fib_trie.c 59.9 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation; either version
 *   2 of the License, or (at your option) any later version.
 *
 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
 *     & Swedish University of Agricultural Sciences.
 *
10
 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11
 *     Agricultural Sciences.
12
 *
13 14
 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
 *
L
Lucas De Marchi 已提交
15
 * This work is based on the LPC-trie which is originally described in:
16
 *
17 18
 * An experimental study of compression methods for dynamic tries
 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19
 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 *
 *
 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
 *
 *
 * Code from fib_hash has been reused which includes the following header:
 *
 *
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 *		operating system.  INET is implemented using the  BSD Socket
 *		interface as the means of communication with the user level.
 *
 *		IPv4 FIB: lookup engine and maintenance routines.
 *
 *
 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
 *
 *		This program is free software; you can redistribute it and/or
 *		modify it under the terms of the GNU General Public License
 *		as published by the Free Software Foundation; either version
 *		2 of the License, or (at your option) any later version.
R
Robert Olsson 已提交
42 43 44 45 46 47 48
 *
 * Substantial contributions to this work comes from:
 *
 *		David S. Miller, <davem@davemloft.net>
 *		Stephen Hemminger <shemminger@osdl.org>
 *		Paul E. McKenney <paulmck@us.ibm.com>
 *		Patrick McHardy <kaber@trash.net>
49 50
 */

J
Jens Låås 已提交
51
#define VERSION "0.409"
52 53

#include <asm/uaccess.h>
J
Jiri Slaby 已提交
54
#include <linux/bitops.h>
55 56 57 58 59 60 61 62 63
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/inet.h>
S
Stephen Hemminger 已提交
64
#include <linux/inetdevice.h>
65 66 67
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/proc_fs.h>
R
Robert Olsson 已提交
68
#include <linux/rcupdate.h>
69 70 71 72
#include <linux/skbuff.h>
#include <linux/netlink.h>
#include <linux/init.h>
#include <linux/list.h>
73
#include <linux/slab.h>
74
#include <linux/export.h>
75
#include <net/net_namespace.h>
76 77 78 79 80 81
#include <net/ip.h>
#include <net/protocol.h>
#include <net/route.h>
#include <net/tcp.h>
#include <net/sock.h>
#include <net/ip_fib.h>
82
#include <net/switchdev.h>
83 84
#include "fib_lookup.h"

R
Robert Olsson 已提交
85
#define MAX_STAT_DEPTH 32
86

87 88
#define KEYLENGTH	(8*sizeof(t_key))
#define KEY_MAX		((t_key)~0)
89 90 91

typedef unsigned int t_key;

92 93
#define IS_TNODE(n) ((n)->bits)
#define IS_LEAF(n) (!(n)->bits)
R
Robert Olsson 已提交
94

95
#define get_index(_key, _kv) (((_key) ^ (_kv)->key) >> (_kv)->pos)
96

97
struct tnode {
98 99 100 101 102 103
	struct rcu_head rcu;

	t_key empty_children; /* KEYLENGTH bits needed */
	t_key full_children;  /* KEYLENGTH bits needed */
	struct tnode __rcu *parent;

104 105
	t_key key;
	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
106
	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
107
	unsigned char slen;
A
Alexander Duyck 已提交
108
	union {
109
		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
A
Alexander Duyck 已提交
110
		struct hlist_head leaf;
111 112
		/* This array is valid if (pos | bits) > 0 (TNODE) */
		struct tnode __rcu *tnode[0];
A
Alexander Duyck 已提交
113
	};
114 115
};

116 117 118
#define TNODE_SIZE(n)	offsetof(struct tnode, tnode[n])
#define LEAF_SIZE	TNODE_SIZE(1)

119 120 121 122 123 124 125
#ifdef CONFIG_IP_FIB_TRIE_STATS
struct trie_use_stats {
	unsigned int gets;
	unsigned int backtrack;
	unsigned int semantic_match_passed;
	unsigned int semantic_match_miss;
	unsigned int null_node_hit;
126
	unsigned int resize_node_skipped;
127 128 129 130 131 132 133 134 135
};
#endif

struct trie_stat {
	unsigned int totdepth;
	unsigned int maxdepth;
	unsigned int tnodes;
	unsigned int leaves;
	unsigned int nullpointers;
136
	unsigned int prefixes;
R
Robert Olsson 已提交
137
	unsigned int nodesizes[MAX_STAT_DEPTH];
138
};
139 140

struct trie {
A
Alexander Duyck 已提交
141
	struct tnode __rcu *trie;
142
#ifdef CONFIG_IP_FIB_TRIE_STATS
143
	struct trie_use_stats __percpu *stats;
144 145 146
#endif
};

147
static void resize(struct trie *t, struct tnode *tn);
148 149 150 151 152 153 154 155
static size_t tnode_free_size;

/*
 * synchronize_rcu after call_rcu for that many pages; it should be especially
 * useful before resizing the root node with PREEMPT_NONE configs; the value was
 * obtained experimentally, aiming to avoid visible slowdown.
 */
static const int sync_pages = 128;
156

157
static struct kmem_cache *fn_alias_kmem __read_mostly;
158
static struct kmem_cache *trie_leaf_kmem __read_mostly;
159

160 161
/* caller must hold RTNL */
#define node_parent(n) rtnl_dereference((n)->parent)
E
Eric Dumazet 已提交
162

163 164
/* caller must hold RCU read lock or RTNL */
#define node_parent_rcu(n) rcu_dereference_rtnl((n)->parent)
E
Eric Dumazet 已提交
165

166
/* wrapper for rcu_assign_pointer */
A
Alexander Duyck 已提交
167
static inline void node_set_parent(struct tnode *n, struct tnode *tp)
168
{
A
Alexander Duyck 已提交
169 170
	if (n)
		rcu_assign_pointer(n->parent, tp);
S
Stephen Hemminger 已提交
171 172
}

173 174 175 176
#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER((n)->parent, p)

/* This provides us with the number of children in this node, in the case of a
 * leaf this will return 0 meaning none of the children are accessible.
177
 */
178
static inline unsigned long tnode_child_length(const struct tnode *tn)
S
Stephen Hemminger 已提交
179
{
180
	return (1ul << tn->bits) & ~(1ul);
S
Stephen Hemminger 已提交
181
}
R
Robert Olsson 已提交
182

183 184 185
/* caller must hold RTNL */
static inline struct tnode *tnode_get_child(const struct tnode *tn,
					    unsigned long i)
186
{
187
	return rtnl_dereference(tn->tnode[i]);
188 189
}

190 191 192
/* caller must hold RCU read lock or RTNL */
static inline struct tnode *tnode_get_child_rcu(const struct tnode *tn,
						unsigned long i)
193
{
194
	return rcu_dereference_rtnl(tn->tnode[i]);
195 196
}

197 198 199 200 201 202 203
static inline struct fib_table *trie_get_table(struct trie *t)
{
	unsigned long *tb_data = (unsigned long *)t;

	return container_of(tb_data, struct fib_table, tb_data[0]);
}

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
/* To understand this stuff, an understanding of keys and all their bits is
 * necessary. Every node in the trie has a key associated with it, but not
 * all of the bits in that key are significant.
 *
 * Consider a node 'n' and its parent 'tp'.
 *
 * If n is a leaf, every bit in its key is significant. Its presence is
 * necessitated by path compression, since during a tree traversal (when
 * searching for a leaf - unless we are doing an insertion) we will completely
 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 * a potentially successful search, that we have indeed been walking the
 * correct key path.
 *
 * Note that we can never "miss" the correct key in the tree if present by
 * following the wrong path. Path compression ensures that segments of the key
 * that are the same for all keys with a given prefix are skipped, but the
 * skipped part *is* identical for each node in the subtrie below the skipped
 * bit! trie_insert() in this implementation takes care of that.
 *
 * if n is an internal node - a 'tnode' here, the various parts of its key
 * have many different meanings.
 *
 * Example:
 * _________________________________________________________________
 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 * -----------------------------------------------------------------
 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 *
 * _________________________________________________________________
 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 * -----------------------------------------------------------------
 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 *
 * tp->pos = 22
 * tp->bits = 3
 * n->pos = 13
 * n->bits = 4
 *
 * First, let's just ignore the bits that come before the parent tp, that is
 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 * point we do not use them for anything.
 *
 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 * index into the parent's child array. That is, they will be used to find
 * 'n' among tp's children.
 *
 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
 * for the node n.
 *
 * All the bits we have seen so far are significant to the node n. The rest
 * of the bits are really not needed or indeed known in n->key.
 *
 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 * n's child array, and will of course be different for each child.
 *
 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
 * at this point.
 */
262

263 264
static const int halve_threshold = 25;
static const int inflate_threshold = 50;
265
static const int halve_threshold_root = 15;
J
Jens Låås 已提交
266
static const int inflate_threshold_root = 30;
R
Robert Olsson 已提交
267 268

static void __alias_free_mem(struct rcu_head *head)
269
{
R
Robert Olsson 已提交
270 271
	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
	kmem_cache_free(fn_alias_kmem, fa);
272 273
}

R
Robert Olsson 已提交
274
static inline void alias_free_mem_rcu(struct fib_alias *fa)
275
{
R
Robert Olsson 已提交
276 277
	call_rcu(&fa->rcu, __alias_free_mem);
}
O
Olof Johansson 已提交
278

279
#define TNODE_KMALLOC_MAX \
280
	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct tnode *))
281 282
#define TNODE_VMALLOC_MAX \
	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct tnode *))
O
Olof Johansson 已提交
283

284
static void __node_free_rcu(struct rcu_head *head)
285
{
A
Alexander Duyck 已提交
286
	struct tnode *n = container_of(head, struct tnode, rcu);
287 288 289 290 291 292 293

	if (IS_LEAF(n))
		kmem_cache_free(trie_leaf_kmem, n);
	else if (n->bits <= TNODE_KMALLOC_MAX)
		kfree(n);
	else
		vfree(n);
294 295
}

296 297
#define node_free(n) call_rcu(&n->rcu, __node_free_rcu)

298
static struct tnode *tnode_alloc(int bits)
299
{
300 301 302 303 304 305 306 307 308
	size_t size;

	/* verify bits is within bounds */
	if (bits > TNODE_VMALLOC_MAX)
		return NULL;

	/* determine size and verify it is non-zero and didn't overflow */
	size = TNODE_SIZE(1ul << bits);

R
Robert Olsson 已提交
309
	if (size <= PAGE_SIZE)
310
		return kzalloc(size, GFP_KERNEL);
311
	else
312
		return vzalloc(size);
313
}
R
Robert Olsson 已提交
314

315 316 317 318 319 320 321 322 323 324
static inline void empty_child_inc(struct tnode *n)
{
	++n->empty_children ? : ++n->full_children;
}

static inline void empty_child_dec(struct tnode *n)
{
	n->empty_children-- ? : n->full_children--;
}

325
static struct tnode *leaf_new(t_key key, struct fib_alias *fa)
R
Robert Olsson 已提交
326
{
A
Alexander Duyck 已提交
327
	struct tnode *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
R
Robert Olsson 已提交
328
	if (l) {
329 330 331 332 333 334
		l->parent = NULL;
		/* set key and pos to reflect full key value
		 * any trailing zeros in the key should be ignored
		 * as the nodes are searched
		 */
		l->key = key;
335
		l->slen = fa->fa_slen;
336
		l->pos = 0;
337 338 339
		/* set bits to 0 indicating we are not a tnode */
		l->bits = 0;

340
		/* link leaf to fib alias */
A
Alexander Duyck 已提交
341
		INIT_HLIST_HEAD(&l->leaf);
342
		hlist_add_head(&fa->fa_list, &l->leaf);
R
Robert Olsson 已提交
343 344 345 346
	}
	return l;
}

347
static struct tnode *tnode_new(t_key key, int pos, int bits)
348
{
349
	struct tnode *tn = tnode_alloc(bits);
350 351 352 353
	unsigned int shift = pos + bits;

	/* verify bits and pos their msb bits clear and values are valid */
	BUG_ON(!bits || (shift > KEYLENGTH));
354

O
Olof Johansson 已提交
355
	if (tn) {
356
		tn->parent = NULL;
357
		tn->slen = pos;
358 359
		tn->pos = pos;
		tn->bits = bits;
360
		tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
361 362 363 364
		if (bits == KEYLENGTH)
			tn->full_children = 1;
		else
			tn->empty_children = 1ul << bits;
365
	}
366

367
	pr_debug("AT %p s=%zu %zu\n", tn, TNODE_SIZE(0),
A
Alexander Duyck 已提交
368
		 sizeof(struct tnode *) << bits);
369 370 371
	return tn;
}

372
/* Check whether a tnode 'n' is "full", i.e. it is an internal node
373 374
 * and no bits are skipped. See discussion in dyntree paper p. 6
 */
A
Alexander Duyck 已提交
375
static inline int tnode_full(const struct tnode *tn, const struct tnode *n)
376
{
377
	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
378 379
}

380 381 382 383
/* Add a child at position i overwriting the old value.
 * Update the value of full_children and empty_children.
 */
static void put_child(struct tnode *tn, unsigned long i, struct tnode *n)
384
{
385
	struct tnode *chi = tnode_get_child(tn, i);
386
	int isfull, wasfull;
387

388
	BUG_ON(i >= tnode_child_length(tn));
S
Stephen Hemminger 已提交
389

390
	/* update emptyChildren, overflow into fullChildren */
391
	if (n == NULL && chi != NULL)
392 393 394
		empty_child_inc(tn);
	if (n != NULL && chi == NULL)
		empty_child_dec(tn);
395

396
	/* update fullChildren */
397
	wasfull = tnode_full(tn, chi);
398
	isfull = tnode_full(tn, n);
399

400
	if (wasfull && !isfull)
401
		tn->full_children--;
402
	else if (!wasfull && isfull)
403
		tn->full_children++;
O
Olof Johansson 已提交
404

405 406 407
	if (n && (tn->slen < n->slen))
		tn->slen = n->slen;

408
	rcu_assign_pointer(tn->tnode[i], n);
409 410
}

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
static void update_children(struct tnode *tn)
{
	unsigned long i;

	/* update all of the child parent pointers */
	for (i = tnode_child_length(tn); i;) {
		struct tnode *inode = tnode_get_child(tn, --i);

		if (!inode)
			continue;

		/* Either update the children of a tnode that
		 * already belongs to us or update the child
		 * to point to ourselves.
		 */
		if (node_parent(inode) == tn)
			update_children(inode);
		else
			node_set_parent(inode, tn);
	}
}

static inline void put_child_root(struct tnode *tp, struct trie *t,
				  t_key key, struct tnode *n)
435 436 437 438 439 440 441
{
	if (tp)
		put_child(tp, get_index(key, tp), n);
	else
		rcu_assign_pointer(t->trie, n);
}

442
static inline void tnode_free_init(struct tnode *tn)
E
Eric Dumazet 已提交
443
{
444 445 446 447 448 449 450 451
	tn->rcu.next = NULL;
}

static inline void tnode_free_append(struct tnode *tn, struct tnode *n)
{
	n->rcu.next = tn->rcu.next;
	tn->rcu.next = &n->rcu;
}
E
Eric Dumazet 已提交
452

453 454 455 456 457 458
static void tnode_free(struct tnode *tn)
{
	struct callback_head *head = &tn->rcu;

	while (head) {
		head = head->next;
459
		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
460 461 462 463 464 465 466 467
		node_free(tn);

		tn = container_of(head, struct tnode, rcu);
	}

	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
		tnode_free_size = 0;
		synchronize_rcu();
E
Eric Dumazet 已提交
468 469 470
	}
}

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
static void replace(struct trie *t, struct tnode *oldtnode, struct tnode *tn)
{
	struct tnode *tp = node_parent(oldtnode);
	unsigned long i;

	/* setup the parent pointer out of and back into this node */
	NODE_INIT_PARENT(tn, tp);
	put_child_root(tp, t, tn->key, tn);

	/* update all of the child parent pointers */
	update_children(tn);

	/* all pointers should be clean so we are done */
	tnode_free(oldtnode);

	/* resize children now that oldtnode is freed */
	for (i = tnode_child_length(tn); i;) {
		struct tnode *inode = tnode_get_child(tn, --i);

		/* resize child node */
		if (tnode_full(tn, inode))
			resize(t, inode);
	}
}

496
static int inflate(struct trie *t, struct tnode *oldtnode)
497
{
498 499
	struct tnode *tn;
	unsigned long i;
500
	t_key m;
501

S
Stephen Hemminger 已提交
502
	pr_debug("In inflate\n");
503

504
	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
S
Stephen Hemminger 已提交
505
	if (!tn)
506
		return -ENOMEM;
507

508 509 510
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

511 512 513 514
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
515
	 */
516
	for (i = tnode_child_length(oldtnode), m = 1u << tn->pos; i;) {
517 518 519
		struct tnode *inode = tnode_get_child(oldtnode, --i);
		struct tnode *node0, *node1;
		unsigned long j, k;
520

521
		/* An empty child */
A
Alexander Duyck 已提交
522
		if (inode == NULL)
523 524 525
			continue;

		/* A leaf or an internal node with skipped bits */
A
Alexander Duyck 已提交
526
		if (!tnode_full(oldtnode, inode)) {
527
			put_child(tn, get_index(inode->key, tn), inode);
528 529 530
			continue;
		}

531 532 533
		/* drop the node in the old tnode free list */
		tnode_free_append(oldtnode, inode);

534 535
		/* An internal node with two children */
		if (inode->bits == 1) {
536 537
			put_child(tn, 2 * i + 1, tnode_get_child(inode, 1));
			put_child(tn, 2 * i, tnode_get_child(inode, 0));
O
Olof Johansson 已提交
538
			continue;
539 540
		}

O
Olof Johansson 已提交
541
		/* We will replace this node 'inode' with two new
542
		 * ones, 'node0' and 'node1', each with half of the
O
Olof Johansson 已提交
543 544 545 546 547
		 * original children. The two new nodes will have
		 * a position one bit further down the key and this
		 * means that the "significant" part of their keys
		 * (see the discussion near the top of this file)
		 * will differ by one bit, which will be "0" in
548
		 * node0's key and "1" in node1's key. Since we are
O
Olof Johansson 已提交
549 550
		 * moving the key position by one step, the bit that
		 * we are moving away from - the bit at position
551 552 553
		 * (tn->pos) - is the one that will differ between
		 * node0 and node1. So... we synthesize that bit in the
		 * two new keys.
O
Olof Johansson 已提交
554
		 */
555 556 557
		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
		if (!node1)
			goto nomem;
558
		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
559

560
		tnode_free_append(tn, node1);
561 562 563 564 565 566 567 568 569 570 571
		if (!node0)
			goto nomem;
		tnode_free_append(tn, node0);

		/* populate child pointers in new nodes */
		for (k = tnode_child_length(inode), j = k / 2; j;) {
			put_child(node1, --j, tnode_get_child(inode, --k));
			put_child(node0, j, tnode_get_child(inode, j));
			put_child(node1, --j, tnode_get_child(inode, --k));
			put_child(node0, j, tnode_get_child(inode, j));
		}
572

573 574 575
		/* link new nodes to parent */
		NODE_INIT_PARENT(node1, tn);
		NODE_INIT_PARENT(node0, tn);
576

577 578 579 580
		/* link parent to nodes */
		put_child(tn, 2 * i + 1, node1);
		put_child(tn, 2 * i, node0);
	}
581

582 583
	/* setup the parent pointers into and out of this node */
	replace(t, oldtnode, tn);
584

585
	return 0;
586
nomem:
587 588
	/* all pointers should be clean so we are done */
	tnode_free(tn);
589
	return -ENOMEM;
590 591
}

592
static int halve(struct trie *t, struct tnode *oldtnode)
593
{
594
	struct tnode *tn;
595
	unsigned long i;
596

S
Stephen Hemminger 已提交
597
	pr_debug("In halve\n");
598

599
	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
600
	if (!tn)
601
		return -ENOMEM;
602

603 604 605
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

606 607 608 609
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
610
	 */
611
	for (i = tnode_child_length(oldtnode); i;) {
612 613 614
		struct tnode *node1 = tnode_get_child(oldtnode, --i);
		struct tnode *node0 = tnode_get_child(oldtnode, --i);
		struct tnode *inode;
615

616 617 618 619 620
		/* At least one of the children is empty */
		if (!node1 || !node0) {
			put_child(tn, i / 2, node1 ? : node0);
			continue;
		}
621

622
		/* Two nonempty children */
623 624 625 626
		inode = tnode_new(node0->key, oldtnode->pos, 1);
		if (!inode) {
			tnode_free(tn);
			return -ENOMEM;
627
		}
628
		tnode_free_append(tn, inode);
629

630 631 632 633 634 635 636
		/* initialize pointers out of node */
		put_child(inode, 1, node1);
		put_child(inode, 0, node0);
		NODE_INIT_PARENT(inode, tn);

		/* link parent to node */
		put_child(tn, i / 2, inode);
637
	}
638

639 640
	/* setup the parent pointers into and out of this node */
	replace(t, oldtnode, tn);
641 642

	return 0;
643 644
}

645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
static void collapse(struct trie *t, struct tnode *oldtnode)
{
	struct tnode *n, *tp;
	unsigned long i;

	/* scan the tnode looking for that one child that might still exist */
	for (n = NULL, i = tnode_child_length(oldtnode); !n && i;)
		n = tnode_get_child(oldtnode, --i);

	/* compress one level */
	tp = node_parent(oldtnode);
	put_child_root(tp, t, oldtnode->key, n);
	node_set_parent(n, tp);

	/* drop dead node */
	node_free(oldtnode);
}

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
static unsigned char update_suffix(struct tnode *tn)
{
	unsigned char slen = tn->pos;
	unsigned long stride, i;

	/* search though the list of children looking for nodes that might
	 * have a suffix greater than the one we currently have.  This is
	 * why we start with a stride of 2 since a stride of 1 would
	 * represent the nodes with suffix length equal to tn->pos
	 */
	for (i = 0, stride = 0x2ul ; i < tnode_child_length(tn); i += stride) {
		struct tnode *n = tnode_get_child(tn, i);

		if (!n || (n->slen <= slen))
			continue;

		/* update stride and slen based on new value */
		stride <<= (n->slen - slen);
		slen = n->slen;
		i &= ~(stride - 1);

		/* if slen covers all but the last bit we can stop here
		 * there will be nothing longer than that since only node
		 * 0 and 1 << (bits - 1) could have that as their suffix
		 * length.
		 */
		if ((slen + 1) >= (tn->pos + tn->bits))
			break;
	}

	tn->slen = slen;

	return slen;
}

698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 * Telecommunications, page 6:
 * "A node is doubled if the ratio of non-empty children to all
 * children in the *doubled* node is at least 'high'."
 *
 * 'high' in this instance is the variable 'inflate_threshold'. It
 * is expressed as a percentage, so we multiply it with
 * tnode_child_length() and instead of multiplying by 2 (since the
 * child array will be doubled by inflate()) and multiplying
 * the left-hand side by 100 (to handle the percentage thing) we
 * multiply the left-hand side by 50.
 *
 * The left-hand side may look a bit weird: tnode_child_length(tn)
 * - tn->empty_children is of course the number of non-null children
 * in the current node. tn->full_children is the number of "full"
 * children, that is non-null tnodes with a skip value of 0.
 * All of those will be doubled in the resulting inflated tnode, so
 * we just count them one extra time here.
 *
 * A clearer way to write this would be:
 *
 * to_be_doubled = tn->full_children;
 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
 *     tn->full_children;
 *
 * new_child_length = tnode_child_length(tn) * 2;
 *
 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 *      new_child_length;
 * if (new_fill_factor >= inflate_threshold)
 *
 * ...and so on, tho it would mess up the while () loop.
 *
 * anyway,
 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 *      inflate_threshold
 *
 * avoid a division:
 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 *      inflate_threshold * new_child_length
 *
 * expand not_to_be_doubled and to_be_doubled, and shorten:
 * 100 * (tnode_child_length(tn) - tn->empty_children +
 *    tn->full_children) >= inflate_threshold * new_child_length
 *
 * expand new_child_length:
 * 100 * (tnode_child_length(tn) - tn->empty_children +
 *    tn->full_children) >=
 *      inflate_threshold * tnode_child_length(tn) * 2
 *
 * shorten again:
 * 50 * (tn->full_children + tnode_child_length(tn) -
 *    tn->empty_children) >= inflate_threshold *
 *    tnode_child_length(tn)
 *
 */
755
static bool should_inflate(const struct tnode *tp, const struct tnode *tn)
756 757 758 759 760
{
	unsigned long used = tnode_child_length(tn);
	unsigned long threshold = used;

	/* Keep root node larger */
761
	threshold *= tp ? inflate_threshold : inflate_threshold_root;
762
	used -= tn->empty_children;
763
	used += tn->full_children;
764

765 766 767
	/* if bits == KEYLENGTH then pos = 0, and will fail below */

	return (used > 1) && tn->pos && ((50 * used) >= threshold);
768 769
}

770
static bool should_halve(const struct tnode *tp, const struct tnode *tn)
771 772 773 774 775
{
	unsigned long used = tnode_child_length(tn);
	unsigned long threshold = used;

	/* Keep root node larger */
776
	threshold *= tp ? halve_threshold : halve_threshold_root;
777 778
	used -= tn->empty_children;

779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */

	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
}

static bool should_collapse(const struct tnode *tn)
{
	unsigned long used = tnode_child_length(tn);

	used -= tn->empty_children;

	/* account for bits == KEYLENGTH case */
	if ((tn->bits == KEYLENGTH) && tn->full_children)
		used -= KEY_MAX;

	/* One child or none, time to drop us from the trie */
	return used < 2;
796 797
}

798
#define MAX_WORK 10
799
static void resize(struct trie *t, struct tnode *tn)
800
{
801
	struct tnode *tp = node_parent(tn);
802
	struct tnode __rcu **cptr;
803
	int max_work = MAX_WORK;
804 805 806 807

	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
		 tn, inflate_threshold, halve_threshold);

808 809 810 811
	/* track the tnode via the pointer from the parent instead of
	 * doing it ourselves.  This way we can let RCU fully do its
	 * thing without us interfering
	 */
812
	cptr = tp ? &tp->tnode[get_index(tn->key, tp)] : &t->trie;
813 814
	BUG_ON(tn != rtnl_dereference(*cptr));

815 816
	/* Double as long as the resulting node has a number of
	 * nonempty nodes that are above the threshold.
817
	 */
818
	while (should_inflate(tp, tn) && max_work) {
819
		if (inflate(t, tn)) {
820 821 822 823 824
#ifdef CONFIG_IP_FIB_TRIE_STATS
			this_cpu_inc(t->stats->resize_node_skipped);
#endif
			break;
		}
825

826
		max_work--;
827
		tn = rtnl_dereference(*cptr);
828 829 830 831
	}

	/* Return if at least one inflate is run */
	if (max_work != MAX_WORK)
832
		return;
833

834
	/* Halve as long as the number of empty children in this
835 836
	 * node is above threshold.
	 */
837
	while (should_halve(tp, tn) && max_work) {
838
		if (halve(t, tn)) {
839 840 841 842 843 844
#ifdef CONFIG_IP_FIB_TRIE_STATS
			this_cpu_inc(t->stats->resize_node_skipped);
#endif
			break;
		}

845
		max_work--;
846 847
		tn = rtnl_dereference(*cptr);
	}
848 849

	/* Only one child remains */
850 851
	if (should_collapse(tn)) {
		collapse(t, tn);
852 853 854 855 856 857 858 859 860 861 862 863 864
		return;
	}

	/* Return if at least one deflate was run */
	if (max_work != MAX_WORK)
		return;

	/* push the suffix length to the parent node */
	if (tn->slen > tn->pos) {
		unsigned char slen = update_suffix(tn);

		if (tp && (slen > tp->slen))
			tp->slen = slen;
865 866 867
	}
}

868
static void leaf_pull_suffix(struct tnode *tp, struct tnode *l)
869 870 871 872 873 874 875 876
{
	while (tp && (tp->slen > tp->pos) && (tp->slen > l->slen)) {
		if (update_suffix(tp) > l->slen)
			break;
		tp = node_parent(tp);
	}
}

877
static void leaf_push_suffix(struct tnode *tn, struct tnode *l)
878
{
879 880 881 882 883 884 885 886 887
	/* if this is a new leaf then tn will be NULL and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
	while (tn && (tn->slen < l->slen)) {
		tn->slen = l->slen;
		tn = node_parent(tn);
	}
}

R
Robert Olsson 已提交
888
/* rcu_read_lock needs to be hold by caller from readside */
889
static struct tnode *fib_find_node(struct trie *t, struct tnode **tn, u32 key)
890
{
891
	struct tnode *pn = NULL, *n = rcu_dereference_rtnl(t->trie);
A
Alexander Duyck 已提交
892 893 894 895 896 897 898 899 900

	while (n) {
		unsigned long index = get_index(key, n);

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the bits in the cindex. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
901
		 *   if (index >= (1ul << bits))
A
Alexander Duyck 已提交
902
		 *     we have a mismatch in skip bits and failed
903 904
		 *   else
		 *     we know the value is cindex
905 906 907 908
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
A
Alexander Duyck 已提交
909
		 */
910 911 912 913
		if (index >= (1ul << n->bits)) {
			n = NULL;
			break;
		}
A
Alexander Duyck 已提交
914 915 916

		/* we have found a leaf. Prefixes have already been compared */
		if (IS_LEAF(n))
917 918
			break;

919
		pn = n;
920
		n = tnode_get_child_rcu(n, index);
A
Alexander Duyck 已提交
921
	}
O
Olof Johansson 已提交
922

923 924
	*tn = pn;

A
Alexander Duyck 已提交
925
	return n;
926 927
}

928 929 930
/* Return the first fib alias matching TOS with
 * priority less than or equal to PRIO.
 */
A
Alexander Duyck 已提交
931 932
static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
					u8 tos, u32 prio)
933 934 935 936 937 938
{
	struct fib_alias *fa;

	if (!fah)
		return NULL;

939
	hlist_for_each_entry(fa, fah, fa_list) {
A
Alexander Duyck 已提交
940 941 942 943
		if (fa->fa_slen < slen)
			continue;
		if (fa->fa_slen != slen)
			break;
944 945 946 947 948 949 950 951 952
		if (fa->fa_tos > tos)
			continue;
		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
			return fa;
	}

	return NULL;
}

953
static void trie_rebalance(struct trie *t, struct tnode *tn)
954
{
S
Stephen Hemminger 已提交
955
	struct tnode *tp;
956

957 958
	while (tn) {
		tp = node_parent(tn);
959
		resize(t, tn);
S
Stephen Hemminger 已提交
960
		tn = tp;
961 962 963
	}
}

R
Robert Olsson 已提交
964
/* only used from updater-side */
965 966
static int fib_insert_node(struct trie *t, struct tnode *tp,
			   struct fib_alias *new, t_key key)
967
{
968
	struct tnode *n, *l;
969

970
	l = leaf_new(key, new);
A
Alexander Duyck 已提交
971
	if (!l)
972 973 974 975 976 977 978
		return -ENOMEM;

	/* retrieve child from parent node */
	if (tp)
		n = tnode_get_child(tp, get_index(key, tp));
	else
		n = rcu_dereference_rtnl(t->trie);
979

980 981 982 983 984 985 986 987
	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
	 *
	 *  Add a new tnode here
	 *  first tnode need some special handling
	 *  leaves us in position for handling as case 3
	 */
	if (n) {
		struct tnode *tn;
988

989
		tn = tnode_new(key, __fls(key ^ n->key), 1);
990
		if (!tn) {
991
			node_free(l);
992
			return -ENOMEM;
O
Olof Johansson 已提交
993 994
		}

995 996 997
		/* initialize routes out of node */
		NODE_INIT_PARENT(tn, tp);
		put_child(tn, get_index(key, tn) ^ 1, n);
998

999 1000 1001
		/* start adding routes into the node */
		put_child_root(tp, t, key, tn);
		node_set_parent(n, tn);
1002

1003
		/* parent now has a NULL spot where the leaf can go */
1004
		tp = tn;
1005
	}
O
Olof Johansson 已提交
1006

1007
	/* Case 3: n is NULL, and will just insert a new leaf */
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
	NODE_INIT_PARENT(l, tp);
	put_child_root(tp, t, key, l);
	trie_rebalance(t, tp);

	return 0;
}

static int fib_insert_alias(struct trie *t, struct tnode *tp,
			    struct tnode *l, struct fib_alias *new,
			    struct fib_alias *fa, t_key key)
{
	if (!l)
		return fib_insert_node(t, tp, new, key);

	if (fa) {
		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1024
	} else {
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
		struct fib_alias *last;

		hlist_for_each_entry(last, &l->leaf, fa_list) {
			if (new->fa_slen < last->fa_slen)
				break;
			fa = last;
		}

		if (fa)
			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
		else
			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1037
	}
R
Robert Olsson 已提交
1038

1039 1040 1041 1042 1043 1044 1045
	/* if we added to the tail node then we need to update slen */
	if (l->slen < new->fa_slen) {
		l->slen = new->fa_slen;
		leaf_push_suffix(tp, l);
	}

	return 0;
1046 1047
}

1048
/* Caller must hold RTNL. */
1049
int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1050
{
1051
	struct trie *t = (struct trie *)tb->tb_data;
1052
	struct fib_alias *fa, *new_fa;
1053
	struct tnode *l, *tp;
1054
	struct fib_info *fi;
A
Alexander Duyck 已提交
1055 1056
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1057
	u8 tos = cfg->fc_tos;
1058
	u32 key;
1059 1060
	int err;

1061
	if (plen > KEYLENGTH)
1062 1063
		return -EINVAL;

1064
	key = ntohl(cfg->fc_dst);
1065

1066
	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1067

1068
	if ((plen < KEYLENGTH) && (key << plen))
1069 1070
		return -EINVAL;

1071 1072 1073
	fi = fib_create_info(cfg);
	if (IS_ERR(fi)) {
		err = PTR_ERR(fi);
1074
		goto err;
1075
	}
1076

1077
	l = fib_find_node(t, &tp, key);
A
Alexander Duyck 已提交
1078
	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority) : NULL;
1079 1080 1081 1082 1083 1084

	/* Now fa, if non-NULL, points to the first fib alias
	 * with the same keys [prefix,tos,priority], if such key already
	 * exists or to the node before which we will insert new one.
	 *
	 * If fa is NULL, we will need to allocate a new one and
1085 1086
	 * insert to the tail of the section matching the suffix length
	 * of the new alias.
1087 1088
	 */

1089 1090 1091
	if (fa && fa->fa_tos == tos &&
	    fa->fa_info->fib_priority == fi->fib_priority) {
		struct fib_alias *fa_first, *fa_match;
1092 1093

		err = -EEXIST;
1094
		if (cfg->fc_nlflags & NLM_F_EXCL)
1095 1096
			goto out;

1097 1098 1099 1100 1101 1102 1103
		/* We have 2 goals:
		 * 1. Find exact match for type, scope, fib_info to avoid
		 * duplicate routes
		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
		 */
		fa_match = NULL;
		fa_first = fa;
1104
		hlist_for_each_entry_from(fa, fa_list) {
A
Alexander Duyck 已提交
1105
			if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
				break;
			if (fa->fa_info->fib_priority != fi->fib_priority)
				break;
			if (fa->fa_type == cfg->fc_type &&
			    fa->fa_info == fi) {
				fa_match = fa;
				break;
			}
		}

1116
		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1117 1118 1119
			struct fib_info *fi_drop;
			u8 state;

1120 1121 1122 1123
			fa = fa_first;
			if (fa_match) {
				if (fa == fa_match)
					err = 0;
1124
				goto out;
1125
			}
R
Robert Olsson 已提交
1126
			err = -ENOBUFS;
1127
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
R
Robert Olsson 已提交
1128 1129
			if (new_fa == NULL)
				goto out;
1130 1131

			fi_drop = fa->fa_info;
R
Robert Olsson 已提交
1132 1133
			new_fa->fa_tos = fa->fa_tos;
			new_fa->fa_info = fi;
1134
			new_fa->fa_type = cfg->fc_type;
1135
			state = fa->fa_state;
1136
			new_fa->fa_state = state & ~FA_S_ACCESSED;
1137
			new_fa->fa_slen = fa->fa_slen;
1138

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
			err = netdev_switch_fib_ipv4_add(key, plen, fi,
							 new_fa->fa_tos,
							 cfg->fc_type,
							 tb->tb_id);
			if (err) {
				netdev_switch_fib_ipv4_abort(fi);
				kmem_cache_free(fn_alias_kmem, new_fa);
				goto out;
			}

1149
			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1150

R
Robert Olsson 已提交
1151
			alias_free_mem_rcu(fa);
1152 1153 1154

			fib_release_info(fi_drop);
			if (state & FA_S_ACCESSED)
1155
				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1156 1157
			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
				tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1158

O
Olof Johansson 已提交
1159
			goto succeeded;
1160 1161 1162 1163 1164
		}
		/* Error if we find a perfect match which
		 * uses the same scope, type, and nexthop
		 * information.
		 */
1165 1166
		if (fa_match)
			goto out;
1167

1168
		if (!(cfg->fc_nlflags & NLM_F_APPEND))
1169
			fa = fa_first;
1170 1171
	}
	err = -ENOENT;
1172
	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1173 1174 1175
		goto out;

	err = -ENOBUFS;
1176
	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1177 1178 1179 1180 1181
	if (new_fa == NULL)
		goto out;

	new_fa->fa_info = fi;
	new_fa->fa_tos = tos;
1182
	new_fa->fa_type = cfg->fc_type;
1183
	new_fa->fa_state = 0;
A
Alexander Duyck 已提交
1184
	new_fa->fa_slen = slen;
1185

1186 1187 1188 1189 1190 1191 1192 1193
	/* (Optionally) offload fib entry to switch hardware. */
	err = netdev_switch_fib_ipv4_add(key, plen, fi, tos,
					 cfg->fc_type, tb->tb_id);
	if (err) {
		netdev_switch_fib_ipv4_abort(fi);
		goto out_free_new_fa;
	}

1194
	/* Insert new entry to the list. */
1195 1196
	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
	if (err)
1197
		goto out_sw_fib_del;
1198

1199 1200 1201
	if (!plen)
		tb->tb_num_default++;

1202
	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1203
	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1204
		  &cfg->fc_nlinfo, 0);
1205 1206
succeeded:
	return 0;
1207

1208 1209
out_sw_fib_del:
	netdev_switch_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
1210 1211
out_free_new_fa:
	kmem_cache_free(fn_alias_kmem, new_fa);
1212 1213
out:
	fib_release_info(fi);
O
Olof Johansson 已提交
1214
err:
1215 1216 1217
	return err;
}

1218 1219 1220 1221 1222 1223 1224
static inline t_key prefix_mismatch(t_key key, struct tnode *n)
{
	t_key prefix = n->key;

	return (key ^ prefix) & (prefix | -prefix);
}

1225
/* should be called with rcu_read_lock */
1226
int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
E
Eric Dumazet 已提交
1227
		     struct fib_result *res, int fib_flags)
1228
{
1229
	struct trie *t = (struct trie *)tb->tb_data;
1230 1231 1232
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
1233 1234
	const t_key key = ntohl(flp->daddr);
	struct tnode *n, *pn;
A
Alexander Duyck 已提交
1235
	struct fib_alias *fa;
1236
	unsigned long index;
1237
	t_key cindex;
O
Olof Johansson 已提交
1238

R
Robert Olsson 已提交
1239
	n = rcu_dereference(t->trie);
1240
	if (!n)
1241
		return -EAGAIN;
1242 1243

#ifdef CONFIG_IP_FIB_TRIE_STATS
1244
	this_cpu_inc(stats->gets);
1245 1246
#endif

A
Alexander Duyck 已提交
1247
	pn = n;
1248 1249 1250 1251
	cindex = 0;

	/* Step 1: Travel to the longest prefix match in the trie */
	for (;;) {
1252
		index = get_index(key, n);
1253 1254 1255 1256 1257 1258

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the "bits" in the prefix. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
1259
		 *   if (index >= (1ul << bits))
1260
		 *     we have a mismatch in skip bits and failed
1261 1262
		 *   else
		 *     we know the value is cindex
1263 1264 1265 1266
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
1267
		 */
1268
		if (index >= (1ul << n->bits))
1269
			break;
1270

1271 1272
		/* we have found a leaf. Prefixes have already been compared */
		if (IS_LEAF(n))
1273
			goto found;
1274

1275 1276
		/* only record pn and cindex if we are going to be chopping
		 * bits later.  Otherwise we are just wasting cycles.
O
Olof Johansson 已提交
1277
		 */
1278
		if (n->slen > n->pos) {
1279 1280
			pn = n;
			cindex = index;
O
Olof Johansson 已提交
1281
		}
1282

1283
		n = tnode_get_child_rcu(n, index);
1284 1285 1286
		if (unlikely(!n))
			goto backtrace;
	}
1287

1288 1289 1290
	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
	for (;;) {
		/* record the pointer where our next node pointer is stored */
1291
		struct tnode __rcu **cptr = n->tnode;
1292

1293 1294 1295
		/* This test verifies that none of the bits that differ
		 * between the key and the prefix exist in the region of
		 * the lsb and higher in the prefix.
O
Olof Johansson 已提交
1296
		 */
1297
		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1298
			goto backtrace;
O
Olof Johansson 已提交
1299

1300 1301 1302
		/* exit out and process leaf */
		if (unlikely(IS_LEAF(n)))
			break;
O
Olof Johansson 已提交
1303

1304 1305 1306
		/* Don't bother recording parent info.  Since we are in
		 * prefix match mode we will have to come back to wherever
		 * we started this traversal anyway
O
Olof Johansson 已提交
1307 1308
		 */

1309
		while ((n = rcu_dereference(*cptr)) == NULL) {
1310 1311
backtrace:
#ifdef CONFIG_IP_FIB_TRIE_STATS
1312 1313
			if (!n)
				this_cpu_inc(stats->null_node_hit);
1314
#endif
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
			/* If we are at cindex 0 there are no more bits for
			 * us to strip at this level so we must ascend back
			 * up one level to see if there are any more bits to
			 * be stripped there.
			 */
			while (!cindex) {
				t_key pkey = pn->key;

				pn = node_parent_rcu(pn);
				if (unlikely(!pn))
1325
					return -EAGAIN;
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
#ifdef CONFIG_IP_FIB_TRIE_STATS
				this_cpu_inc(stats->backtrack);
#endif
				/* Get Child's index */
				cindex = get_index(pkey, pn);
			}

			/* strip the least significant bit from the cindex */
			cindex &= cindex - 1;

			/* grab pointer for next child node */
1337
			cptr = &pn->tnode[cindex];
1338
		}
1339
	}
1340

1341
found:
1342 1343 1344
	/* this line carries forward the xor from earlier in the function */
	index = key ^ n->key;

1345
	/* Step 3: Process the leaf, if that fails fall back to backtracing */
A
Alexander Duyck 已提交
1346 1347 1348
	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;
		int nhsel, err;
1349

1350
		if ((index >= (1ul << fa->fa_slen)) &&
A
Alexander Duyck 已提交
1351
		    ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
1352
			continue;
A
Alexander Duyck 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361
		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
			continue;
		if (fi->fib_dead)
			continue;
		if (fa->fa_info->fib_scope < flp->flowi4_scope)
			continue;
		fib_alias_accessed(fa);
		err = fib_props[fa->fa_type].error;
		if (unlikely(err < 0)) {
1362
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1363
			this_cpu_inc(stats->semantic_match_passed);
1364
#endif
A
Alexander Duyck 已提交
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
			return err;
		}
		if (fi->fib_flags & RTNH_F_DEAD)
			continue;
		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
			const struct fib_nh *nh = &fi->fib_nh[nhsel];

			if (nh->nh_flags & RTNH_F_DEAD)
				continue;
			if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1375
				continue;
A
Alexander Duyck 已提交
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386

			if (!(fib_flags & FIB_LOOKUP_NOREF))
				atomic_inc(&fi->fib_clntref);

			res->prefixlen = KEYLENGTH - fa->fa_slen;
			res->nh_sel = nhsel;
			res->type = fa->fa_type;
			res->scope = fi->fib_scope;
			res->fi = fi;
			res->table = tb;
			res->fa_head = &n->leaf;
1387
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1388
			this_cpu_inc(stats->semantic_match_passed);
1389
#endif
A
Alexander Duyck 已提交
1390
			return err;
1391
		}
1392
	}
1393
#ifdef CONFIG_IP_FIB_TRIE_STATS
1394
	this_cpu_inc(stats->semantic_match_miss);
1395 1396
#endif
	goto backtrace;
1397
}
1398
EXPORT_SYMBOL_GPL(fib_table_lookup);
1399

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
static void fib_remove_alias(struct trie *t, struct tnode *tp,
			     struct tnode *l, struct fib_alias *old)
{
	/* record the location of the previous list_info entry */
	struct hlist_node **pprev = old->fa_list.pprev;
	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);

	/* remove the fib_alias from the list */
	hlist_del_rcu(&old->fa_list);

	/* if we emptied the list this leaf will be freed and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
	if (hlist_empty(&l->leaf)) {
		put_child_root(tp, t, l->key, NULL);
		node_free(l);
		trie_rebalance(t, tp);
		return;
	}

	/* only access fa if it is pointing at the last valid hlist_node */
	if (*pprev)
		return;

	/* update the trie with the latest suffix length */
	l->slen = fa->fa_slen;
	leaf_pull_suffix(tp, l);
}

/* Caller must hold RTNL. */
1430
int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1431 1432 1433
{
	struct trie *t = (struct trie *) tb->tb_data;
	struct fib_alias *fa, *fa_to_delete;
1434
	struct tnode *l, *tp;
A
Alexander Duyck 已提交
1435 1436
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1437 1438
	u8 tos = cfg->fc_tos;
	u32 key;
O
Olof Johansson 已提交
1439

A
Alexander Duyck 已提交
1440
	if (plen > KEYLENGTH)
1441 1442
		return -EINVAL;

1443
	key = ntohl(cfg->fc_dst);
1444

1445
	if ((plen < KEYLENGTH) && (key << plen))
1446 1447
		return -EINVAL;

1448
	l = fib_find_node(t, &tp, key);
1449
	if (!l)
1450 1451
		return -ESRCH;

A
Alexander Duyck 已提交
1452
	fa = fib_find_alias(&l->leaf, slen, tos, 0);
1453 1454 1455
	if (!fa)
		return -ESRCH;

S
Stephen Hemminger 已提交
1456
	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1457 1458

	fa_to_delete = NULL;
1459
	hlist_for_each_entry_from(fa, fa_list) {
1460 1461
		struct fib_info *fi = fa->fa_info;

A
Alexander Duyck 已提交
1462
		if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
1463 1464
			break;

1465 1466
		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1467
		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1468 1469
		    (!cfg->fc_prefsrc ||
		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1470 1471 1472
		    (!cfg->fc_protocol ||
		     fi->fib_protocol == cfg->fc_protocol) &&
		    fib_nh_match(cfg, fi) == 0) {
1473 1474 1475 1476 1477
			fa_to_delete = fa;
			break;
		}
	}

O
Olof Johansson 已提交
1478 1479
	if (!fa_to_delete)
		return -ESRCH;
1480

1481 1482 1483
	netdev_switch_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
				   cfg->fc_type, tb->tb_id);

1484
	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1485
		  &cfg->fc_nlinfo, 0);
O
Olof Johansson 已提交
1486

1487 1488 1489
	if (!plen)
		tb->tb_num_default--;

1490
	fib_remove_alias(t, tp, l, fa_to_delete);
1491

1492
	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1493
		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1494

1495 1496
	fib_release_info(fa_to_delete->fa_info);
	alias_free_mem_rcu(fa_to_delete);
O
Olof Johansson 已提交
1497
	return 0;
1498 1499
}

1500 1501
/* Scan for the next leaf starting at the provided key value */
static struct tnode *leaf_walk_rcu(struct tnode **tn, t_key key)
1502
{
1503 1504
	struct tnode *pn, *n = *tn;
	unsigned long cindex;
1505

1506 1507 1508
	/* record parent node for backtracing */
	pn = n;
	cindex = n ? get_index(key, n) : 0;
1509

1510 1511 1512
	/* this loop is meant to try and find the key in the trie */
	while (n) {
		unsigned long idx = get_index(key, n);
1513

1514 1515 1516 1517 1518
		/* guarantee forward progress on the keys */
		if (IS_LEAF(n) && (n->key >= key))
			goto found;
		if (idx >= (1ul << n->bits))
			break;
1519

1520 1521 1522
		/* record parent and next child index */
		pn = n;
		cindex = idx;
1523

1524 1525 1526
		/* descend into the next child */
		n = tnode_get_child_rcu(pn, cindex++);
	}
1527

1528 1529 1530 1531 1532
	/* this loop will search for the next leaf with a greater key */
	while (pn) {
		/* if we exhausted the parent node we will need to climb */
		if (cindex >= (1ul << pn->bits)) {
			t_key pkey = pn->key;
1533

1534 1535 1536
			pn = node_parent_rcu(pn);
			if (!pn)
				break;
1537

1538 1539 1540
			cindex = get_index(pkey, pn) + 1;
			continue;
		}
1541

1542 1543 1544 1545
		/* grab the next available node */
		n = tnode_get_child_rcu(pn, cindex++);
		if (!n)
			continue;
1546

1547 1548 1549
		/* no need to compare keys since we bumped the index */
		if (IS_LEAF(n))
			goto found;
1550

1551 1552 1553 1554
		/* Rescan start scanning in new node */
		pn = n;
		cindex = 0;
	}
S
Stephen Hemminger 已提交
1555

1556 1557 1558 1559 1560 1561
	*tn = pn;
	return NULL; /* Root of trie */
found:
	/* if we are at the limit for keys just return NULL for the tnode */
	*tn = (n->key == KEY_MAX) ? NULL : pn;
	return n;
1562 1563
}

1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
/* Caller must hold RTNL */
void fib_table_flush_external(struct fib_table *tb)
{
	struct trie *t = (struct trie *)tb->tb_data;
	struct fib_alias *fa;
	struct tnode *n, *pn;
	unsigned long cindex;

	n = rcu_dereference(t->trie);
	if (!n)
		return;

	pn = NULL;
	cindex = 0;

	while (IS_TNODE(n)) {
		/* record pn and cindex for leaf walking */
		pn = n;
		cindex = 1ul << n->bits;
backtrace:
		/* walk trie in reverse order */
		do {
			while (!(cindex--)) {
				t_key pkey = pn->key;

				n = pn;
				pn = node_parent(n);

				/* resize completed node */
				resize(t, n);

				/* if we got the root we are done */
				if (!pn)
					return;

				cindex = get_index(pkey, pn);
			}

			/* grab the next available node */
			n = tnode_get_child(pn, cindex);
		} while (!n);
	}

	hlist_for_each_entry(fa, &n->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;

		if (fi && (fi->fib_flags & RTNH_F_EXTERNAL)) {
			netdev_switch_fib_ipv4_del(n->key,
						   KEYLENGTH - fa->fa_slen,
						   fi, fa->fa_tos,
						   fa->fa_type, tb->tb_id);
		}
	}

	/* if trie is leaf only loop is completed */
	if (pn)
		goto backtrace;
}

1623
/* Caller must hold RTNL. */
1624
int fib_table_flush(struct fib_table *tb)
1625
{
1626 1627 1628 1629 1630 1631
	struct trie *t = (struct trie *)tb->tb_data;
	struct hlist_node *tmp;
	struct fib_alias *fa;
	struct tnode *n, *pn;
	unsigned long cindex;
	unsigned char slen;
1632
	int found = 0;
1633

1634 1635 1636
	n = rcu_dereference(t->trie);
	if (!n)
		goto flush_complete;
1637

1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
	pn = NULL;
	cindex = 0;

	while (IS_TNODE(n)) {
		/* record pn and cindex for leaf walking */
		pn = n;
		cindex = 1ul << n->bits;
backtrace:
		/* walk trie in reverse order */
		do {
			while (!(cindex--)) {
				t_key pkey = pn->key;

				n = pn;
				pn = node_parent(n);

				/* resize completed node */
				resize(t, n);

				/* if we got the root we are done */
				if (!pn)
					goto flush_complete;

				cindex = get_index(pkey, pn);
			}

			/* grab the next available node */
			n = tnode_get_child(pn, cindex);
		} while (!n);
	}

	/* track slen in case any prefixes survive */
	slen = 0;

	hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;

		if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1676 1677 1678 1679
			netdev_switch_fib_ipv4_del(n->key,
						   KEYLENGTH - fa->fa_slen,
						   fi, fa->fa_tos,
						   fa->fa_type, tb->tb_id);
1680 1681 1682 1683 1684 1685
			hlist_del_rcu(&fa->fa_list);
			fib_release_info(fa->fa_info);
			alias_free_mem_rcu(fa);
			found++;

			continue;
1686 1687
		}

1688
		slen = fa->fa_slen;
1689 1690
	}

1691 1692 1693 1694 1695 1696 1697
	/* update leaf slen */
	n->slen = slen;

	if (hlist_empty(&n->leaf)) {
		put_child_root(pn, t, n->key, NULL);
		node_free(n);
	} else {
1698
		leaf_pull_suffix(pn, n);
1699
	}
1700

1701 1702 1703 1704
	/* if trie is leaf only loop is completed */
	if (pn)
		goto backtrace;
flush_complete:
S
Stephen Hemminger 已提交
1705
	pr_debug("trie_flush found=%d\n", found);
1706 1707 1708
	return found;
}

1709
static void __trie_free_rcu(struct rcu_head *head)
1710
{
1711
	struct fib_table *tb = container_of(head, struct fib_table, rcu);
1712 1713 1714 1715 1716
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie *t = (struct trie *)tb->tb_data;

	free_percpu(t->stats);
#endif /* CONFIG_IP_FIB_TRIE_STATS */
1717 1718 1719
	kfree(tb);
}

1720 1721 1722 1723 1724
void fib_free_table(struct fib_table *tb)
{
	call_rcu(&tb->rcu, __trie_free_rcu);
}

A
Alexander Duyck 已提交
1725 1726
static int fn_trie_dump_leaf(struct tnode *l, struct fib_table *tb,
			     struct sk_buff *skb, struct netlink_callback *cb)
1727
{
A
Alexander Duyck 已提交
1728
	__be32 xkey = htonl(l->key);
1729
	struct fib_alias *fa;
A
Alexander Duyck 已提交
1730
	int i, s_i;
1731

A
Alexander Duyck 已提交
1732
	s_i = cb->args[4];
1733 1734
	i = 0;

R
Robert Olsson 已提交
1735
	/* rcu_read_lock is hold by caller */
A
Alexander Duyck 已提交
1736
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1737 1738 1739 1740 1741
		if (i < s_i) {
			i++;
			continue;
		}

1742
		if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1743 1744 1745 1746
				  cb->nlh->nlmsg_seq,
				  RTM_NEWROUTE,
				  tb->tb_id,
				  fa->fa_type,
1747
				  xkey,
1748
				  KEYLENGTH - fa->fa_slen,
1749
				  fa->fa_tos,
1750
				  fa->fa_info, NLM_F_MULTI) < 0) {
1751
			cb->args[4] = i;
1752 1753
			return -1;
		}
1754
		i++;
1755
	}
1756

1757
	cb->args[4] = i;
1758 1759 1760
	return skb->len;
}

1761
/* rcu_read_lock needs to be hold by caller from readside */
1762 1763
int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
		   struct netlink_callback *cb)
1764
{
1765 1766
	struct trie *t = (struct trie *)tb->tb_data;
	struct tnode *l, *tp;
1767 1768 1769
	/* Dump starting at last key.
	 * Note: 0.0.0.0/0 (ie default) is first key.
	 */
1770 1771
	int count = cb->args[2];
	t_key key = cb->args[3];
1772

1773 1774 1775
	tp = rcu_dereference_rtnl(t->trie);

	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1776
		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1777 1778
			cb->args[3] = key;
			cb->args[2] = count;
1779
			return -1;
1780
		}
1781

1782
		++count;
1783 1784
		key = l->key + 1;

1785 1786
		memset(&cb->args[4], 0,
		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1787 1788 1789 1790

		/* stop loop if key wrapped back to 0 */
		if (key < l->key)
			break;
1791
	}
1792 1793 1794 1795

	cb->args[3] = key;
	cb->args[2] = count;

1796 1797 1798
	return skb->len;
}

1799
void __init fib_trie_init(void)
1800
{
1801 1802
	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
					  sizeof(struct fib_alias),
1803 1804 1805
					  0, SLAB_PANIC, NULL);

	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1806
					   LEAF_SIZE,
1807
					   0, SLAB_PANIC, NULL);
1808
}
1809

1810

1811
struct fib_table *fib_trie_table(u32 id)
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
{
	struct fib_table *tb;
	struct trie *t;

	tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
		     GFP_KERNEL);
	if (tb == NULL)
		return NULL;

	tb->tb_id = id;
1822
	tb->tb_default = -1;
1823
	tb->tb_num_default = 0;
1824 1825

	t = (struct trie *) tb->tb_data;
1826 1827 1828 1829 1830 1831 1832 1833
	RCU_INIT_POINTER(t->trie, NULL);
#ifdef CONFIG_IP_FIB_TRIE_STATS
	t->stats = alloc_percpu(struct trie_use_stats);
	if (!t->stats) {
		kfree(tb);
		tb = NULL;
	}
#endif
1834 1835 1836 1837

	return tb;
}

1838 1839 1840
#ifdef CONFIG_PROC_FS
/* Depth first Trie walk iterator */
struct fib_trie_iter {
1841
	struct seq_net_private p;
1842
	struct fib_table *tb;
1843
	struct tnode *tnode;
E
Eric Dumazet 已提交
1844 1845
	unsigned int index;
	unsigned int depth;
1846
};
1847

A
Alexander Duyck 已提交
1848
static struct tnode *fib_trie_get_next(struct fib_trie_iter *iter)
1849
{
1850
	unsigned long cindex = iter->index;
1851 1852
	struct tnode *tn = iter->tnode;
	struct tnode *p;
1853

1854 1855 1856 1857
	/* A single entry routing table */
	if (!tn)
		return NULL;

1858 1859 1860
	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
		 iter->tnode, iter->index, iter->depth);
rescan:
1861
	while (cindex < tnode_child_length(tn)) {
A
Alexander Duyck 已提交
1862
		struct tnode *n = tnode_get_child_rcu(tn, cindex);
1863

1864 1865 1866 1867 1868 1869
		if (n) {
			if (IS_LEAF(n)) {
				iter->tnode = tn;
				iter->index = cindex + 1;
			} else {
				/* push down one level */
A
Alexander Duyck 已提交
1870
				iter->tnode = n;
1871 1872 1873 1874 1875
				iter->index = 0;
				++iter->depth;
			}
			return n;
		}
1876

1877 1878
		++cindex;
	}
O
Olof Johansson 已提交
1879

1880
	/* Current node exhausted, pop back up */
A
Alexander Duyck 已提交
1881
	p = node_parent_rcu(tn);
1882
	if (p) {
1883
		cindex = get_index(tn->key, p) + 1;
1884 1885 1886
		tn = p;
		--iter->depth;
		goto rescan;
1887
	}
1888 1889 1890

	/* got root? */
	return NULL;
1891 1892
}

A
Alexander Duyck 已提交
1893
static struct tnode *fib_trie_get_first(struct fib_trie_iter *iter,
1894
				       struct trie *t)
1895
{
A
Alexander Duyck 已提交
1896
	struct tnode *n;
1897

S
Stephen Hemminger 已提交
1898
	if (!t)
1899 1900 1901
		return NULL;

	n = rcu_dereference(t->trie);
1902
	if (!n)
1903
		return NULL;
1904

1905
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
1906
		iter->tnode = n;
1907 1908 1909 1910 1911 1912
		iter->index = 0;
		iter->depth = 1;
	} else {
		iter->tnode = NULL;
		iter->index = 0;
		iter->depth = 0;
O
Olof Johansson 已提交
1913
	}
1914 1915

	return n;
1916
}
O
Olof Johansson 已提交
1917

1918 1919
static void trie_collect_stats(struct trie *t, struct trie_stat *s)
{
A
Alexander Duyck 已提交
1920
	struct tnode *n;
1921
	struct fib_trie_iter iter;
O
Olof Johansson 已提交
1922

1923
	memset(s, 0, sizeof(*s));
O
Olof Johansson 已提交
1924

1925
	rcu_read_lock();
1926
	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
1927
		if (IS_LEAF(n)) {
A
Alexander Duyck 已提交
1928
			struct fib_alias *fa;
1929

1930 1931 1932 1933
			s->leaves++;
			s->totdepth += iter.depth;
			if (iter.depth > s->maxdepth)
				s->maxdepth = iter.depth;
1934

A
Alexander Duyck 已提交
1935
			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
1936
				++s->prefixes;
1937 1938
		} else {
			s->tnodes++;
A
Alexander Duyck 已提交
1939 1940
			if (n->bits < MAX_STAT_DEPTH)
				s->nodesizes[n->bits]++;
1941
			s->nullpointers += n->empty_children;
1942 1943
		}
	}
R
Robert Olsson 已提交
1944
	rcu_read_unlock();
1945 1946
}

1947 1948 1949 1950
/*
 *	This outputs /proc/net/fib_triestats
 */
static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
1951
{
E
Eric Dumazet 已提交
1952
	unsigned int i, max, pointers, bytes, avdepth;
1953

1954 1955 1956 1957
	if (stat->leaves)
		avdepth = stat->totdepth*100 / stat->leaves;
	else
		avdepth = 0;
O
Olof Johansson 已提交
1958

1959 1960
	seq_printf(seq, "\tAver depth:     %u.%02d\n",
		   avdepth / 100, avdepth % 100);
1961
	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
O
Olof Johansson 已提交
1962

1963
	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
1964
	bytes = LEAF_SIZE * stat->leaves;
1965 1966

	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
A
Alexander Duyck 已提交
1967
	bytes += sizeof(struct fib_alias) * stat->prefixes;
1968

1969
	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
1970
	bytes += TNODE_SIZE(0) * stat->tnodes;
1971

R
Robert Olsson 已提交
1972 1973
	max = MAX_STAT_DEPTH;
	while (max > 0 && stat->nodesizes[max-1] == 0)
1974
		max--;
1975

1976
	pointers = 0;
1977
	for (i = 1; i < max; i++)
1978
		if (stat->nodesizes[i] != 0) {
1979
			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
1980 1981 1982
			pointers += (1<<i) * stat->nodesizes[i];
		}
	seq_putc(seq, '\n');
1983
	seq_printf(seq, "\tPointers: %u\n", pointers);
R
Robert Olsson 已提交
1984

A
Alexander Duyck 已提交
1985
	bytes += sizeof(struct tnode *) * pointers;
1986 1987
	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
1988
}
R
Robert Olsson 已提交
1989

1990
#ifdef CONFIG_IP_FIB_TRIE_STATS
1991
static void trie_show_usage(struct seq_file *seq,
1992
			    const struct trie_use_stats __percpu *stats)
1993
{
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
	struct trie_use_stats s = { 0 };
	int cpu;

	/* loop through all of the CPUs and gather up the stats */
	for_each_possible_cpu(cpu) {
		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);

		s.gets += pcpu->gets;
		s.backtrack += pcpu->backtrack;
		s.semantic_match_passed += pcpu->semantic_match_passed;
		s.semantic_match_miss += pcpu->semantic_match_miss;
		s.null_node_hit += pcpu->null_node_hit;
		s.resize_node_skipped += pcpu->resize_node_skipped;
	}

2009
	seq_printf(seq, "\nCounters:\n---------\n");
2010 2011
	seq_printf(seq, "gets = %u\n", s.gets);
	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2012
	seq_printf(seq, "semantic match passed = %u\n",
2013 2014 2015 2016
		   s.semantic_match_passed);
	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2017
}
2018 2019
#endif /*  CONFIG_IP_FIB_TRIE_STATS */

2020
static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2021
{
2022 2023 2024 2025 2026 2027
	if (tb->tb_id == RT_TABLE_LOCAL)
		seq_puts(seq, "Local:\n");
	else if (tb->tb_id == RT_TABLE_MAIN)
		seq_puts(seq, "Main:\n");
	else
		seq_printf(seq, "Id %d:\n", tb->tb_id);
2028
}
2029

2030

2031 2032
static int fib_triestat_seq_show(struct seq_file *seq, void *v)
{
2033
	struct net *net = (struct net *)seq->private;
2034
	unsigned int h;
2035

2036
	seq_printf(seq,
2037 2038
		   "Basic info: size of leaf:"
		   " %Zd bytes, size of tnode: %Zd bytes.\n",
2039
		   LEAF_SIZE, TNODE_SIZE(0));
2040

2041 2042 2043 2044
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;

2045
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2046 2047
			struct trie *t = (struct trie *) tb->tb_data;
			struct trie_stat stat;
2048

2049 2050 2051 2052 2053 2054 2055 2056
			if (!t)
				continue;

			fib_table_print(seq, tb);

			trie_collect_stats(t, &stat);
			trie_show_stats(seq, &stat);
#ifdef CONFIG_IP_FIB_TRIE_STATS
2057
			trie_show_usage(seq, t->stats);
2058 2059 2060
#endif
		}
	}
2061

2062
	return 0;
2063 2064
}

2065
static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2066
{
2067
	return single_open_net(inode, file, fib_triestat_seq_show);
2068 2069
}

2070
static const struct file_operations fib_triestat_fops = {
2071 2072 2073 2074
	.owner	= THIS_MODULE,
	.open	= fib_triestat_seq_open,
	.read	= seq_read,
	.llseek	= seq_lseek,
2075
	.release = single_release_net,
2076 2077
};

A
Alexander Duyck 已提交
2078
static struct tnode *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2079
{
2080 2081
	struct fib_trie_iter *iter = seq->private;
	struct net *net = seq_file_net(seq);
2082
	loff_t idx = 0;
2083
	unsigned int h;
2084

2085 2086 2087
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;
2088

2089
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
A
Alexander Duyck 已提交
2090
			struct tnode *n;
2091 2092 2093 2094 2095 2096 2097 2098 2099

			for (n = fib_trie_get_first(iter,
						    (struct trie *) tb->tb_data);
			     n; n = fib_trie_get_next(iter))
				if (pos == idx++) {
					iter->tb = tb;
					return n;
				}
		}
2100
	}
2101

2102 2103 2104
	return NULL;
}

2105
static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2106
	__acquires(RCU)
2107
{
2108
	rcu_read_lock();
2109
	return fib_trie_get_idx(seq, *pos);
2110 2111
}

2112
static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2113
{
2114
	struct fib_trie_iter *iter = seq->private;
2115
	struct net *net = seq_file_net(seq);
2116 2117 2118
	struct fib_table *tb = iter->tb;
	struct hlist_node *tb_node;
	unsigned int h;
A
Alexander Duyck 已提交
2119
	struct tnode *n;
2120

2121
	++*pos;
2122 2123 2124 2125
	/* next node in same table */
	n = fib_trie_get_next(iter);
	if (n)
		return n;
2126

2127 2128
	/* walk rest of this hash chain */
	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
E
Eric Dumazet 已提交
2129
	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2130 2131 2132 2133 2134
		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
		if (n)
			goto found;
	}
2135

2136 2137 2138
	/* new hash chain */
	while (++h < FIB_TABLE_HASHSZ) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2139
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2140 2141 2142 2143 2144
			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
			if (n)
				goto found;
		}
	}
2145
	return NULL;
2146 2147 2148 2149

found:
	iter->tb = tb;
	return n;
2150
}
2151

2152
static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2153
	__releases(RCU)
2154
{
2155 2156
	rcu_read_unlock();
}
O
Olof Johansson 已提交
2157

2158 2159
static void seq_indent(struct seq_file *seq, int n)
{
E
Eric Dumazet 已提交
2160 2161
	while (n-- > 0)
		seq_puts(seq, "   ");
2162
}
2163

2164
static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2165
{
S
Stephen Hemminger 已提交
2166
	switch (s) {
2167 2168 2169 2170 2171 2172
	case RT_SCOPE_UNIVERSE: return "universe";
	case RT_SCOPE_SITE:	return "site";
	case RT_SCOPE_LINK:	return "link";
	case RT_SCOPE_HOST:	return "host";
	case RT_SCOPE_NOWHERE:	return "nowhere";
	default:
2173
		snprintf(buf, len, "scope=%d", s);
2174 2175 2176
		return buf;
	}
}
2177

2178
static const char *const rtn_type_names[__RTN_MAX] = {
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
	[RTN_UNSPEC] = "UNSPEC",
	[RTN_UNICAST] = "UNICAST",
	[RTN_LOCAL] = "LOCAL",
	[RTN_BROADCAST] = "BROADCAST",
	[RTN_ANYCAST] = "ANYCAST",
	[RTN_MULTICAST] = "MULTICAST",
	[RTN_BLACKHOLE] = "BLACKHOLE",
	[RTN_UNREACHABLE] = "UNREACHABLE",
	[RTN_PROHIBIT] = "PROHIBIT",
	[RTN_THROW] = "THROW",
	[RTN_NAT] = "NAT",
	[RTN_XRESOLVE] = "XRESOLVE",
};
2192

E
Eric Dumazet 已提交
2193
static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2194 2195 2196
{
	if (t < __RTN_MAX && rtn_type_names[t])
		return rtn_type_names[t];
2197
	snprintf(buf, len, "type %u", t);
2198
	return buf;
2199 2200
}

2201 2202
/* Pretty print the trie */
static int fib_trie_seq_show(struct seq_file *seq, void *v)
2203
{
2204
	const struct fib_trie_iter *iter = seq->private;
A
Alexander Duyck 已提交
2205
	struct tnode *n = v;
2206

2207 2208
	if (!node_parent_rcu(n))
		fib_table_print(seq, iter->tb);
2209

2210
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
2211
		__be32 prf = htonl(n->key);
O
Olof Johansson 已提交
2212

2213 2214 2215 2216
		seq_indent(seq, iter->depth-1);
		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
			   n->full_children, n->empty_children);
2217
	} else {
A
Alexander Duyck 已提交
2218
		__be32 val = htonl(n->key);
A
Alexander Duyck 已提交
2219
		struct fib_alias *fa;
2220 2221

		seq_indent(seq, iter->depth);
2222
		seq_printf(seq, "  |-- %pI4\n", &val);
2223

A
Alexander Duyck 已提交
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
			char buf1[32], buf2[32];

			seq_indent(seq, iter->depth + 1);
			seq_printf(seq, "  /%zu %s %s",
				   KEYLENGTH - fa->fa_slen,
				   rtn_scope(buf1, sizeof(buf1),
					     fa->fa_info->fib_scope),
				   rtn_type(buf2, sizeof(buf2),
					    fa->fa_type));
			if (fa->fa_tos)
				seq_printf(seq, " tos=%d", fa->fa_tos);
			seq_putc(seq, '\n');
2237
		}
2238
	}
2239

2240 2241 2242
	return 0;
}

2243
static const struct seq_operations fib_trie_seq_ops = {
2244 2245 2246 2247
	.start  = fib_trie_seq_start,
	.next   = fib_trie_seq_next,
	.stop   = fib_trie_seq_stop,
	.show   = fib_trie_seq_show,
2248 2249
};

2250
static int fib_trie_seq_open(struct inode *inode, struct file *file)
2251
{
2252 2253
	return seq_open_net(inode, file, &fib_trie_seq_ops,
			    sizeof(struct fib_trie_iter));
2254 2255
}

2256
static const struct file_operations fib_trie_fops = {
2257 2258 2259 2260
	.owner  = THIS_MODULE,
	.open   = fib_trie_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2261
	.release = seq_release_net,
2262 2263
};

2264 2265
struct fib_route_iter {
	struct seq_net_private p;
2266 2267
	struct fib_table *main_tb;
	struct tnode *tnode;
2268 2269 2270 2271
	loff_t	pos;
	t_key	key;
};

A
Alexander Duyck 已提交
2272
static struct tnode *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2273
{
2274 2275 2276 2277
	struct fib_table *tb = iter->main_tb;
	struct tnode *l, **tp = &iter->tnode;
	struct trie *t;
	t_key key;
2278

2279 2280
	/* use cache location of next-to-find key */
	if (iter->pos > 0 && pos >= iter->pos) {
2281
		pos -= iter->pos;
2282 2283 2284 2285
		key = iter->key;
	} else {
		t = (struct trie *)tb->tb_data;
		iter->tnode = rcu_dereference_rtnl(t->trie);
2286
		iter->pos = 0;
2287
		key = 0;
2288 2289
	}

2290 2291
	while ((l = leaf_walk_rcu(tp, key)) != NULL) {
		key = l->key + 1;
2292
		iter->pos++;
2293 2294 2295 2296 2297 2298 2299 2300 2301

		if (pos-- <= 0)
			break;

		l = NULL;

		/* handle unlikely case of a key wrap */
		if (!key)
			break;
2302 2303 2304
	}

	if (l)
2305
		iter->key = key;	/* remember it */
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
	else
		iter->pos = 0;		/* forget it */

	return l;
}

static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
	__acquires(RCU)
{
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb;
2317
	struct trie *t;
2318 2319

	rcu_read_lock();
2320

2321
	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2322 2323 2324
	if (!tb)
		return NULL;

2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
	iter->main_tb = tb;

	if (*pos != 0)
		return fib_route_get_idx(iter, *pos);

	t = (struct trie *)tb->tb_data;
	iter->tnode = rcu_dereference_rtnl(t->trie);
	iter->pos = 0;
	iter->key = 0;

	return SEQ_START_TOKEN;
2336 2337 2338 2339 2340
}

static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
	struct fib_route_iter *iter = seq->private;
2341 2342
	struct tnode *l = NULL;
	t_key key = iter->key;
2343 2344

	++*pos;
2345 2346 2347 2348 2349 2350 2351

	/* only allow key of 0 for start of sequence */
	if ((v == SEQ_START_TOKEN) || key)
		l = leaf_walk_rcu(&iter->tnode, key);

	if (l) {
		iter->key = l->key + 1;
2352
		iter->pos++;
2353 2354
	} else {
		iter->pos = 0;
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
	}

	return l;
}

static void fib_route_seq_stop(struct seq_file *seq, void *v)
	__releases(RCU)
{
	rcu_read_unlock();
}

E
Eric Dumazet 已提交
2366
static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2367
{
E
Eric Dumazet 已提交
2368
	unsigned int flags = 0;
2369

E
Eric Dumazet 已提交
2370 2371
	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
		flags = RTF_REJECT;
2372 2373
	if (fi && fi->fib_nh->nh_gw)
		flags |= RTF_GATEWAY;
A
Al Viro 已提交
2374
	if (mask == htonl(0xFFFFFFFF))
2375 2376 2377
		flags |= RTF_HOST;
	flags |= RTF_UP;
	return flags;
2378 2379
}

2380 2381 2382
/*
 *	This outputs /proc/net/route.
 *	The format of the file is not supposed to be changed
E
Eric Dumazet 已提交
2383
 *	and needs to be same as fib_hash output to avoid breaking
2384 2385 2386
 *	legacy utilities
 */
static int fib_route_seq_show(struct seq_file *seq, void *v)
2387
{
A
Alexander Duyck 已提交
2388
	struct fib_alias *fa;
A
Alexander Duyck 已提交
2389
	struct tnode *l = v;
2390
	__be32 prefix;
2391

2392 2393 2394 2395 2396 2397
	if (v == SEQ_START_TOKEN) {
		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
			   "\tWindow\tIRTT");
		return 0;
	}
2398

2399 2400
	prefix = htonl(l->key);

A
Alexander Duyck 已提交
2401 2402 2403 2404
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
		const struct fib_info *fi = fa->fa_info;
		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2405

A
Alexander Duyck 已提交
2406 2407 2408
		if ((fa->fa_type == RTN_BROADCAST) ||
		    (fa->fa_type == RTN_MULTICAST))
			continue;
2409

A
Alexander Duyck 已提交
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
		seq_setwidth(seq, 127);

		if (fi)
			seq_printf(seq,
				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   fi->fib_dev ? fi->fib_dev->name : "*",
				   prefix,
				   fi->fib_nh->nh_gw, flags, 0, 0,
				   fi->fib_priority,
				   mask,
				   (fi->fib_advmss ?
				    fi->fib_advmss + 40 : 0),
				   fi->fib_window,
				   fi->fib_rtt >> 3);
		else
			seq_printf(seq,
				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   prefix, 0, flags, 0, 0, 0,
				   mask, 0, 0, 0);
2431

A
Alexander Duyck 已提交
2432
		seq_pad(seq, '\n');
2433 2434 2435 2436 2437
	}

	return 0;
}

2438
static const struct seq_operations fib_route_seq_ops = {
2439 2440 2441
	.start  = fib_route_seq_start,
	.next   = fib_route_seq_next,
	.stop   = fib_route_seq_stop,
2442
	.show   = fib_route_seq_show,
2443 2444
};

2445
static int fib_route_seq_open(struct inode *inode, struct file *file)
2446
{
2447
	return seq_open_net(inode, file, &fib_route_seq_ops,
2448
			    sizeof(struct fib_route_iter));
2449 2450
}

2451
static const struct file_operations fib_route_fops = {
2452 2453 2454 2455
	.owner  = THIS_MODULE,
	.open   = fib_route_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2456
	.release = seq_release_net,
2457 2458
};

2459
int __net_init fib_proc_init(struct net *net)
2460
{
2461
	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2462 2463
		goto out1;

2464 2465
	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
			 &fib_triestat_fops))
2466 2467
		goto out2;

2468
	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2469 2470
		goto out3;

2471
	return 0;
2472 2473

out3:
2474
	remove_proc_entry("fib_triestat", net->proc_net);
2475
out2:
2476
	remove_proc_entry("fib_trie", net->proc_net);
2477 2478
out1:
	return -ENOMEM;
2479 2480
}

2481
void __net_exit fib_proc_exit(struct net *net)
2482
{
2483 2484 2485
	remove_proc_entry("fib_trie", net->proc_net);
	remove_proc_entry("fib_triestat", net->proc_net);
	remove_proc_entry("route", net->proc_net);
2486 2487 2488
}

#endif /* CONFIG_PROC_FS */