fib_trie.c 63.6 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation; either version
 *   2 of the License, or (at your option) any later version.
 *
 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
 *     & Swedish University of Agricultural Sciences.
 *
10
 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11
 *     Agricultural Sciences.
12
 *
13 14
 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
 *
L
Lucas De Marchi 已提交
15
 * This work is based on the LPC-trie which is originally described in:
16
 *
17 18
 * An experimental study of compression methods for dynamic tries
 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19
 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 *
 *
 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
 *
 *
 * Code from fib_hash has been reused which includes the following header:
 *
 *
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 *		operating system.  INET is implemented using the  BSD Socket
 *		interface as the means of communication with the user level.
 *
 *		IPv4 FIB: lookup engine and maintenance routines.
 *
 *
 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
 *
 *		This program is free software; you can redistribute it and/or
 *		modify it under the terms of the GNU General Public License
 *		as published by the Free Software Foundation; either version
 *		2 of the License, or (at your option) any later version.
R
Robert Olsson 已提交
42 43 44 45 46 47 48
 *
 * Substantial contributions to this work comes from:
 *
 *		David S. Miller, <davem@davemloft.net>
 *		Stephen Hemminger <shemminger@osdl.org>
 *		Paul E. McKenney <paulmck@us.ibm.com>
 *		Patrick McHardy <kaber@trash.net>
49 50
 */

J
Jens Låås 已提交
51
#define VERSION "0.409"
52 53

#include <asm/uaccess.h>
J
Jiri Slaby 已提交
54
#include <linux/bitops.h>
55 56 57 58 59 60 61 62 63
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/inet.h>
S
Stephen Hemminger 已提交
64
#include <linux/inetdevice.h>
65 66 67
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/proc_fs.h>
R
Robert Olsson 已提交
68
#include <linux/rcupdate.h>
69 70 71 72
#include <linux/skbuff.h>
#include <linux/netlink.h>
#include <linux/init.h>
#include <linux/list.h>
73
#include <linux/slab.h>
74
#include <linux/export.h>
75
#include <linux/vmalloc.h>
76
#include <net/net_namespace.h>
77 78 79 80 81 82
#include <net/ip.h>
#include <net/protocol.h>
#include <net/route.h>
#include <net/tcp.h>
#include <net/sock.h>
#include <net/ip_fib.h>
83
#include <net/switchdev.h>
84 85
#include "fib_lookup.h"

R
Robert Olsson 已提交
86
#define MAX_STAT_DEPTH 32
87

88 89
#define KEYLENGTH	(8*sizeof(t_key))
#define KEY_MAX		((t_key)~0)
90 91 92

typedef unsigned int t_key;

93 94 95
#define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
#define IS_TNODE(n)	((n)->bits)
#define IS_LEAF(n)	(!(n)->bits)
R
Robert Olsson 已提交
96

97
struct key_vector {
98 99
	t_key key;
	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
100
	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
101
	unsigned char slen;
A
Alexander Duyck 已提交
102
	union {
103
		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
A
Alexander Duyck 已提交
104
		struct hlist_head leaf;
105
		/* This array is valid if (pos | bits) > 0 (TNODE) */
106
		struct key_vector __rcu *tnode[0];
A
Alexander Duyck 已提交
107
	};
108 109
};

110
struct tnode {
111
	struct rcu_head rcu;
112 113
	t_key empty_children;		/* KEYLENGTH bits needed */
	t_key full_children;		/* KEYLENGTH bits needed */
114
	struct key_vector __rcu *parent;
115
	struct key_vector kv[1];
116
#define tn_bits kv[0].bits
117 118 119
};

#define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
120 121
#define LEAF_SIZE	TNODE_SIZE(1)

122 123 124 125 126 127 128
#ifdef CONFIG_IP_FIB_TRIE_STATS
struct trie_use_stats {
	unsigned int gets;
	unsigned int backtrack;
	unsigned int semantic_match_passed;
	unsigned int semantic_match_miss;
	unsigned int null_node_hit;
129
	unsigned int resize_node_skipped;
130 131 132 133 134 135 136 137 138
};
#endif

struct trie_stat {
	unsigned int totdepth;
	unsigned int maxdepth;
	unsigned int tnodes;
	unsigned int leaves;
	unsigned int nullpointers;
139
	unsigned int prefixes;
R
Robert Olsson 已提交
140
	unsigned int nodesizes[MAX_STAT_DEPTH];
141
};
142 143

struct trie {
144
	struct key_vector kv[1];
145
#ifdef CONFIG_IP_FIB_TRIE_STATS
146
	struct trie_use_stats __percpu *stats;
147 148 149
#endif
};

150
static struct key_vector *resize(struct trie *t, struct key_vector *tn);
151 152 153 154 155 156 157 158
static size_t tnode_free_size;

/*
 * synchronize_rcu after call_rcu for that many pages; it should be especially
 * useful before resizing the root node with PREEMPT_NONE configs; the value was
 * obtained experimentally, aiming to avoid visible slowdown.
 */
static const int sync_pages = 128;
159

160
static struct kmem_cache *fn_alias_kmem __read_mostly;
161
static struct kmem_cache *trie_leaf_kmem __read_mostly;
162

163 164 165 166 167
static inline struct tnode *tn_info(struct key_vector *kv)
{
	return container_of(kv, struct tnode, kv[0]);
}

168
/* caller must hold RTNL */
169
#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
170
#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
E
Eric Dumazet 已提交
171

172
/* caller must hold RCU read lock or RTNL */
173
#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
174
#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
E
Eric Dumazet 已提交
175

176
/* wrapper for rcu_assign_pointer */
177
static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
178
{
A
Alexander Duyck 已提交
179
	if (n)
180
		rcu_assign_pointer(tn_info(n)->parent, tp);
S
Stephen Hemminger 已提交
181 182
}

183
#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
184 185 186

/* This provides us with the number of children in this node, in the case of a
 * leaf this will return 0 meaning none of the children are accessible.
187
 */
188
static inline unsigned long child_length(const struct key_vector *tn)
S
Stephen Hemminger 已提交
189
{
190
	return (1ul << tn->bits) & ~(1ul);
S
Stephen Hemminger 已提交
191
}
R
Robert Olsson 已提交
192

193 194
#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)

195 196 197 198
static inline unsigned long get_index(t_key key, struct key_vector *kv)
{
	unsigned long index = key ^ kv->key;

199 200 201
	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
		return 0;

202 203 204
	return index >> kv->pos;
}

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
/* To understand this stuff, an understanding of keys and all their bits is
 * necessary. Every node in the trie has a key associated with it, but not
 * all of the bits in that key are significant.
 *
 * Consider a node 'n' and its parent 'tp'.
 *
 * If n is a leaf, every bit in its key is significant. Its presence is
 * necessitated by path compression, since during a tree traversal (when
 * searching for a leaf - unless we are doing an insertion) we will completely
 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 * a potentially successful search, that we have indeed been walking the
 * correct key path.
 *
 * Note that we can never "miss" the correct key in the tree if present by
 * following the wrong path. Path compression ensures that segments of the key
 * that are the same for all keys with a given prefix are skipped, but the
 * skipped part *is* identical for each node in the subtrie below the skipped
 * bit! trie_insert() in this implementation takes care of that.
 *
 * if n is an internal node - a 'tnode' here, the various parts of its key
 * have many different meanings.
 *
 * Example:
 * _________________________________________________________________
 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 * -----------------------------------------------------------------
 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 *
 * _________________________________________________________________
 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 * -----------------------------------------------------------------
 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 *
 * tp->pos = 22
 * tp->bits = 3
 * n->pos = 13
 * n->bits = 4
 *
 * First, let's just ignore the bits that come before the parent tp, that is
 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 * point we do not use them for anything.
 *
 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 * index into the parent's child array. That is, they will be used to find
 * 'n' among tp's children.
 *
 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
 * for the node n.
 *
 * All the bits we have seen so far are significant to the node n. The rest
 * of the bits are really not needed or indeed known in n->key.
 *
 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 * n's child array, and will of course be different for each child.
 *
 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
 * at this point.
 */
263

264 265
static const int halve_threshold = 25;
static const int inflate_threshold = 50;
266
static const int halve_threshold_root = 15;
J
Jens Låås 已提交
267
static const int inflate_threshold_root = 30;
R
Robert Olsson 已提交
268 269

static void __alias_free_mem(struct rcu_head *head)
270
{
R
Robert Olsson 已提交
271 272
	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
	kmem_cache_free(fn_alias_kmem, fa);
273 274
}

R
Robert Olsson 已提交
275
static inline void alias_free_mem_rcu(struct fib_alias *fa)
276
{
R
Robert Olsson 已提交
277 278
	call_rcu(&fa->rcu, __alias_free_mem);
}
O
Olof Johansson 已提交
279

280
#define TNODE_KMALLOC_MAX \
281
	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
282
#define TNODE_VMALLOC_MAX \
283
	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
O
Olof Johansson 已提交
284

285
static void __node_free_rcu(struct rcu_head *head)
286
{
287
	struct tnode *n = container_of(head, struct tnode, rcu);
288

289
	if (!n->tn_bits)
290
		kmem_cache_free(trie_leaf_kmem, n);
291
	else if (n->tn_bits <= TNODE_KMALLOC_MAX)
292 293 294
		kfree(n);
	else
		vfree(n);
295 296
}

297
#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
298

299
static struct tnode *tnode_alloc(int bits)
300
{
301 302 303 304 305 306 307 308 309
	size_t size;

	/* verify bits is within bounds */
	if (bits > TNODE_VMALLOC_MAX)
		return NULL;

	/* determine size and verify it is non-zero and didn't overflow */
	size = TNODE_SIZE(1ul << bits);

R
Robert Olsson 已提交
310
	if (size <= PAGE_SIZE)
311
		return kzalloc(size, GFP_KERNEL);
312
	else
313
		return vzalloc(size);
314
}
R
Robert Olsson 已提交
315

316
static inline void empty_child_inc(struct key_vector *n)
317
{
318
	++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
319 320
}

321
static inline void empty_child_dec(struct key_vector *n)
322
{
323
	tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
324 325
}

326
static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
R
Robert Olsson 已提交
327
{
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
	struct tnode *kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
	struct key_vector *l = kv->kv;

	if (!kv)
		return NULL;

	/* initialize key vector */
	l->key = key;
	l->pos = 0;
	l->bits = 0;
	l->slen = fa->fa_slen;

	/* link leaf to fib alias */
	INIT_HLIST_HEAD(&l->leaf);
	hlist_add_head(&fa->fa_list, &l->leaf);

R
Robert Olsson 已提交
344 345 346
	return l;
}

347
static struct key_vector *tnode_new(t_key key, int pos, int bits)
348
{
349
	struct tnode *tnode = tnode_alloc(bits);
350
	unsigned int shift = pos + bits;
351
	struct key_vector *tn = tnode->kv;
352 353 354

	/* verify bits and pos their msb bits clear and values are valid */
	BUG_ON(!bits || (shift > KEYLENGTH));
355

356
	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
357
		 sizeof(struct key_vector *) << bits);
358 359 360 361 362

	if (!tnode)
		return NULL;

	if (bits == KEYLENGTH)
363
		tnode->full_children = 1;
364
	else
365
		tnode->empty_children = 1ul << bits;
366 367 368 369 370 371

	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
	tn->pos = pos;
	tn->bits = bits;
	tn->slen = pos;

372 373 374
	return tn;
}

375
/* Check whether a tnode 'n' is "full", i.e. it is an internal node
376 377
 * and no bits are skipped. See discussion in dyntree paper p. 6
 */
378
static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
379
{
380
	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
381 382
}

383 384 385
/* Add a child at position i overwriting the old value.
 * Update the value of full_children and empty_children.
 */
386 387
static void put_child(struct key_vector *tn, unsigned long i,
		      struct key_vector *n)
388
{
389
	struct key_vector *chi = get_child(tn, i);
390
	int isfull, wasfull;
391

392
	BUG_ON(i >= child_length(tn));
S
Stephen Hemminger 已提交
393

394
	/* update emptyChildren, overflow into fullChildren */
395
	if (!n && chi)
396
		empty_child_inc(tn);
397
	if (n && !chi)
398
		empty_child_dec(tn);
399

400
	/* update fullChildren */
401
	wasfull = tnode_full(tn, chi);
402
	isfull = tnode_full(tn, n);
403

404
	if (wasfull && !isfull)
405
		tn_info(tn)->full_children--;
406
	else if (!wasfull && isfull)
407
		tn_info(tn)->full_children++;
O
Olof Johansson 已提交
408

409 410 411
	if (n && (tn->slen < n->slen))
		tn->slen = n->slen;

412
	rcu_assign_pointer(tn->tnode[i], n);
413 414
}

415
static void update_children(struct key_vector *tn)
416 417 418 419
{
	unsigned long i;

	/* update all of the child parent pointers */
420
	for (i = child_length(tn); i;) {
421
		struct key_vector *inode = get_child(tn, --i);
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436

		if (!inode)
			continue;

		/* Either update the children of a tnode that
		 * already belongs to us or update the child
		 * to point to ourselves.
		 */
		if (node_parent(inode) == tn)
			update_children(inode);
		else
			node_set_parent(inode, tn);
	}
}

437 438
static inline void put_child_root(struct key_vector *tp, t_key key,
				  struct key_vector *n)
439
{
440 441
	if (IS_TRIE(tp))
		rcu_assign_pointer(tp->tnode[0], n);
442
	else
443
		put_child(tp, get_index(key, tp), n);
444 445
}

446
static inline void tnode_free_init(struct key_vector *tn)
E
Eric Dumazet 已提交
447
{
448
	tn_info(tn)->rcu.next = NULL;
449 450
}

451 452
static inline void tnode_free_append(struct key_vector *tn,
				     struct key_vector *n)
453
{
454 455
	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
456
}
E
Eric Dumazet 已提交
457

458
static void tnode_free(struct key_vector *tn)
459
{
460
	struct callback_head *head = &tn_info(tn)->rcu;
461 462 463

	while (head) {
		head = head->next;
464
		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
465 466
		node_free(tn);

467
		tn = container_of(head, struct tnode, rcu)->kv;
468 469 470 471 472
	}

	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
		tnode_free_size = 0;
		synchronize_rcu();
E
Eric Dumazet 已提交
473 474 475
	}
}

476 477 478
static struct key_vector *replace(struct trie *t,
				  struct key_vector *oldtnode,
				  struct key_vector *tn)
479
{
480
	struct key_vector *tp = node_parent(oldtnode);
481 482 483 484
	unsigned long i;

	/* setup the parent pointer out of and back into this node */
	NODE_INIT_PARENT(tn, tp);
485
	put_child_root(tp, tn->key, tn);
486 487 488 489 490 491 492 493

	/* update all of the child parent pointers */
	update_children(tn);

	/* all pointers should be clean so we are done */
	tnode_free(oldtnode);

	/* resize children now that oldtnode is freed */
494
	for (i = child_length(tn); i;) {
495
		struct key_vector *inode = get_child(tn, --i);
496 497 498

		/* resize child node */
		if (tnode_full(tn, inode))
499
			tn = resize(t, inode);
500
	}
501

502
	return tp;
503 504
}

505 506
static struct key_vector *inflate(struct trie *t,
				  struct key_vector *oldtnode)
507
{
508
	struct key_vector *tn;
509
	unsigned long i;
510
	t_key m;
511

S
Stephen Hemminger 已提交
512
	pr_debug("In inflate\n");
513

514
	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
S
Stephen Hemminger 已提交
515
	if (!tn)
516
		goto notnode;
517

518 519 520
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

521 522 523 524
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
525
	 */
526
	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
527
		struct key_vector *inode = get_child(oldtnode, --i);
528
		struct key_vector *node0, *node1;
529
		unsigned long j, k;
530

531
		/* An empty child */
532
		if (!inode)
533 534 535
			continue;

		/* A leaf or an internal node with skipped bits */
A
Alexander Duyck 已提交
536
		if (!tnode_full(oldtnode, inode)) {
537
			put_child(tn, get_index(inode->key, tn), inode);
538 539 540
			continue;
		}

541 542 543
		/* drop the node in the old tnode free list */
		tnode_free_append(oldtnode, inode);

544 545
		/* An internal node with two children */
		if (inode->bits == 1) {
546 547
			put_child(tn, 2 * i + 1, get_child(inode, 1));
			put_child(tn, 2 * i, get_child(inode, 0));
O
Olof Johansson 已提交
548
			continue;
549 550
		}

O
Olof Johansson 已提交
551
		/* We will replace this node 'inode' with two new
552
		 * ones, 'node0' and 'node1', each with half of the
O
Olof Johansson 已提交
553 554 555 556 557
		 * original children. The two new nodes will have
		 * a position one bit further down the key and this
		 * means that the "significant" part of their keys
		 * (see the discussion near the top of this file)
		 * will differ by one bit, which will be "0" in
558
		 * node0's key and "1" in node1's key. Since we are
O
Olof Johansson 已提交
559 560
		 * moving the key position by one step, the bit that
		 * we are moving away from - the bit at position
561 562 563
		 * (tn->pos) - is the one that will differ between
		 * node0 and node1. So... we synthesize that bit in the
		 * two new keys.
O
Olof Johansson 已提交
564
		 */
565 566 567
		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
		if (!node1)
			goto nomem;
568
		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
569

570
		tnode_free_append(tn, node1);
571 572 573 574 575
		if (!node0)
			goto nomem;
		tnode_free_append(tn, node0);

		/* populate child pointers in new nodes */
576
		for (k = child_length(inode), j = k / 2; j;) {
577 578 579 580
			put_child(node1, --j, get_child(inode, --k));
			put_child(node0, j, get_child(inode, j));
			put_child(node1, --j, get_child(inode, --k));
			put_child(node0, j, get_child(inode, j));
581
		}
582

583 584 585
		/* link new nodes to parent */
		NODE_INIT_PARENT(node1, tn);
		NODE_INIT_PARENT(node0, tn);
586

587 588 589 590
		/* link parent to nodes */
		put_child(tn, 2 * i + 1, node1);
		put_child(tn, 2 * i, node0);
	}
591

592
	/* setup the parent pointers into and out of this node */
593
	return replace(t, oldtnode, tn);
594
nomem:
595 596
	/* all pointers should be clean so we are done */
	tnode_free(tn);
597 598
notnode:
	return NULL;
599 600
}

601 602
static struct key_vector *halve(struct trie *t,
				struct key_vector *oldtnode)
603
{
604
	struct key_vector *tn;
605
	unsigned long i;
606

S
Stephen Hemminger 已提交
607
	pr_debug("In halve\n");
608

609
	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
610
	if (!tn)
611
		goto notnode;
612

613 614 615
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

616 617 618 619
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
620
	 */
621
	for (i = child_length(oldtnode); i;) {
622 623
		struct key_vector *node1 = get_child(oldtnode, --i);
		struct key_vector *node0 = get_child(oldtnode, --i);
624
		struct key_vector *inode;
625

626 627 628 629 630
		/* At least one of the children is empty */
		if (!node1 || !node0) {
			put_child(tn, i / 2, node1 ? : node0);
			continue;
		}
631

632
		/* Two nonempty children */
633
		inode = tnode_new(node0->key, oldtnode->pos, 1);
634 635
		if (!inode)
			goto nomem;
636
		tnode_free_append(tn, inode);
637

638 639 640 641 642 643 644
		/* initialize pointers out of node */
		put_child(inode, 1, node1);
		put_child(inode, 0, node0);
		NODE_INIT_PARENT(inode, tn);

		/* link parent to node */
		put_child(tn, i / 2, inode);
645
	}
646

647
	/* setup the parent pointers into and out of this node */
648 649 650 651 652 653
	return replace(t, oldtnode, tn);
nomem:
	/* all pointers should be clean so we are done */
	tnode_free(tn);
notnode:
	return NULL;
654 655
}

656 657
static struct key_vector *collapse(struct trie *t,
				   struct key_vector *oldtnode)
658
{
659
	struct key_vector *n, *tp;
660 661 662
	unsigned long i;

	/* scan the tnode looking for that one child that might still exist */
663
	for (n = NULL, i = child_length(oldtnode); !n && i;)
664
		n = get_child(oldtnode, --i);
665 666 667

	/* compress one level */
	tp = node_parent(oldtnode);
668
	put_child_root(tp, oldtnode->key, n);
669 670 671 672
	node_set_parent(n, tp);

	/* drop dead node */
	node_free(oldtnode);
673 674

	return tp;
675 676
}

677
static unsigned char update_suffix(struct key_vector *tn)
678 679 680 681 682 683 684 685 686
{
	unsigned char slen = tn->pos;
	unsigned long stride, i;

	/* search though the list of children looking for nodes that might
	 * have a suffix greater than the one we currently have.  This is
	 * why we start with a stride of 2 since a stride of 1 would
	 * represent the nodes with suffix length equal to tn->pos
	 */
687
	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
688
		struct key_vector *n = get_child(tn, i);
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711

		if (!n || (n->slen <= slen))
			continue;

		/* update stride and slen based on new value */
		stride <<= (n->slen - slen);
		slen = n->slen;
		i &= ~(stride - 1);

		/* if slen covers all but the last bit we can stop here
		 * there will be nothing longer than that since only node
		 * 0 and 1 << (bits - 1) could have that as their suffix
		 * length.
		 */
		if ((slen + 1) >= (tn->pos + tn->bits))
			break;
	}

	tn->slen = slen;

	return slen;
}

712 713 714 715 716 717 718 719
/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 * Telecommunications, page 6:
 * "A node is doubled if the ratio of non-empty children to all
 * children in the *doubled* node is at least 'high'."
 *
 * 'high' in this instance is the variable 'inflate_threshold'. It
 * is expressed as a percentage, so we multiply it with
720
 * child_length() and instead of multiplying by 2 (since the
721 722 723 724
 * child array will be doubled by inflate()) and multiplying
 * the left-hand side by 100 (to handle the percentage thing) we
 * multiply the left-hand side by 50.
 *
725
 * The left-hand side may look a bit weird: child_length(tn)
726 727 728 729 730 731 732 733 734
 * - tn->empty_children is of course the number of non-null children
 * in the current node. tn->full_children is the number of "full"
 * children, that is non-null tnodes with a skip value of 0.
 * All of those will be doubled in the resulting inflated tnode, so
 * we just count them one extra time here.
 *
 * A clearer way to write this would be:
 *
 * to_be_doubled = tn->full_children;
735
 * not_to_be_doubled = child_length(tn) - tn->empty_children -
736 737
 *     tn->full_children;
 *
738
 * new_child_length = child_length(tn) * 2;
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
 *
 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 *      new_child_length;
 * if (new_fill_factor >= inflate_threshold)
 *
 * ...and so on, tho it would mess up the while () loop.
 *
 * anyway,
 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 *      inflate_threshold
 *
 * avoid a division:
 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 *      inflate_threshold * new_child_length
 *
 * expand not_to_be_doubled and to_be_doubled, and shorten:
755
 * 100 * (child_length(tn) - tn->empty_children +
756 757 758
 *    tn->full_children) >= inflate_threshold * new_child_length
 *
 * expand new_child_length:
759
 * 100 * (child_length(tn) - tn->empty_children +
760
 *    tn->full_children) >=
761
 *      inflate_threshold * child_length(tn) * 2
762 763
 *
 * shorten again:
764
 * 50 * (tn->full_children + child_length(tn) -
765
 *    tn->empty_children) >= inflate_threshold *
766
 *    child_length(tn)
767 768
 *
 */
769
static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
770
{
771
	unsigned long used = child_length(tn);
772 773 774
	unsigned long threshold = used;

	/* Keep root node larger */
775
	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
776 777
	used -= tn_info(tn)->empty_children;
	used += tn_info(tn)->full_children;
778

779 780 781
	/* if bits == KEYLENGTH then pos = 0, and will fail below */

	return (used > 1) && tn->pos && ((50 * used) >= threshold);
782 783
}

784
static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
785
{
786
	unsigned long used = child_length(tn);
787 788 789
	unsigned long threshold = used;

	/* Keep root node larger */
790
	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
791
	used -= tn_info(tn)->empty_children;
792

793 794 795 796 797
	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */

	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
}

798
static inline bool should_collapse(struct key_vector *tn)
799
{
800
	unsigned long used = child_length(tn);
801

802
	used -= tn_info(tn)->empty_children;
803 804

	/* account for bits == KEYLENGTH case */
805
	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
806 807 808 809
		used -= KEY_MAX;

	/* One child or none, time to drop us from the trie */
	return used < 2;
810 811
}

812
#define MAX_WORK 10
813
static struct key_vector *resize(struct trie *t, struct key_vector *tn)
814
{
815 816 817
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
818
	struct key_vector *tp = node_parent(tn);
819
	unsigned long cindex = get_index(tn->key, tp);
820
	int max_work = MAX_WORK;
821 822 823 824

	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
		 tn, inflate_threshold, halve_threshold);

825 826 827 828
	/* track the tnode via the pointer from the parent instead of
	 * doing it ourselves.  This way we can let RCU fully do its
	 * thing without us interfering
	 */
829
	BUG_ON(tn != get_child(tp, cindex));
830

831 832
	/* Double as long as the resulting node has a number of
	 * nonempty nodes that are above the threshold.
833
	 */
834
	while (should_inflate(tp, tn) && max_work) {
835 836
		tp = inflate(t, tn);
		if (!tp) {
837
#ifdef CONFIG_IP_FIB_TRIE_STATS
838
			this_cpu_inc(stats->resize_node_skipped);
839 840 841
#endif
			break;
		}
842

843
		max_work--;
844
		tn = get_child(tp, cindex);
845 846
	}

847 848 849
	/* update parent in case inflate failed */
	tp = node_parent(tn);

850 851
	/* Return if at least one inflate is run */
	if (max_work != MAX_WORK)
852
		return tp;
853

854
	/* Halve as long as the number of empty children in this
855 856
	 * node is above threshold.
	 */
857
	while (should_halve(tp, tn) && max_work) {
858 859
		tp = halve(t, tn);
		if (!tp) {
860
#ifdef CONFIG_IP_FIB_TRIE_STATS
861
			this_cpu_inc(stats->resize_node_skipped);
862 863 864 865
#endif
			break;
		}

866
		max_work--;
867
		tn = get_child(tp, cindex);
868
	}
869 870

	/* Only one child remains */
871 872 873
	if (should_collapse(tn))
		return collapse(t, tn);

874
	/* update parent in case halve failed */
875
	tp = node_parent(tn);
876 877 878

	/* Return if at least one deflate was run */
	if (max_work != MAX_WORK)
879
		return tp;
880 881 882 883 884

	/* push the suffix length to the parent node */
	if (tn->slen > tn->pos) {
		unsigned char slen = update_suffix(tn);

885
		if (slen > tp->slen)
886
			tp->slen = slen;
887
	}
888

889
	return tp;
890 891
}

892
static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
893
{
894
	while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
895 896 897 898 899 900
		if (update_suffix(tp) > l->slen)
			break;
		tp = node_parent(tp);
	}
}

901
static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
902
{
903 904 905
	/* if this is a new leaf then tn will be NULL and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
906
	while (tn->slen < l->slen) {
907 908 909 910 911
		tn->slen = l->slen;
		tn = node_parent(tn);
	}
}

R
Robert Olsson 已提交
912
/* rcu_read_lock needs to be hold by caller from readside */
913 914
static struct key_vector *fib_find_node(struct trie *t,
					struct key_vector **tp, u32 key)
915
{
916 917 918 919 920 921 922 923 924
	struct key_vector *pn, *n = t->kv;
	unsigned long index = 0;

	do {
		pn = n;
		n = get_child_rcu(n, index);

		if (!n)
			break;
A
Alexander Duyck 已提交
925

926
		index = get_cindex(key, n);
A
Alexander Duyck 已提交
927 928 929 930 931 932

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the bits in the cindex. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
933
		 *   if (index >= (1ul << bits))
A
Alexander Duyck 已提交
934
		 *     we have a mismatch in skip bits and failed
935 936
		 *   else
		 *     we know the value is cindex
937 938 939 940
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
A
Alexander Duyck 已提交
941
		 */
942 943 944 945
		if (index >= (1ul << n->bits)) {
			n = NULL;
			break;
		}
A
Alexander Duyck 已提交
946

947 948
		/* keep searching until we find a perfect match leaf or NULL */
	} while (IS_TNODE(n));
O
Olof Johansson 已提交
949

950
	*tp = pn;
951

A
Alexander Duyck 已提交
952
	return n;
953 954
}

955 956 957
/* Return the first fib alias matching TOS with
 * priority less than or equal to PRIO.
 */
A
Alexander Duyck 已提交
958
static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
959
					u8 tos, u32 prio, u32 tb_id)
960 961 962 963 964 965
{
	struct fib_alias *fa;

	if (!fah)
		return NULL;

966
	hlist_for_each_entry(fa, fah, fa_list) {
A
Alexander Duyck 已提交
967 968 969 970
		if (fa->fa_slen < slen)
			continue;
		if (fa->fa_slen != slen)
			break;
971 972 973 974
		if (fa->tb_id > tb_id)
			continue;
		if (fa->tb_id != tb_id)
			break;
975 976 977 978 979 980 981 982 983
		if (fa->fa_tos > tos)
			continue;
		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
			return fa;
	}

	return NULL;
}

984
static void trie_rebalance(struct trie *t, struct key_vector *tn)
985
{
986 987
	while (!IS_TRIE(tn))
		tn = resize(t, tn);
988 989
}

990
static int fib_insert_node(struct trie *t, struct key_vector *tp,
991
			   struct fib_alias *new, t_key key)
992
{
993
	struct key_vector *n, *l;
994

995
	l = leaf_new(key, new);
A
Alexander Duyck 已提交
996
	if (!l)
997
		goto noleaf;
998 999

	/* retrieve child from parent node */
1000
	n = get_child(tp, get_index(key, tp));
1001

1002 1003 1004 1005 1006 1007 1008
	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
	 *
	 *  Add a new tnode here
	 *  first tnode need some special handling
	 *  leaves us in position for handling as case 3
	 */
	if (n) {
1009
		struct key_vector *tn;
1010

1011
		tn = tnode_new(key, __fls(key ^ n->key), 1);
1012 1013
		if (!tn)
			goto notnode;
O
Olof Johansson 已提交
1014

1015 1016 1017
		/* initialize routes out of node */
		NODE_INIT_PARENT(tn, tp);
		put_child(tn, get_index(key, tn) ^ 1, n);
1018

1019
		/* start adding routes into the node */
1020
		put_child_root(tp, key, tn);
1021
		node_set_parent(n, tn);
1022

1023
		/* parent now has a NULL spot where the leaf can go */
1024
		tp = tn;
1025
	}
O
Olof Johansson 已提交
1026

1027
	/* Case 3: n is NULL, and will just insert a new leaf */
1028
	NODE_INIT_PARENT(l, tp);
1029
	put_child_root(tp, key, l);
1030 1031 1032
	trie_rebalance(t, tp);

	return 0;
1033 1034 1035 1036
notnode:
	node_free(l);
noleaf:
	return -ENOMEM;
1037 1038
}

1039 1040
static int fib_insert_alias(struct trie *t, struct key_vector *tp,
			    struct key_vector *l, struct fib_alias *new,
1041 1042 1043 1044 1045 1046 1047
			    struct fib_alias *fa, t_key key)
{
	if (!l)
		return fib_insert_node(t, tp, new, key);

	if (fa) {
		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1048
	} else {
1049 1050 1051 1052 1053
		struct fib_alias *last;

		hlist_for_each_entry(last, &l->leaf, fa_list) {
			if (new->fa_slen < last->fa_slen)
				break;
1054 1055 1056
			if ((new->fa_slen == last->fa_slen) &&
			    (new->tb_id > last->tb_id))
				break;
1057 1058 1059 1060 1061 1062 1063
			fa = last;
		}

		if (fa)
			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
		else
			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1064
	}
R
Robert Olsson 已提交
1065

1066 1067 1068 1069 1070 1071 1072
	/* if we added to the tail node then we need to update slen */
	if (l->slen < new->fa_slen) {
		l->slen = new->fa_slen;
		leaf_push_suffix(tp, l);
	}

	return 0;
1073 1074
}

1075
/* Caller must hold RTNL. */
1076
int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1077
{
1078
	struct trie *t = (struct trie *)tb->tb_data;
1079
	struct fib_alias *fa, *new_fa;
1080
	struct key_vector *l, *tp;
1081
	struct fib_info *fi;
A
Alexander Duyck 已提交
1082 1083
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1084
	u8 tos = cfg->fc_tos;
1085
	u32 key;
1086 1087
	int err;

1088
	if (plen > KEYLENGTH)
1089 1090
		return -EINVAL;

1091
	key = ntohl(cfg->fc_dst);
1092

1093
	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1094

1095
	if ((plen < KEYLENGTH) && (key << plen))
1096 1097
		return -EINVAL;

1098 1099 1100
	fi = fib_create_info(cfg);
	if (IS_ERR(fi)) {
		err = PTR_ERR(fi);
1101
		goto err;
1102
	}
1103

1104
	l = fib_find_node(t, &tp, key);
1105 1106
	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
				tb->tb_id) : NULL;
1107 1108 1109 1110 1111 1112

	/* Now fa, if non-NULL, points to the first fib alias
	 * with the same keys [prefix,tos,priority], if such key already
	 * exists or to the node before which we will insert new one.
	 *
	 * If fa is NULL, we will need to allocate a new one and
1113 1114
	 * insert to the tail of the section matching the suffix length
	 * of the new alias.
1115 1116
	 */

1117 1118 1119
	if (fa && fa->fa_tos == tos &&
	    fa->fa_info->fib_priority == fi->fib_priority) {
		struct fib_alias *fa_first, *fa_match;
1120 1121

		err = -EEXIST;
1122
		if (cfg->fc_nlflags & NLM_F_EXCL)
1123 1124
			goto out;

1125 1126 1127 1128 1129 1130 1131
		/* We have 2 goals:
		 * 1. Find exact match for type, scope, fib_info to avoid
		 * duplicate routes
		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
		 */
		fa_match = NULL;
		fa_first = fa;
1132
		hlist_for_each_entry_from(fa, fa_list) {
1133 1134 1135
			if ((fa->fa_slen != slen) ||
			    (fa->tb_id != tb->tb_id) ||
			    (fa->fa_tos != tos))
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
				break;
			if (fa->fa_info->fib_priority != fi->fib_priority)
				break;
			if (fa->fa_type == cfg->fc_type &&
			    fa->fa_info == fi) {
				fa_match = fa;
				break;
			}
		}

1146
		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1147 1148 1149
			struct fib_info *fi_drop;
			u8 state;

1150 1151 1152 1153
			fa = fa_first;
			if (fa_match) {
				if (fa == fa_match)
					err = 0;
1154
				goto out;
1155
			}
R
Robert Olsson 已提交
1156
			err = -ENOBUFS;
1157
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1158
			if (!new_fa)
R
Robert Olsson 已提交
1159
				goto out;
1160 1161

			fi_drop = fa->fa_info;
R
Robert Olsson 已提交
1162 1163
			new_fa->fa_tos = fa->fa_tos;
			new_fa->fa_info = fi;
1164
			new_fa->fa_type = cfg->fc_type;
1165
			state = fa->fa_state;
1166
			new_fa->fa_state = state & ~FA_S_ACCESSED;
1167
			new_fa->fa_slen = fa->fa_slen;
1168
			new_fa->tb_id = tb->tb_id;
1169

1170 1171 1172 1173 1174
			err = switchdev_fib_ipv4_add(key, plen, fi,
						     new_fa->fa_tos,
						     cfg->fc_type,
						     cfg->fc_nlflags,
						     tb->tb_id);
1175
			if (err) {
1176
				switchdev_fib_ipv4_abort(fi);
1177 1178 1179 1180
				kmem_cache_free(fn_alias_kmem, new_fa);
				goto out;
			}

1181
			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1182

R
Robert Olsson 已提交
1183
			alias_free_mem_rcu(fa);
1184 1185 1186

			fib_release_info(fi_drop);
			if (state & FA_S_ACCESSED)
1187
				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1188 1189
			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
				tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1190

O
Olof Johansson 已提交
1191
			goto succeeded;
1192 1193 1194 1195 1196
		}
		/* Error if we find a perfect match which
		 * uses the same scope, type, and nexthop
		 * information.
		 */
1197 1198
		if (fa_match)
			goto out;
1199

1200
		if (!(cfg->fc_nlflags & NLM_F_APPEND))
1201
			fa = fa_first;
1202 1203
	}
	err = -ENOENT;
1204
	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1205 1206 1207
		goto out;

	err = -ENOBUFS;
1208
	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1209
	if (!new_fa)
1210 1211 1212 1213
		goto out;

	new_fa->fa_info = fi;
	new_fa->fa_tos = tos;
1214
	new_fa->fa_type = cfg->fc_type;
1215
	new_fa->fa_state = 0;
A
Alexander Duyck 已提交
1216
	new_fa->fa_slen = slen;
1217
	new_fa->tb_id = tb->tb_id;
1218

1219
	/* (Optionally) offload fib entry to switch hardware. */
1220 1221
	err = switchdev_fib_ipv4_add(key, plen, fi, tos, cfg->fc_type,
				     cfg->fc_nlflags, tb->tb_id);
1222
	if (err) {
1223
		switchdev_fib_ipv4_abort(fi);
1224 1225 1226
		goto out_free_new_fa;
	}

1227
	/* Insert new entry to the list. */
1228 1229
	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
	if (err)
1230
		goto out_sw_fib_del;
1231

1232 1233 1234
	if (!plen)
		tb->tb_num_default++;

1235
	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1236
	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1237
		  &cfg->fc_nlinfo, 0);
1238 1239
succeeded:
	return 0;
1240

1241
out_sw_fib_del:
1242
	switchdev_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
1243 1244
out_free_new_fa:
	kmem_cache_free(fn_alias_kmem, new_fa);
1245 1246
out:
	fib_release_info(fi);
O
Olof Johansson 已提交
1247
err:
1248 1249 1250
	return err;
}

1251
static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1252 1253 1254 1255 1256 1257
{
	t_key prefix = n->key;

	return (key ^ prefix) & (prefix | -prefix);
}

1258
/* should be called with rcu_read_lock */
1259
int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
E
Eric Dumazet 已提交
1260
		     struct fib_result *res, int fib_flags)
1261
{
1262
	struct trie *t = (struct trie *) tb->tb_data;
1263 1264 1265
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
1266
	const t_key key = ntohl(flp->daddr);
1267
	struct key_vector *n, *pn;
A
Alexander Duyck 已提交
1268
	struct fib_alias *fa;
1269
	unsigned long index;
1270
	t_key cindex;
O
Olof Johansson 已提交
1271

1272 1273 1274 1275
	pn = t->kv;
	cindex = 0;

	n = get_child_rcu(pn, cindex);
1276
	if (!n)
1277
		return -EAGAIN;
1278 1279

#ifdef CONFIG_IP_FIB_TRIE_STATS
1280
	this_cpu_inc(stats->gets);
1281 1282
#endif

1283 1284
	/* Step 1: Travel to the longest prefix match in the trie */
	for (;;) {
1285
		index = get_cindex(key, n);
1286 1287 1288 1289 1290 1291

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the "bits" in the prefix. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
1292
		 *   if (index >= (1ul << bits))
1293
		 *     we have a mismatch in skip bits and failed
1294 1295
		 *   else
		 *     we know the value is cindex
1296 1297 1298 1299
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
1300
		 */
1301
		if (index >= (1ul << n->bits))
1302
			break;
1303

1304 1305
		/* we have found a leaf. Prefixes have already been compared */
		if (IS_LEAF(n))
1306
			goto found;
1307

1308 1309
		/* only record pn and cindex if we are going to be chopping
		 * bits later.  Otherwise we are just wasting cycles.
O
Olof Johansson 已提交
1310
		 */
1311
		if (n->slen > n->pos) {
1312 1313
			pn = n;
			cindex = index;
O
Olof Johansson 已提交
1314
		}
1315

1316
		n = get_child_rcu(n, index);
1317 1318 1319
		if (unlikely(!n))
			goto backtrace;
	}
1320

1321 1322 1323
	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
	for (;;) {
		/* record the pointer where our next node pointer is stored */
1324
		struct key_vector __rcu **cptr = n->tnode;
1325

1326 1327 1328
		/* This test verifies that none of the bits that differ
		 * between the key and the prefix exist in the region of
		 * the lsb and higher in the prefix.
O
Olof Johansson 已提交
1329
		 */
1330
		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1331
			goto backtrace;
O
Olof Johansson 已提交
1332

1333 1334 1335
		/* exit out and process leaf */
		if (unlikely(IS_LEAF(n)))
			break;
O
Olof Johansson 已提交
1336

1337 1338 1339
		/* Don't bother recording parent info.  Since we are in
		 * prefix match mode we will have to come back to wherever
		 * we started this traversal anyway
O
Olof Johansson 已提交
1340 1341
		 */

1342
		while ((n = rcu_dereference(*cptr)) == NULL) {
1343 1344
backtrace:
#ifdef CONFIG_IP_FIB_TRIE_STATS
1345 1346
			if (!n)
				this_cpu_inc(stats->null_node_hit);
1347
#endif
1348 1349 1350 1351 1352 1353 1354 1355
			/* If we are at cindex 0 there are no more bits for
			 * us to strip at this level so we must ascend back
			 * up one level to see if there are any more bits to
			 * be stripped there.
			 */
			while (!cindex) {
				t_key pkey = pn->key;

1356 1357 1358 1359 1360
				/* If we don't have a parent then there is
				 * nothing for us to do as we do not have any
				 * further nodes to parse.
				 */
				if (IS_TRIE(pn))
1361
					return -EAGAIN;
1362 1363 1364 1365
#ifdef CONFIG_IP_FIB_TRIE_STATS
				this_cpu_inc(stats->backtrack);
#endif
				/* Get Child's index */
1366
				pn = node_parent_rcu(pn);
1367 1368 1369 1370 1371 1372 1373
				cindex = get_index(pkey, pn);
			}

			/* strip the least significant bit from the cindex */
			cindex &= cindex - 1;

			/* grab pointer for next child node */
1374
			cptr = &pn->tnode[cindex];
1375
		}
1376
	}
1377

1378
found:
1379 1380 1381
	/* this line carries forward the xor from earlier in the function */
	index = key ^ n->key;

1382
	/* Step 3: Process the leaf, if that fails fall back to backtracing */
A
Alexander Duyck 已提交
1383 1384 1385
	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;
		int nhsel, err;
1386

1387
		if ((index >= (1ul << fa->fa_slen)) &&
A
Alexander Duyck 已提交
1388
		    ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
1389
			continue;
A
Alexander Duyck 已提交
1390 1391 1392 1393 1394 1395 1396 1397 1398
		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
			continue;
		if (fi->fib_dead)
			continue;
		if (fa->fa_info->fib_scope < flp->flowi4_scope)
			continue;
		fib_alias_accessed(fa);
		err = fib_props[fa->fa_type].error;
		if (unlikely(err < 0)) {
1399
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1400
			this_cpu_inc(stats->semantic_match_passed);
1401
#endif
A
Alexander Duyck 已提交
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
			return err;
		}
		if (fi->fib_flags & RTNH_F_DEAD)
			continue;
		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
			const struct fib_nh *nh = &fi->fib_nh[nhsel];

			if (nh->nh_flags & RTNH_F_DEAD)
				continue;
			if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1412
				continue;
A
Alexander Duyck 已提交
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423

			if (!(fib_flags & FIB_LOOKUP_NOREF))
				atomic_inc(&fi->fib_clntref);

			res->prefixlen = KEYLENGTH - fa->fa_slen;
			res->nh_sel = nhsel;
			res->type = fa->fa_type;
			res->scope = fi->fib_scope;
			res->fi = fi;
			res->table = tb;
			res->fa_head = &n->leaf;
1424
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1425
			this_cpu_inc(stats->semantic_match_passed);
1426
#endif
A
Alexander Duyck 已提交
1427
			return err;
1428
		}
1429
	}
1430
#ifdef CONFIG_IP_FIB_TRIE_STATS
1431
	this_cpu_inc(stats->semantic_match_miss);
1432 1433
#endif
	goto backtrace;
1434
}
1435
EXPORT_SYMBOL_GPL(fib_table_lookup);
1436

1437 1438
static void fib_remove_alias(struct trie *t, struct key_vector *tp,
			     struct key_vector *l, struct fib_alias *old)
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
{
	/* record the location of the previous list_info entry */
	struct hlist_node **pprev = old->fa_list.pprev;
	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);

	/* remove the fib_alias from the list */
	hlist_del_rcu(&old->fa_list);

	/* if we emptied the list this leaf will be freed and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
	if (hlist_empty(&l->leaf)) {
1451
		put_child_root(tp, l->key, NULL);
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
		node_free(l);
		trie_rebalance(t, tp);
		return;
	}

	/* only access fa if it is pointing at the last valid hlist_node */
	if (*pprev)
		return;

	/* update the trie with the latest suffix length */
	l->slen = fa->fa_slen;
	leaf_pull_suffix(tp, l);
}

/* Caller must hold RTNL. */
1467
int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1468 1469 1470
{
	struct trie *t = (struct trie *) tb->tb_data;
	struct fib_alias *fa, *fa_to_delete;
1471
	struct key_vector *l, *tp;
A
Alexander Duyck 已提交
1472 1473
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1474 1475
	u8 tos = cfg->fc_tos;
	u32 key;
O
Olof Johansson 已提交
1476

A
Alexander Duyck 已提交
1477
	if (plen > KEYLENGTH)
1478 1479
		return -EINVAL;

1480
	key = ntohl(cfg->fc_dst);
1481

1482
	if ((plen < KEYLENGTH) && (key << plen))
1483 1484
		return -EINVAL;

1485
	l = fib_find_node(t, &tp, key);
1486
	if (!l)
1487 1488
		return -ESRCH;

1489
	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1490 1491 1492
	if (!fa)
		return -ESRCH;

S
Stephen Hemminger 已提交
1493
	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1494 1495

	fa_to_delete = NULL;
1496
	hlist_for_each_entry_from(fa, fa_list) {
1497 1498
		struct fib_info *fi = fa->fa_info;

1499 1500 1501
		if ((fa->fa_slen != slen) ||
		    (fa->tb_id != tb->tb_id) ||
		    (fa->fa_tos != tos))
1502 1503
			break;

1504 1505
		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1506
		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1507 1508
		    (!cfg->fc_prefsrc ||
		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1509 1510 1511
		    (!cfg->fc_protocol ||
		     fi->fib_protocol == cfg->fc_protocol) &&
		    fib_nh_match(cfg, fi) == 0) {
1512 1513 1514 1515 1516
			fa_to_delete = fa;
			break;
		}
	}

O
Olof Johansson 已提交
1517 1518
	if (!fa_to_delete)
		return -ESRCH;
1519

1520 1521
	switchdev_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
			       cfg->fc_type, tb->tb_id);
1522

1523
	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1524
		  &cfg->fc_nlinfo, 0);
O
Olof Johansson 已提交
1525

1526 1527 1528
	if (!plen)
		tb->tb_num_default--;

1529
	fib_remove_alias(t, tp, l, fa_to_delete);
1530

1531
	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1532
		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1533

1534 1535
	fib_release_info(fa_to_delete->fa_info);
	alias_free_mem_rcu(fa_to_delete);
O
Olof Johansson 已提交
1536
	return 0;
1537 1538
}

1539
/* Scan for the next leaf starting at the provided key value */
1540
static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1541
{
1542
	struct key_vector *pn, *n = *tn;
1543
	unsigned long cindex;
1544

1545
	/* this loop is meant to try and find the key in the trie */
1546
	do {
1547 1548
		/* record parent and next child index */
		pn = n;
1549
		cindex = key ? get_index(key, pn) : 0;
1550 1551 1552

		if (cindex >> pn->bits)
			break;
1553

1554
		/* descend into the next child */
1555
		n = get_child_rcu(pn, cindex++);
1556 1557 1558 1559 1560 1561 1562
		if (!n)
			break;

		/* guarantee forward progress on the keys */
		if (IS_LEAF(n) && (n->key >= key))
			goto found;
	} while (IS_TNODE(n));
1563

1564
	/* this loop will search for the next leaf with a greater key */
1565
	while (!IS_TRIE(pn)) {
1566 1567 1568
		/* if we exhausted the parent node we will need to climb */
		if (cindex >= (1ul << pn->bits)) {
			t_key pkey = pn->key;
1569

1570 1571 1572 1573
			pn = node_parent_rcu(pn);
			cindex = get_index(pkey, pn) + 1;
			continue;
		}
1574

1575
		/* grab the next available node */
1576
		n = get_child_rcu(pn, cindex++);
1577 1578
		if (!n)
			continue;
1579

1580 1581 1582
		/* no need to compare keys since we bumped the index */
		if (IS_LEAF(n))
			goto found;
1583

1584 1585 1586 1587
		/* Rescan start scanning in new node */
		pn = n;
		cindex = 0;
	}
S
Stephen Hemminger 已提交
1588

1589 1590 1591 1592
	*tn = pn;
	return NULL; /* Root of trie */
found:
	/* if we are at the limit for keys just return NULL for the tnode */
1593
	*tn = pn;
1594
	return n;
1595 1596
}

1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
static void fib_trie_free(struct fib_table *tb)
{
	struct trie *t = (struct trie *)tb->tb_data;
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
	struct hlist_node *tmp;
	struct fib_alias *fa;

	/* walk trie in reverse order and free everything */
	for (;;) {
		struct key_vector *n;

		if (!(cindex--)) {
			t_key pkey = pn->key;

			if (IS_TRIE(pn))
				break;

			n = pn;
			pn = node_parent(pn);

			/* drop emptied tnode */
			put_child_root(pn, n->key, NULL);
			node_free(n);

			cindex = get_index(pkey, pn);

			continue;
		}

		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;

		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;

			continue;
		}

		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			hlist_del_rcu(&fa->fa_list);
			alias_free_mem_rcu(fa);
		}

		put_child_root(pn, n->key, NULL);
		node_free(n);
	}

#ifdef CONFIG_IP_FIB_TRIE_STATS
	free_percpu(t->stats);
#endif
	kfree(tb);
}

struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
{
	struct trie *ot = (struct trie *)oldtb->tb_data;
	struct key_vector *l, *tp = ot->kv;
	struct fib_table *local_tb;
	struct fib_alias *fa;
	struct trie *lt;
	t_key key = 0;

	if (oldtb->tb_data == oldtb->__data)
		return oldtb;

	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
	if (!local_tb)
		return NULL;

	lt = (struct trie *)local_tb->tb_data;

	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
		struct key_vector *local_l = NULL, *local_tp;

		hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
			struct fib_alias *new_fa;

			if (local_tb->tb_id != fa->tb_id)
				continue;

			/* clone fa for new local table */
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
			if (!new_fa)
				goto out;

			memcpy(new_fa, fa, sizeof(*fa));

			/* insert clone into table */
			if (!local_l)
				local_l = fib_find_node(lt, &local_tp, l->key);

			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
					     NULL, l->key))
				goto out;
		}

		/* stop loop if key wrapped back to 0 */
		key = l->key + 1;
		if (key < l->key)
			break;
	}

	return local_tb;
out:
	fib_trie_free(local_tb);

	return NULL;
}

1711 1712 1713 1714
/* Caller must hold RTNL */
void fib_table_flush_external(struct fib_table *tb)
{
	struct trie *t = (struct trie *)tb->tb_data;
1715 1716 1717
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
	struct hlist_node *tmp;
1718 1719
	struct fib_alias *fa;

1720 1721
	/* walk trie in reverse order */
	for (;;) {
1722
		unsigned char slen = 0;
1723
		struct key_vector *n;
1724

1725 1726
		if (!(cindex--)) {
			t_key pkey = pn->key;
1727

1728 1729 1730
			/* cannot resize the trie vector */
			if (IS_TRIE(pn))
				break;
1731

1732 1733
			/* resize completed node */
			pn = resize(t, pn);
1734
			cindex = get_index(pkey, pn);
1735

1736 1737
			continue;
		}
1738

1739 1740 1741 1742
		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;
1743

1744 1745 1746 1747
		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;
1748

1749
			continue;
1750
		}
1751

1752 1753 1754
		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			struct fib_info *fi = fa->fa_info;

1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
			/* if alias was cloned to local then we just
			 * need to remove the local copy from main
			 */
			if (tb->tb_id != fa->tb_id) {
				hlist_del_rcu(&fa->fa_list);
				alias_free_mem_rcu(fa);
				continue;
			}

			/* record local slen */
			slen = fa->fa_slen;

1767
			if (!fi || !(fi->fib_flags & RTNH_F_OFFLOAD))
1768
				continue;
1769

1770 1771 1772
			switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
					       fi, fa->fa_tos, fa->fa_type,
					       tb->tb_id);
1773
		}
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783

		/* update leaf slen */
		n->slen = slen;

		if (hlist_empty(&n->leaf)) {
			put_child_root(pn, n->key, NULL);
			node_free(n);
		} else {
			leaf_pull_suffix(pn, n);
		}
1784
	}
1785 1786
}

1787
/* Caller must hold RTNL. */
1788
int fib_table_flush(struct fib_table *tb)
1789
{
1790
	struct trie *t = (struct trie *)tb->tb_data;
1791 1792
	struct key_vector *pn = t->kv;
	unsigned long cindex = 1;
1793 1794
	struct hlist_node *tmp;
	struct fib_alias *fa;
1795
	int found = 0;
1796

1797 1798 1799 1800
	/* walk trie in reverse order */
	for (;;) {
		unsigned char slen = 0;
		struct key_vector *n;
1801

1802 1803
		if (!(cindex--)) {
			t_key pkey = pn->key;
1804

1805 1806 1807
			/* cannot resize the trie vector */
			if (IS_TRIE(pn))
				break;
1808

1809 1810 1811
			/* resize completed node */
			pn = resize(t, pn);
			cindex = get_index(pkey, pn);
1812

1813 1814
			continue;
		}
1815

1816 1817 1818 1819
		/* grab the next available node */
		n = get_child(pn, cindex);
		if (!n)
			continue;
1820

1821 1822 1823 1824
		if (IS_TNODE(n)) {
			/* record pn and cindex for leaf walking */
			pn = n;
			cindex = 1ul << n->bits;
1825

1826 1827
			continue;
		}
1828

1829 1830
		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
			struct fib_info *fi = fa->fa_info;
1831

1832 1833 1834 1835
			if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
				slen = fa->fa_slen;
				continue;
			}
1836

1837 1838 1839
			switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
					       fi, fa->fa_tos, fa->fa_type,
					       tb->tb_id);
1840 1841 1842 1843
			hlist_del_rcu(&fa->fa_list);
			fib_release_info(fa->fa_info);
			alias_free_mem_rcu(fa);
			found++;
1844 1845
		}

1846 1847
		/* update leaf slen */
		n->slen = slen;
1848

1849 1850 1851 1852 1853 1854
		if (hlist_empty(&n->leaf)) {
			put_child_root(pn, n->key, NULL);
			node_free(n);
		} else {
			leaf_pull_suffix(pn, n);
		}
1855
	}
1856

S
Stephen Hemminger 已提交
1857
	pr_debug("trie_flush found=%d\n", found);
1858 1859 1860
	return found;
}

1861
static void __trie_free_rcu(struct rcu_head *head)
1862
{
1863
	struct fib_table *tb = container_of(head, struct fib_table, rcu);
1864 1865 1866
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie *t = (struct trie *)tb->tb_data;

1867 1868
	if (tb->tb_data == tb->__data)
		free_percpu(t->stats);
1869
#endif /* CONFIG_IP_FIB_TRIE_STATS */
1870 1871 1872
	kfree(tb);
}

1873 1874 1875 1876 1877
void fib_free_table(struct fib_table *tb)
{
	call_rcu(&tb->rcu, __trie_free_rcu);
}

1878
static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
A
Alexander Duyck 已提交
1879
			     struct sk_buff *skb, struct netlink_callback *cb)
1880
{
A
Alexander Duyck 已提交
1881
	__be32 xkey = htonl(l->key);
1882
	struct fib_alias *fa;
A
Alexander Duyck 已提交
1883
	int i, s_i;
1884

A
Alexander Duyck 已提交
1885
	s_i = cb->args[4];
1886 1887
	i = 0;

R
Robert Olsson 已提交
1888
	/* rcu_read_lock is hold by caller */
A
Alexander Duyck 已提交
1889
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1890 1891 1892 1893 1894
		if (i < s_i) {
			i++;
			continue;
		}

1895 1896 1897 1898 1899
		if (tb->tb_id != fa->tb_id) {
			i++;
			continue;
		}

1900
		if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1901 1902 1903 1904
				  cb->nlh->nlmsg_seq,
				  RTM_NEWROUTE,
				  tb->tb_id,
				  fa->fa_type,
1905
				  xkey,
1906
				  KEYLENGTH - fa->fa_slen,
1907
				  fa->fa_tos,
1908
				  fa->fa_info, NLM_F_MULTI) < 0) {
1909
			cb->args[4] = i;
1910 1911
			return -1;
		}
1912
		i++;
1913
	}
1914

1915
	cb->args[4] = i;
1916 1917 1918
	return skb->len;
}

1919
/* rcu_read_lock needs to be hold by caller from readside */
1920 1921
int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
		   struct netlink_callback *cb)
1922
{
1923
	struct trie *t = (struct trie *)tb->tb_data;
1924
	struct key_vector *l, *tp = t->kv;
1925 1926 1927
	/* Dump starting at last key.
	 * Note: 0.0.0.0/0 (ie default) is first key.
	 */
1928 1929
	int count = cb->args[2];
	t_key key = cb->args[3];
1930

1931
	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1932
		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1933 1934
			cb->args[3] = key;
			cb->args[2] = count;
1935
			return -1;
1936
		}
1937

1938
		++count;
1939 1940
		key = l->key + 1;

1941 1942
		memset(&cb->args[4], 0,
		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1943 1944 1945 1946

		/* stop loop if key wrapped back to 0 */
		if (key < l->key)
			break;
1947
	}
1948 1949 1950 1951

	cb->args[3] = key;
	cb->args[2] = count;

1952 1953 1954
	return skb->len;
}

1955
void __init fib_trie_init(void)
1956
{
1957 1958
	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
					  sizeof(struct fib_alias),
1959 1960 1961
					  0, SLAB_PANIC, NULL);

	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1962
					   LEAF_SIZE,
1963
					   0, SLAB_PANIC, NULL);
1964
}
1965

1966
struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
1967 1968 1969
{
	struct fib_table *tb;
	struct trie *t;
1970 1971 1972 1973
	size_t sz = sizeof(*tb);

	if (!alias)
		sz += sizeof(struct trie);
1974

1975
	tb = kzalloc(sz, GFP_KERNEL);
1976
	if (!tb)
1977 1978 1979
		return NULL;

	tb->tb_id = id;
1980
	tb->tb_default = -1;
1981
	tb->tb_num_default = 0;
1982 1983 1984 1985
	tb->tb_data = (alias ? alias->__data : tb->__data);

	if (alias)
		return tb;
1986 1987

	t = (struct trie *) tb->tb_data;
1988 1989
	t->kv[0].pos = KEYLENGTH;
	t->kv[0].slen = KEYLENGTH;
1990 1991 1992 1993 1994 1995 1996
#ifdef CONFIG_IP_FIB_TRIE_STATS
	t->stats = alloc_percpu(struct trie_use_stats);
	if (!t->stats) {
		kfree(tb);
		tb = NULL;
	}
#endif
1997 1998 1999 2000

	return tb;
}

2001 2002 2003
#ifdef CONFIG_PROC_FS
/* Depth first Trie walk iterator */
struct fib_trie_iter {
2004
	struct seq_net_private p;
2005
	struct fib_table *tb;
2006
	struct key_vector *tnode;
E
Eric Dumazet 已提交
2007 2008
	unsigned int index;
	unsigned int depth;
2009
};
2010

2011
static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2012
{
2013
	unsigned long cindex = iter->index;
2014 2015
	struct key_vector *pn = iter->tnode;
	t_key pkey;
2016

2017 2018
	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
		 iter->tnode, iter->index, iter->depth);
2019

2020 2021 2022 2023 2024 2025 2026
	while (!IS_TRIE(pn)) {
		while (cindex < child_length(pn)) {
			struct key_vector *n = get_child_rcu(pn, cindex++);

			if (!n)
				continue;

2027
			if (IS_LEAF(n)) {
2028 2029
				iter->tnode = pn;
				iter->index = cindex;
2030 2031
			} else {
				/* push down one level */
A
Alexander Duyck 已提交
2032
				iter->tnode = n;
2033 2034 2035
				iter->index = 0;
				++iter->depth;
			}
2036

2037 2038
			return n;
		}
2039

2040 2041 2042 2043
		/* Current node exhausted, pop back up */
		pkey = pn->key;
		pn = node_parent_rcu(pn);
		cindex = get_index(pkey, pn) + 1;
2044
		--iter->depth;
2045
	}
2046

2047 2048 2049 2050
	/* record root node so further searches know we are done */
	iter->tnode = pn;
	iter->index = 0;

2051
	return NULL;
2052 2053
}

2054 2055
static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
					     struct trie *t)
2056
{
2057
	struct key_vector *n, *pn = t->kv;
2058

S
Stephen Hemminger 已提交
2059
	if (!t)
2060 2061
		return NULL;

2062
	n = rcu_dereference(pn->tnode[0]);
2063
	if (!n)
2064
		return NULL;
2065

2066
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
2067
		iter->tnode = n;
2068 2069 2070
		iter->index = 0;
		iter->depth = 1;
	} else {
2071
		iter->tnode = pn;
2072 2073
		iter->index = 0;
		iter->depth = 0;
O
Olof Johansson 已提交
2074
	}
2075 2076

	return n;
2077
}
O
Olof Johansson 已提交
2078

2079 2080
static void trie_collect_stats(struct trie *t, struct trie_stat *s)
{
2081
	struct key_vector *n;
2082
	struct fib_trie_iter iter;
O
Olof Johansson 已提交
2083

2084
	memset(s, 0, sizeof(*s));
O
Olof Johansson 已提交
2085

2086
	rcu_read_lock();
2087
	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2088
		if (IS_LEAF(n)) {
A
Alexander Duyck 已提交
2089
			struct fib_alias *fa;
2090

2091 2092 2093 2094
			s->leaves++;
			s->totdepth += iter.depth;
			if (iter.depth > s->maxdepth)
				s->maxdepth = iter.depth;
2095

A
Alexander Duyck 已提交
2096
			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2097
				++s->prefixes;
2098 2099
		} else {
			s->tnodes++;
A
Alexander Duyck 已提交
2100 2101
			if (n->bits < MAX_STAT_DEPTH)
				s->nodesizes[n->bits]++;
2102
			s->nullpointers += tn_info(n)->empty_children;
2103 2104
		}
	}
R
Robert Olsson 已提交
2105
	rcu_read_unlock();
2106 2107
}

2108 2109 2110 2111
/*
 *	This outputs /proc/net/fib_triestats
 */
static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2112
{
E
Eric Dumazet 已提交
2113
	unsigned int i, max, pointers, bytes, avdepth;
2114

2115 2116 2117 2118
	if (stat->leaves)
		avdepth = stat->totdepth*100 / stat->leaves;
	else
		avdepth = 0;
O
Olof Johansson 已提交
2119

2120 2121
	seq_printf(seq, "\tAver depth:     %u.%02d\n",
		   avdepth / 100, avdepth % 100);
2122
	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
O
Olof Johansson 已提交
2123

2124
	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2125
	bytes = LEAF_SIZE * stat->leaves;
2126 2127

	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
A
Alexander Duyck 已提交
2128
	bytes += sizeof(struct fib_alias) * stat->prefixes;
2129

2130
	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2131
	bytes += TNODE_SIZE(0) * stat->tnodes;
2132

R
Robert Olsson 已提交
2133 2134
	max = MAX_STAT_DEPTH;
	while (max > 0 && stat->nodesizes[max-1] == 0)
2135
		max--;
2136

2137
	pointers = 0;
2138
	for (i = 1; i < max; i++)
2139
		if (stat->nodesizes[i] != 0) {
2140
			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2141 2142 2143
			pointers += (1<<i) * stat->nodesizes[i];
		}
	seq_putc(seq, '\n');
2144
	seq_printf(seq, "\tPointers: %u\n", pointers);
R
Robert Olsson 已提交
2145

2146
	bytes += sizeof(struct key_vector *) * pointers;
2147 2148
	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2149
}
R
Robert Olsson 已提交
2150

2151
#ifdef CONFIG_IP_FIB_TRIE_STATS
2152
static void trie_show_usage(struct seq_file *seq,
2153
			    const struct trie_use_stats __percpu *stats)
2154
{
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
	struct trie_use_stats s = { 0 };
	int cpu;

	/* loop through all of the CPUs and gather up the stats */
	for_each_possible_cpu(cpu) {
		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);

		s.gets += pcpu->gets;
		s.backtrack += pcpu->backtrack;
		s.semantic_match_passed += pcpu->semantic_match_passed;
		s.semantic_match_miss += pcpu->semantic_match_miss;
		s.null_node_hit += pcpu->null_node_hit;
		s.resize_node_skipped += pcpu->resize_node_skipped;
	}

2170
	seq_printf(seq, "\nCounters:\n---------\n");
2171 2172
	seq_printf(seq, "gets = %u\n", s.gets);
	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2173
	seq_printf(seq, "semantic match passed = %u\n",
2174 2175 2176 2177
		   s.semantic_match_passed);
	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2178
}
2179 2180
#endif /*  CONFIG_IP_FIB_TRIE_STATS */

2181
static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2182
{
2183 2184 2185 2186 2187 2188
	if (tb->tb_id == RT_TABLE_LOCAL)
		seq_puts(seq, "Local:\n");
	else if (tb->tb_id == RT_TABLE_MAIN)
		seq_puts(seq, "Main:\n");
	else
		seq_printf(seq, "Id %d:\n", tb->tb_id);
2189
}
2190

2191

2192 2193
static int fib_triestat_seq_show(struct seq_file *seq, void *v)
{
2194
	struct net *net = (struct net *)seq->private;
2195
	unsigned int h;
2196

2197
	seq_printf(seq,
2198 2199
		   "Basic info: size of leaf:"
		   " %Zd bytes, size of tnode: %Zd bytes.\n",
2200
		   LEAF_SIZE, TNODE_SIZE(0));
2201

2202 2203 2204 2205
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;

2206
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2207 2208
			struct trie *t = (struct trie *) tb->tb_data;
			struct trie_stat stat;
2209

2210 2211 2212 2213 2214 2215 2216 2217
			if (!t)
				continue;

			fib_table_print(seq, tb);

			trie_collect_stats(t, &stat);
			trie_show_stats(seq, &stat);
#ifdef CONFIG_IP_FIB_TRIE_STATS
2218
			trie_show_usage(seq, t->stats);
2219 2220 2221
#endif
		}
	}
2222

2223
	return 0;
2224 2225
}

2226
static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2227
{
2228
	return single_open_net(inode, file, fib_triestat_seq_show);
2229 2230
}

2231
static const struct file_operations fib_triestat_fops = {
2232 2233 2234 2235
	.owner	= THIS_MODULE,
	.open	= fib_triestat_seq_open,
	.read	= seq_read,
	.llseek	= seq_lseek,
2236
	.release = single_release_net,
2237 2238
};

2239
static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2240
{
2241 2242
	struct fib_trie_iter *iter = seq->private;
	struct net *net = seq_file_net(seq);
2243
	loff_t idx = 0;
2244
	unsigned int h;
2245

2246 2247 2248
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;
2249

2250
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2251
			struct key_vector *n;
2252 2253 2254 2255 2256 2257 2258 2259 2260

			for (n = fib_trie_get_first(iter,
						    (struct trie *) tb->tb_data);
			     n; n = fib_trie_get_next(iter))
				if (pos == idx++) {
					iter->tb = tb;
					return n;
				}
		}
2261
	}
2262

2263 2264 2265
	return NULL;
}

2266
static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2267
	__acquires(RCU)
2268
{
2269
	rcu_read_lock();
2270
	return fib_trie_get_idx(seq, *pos);
2271 2272
}

2273
static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2274
{
2275
	struct fib_trie_iter *iter = seq->private;
2276
	struct net *net = seq_file_net(seq);
2277 2278 2279
	struct fib_table *tb = iter->tb;
	struct hlist_node *tb_node;
	unsigned int h;
2280
	struct key_vector *n;
2281

2282
	++*pos;
2283 2284 2285 2286
	/* next node in same table */
	n = fib_trie_get_next(iter);
	if (n)
		return n;
2287

2288 2289
	/* walk rest of this hash chain */
	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
E
Eric Dumazet 已提交
2290
	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2291 2292 2293 2294 2295
		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
		if (n)
			goto found;
	}
2296

2297 2298 2299
	/* new hash chain */
	while (++h < FIB_TABLE_HASHSZ) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2300
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2301 2302 2303 2304 2305
			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
			if (n)
				goto found;
		}
	}
2306
	return NULL;
2307 2308 2309 2310

found:
	iter->tb = tb;
	return n;
2311
}
2312

2313
static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2314
	__releases(RCU)
2315
{
2316 2317
	rcu_read_unlock();
}
O
Olof Johansson 已提交
2318

2319 2320
static void seq_indent(struct seq_file *seq, int n)
{
E
Eric Dumazet 已提交
2321 2322
	while (n-- > 0)
		seq_puts(seq, "   ");
2323
}
2324

2325
static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2326
{
S
Stephen Hemminger 已提交
2327
	switch (s) {
2328 2329 2330 2331 2332 2333
	case RT_SCOPE_UNIVERSE: return "universe";
	case RT_SCOPE_SITE:	return "site";
	case RT_SCOPE_LINK:	return "link";
	case RT_SCOPE_HOST:	return "host";
	case RT_SCOPE_NOWHERE:	return "nowhere";
	default:
2334
		snprintf(buf, len, "scope=%d", s);
2335 2336 2337
		return buf;
	}
}
2338

2339
static const char *const rtn_type_names[__RTN_MAX] = {
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
	[RTN_UNSPEC] = "UNSPEC",
	[RTN_UNICAST] = "UNICAST",
	[RTN_LOCAL] = "LOCAL",
	[RTN_BROADCAST] = "BROADCAST",
	[RTN_ANYCAST] = "ANYCAST",
	[RTN_MULTICAST] = "MULTICAST",
	[RTN_BLACKHOLE] = "BLACKHOLE",
	[RTN_UNREACHABLE] = "UNREACHABLE",
	[RTN_PROHIBIT] = "PROHIBIT",
	[RTN_THROW] = "THROW",
	[RTN_NAT] = "NAT",
	[RTN_XRESOLVE] = "XRESOLVE",
};
2353

E
Eric Dumazet 已提交
2354
static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2355 2356 2357
{
	if (t < __RTN_MAX && rtn_type_names[t])
		return rtn_type_names[t];
2358
	snprintf(buf, len, "type %u", t);
2359
	return buf;
2360 2361
}

2362 2363
/* Pretty print the trie */
static int fib_trie_seq_show(struct seq_file *seq, void *v)
2364
{
2365
	const struct fib_trie_iter *iter = seq->private;
2366
	struct key_vector *n = v;
2367

2368
	if (IS_TRIE(node_parent_rcu(n)))
2369
		fib_table_print(seq, iter->tb);
2370

2371
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
2372
		__be32 prf = htonl(n->key);
O
Olof Johansson 已提交
2373

2374 2375 2376
		seq_indent(seq, iter->depth-1);
		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2377 2378
			   tn_info(n)->full_children,
			   tn_info(n)->empty_children);
2379
	} else {
A
Alexander Duyck 已提交
2380
		__be32 val = htonl(n->key);
A
Alexander Duyck 已提交
2381
		struct fib_alias *fa;
2382 2383

		seq_indent(seq, iter->depth);
2384
		seq_printf(seq, "  |-- %pI4\n", &val);
2385

A
Alexander Duyck 已提交
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
			char buf1[32], buf2[32];

			seq_indent(seq, iter->depth + 1);
			seq_printf(seq, "  /%zu %s %s",
				   KEYLENGTH - fa->fa_slen,
				   rtn_scope(buf1, sizeof(buf1),
					     fa->fa_info->fib_scope),
				   rtn_type(buf2, sizeof(buf2),
					    fa->fa_type));
			if (fa->fa_tos)
				seq_printf(seq, " tos=%d", fa->fa_tos);
			seq_putc(seq, '\n');
2399
		}
2400
	}
2401

2402 2403 2404
	return 0;
}

2405
static const struct seq_operations fib_trie_seq_ops = {
2406 2407 2408 2409
	.start  = fib_trie_seq_start,
	.next   = fib_trie_seq_next,
	.stop   = fib_trie_seq_stop,
	.show   = fib_trie_seq_show,
2410 2411
};

2412
static int fib_trie_seq_open(struct inode *inode, struct file *file)
2413
{
2414 2415
	return seq_open_net(inode, file, &fib_trie_seq_ops,
			    sizeof(struct fib_trie_iter));
2416 2417
}

2418
static const struct file_operations fib_trie_fops = {
2419 2420 2421 2422
	.owner  = THIS_MODULE,
	.open   = fib_trie_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2423
	.release = seq_release_net,
2424 2425
};

2426 2427
struct fib_route_iter {
	struct seq_net_private p;
2428
	struct fib_table *main_tb;
2429
	struct key_vector *tnode;
2430 2431 2432 2433
	loff_t	pos;
	t_key	key;
};

2434 2435
static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
					    loff_t pos)
2436
{
2437
	struct fib_table *tb = iter->main_tb;
2438
	struct key_vector *l, **tp = &iter->tnode;
2439 2440
	struct trie *t;
	t_key key;
2441

2442 2443
	/* use cache location of next-to-find key */
	if (iter->pos > 0 && pos >= iter->pos) {
2444
		pos -= iter->pos;
2445 2446 2447
		key = iter->key;
	} else {
		t = (struct trie *)tb->tb_data;
2448
		iter->tnode = t->kv;
2449
		iter->pos = 0;
2450
		key = 0;
2451 2452
	}

2453 2454
	while ((l = leaf_walk_rcu(tp, key)) != NULL) {
		key = l->key + 1;
2455
		iter->pos++;
2456 2457 2458 2459 2460 2461 2462 2463 2464

		if (pos-- <= 0)
			break;

		l = NULL;

		/* handle unlikely case of a key wrap */
		if (!key)
			break;
2465 2466 2467
	}

	if (l)
2468
		iter->key = key;	/* remember it */
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
	else
		iter->pos = 0;		/* forget it */

	return l;
}

static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
	__acquires(RCU)
{
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb;
2480
	struct trie *t;
2481 2482

	rcu_read_lock();
2483

2484
	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2485 2486 2487
	if (!tb)
		return NULL;

2488 2489 2490 2491 2492 2493
	iter->main_tb = tb;

	if (*pos != 0)
		return fib_route_get_idx(iter, *pos);

	t = (struct trie *)tb->tb_data;
2494
	iter->tnode = t->kv;
2495 2496 2497 2498
	iter->pos = 0;
	iter->key = 0;

	return SEQ_START_TOKEN;
2499 2500 2501 2502 2503
}

static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
	struct fib_route_iter *iter = seq->private;
2504
	struct key_vector *l = NULL;
2505
	t_key key = iter->key;
2506 2507

	++*pos;
2508 2509 2510 2511 2512 2513 2514

	/* only allow key of 0 for start of sequence */
	if ((v == SEQ_START_TOKEN) || key)
		l = leaf_walk_rcu(&iter->tnode, key);

	if (l) {
		iter->key = l->key + 1;
2515
		iter->pos++;
2516 2517
	} else {
		iter->pos = 0;
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
	}

	return l;
}

static void fib_route_seq_stop(struct seq_file *seq, void *v)
	__releases(RCU)
{
	rcu_read_unlock();
}

E
Eric Dumazet 已提交
2529
static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2530
{
E
Eric Dumazet 已提交
2531
	unsigned int flags = 0;
2532

E
Eric Dumazet 已提交
2533 2534
	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
		flags = RTF_REJECT;
2535 2536
	if (fi && fi->fib_nh->nh_gw)
		flags |= RTF_GATEWAY;
A
Al Viro 已提交
2537
	if (mask == htonl(0xFFFFFFFF))
2538 2539 2540
		flags |= RTF_HOST;
	flags |= RTF_UP;
	return flags;
2541 2542
}

2543 2544 2545
/*
 *	This outputs /proc/net/route.
 *	The format of the file is not supposed to be changed
E
Eric Dumazet 已提交
2546
 *	and needs to be same as fib_hash output to avoid breaking
2547 2548 2549
 *	legacy utilities
 */
static int fib_route_seq_show(struct seq_file *seq, void *v)
2550
{
2551 2552
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb = iter->main_tb;
A
Alexander Duyck 已提交
2553
	struct fib_alias *fa;
2554
	struct key_vector *l = v;
2555
	__be32 prefix;
2556

2557 2558 2559 2560 2561 2562
	if (v == SEQ_START_TOKEN) {
		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
			   "\tWindow\tIRTT");
		return 0;
	}
2563

2564 2565
	prefix = htonl(l->key);

A
Alexander Duyck 已提交
2566 2567 2568 2569
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
		const struct fib_info *fi = fa->fa_info;
		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2570

A
Alexander Duyck 已提交
2571 2572 2573
		if ((fa->fa_type == RTN_BROADCAST) ||
		    (fa->fa_type == RTN_MULTICAST))
			continue;
2574

2575 2576 2577
		if (fa->tb_id != tb->tb_id)
			continue;

A
Alexander Duyck 已提交
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
		seq_setwidth(seq, 127);

		if (fi)
			seq_printf(seq,
				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   fi->fib_dev ? fi->fib_dev->name : "*",
				   prefix,
				   fi->fib_nh->nh_gw, flags, 0, 0,
				   fi->fib_priority,
				   mask,
				   (fi->fib_advmss ?
				    fi->fib_advmss + 40 : 0),
				   fi->fib_window,
				   fi->fib_rtt >> 3);
		else
			seq_printf(seq,
				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   prefix, 0, flags, 0, 0, 0,
				   mask, 0, 0, 0);
2599

A
Alexander Duyck 已提交
2600
		seq_pad(seq, '\n');
2601 2602 2603 2604 2605
	}

	return 0;
}

2606
static const struct seq_operations fib_route_seq_ops = {
2607 2608 2609
	.start  = fib_route_seq_start,
	.next   = fib_route_seq_next,
	.stop   = fib_route_seq_stop,
2610
	.show   = fib_route_seq_show,
2611 2612
};

2613
static int fib_route_seq_open(struct inode *inode, struct file *file)
2614
{
2615
	return seq_open_net(inode, file, &fib_route_seq_ops,
2616
			    sizeof(struct fib_route_iter));
2617 2618
}

2619
static const struct file_operations fib_route_fops = {
2620 2621 2622 2623
	.owner  = THIS_MODULE,
	.open   = fib_route_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2624
	.release = seq_release_net,
2625 2626
};

2627
int __net_init fib_proc_init(struct net *net)
2628
{
2629
	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2630 2631
		goto out1;

2632 2633
	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
			 &fib_triestat_fops))
2634 2635
		goto out2;

2636
	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2637 2638
		goto out3;

2639
	return 0;
2640 2641

out3:
2642
	remove_proc_entry("fib_triestat", net->proc_net);
2643
out2:
2644
	remove_proc_entry("fib_trie", net->proc_net);
2645 2646
out1:
	return -ENOMEM;
2647 2648
}

2649
void __net_exit fib_proc_exit(struct net *net)
2650
{
2651 2652 2653
	remove_proc_entry("fib_trie", net->proc_net);
	remove_proc_entry("fib_triestat", net->proc_net);
	remove_proc_entry("route", net->proc_net);
2654 2655 2656
}

#endif /* CONFIG_PROC_FS */