
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1272 1273
	trace_block_rq_insert(hctx->queue, rq);

1274 1275 1276 1277
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1278
}
1279

1280 1281
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1282 1283 1284
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1285
	__blk_mq_insert_req_list(hctx, rq, at_head);
1286 1287 1288
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1289 1290
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1302
		BUG_ON(rq->mq_ctx != ctx);
1303
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1304
		__blk_mq_insert_req_list(hctx, rq, false);
1305
	}
1306
	blk_mq_hctx_mark_pending(hctx, ctx);
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1343 1344 1345 1346
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1363 1364 1365
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1366 1367 1368 1369 1370
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1371
	blk_init_request_from_bio(rq, bio);
1372

1373
	blk_account_io_start(rq, true);
1374 1375
}

1376 1377 1378 1379 1380 1381
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1382 1383 1384 1385 1386 1387 1388
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1389
}
1390

1391 1392
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1393 1394 1395 1396
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1397 1398
}

1399
static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1400
				      bool may_sleep)
1401 1402 1403 1404
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1405
		.last = true,
1406
	};
1407 1408
	struct blk_mq_hw_ctx *hctx;
	blk_qc_t new_cookie;
1409
	blk_status_t ret;
1410

1411
	if (q->elevator)
1412 1413
		goto insert;

1414 1415 1416 1417 1418
	if (!blk_mq_get_driver_tag(rq, &hctx, false))
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1419 1420 1421 1422 1423 1424
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1425 1426
	switch (ret) {
	case BLK_STS_OK:
1427
		*cookie = new_cookie;
1428
		return;
1429 1430 1431 1432
	case BLK_STS_RESOURCE:
		__blk_mq_requeue_request(rq);
		goto insert;
	default:
1433
		*cookie = BLK_QC_T_NONE;
1434
		blk_mq_end_request(rq, ret);
1435
		return;
1436
	}
1437

1438
insert:
1439
	blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1440 1441
}

1442 1443 1444 1445 1446 1447 1448 1449
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
		__blk_mq_try_issue_directly(rq, cookie, false);
		rcu_read_unlock();
	} else {
1450 1451 1452 1453 1454
		unsigned int srcu_idx;

		might_sleep();

		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1455 1456 1457 1458 1459
		__blk_mq_try_issue_directly(rq, cookie, true);
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1460
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1461
{
1462
	const int is_sync = op_is_sync(bio->bi_opf);
1463
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1464
	struct blk_mq_alloc_data data = { .flags = 0 };
1465
	struct request *rq;
1466
	unsigned int request_count = 0;
1467
	struct blk_plug *plug;
1468
	struct request *same_queue_rq = NULL;
1469
	blk_qc_t cookie;
J
Jens Axboe 已提交
1470
	unsigned int wb_acct;
1471 1472 1473

	blk_queue_bounce(q, &bio);

1474 1475
	blk_queue_split(q, &bio, q->bio_split);

1476
	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1477
		bio_io_error(bio);
1478
		return BLK_QC_T_NONE;
1479 1480
	}

1481 1482 1483
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1484

1485 1486 1487
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1488 1489
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1490 1491 1492
	trace_block_getrq(q, bio, bio->bi_opf);

	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1493 1494
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1495
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1496 1497 1498
	}

	wbt_track(&rq->issue_stat, wb_acct);
1499

1500
	cookie = request_to_qc_t(data.hctx, rq);
1501

1502
	plug = current->plug;
1503
	if (unlikely(is_flush_fua)) {
1504
		blk_mq_put_ctx(data.ctx);
1505
		blk_mq_bio_to_request(rq, bio);
1506 1507 1508
		if (q->elevator) {
			blk_mq_sched_insert_request(rq, false, true, true,
					true);
1509
		} else {
1510 1511
			blk_insert_flush(rq);
			blk_mq_run_hw_queue(data.hctx, true);
1512
		}
1513
	} else if (plug && q->nr_hw_queues == 1) {
1514 1515
		struct request *last = NULL;

1516
		blk_mq_put_ctx(data.ctx);
1517
		blk_mq_bio_to_request(rq, bio);
1518 1519 1520 1521 1522 1523 1524

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1525 1526 1527
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1528
		if (!request_count)
1529
			trace_block_plug(q);
1530 1531
		else
			last = list_entry_rq(plug->mq_list.prev);
1532

1533 1534
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1535 1536
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1537
		}
1538

1539
		list_add_tail(&rq->queuelist, &plug->mq_list);
1540
	} else if (plug && !blk_queue_nomerges(q)) {
1541
		blk_mq_bio_to_request(rq, bio);
1542 1543

		/*
1544
		 * We do limited plugging. If the bio can be merged, do that.
1545 1546
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1547 1548
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1549
		 */
1550 1551 1552 1553 1554 1555
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1556 1557
		blk_mq_put_ctx(data.ctx);

1558 1559 1560
		if (same_queue_rq)
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1561
	} else if (q->nr_hw_queues > 1 && is_sync) {
1562
		blk_mq_put_ctx(data.ctx);
1563 1564
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1565
	} else if (q->elevator) {
1566
		blk_mq_put_ctx(data.ctx);
1567
		blk_mq_bio_to_request(rq, bio);
1568
		blk_mq_sched_insert_request(rq, false, true, true, true);
1569
	} else {
1570
		blk_mq_put_ctx(data.ctx);
1571 1572
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1573
		blk_mq_run_hw_queue(data.hctx, true);
1574
	}
1575

1576
	return cookie;
1577 1578
}

1579 1580
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1581
{
1582
	struct page *page;
1583

1584
	if (tags->rqs && set->ops->exit_request) {
1585
		int i;
1586

1587
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1588 1589 1590
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1591
				continue;
1592
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1593
			tags->static_rqs[i] = NULL;
1594
		}
1595 1596
	}

1597 1598
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1599
		list_del_init(&page->lru);
1600 1601 1602 1603 1604
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1605 1606
		__free_pages(page, page->private);
	}
1607
}
1608

1609 1610
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1611
	kfree(tags->rqs);
1612
	tags->rqs = NULL;
J
Jens Axboe 已提交
1613 1614
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1615

1616
	blk_mq_free_tags(tags);
1617 1618
}

1619 1620 1621 1622
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1623
{
1624
	struct blk_mq_tags *tags;
1625
	int node;
1626

1627 1628 1629 1630 1631
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1632
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1633 1634
	if (!tags)
		return NULL;
1635

1636
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1637
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1638
				 node);
1639 1640 1641 1642
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1643

J
Jens Axboe 已提交
1644 1645
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1646
				 node);
J
Jens Axboe 已提交
1647 1648 1649 1650 1651 1652
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1666 1667 1668 1669 1670
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1671 1672 1673

	INIT_LIST_HEAD(&tags->page_list);

1674 1675 1676 1677
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1678
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1679
				cache_line_size());
1680
	left = rq_size * depth;
1681

1682
	for (i = 0; i < depth; ) {
1683 1684 1685 1686 1687
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1688
		while (this_order && left < order_to_size(this_order - 1))
1689 1690 1691
			this_order--;

		do {
1692
			page = alloc_pages_node(node,
1693
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1694
				this_order);
1695 1696 1697 1698 1699 1700 1701 1702 1703
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1704
			goto fail;
1705 1706

		page->private = this_order;
1707
		list_add_tail(&page->lru, &tags->page_list);
1708 1709

		p = page_address(page);
1710 1711 1712 1713
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1714
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1715
		entries_per_page = order_to_size(this_order) / rq_size;
1716
		to_do = min(entries_per_page, depth - i);
1717 1718
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1719 1720 1721
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1722
			if (set->ops->init_request) {
1723
				if (set->ops->init_request(set, rq, hctx_idx,
1724
						node)) {
J
Jens Axboe 已提交
1725
					tags->static_rqs[i] = NULL;
1726
					goto fail;
1727
				}
1728 1729
			}

1730 1731 1732 1733
			p += rq_size;
			i++;
		}
	}
1734
	return 0;
1735

1736
fail:
1737 1738
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1739 1740
}

J
Jens Axboe 已提交
1741 1742 1743 1744 1745
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1746
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1747
{
1748
	struct blk_mq_hw_ctx *hctx;
1749 1750 1751
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1752
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1753
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1754 1755 1756 1757 1758 1759 1760 1761 1762

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1763
		return 0;
1764

J
Jens Axboe 已提交
1765 1766 1767
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1768 1769

	blk_mq_run_hw_queue(hctx, true);
1770
	return 0;
1771 1772
}

1773
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1774
{
1775 1776
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1777 1778
}

1779
/* hctx->ctxs will be freed in queue's release handler */
1780 1781 1782 1783
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1784 1785
	blk_mq_debugfs_unregister_hctx(hctx);

1786 1787
	blk_mq_tag_idle(hctx);

1788
	if (set->ops->exit_request)
1789
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1790

1791 1792
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

1793 1794 1795
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1796 1797 1798
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		cleanup_srcu_struct(&hctx->queue_rq_srcu);

1799
	blk_mq_remove_cpuhp(hctx);
1800
	blk_free_flush_queue(hctx->fq);
1801
	sbitmap_free(&hctx->ctx_map);
1802 1803
}

M
Ming Lei 已提交
1804 1805 1806 1807 1808 1809 1810 1811 1812
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1813
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1814 1815 1816
	}
}

1817 1818 1819
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1820
{
1821 1822 1823 1824 1825 1826
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1827
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1828 1829 1830 1831
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1832
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1833

1834
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1835 1836

	hctx->tags = set->tags[hctx_idx];
1837 1838

	/*
1839 1840
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1841
	 */
1842 1843 1844 1845
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1846

1847 1848
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1849
		goto free_ctxs;
1850

1851
	hctx->nr_ctx = 0;
1852

1853 1854 1855
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1856

1857 1858 1859
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

1860 1861
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
1862
		goto sched_exit_hctx;
1863

1864
	if (set->ops->init_request &&
1865 1866
	    set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
				   node))
1867
		goto free_fq;
1868

1869 1870 1871
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		init_srcu_struct(&hctx->queue_rq_srcu);

1872 1873
	blk_mq_debugfs_register_hctx(q, hctx);

1874
	return 0;
1875

1876 1877
 free_fq:
	kfree(hctx->fq);
1878 1879
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1880 1881 1882
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1883
 free_bitmap:
1884
	sbitmap_free(&hctx->ctx_map);
1885 1886 1887
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1888
	blk_mq_remove_cpuhp(hctx);
1889 1890
	return -1;
}
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
1910
		hctx = blk_mq_map_queue(q, i);
1911

1912 1913 1914 1915 1916
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1917
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1918 1919 1920
	}
}

1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
1943 1944 1945 1946 1947
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
1948 1949
}

1950 1951
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
1952
{
1953
	unsigned int i, hctx_idx;
1954 1955
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
1956
	struct blk_mq_tag_set *set = q->tag_set;
1957

1958 1959 1960 1961 1962
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

1963
	queue_for_each_hw_ctx(q, hctx, i) {
1964
		cpumask_clear(hctx->cpumask);
1965 1966 1967 1968 1969 1970
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
1971
	for_each_possible_cpu(i) {
1972
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1973
		if (!cpumask_test_cpu(i, online_mask))
1974 1975
			continue;

1976 1977
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
1978 1979
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
1980 1981 1982 1983 1984 1985
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
1986
			q->mq_map[i] = 0;
1987 1988
		}

1989
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
1990
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
1991

1992
		cpumask_set_cpu(i, hctx->cpumask);
1993 1994 1995
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1996

1997 1998
	mutex_unlock(&q->sysfs_lock);

1999
	queue_for_each_hw_ctx(q, hctx, i) {
2000
		/*
2001 2002
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2003 2004
		 */
		if (!hctx->nr_ctx) {
2005 2006 2007 2008
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2009 2010 2011
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2012
			hctx->tags = NULL;
2013 2014 2015
			continue;
		}

M
Ming Lei 已提交
2016 2017 2018
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2019 2020 2021 2022 2023
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2024
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2025

2026 2027 2028
		/*
		 * Initialize batch roundrobin counts
		 */
2029 2030 2031
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2032 2033
}

2034
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2035 2036 2037 2038
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
2050

2051 2052
	lockdep_assert_held(&set->tag_list_lock);

2053 2054
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2055
		queue_set_hctx_shared(q, shared);
2056 2057 2058 2059 2060 2061 2062 2063 2064
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2065 2066
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2067 2068 2069 2070 2071 2072
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2073
	mutex_unlock(&set->tag_list_lock);
2074 2075

	synchronize_rcu();
2076 2077 2078 2079 2080 2081 2082 2083
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2084 2085 2086 2087 2088 2089 2090 2091 2092

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2093
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2094

2095 2096 2097
	mutex_unlock(&set->tag_list_lock);
}

2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2110 2111 2112
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2113
		kobject_put(&hctx->kobj);
2114
	}
2115

2116 2117
	q->mq_map = NULL;

2118 2119
	kfree(q->queue_hw_ctx);

2120 2121 2122 2123 2124 2125
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2126 2127 2128
	free_percpu(q->queue_ctx);
}

2129
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
2145 2146
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2147
{
K
Keith Busch 已提交
2148 2149
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2150

K
Keith Busch 已提交
2151
	blk_mq_sysfs_unregister(q);
2152
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2153
		int node;
2154

K
Keith Busch 已提交
2155 2156 2157 2158
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2159 2160
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2161
		if (!hctxs[i])
K
Keith Busch 已提交
2162
			break;
2163

2164
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2165 2166 2167 2168 2169
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2170

2171
		atomic_set(&hctxs[i]->nr_active, 0);
2172
		hctxs[i]->numa_node = node;
2173
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2174 2175 2176 2177 2178 2179 2180 2181

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2182
	}
K
Keith Busch 已提交
2183 2184 2185 2186
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2187 2188
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2202 2203 2204
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2205
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2206 2207
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2208 2209 2210
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2211 2212
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2213
		goto err_exit;
K
Keith Busch 已提交
2214

2215 2216 2217
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2218 2219 2220 2221 2222
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2223
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2224 2225 2226 2227

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2228

2229
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2230
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2231 2232 2233

	q->nr_queues = nr_cpu_ids;

2234
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2235

2236 2237 2238
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2239 2240
	q->sg_reserved_size = INT_MAX;

2241
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2242 2243 2244
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2245
	blk_queue_make_request(q, blk_mq_make_request);
2246

2247 2248 2249 2250 2251
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2252 2253 2254 2255 2256
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2257 2258
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2259

2260
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2261

2262
	get_online_cpus();
2263
	mutex_lock(&all_q_mutex);
2264

2265
	list_add_tail(&q->all_q_node, &all_q_list);
2266
	blk_mq_add_queue_tag_set(set, q);
2267
	blk_mq_map_swqueue(q, cpu_online_mask);
2268

2269
	mutex_unlock(&all_q_mutex);
2270
	put_online_cpus();
2271

2272 2273 2274 2275 2276 2277 2278 2279
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2280
	return q;
2281

2282
err_hctxs:
K
Keith Busch 已提交
2283
	kfree(q->queue_hw_ctx);
2284
err_percpu:
K
Keith Busch 已提交
2285
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2286 2287
err_exit:
	q->mq_ops = NULL;
2288 2289
	return ERR_PTR(-ENOMEM);
}
2290
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2291 2292 2293

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2294
	struct blk_mq_tag_set	*set = q->tag_set;
2295

2296 2297 2298 2299
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2300 2301
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2302
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2303 2304 2305
}

/* Basically redo blk_mq_init_queue with queue frozen */
2306 2307
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2308
{
2309
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2310

2311
	blk_mq_debugfs_unregister_hctxs(q);
2312 2313
	blk_mq_sysfs_unregister(q);

2314 2315 2316 2317 2318 2319
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2320
	blk_mq_map_swqueue(q, online_mask);
2321

2322
	blk_mq_sysfs_register(q);
2323
	blk_mq_debugfs_register_hctxs(q);
2324 2325
}

2326 2327 2328 2329 2330 2331 2332 2333
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2334 2335 2336 2337
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2338 2339 2340 2341 2342 2343 2344 2345
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
2346
		blk_freeze_queue_start(q);
2347
	list_for_each_entry(q, &all_q_list, all_q_node)
2348 2349
		blk_mq_freeze_queue_wait(q);

2350
	list_for_each_entry(q, &all_q_list, all_q_node)
2351
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2352 2353 2354 2355

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2356
	mutex_unlock(&all_q_mutex);
2357 2358 2359 2360
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2361
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
2377 2378 2379 2380
 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
 * ignored.
2381 2382 2383 2384 2385 2386 2387
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2388 2389
}

2390 2391 2392 2393
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2394 2395
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2396 2397 2398 2399 2400 2401
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2402
		blk_mq_free_rq_map(set->tags[i]);
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2442 2443 2444 2445 2446 2447 2448 2449
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
	if (set->ops->map_queues)
		return set->ops->map_queues(set);
	else
		return blk_mq_map_queues(set);
}

2450 2451 2452 2453 2454 2455
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2456 2457
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2458 2459
	int ret;

B
Bart Van Assche 已提交
2460 2461
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2462 2463
	if (!set->nr_hw_queues)
		return -EINVAL;
2464
	if (!set->queue_depth)
2465 2466 2467 2468
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2469
	if (!set->ops->queue_rq)
2470 2471
		return -EINVAL;

2472 2473 2474 2475 2476
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2477

2478 2479 2480 2481 2482 2483 2484 2485 2486
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2487 2488 2489 2490 2491
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2492

K
Keith Busch 已提交
2493
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2494 2495
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2496
		return -ENOMEM;
2497

2498 2499 2500
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2501 2502 2503
	if (!set->mq_map)
		goto out_free_tags;

2504
	ret = blk_mq_update_queue_map(set);
2505 2506 2507 2508 2509
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2510
		goto out_free_mq_map;
2511

2512 2513 2514
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2515
	return 0;
2516 2517 2518 2519 2520

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2521 2522
	kfree(set->tags);
	set->tags = NULL;
2523
	return ret;
2524 2525 2526 2527 2528 2529 2530
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2531 2532
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2533

2534 2535 2536
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2537
	kfree(set->tags);
2538
	set->tags = NULL;
2539 2540 2541
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2542 2543 2544 2545 2546 2547
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2548
	if (!set)
2549 2550
		return -EINVAL;

2551 2552
	blk_mq_freeze_queue(q);

2553 2554
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2555 2556
		if (!hctx->tags)
			continue;
2557 2558 2559 2560
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2561 2562 2563 2564 2565 2566 2567 2568
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2569 2570 2571 2572 2573 2574 2575
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2576 2577
	blk_mq_unfreeze_queue(q);

2578 2579 2580
	return ret;
}

K
Keith Busch 已提交
2581 2582 2583 2584
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

2585 2586
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2587 2588 2589 2590 2591 2592 2593 2594 2595
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2596
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2633
	int bucket;
2634

2635 2636 2637 2638
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2639 2640
}

2641 2642 2643 2644 2645
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2646
	int bucket;
2647 2648 2649 2650 2651

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2652
	if (!blk_poll_stats_enable(q))
2653 2654 2655 2656 2657 2658 2659 2660
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2661 2662
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2663
	 */
2664 2665 2666 2667 2668 2669
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2670 2671 2672 2673

	return ret;
}

2674
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2675
				     struct blk_mq_hw_ctx *hctx,
2676 2677 2678 2679
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2680
	unsigned int nsecs;
2681 2682
	ktime_t kt;

2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2701 2702 2703 2704 2705 2706 2707 2708
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2709
	kt = nsecs;
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2732 2733 2734 2735 2736
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2737 2738 2739 2740 2741 2742 2743
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2744
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2745 2746
		return true;

J
Jens Axboe 已提交
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2790 2791
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2792
	else {
2793
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2794 2795 2796 2797 2798 2799 2800 2801 2802
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
2803 2804 2805 2806 2807

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2818 2819
static int __init blk_mq_init(void)
{
2820 2821
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2822

2823 2824 2825
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2826 2827 2828
	return 0;
}
subsys_initcall(blk_mq_init);