fib_trie.c 60.9 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation; either version
 *   2 of the License, or (at your option) any later version.
 *
 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
 *     & Swedish University of Agricultural Sciences.
 *
10
 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11
 *     Agricultural Sciences.
12
 *
13 14
 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
 *
L
Lucas De Marchi 已提交
15
 * This work is based on the LPC-trie which is originally described in:
16
 *
17 18
 * An experimental study of compression methods for dynamic tries
 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19
 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 *
 *
 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
 *
 *
 * Code from fib_hash has been reused which includes the following header:
 *
 *
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 *		operating system.  INET is implemented using the  BSD Socket
 *		interface as the means of communication with the user level.
 *
 *		IPv4 FIB: lookup engine and maintenance routines.
 *
 *
 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
 *
 *		This program is free software; you can redistribute it and/or
 *		modify it under the terms of the GNU General Public License
 *		as published by the Free Software Foundation; either version
 *		2 of the License, or (at your option) any later version.
R
Robert Olsson 已提交
42 43 44 45 46 47 48
 *
 * Substantial contributions to this work comes from:
 *
 *		David S. Miller, <davem@davemloft.net>
 *		Stephen Hemminger <shemminger@osdl.org>
 *		Paul E. McKenney <paulmck@us.ibm.com>
 *		Patrick McHardy <kaber@trash.net>
49 50
 */

J
Jens Låås 已提交
51
#define VERSION "0.409"
52 53

#include <asm/uaccess.h>
J
Jiri Slaby 已提交
54
#include <linux/bitops.h>
55 56 57 58 59 60 61 62 63
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/inet.h>
S
Stephen Hemminger 已提交
64
#include <linux/inetdevice.h>
65 66 67
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/proc_fs.h>
R
Robert Olsson 已提交
68
#include <linux/rcupdate.h>
69 70 71 72
#include <linux/skbuff.h>
#include <linux/netlink.h>
#include <linux/init.h>
#include <linux/list.h>
73
#include <linux/slab.h>
74
#include <linux/export.h>
75
#include <net/net_namespace.h>
76 77 78 79 80 81
#include <net/ip.h>
#include <net/protocol.h>
#include <net/route.h>
#include <net/tcp.h>
#include <net/sock.h>
#include <net/ip_fib.h>
82
#include <net/switchdev.h>
83 84
#include "fib_lookup.h"

R
Robert Olsson 已提交
85
#define MAX_STAT_DEPTH 32
86

87 88
#define KEYLENGTH	(8*sizeof(t_key))
#define KEY_MAX		((t_key)~0)
89 90 91

typedef unsigned int t_key;

92 93
#define IS_TNODE(n) ((n)->bits)
#define IS_LEAF(n) (!(n)->bits)
R
Robert Olsson 已提交
94

95 96
struct key_vector {
	struct key_vector __rcu *parent;
97

98 99
	t_key key;
	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
100
	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
101
	unsigned char slen;
A
Alexander Duyck 已提交
102
	union {
103
		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
A
Alexander Duyck 已提交
104
		struct hlist_head leaf;
105
		/* This array is valid if (pos | bits) > 0 (TNODE) */
106
		struct key_vector __rcu *tnode[0];
A
Alexander Duyck 已提交
107
	};
108 109
};

110
struct tnode {
111
	struct rcu_head rcu;
112 113
	t_key empty_children;		/* KEYLENGTH bits needed */
	t_key full_children;		/* KEYLENGTH bits needed */
114
	struct key_vector kv[1];
115
#define tn_bits kv[0].bits
116 117 118
};

#define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
119 120
#define LEAF_SIZE	TNODE_SIZE(1)

121 122 123 124 125 126 127
#ifdef CONFIG_IP_FIB_TRIE_STATS
struct trie_use_stats {
	unsigned int gets;
	unsigned int backtrack;
	unsigned int semantic_match_passed;
	unsigned int semantic_match_miss;
	unsigned int null_node_hit;
128
	unsigned int resize_node_skipped;
129 130 131 132 133 134 135 136 137
};
#endif

struct trie_stat {
	unsigned int totdepth;
	unsigned int maxdepth;
	unsigned int tnodes;
	unsigned int leaves;
	unsigned int nullpointers;
138
	unsigned int prefixes;
R
Robert Olsson 已提交
139
	unsigned int nodesizes[MAX_STAT_DEPTH];
140
};
141 142

struct trie {
143
	struct key_vector __rcu *tnode[1];
144
#ifdef CONFIG_IP_FIB_TRIE_STATS
145
	struct trie_use_stats __percpu *stats;
146 147 148
#endif
};

149
static struct key_vector **resize(struct trie *t, struct key_vector *tn);
150 151 152 153 154 155 156 157
static size_t tnode_free_size;

/*
 * synchronize_rcu after call_rcu for that many pages; it should be especially
 * useful before resizing the root node with PREEMPT_NONE configs; the value was
 * obtained experimentally, aiming to avoid visible slowdown.
 */
static const int sync_pages = 128;
158

159
static struct kmem_cache *fn_alias_kmem __read_mostly;
160
static struct kmem_cache *trie_leaf_kmem __read_mostly;
161

162 163 164 165 166
static inline struct tnode *tn_info(struct key_vector *kv)
{
	return container_of(kv, struct tnode, kv[0]);
}

167 168
/* caller must hold RTNL */
#define node_parent(n) rtnl_dereference((n)->parent)
169
#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
E
Eric Dumazet 已提交
170

171 172
/* caller must hold RCU read lock or RTNL */
#define node_parent_rcu(n) rcu_dereference_rtnl((n)->parent)
173
#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
E
Eric Dumazet 已提交
174

175
/* wrapper for rcu_assign_pointer */
176
static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
177
{
A
Alexander Duyck 已提交
178 179
	if (n)
		rcu_assign_pointer(n->parent, tp);
S
Stephen Hemminger 已提交
180 181
}

182 183 184 185
#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER((n)->parent, p)

/* This provides us with the number of children in this node, in the case of a
 * leaf this will return 0 meaning none of the children are accessible.
186
 */
187
static inline unsigned long child_length(const struct key_vector *tn)
S
Stephen Hemminger 已提交
188
{
189
	return (1ul << tn->bits) & ~(1ul);
S
Stephen Hemminger 已提交
190
}
R
Robert Olsson 已提交
191

192 193 194 195 196 197 198
static inline unsigned long get_index(t_key key, struct key_vector *kv)
{
	unsigned long index = key ^ kv->key;

	return index >> kv->pos;
}

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
/* To understand this stuff, an understanding of keys and all their bits is
 * necessary. Every node in the trie has a key associated with it, but not
 * all of the bits in that key are significant.
 *
 * Consider a node 'n' and its parent 'tp'.
 *
 * If n is a leaf, every bit in its key is significant. Its presence is
 * necessitated by path compression, since during a tree traversal (when
 * searching for a leaf - unless we are doing an insertion) we will completely
 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 * a potentially successful search, that we have indeed been walking the
 * correct key path.
 *
 * Note that we can never "miss" the correct key in the tree if present by
 * following the wrong path. Path compression ensures that segments of the key
 * that are the same for all keys with a given prefix are skipped, but the
 * skipped part *is* identical for each node in the subtrie below the skipped
 * bit! trie_insert() in this implementation takes care of that.
 *
 * if n is an internal node - a 'tnode' here, the various parts of its key
 * have many different meanings.
 *
 * Example:
 * _________________________________________________________________
 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 * -----------------------------------------------------------------
 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 *
 * _________________________________________________________________
 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 * -----------------------------------------------------------------
 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 *
 * tp->pos = 22
 * tp->bits = 3
 * n->pos = 13
 * n->bits = 4
 *
 * First, let's just ignore the bits that come before the parent tp, that is
 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 * point we do not use them for anything.
 *
 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 * index into the parent's child array. That is, they will be used to find
 * 'n' among tp's children.
 *
 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
 * for the node n.
 *
 * All the bits we have seen so far are significant to the node n. The rest
 * of the bits are really not needed or indeed known in n->key.
 *
 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 * n's child array, and will of course be different for each child.
 *
 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
 * at this point.
 */
257

258 259
static const int halve_threshold = 25;
static const int inflate_threshold = 50;
260
static const int halve_threshold_root = 15;
J
Jens Låås 已提交
261
static const int inflate_threshold_root = 30;
R
Robert Olsson 已提交
262 263

static void __alias_free_mem(struct rcu_head *head)
264
{
R
Robert Olsson 已提交
265 266
	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
	kmem_cache_free(fn_alias_kmem, fa);
267 268
}

R
Robert Olsson 已提交
269
static inline void alias_free_mem_rcu(struct fib_alias *fa)
270
{
R
Robert Olsson 已提交
271 272
	call_rcu(&fa->rcu, __alias_free_mem);
}
O
Olof Johansson 已提交
273

274
#define TNODE_KMALLOC_MAX \
275
	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
276
#define TNODE_VMALLOC_MAX \
277
	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
O
Olof Johansson 已提交
278

279
static void __node_free_rcu(struct rcu_head *head)
280
{
281
	struct tnode *n = container_of(head, struct tnode, rcu);
282

283
	if (!n->tn_bits)
284
		kmem_cache_free(trie_leaf_kmem, n);
285
	else if (n->tn_bits <= TNODE_KMALLOC_MAX)
286 287 288
		kfree(n);
	else
		vfree(n);
289 290
}

291
#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
292

293
static struct tnode *tnode_alloc(int bits)
294
{
295 296 297 298 299 300 301 302 303
	size_t size;

	/* verify bits is within bounds */
	if (bits > TNODE_VMALLOC_MAX)
		return NULL;

	/* determine size and verify it is non-zero and didn't overflow */
	size = TNODE_SIZE(1ul << bits);

R
Robert Olsson 已提交
304
	if (size <= PAGE_SIZE)
305
		return kzalloc(size, GFP_KERNEL);
306
	else
307
		return vzalloc(size);
308
}
R
Robert Olsson 已提交
309

310
static inline void empty_child_inc(struct key_vector *n)
311
{
312
	++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
313 314
}

315
static inline void empty_child_dec(struct key_vector *n)
316
{
317
	tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
318 319
}

320
static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
R
Robert Olsson 已提交
321
{
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
	struct tnode *kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
	struct key_vector *l = kv->kv;

	if (!kv)
		return NULL;

	/* initialize key vector */
	l->key = key;
	l->pos = 0;
	l->bits = 0;
	l->slen = fa->fa_slen;

	/* link leaf to fib alias */
	INIT_HLIST_HEAD(&l->leaf);
	hlist_add_head(&fa->fa_list, &l->leaf);

R
Robert Olsson 已提交
338 339 340
	return l;
}

341
static struct key_vector *tnode_new(t_key key, int pos, int bits)
342
{
343
	struct tnode *tnode = tnode_alloc(bits);
344
	unsigned int shift = pos + bits;
345
	struct key_vector *tn = tnode->kv;
346 347 348

	/* verify bits and pos their msb bits clear and values are valid */
	BUG_ON(!bits || (shift > KEYLENGTH));
349

350
	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
351
		 sizeof(struct key_vector *) << bits);
352 353 354 355 356

	if (!tnode)
		return NULL;

	if (bits == KEYLENGTH)
357
		tnode->full_children = 1;
358
	else
359
		tnode->empty_children = 1ul << bits;
360 361 362 363 364 365

	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
	tn->pos = pos;
	tn->bits = bits;
	tn->slen = pos;

366 367 368
	return tn;
}

369
/* Check whether a tnode 'n' is "full", i.e. it is an internal node
370 371
 * and no bits are skipped. See discussion in dyntree paper p. 6
 */
372
static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
373
{
374
	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
375 376
}

377 378 379
/* Add a child at position i overwriting the old value.
 * Update the value of full_children and empty_children.
 */
380 381
static void put_child(struct key_vector *tn, unsigned long i,
		      struct key_vector *n)
382
{
383
	struct key_vector *chi = get_child(tn, i);
384
	int isfull, wasfull;
385

386
	BUG_ON(i >= child_length(tn));
S
Stephen Hemminger 已提交
387

388
	/* update emptyChildren, overflow into fullChildren */
389
	if (n == NULL && chi != NULL)
390 391 392
		empty_child_inc(tn);
	if (n != NULL && chi == NULL)
		empty_child_dec(tn);
393

394
	/* update fullChildren */
395
	wasfull = tnode_full(tn, chi);
396
	isfull = tnode_full(tn, n);
397

398
	if (wasfull && !isfull)
399
		tn_info(tn)->full_children--;
400
	else if (!wasfull && isfull)
401
		tn_info(tn)->full_children++;
O
Olof Johansson 已提交
402

403 404 405
	if (n && (tn->slen < n->slen))
		tn->slen = n->slen;

406
	rcu_assign_pointer(tn->tnode[i], n);
407 408
}

409
static void update_children(struct key_vector *tn)
410 411 412 413
{
	unsigned long i;

	/* update all of the child parent pointers */
414
	for (i = child_length(tn); i;) {
415
		struct key_vector *inode = get_child(tn, --i);
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430

		if (!inode)
			continue;

		/* Either update the children of a tnode that
		 * already belongs to us or update the child
		 * to point to ourselves.
		 */
		if (node_parent(inode) == tn)
			update_children(inode);
		else
			node_set_parent(inode, tn);
	}
}

431 432
static inline void put_child_root(struct key_vector *tp, struct trie *t,
				  t_key key, struct key_vector *n)
433 434 435 436
{
	if (tp)
		put_child(tp, get_index(key, tp), n);
	else
437
		rcu_assign_pointer(t->tnode[0], n);
438 439
}

440
static inline void tnode_free_init(struct key_vector *tn)
E
Eric Dumazet 已提交
441
{
442
	tn_info(tn)->rcu.next = NULL;
443 444
}

445 446
static inline void tnode_free_append(struct key_vector *tn,
				     struct key_vector *n)
447
{
448 449
	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
450
}
E
Eric Dumazet 已提交
451

452
static void tnode_free(struct key_vector *tn)
453
{
454
	struct callback_head *head = &tn_info(tn)->rcu;
455 456 457

	while (head) {
		head = head->next;
458
		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
459 460
		node_free(tn);

461
		tn = container_of(head, struct tnode, rcu)->kv;
462 463 464 465 466
	}

	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
		tnode_free_size = 0;
		synchronize_rcu();
E
Eric Dumazet 已提交
467 468 469
	}
}

470 471 472
static struct key_vector __rcu **replace(struct trie *t,
					 struct key_vector *oldtnode,
					 struct key_vector *tn)
473
{
474 475
	struct key_vector *tp = node_parent(oldtnode);
	struct key_vector **cptr;
476 477 478 479 480 481 482 483 484 485 486 487
	unsigned long i;

	/* setup the parent pointer out of and back into this node */
	NODE_INIT_PARENT(tn, tp);
	put_child_root(tp, t, tn->key, tn);

	/* update all of the child parent pointers */
	update_children(tn);

	/* all pointers should be clean so we are done */
	tnode_free(oldtnode);

488
	/* record the pointer that is pointing to this node */
489
	cptr = tp ? tp->tnode : t->tnode;
490

491
	/* resize children now that oldtnode is freed */
492
	for (i = child_length(tn); i;) {
493
		struct key_vector *inode = get_child(tn, --i);
494 495 496 497 498

		/* resize child node */
		if (tnode_full(tn, inode))
			resize(t, inode);
	}
499 500

	return cptr;
501 502
}

503 504
static struct key_vector __rcu **inflate(struct trie *t,
					 struct key_vector *oldtnode)
505
{
506
	struct key_vector *tn;
507
	unsigned long i;
508
	t_key m;
509

S
Stephen Hemminger 已提交
510
	pr_debug("In inflate\n");
511

512
	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
S
Stephen Hemminger 已提交
513
	if (!tn)
514
		goto notnode;
515

516 517 518
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

519 520 521 522
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
523
	 */
524
	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
525
		struct key_vector *inode = get_child(oldtnode, --i);
526
		struct key_vector *node0, *node1;
527
		unsigned long j, k;
528

529
		/* An empty child */
A
Alexander Duyck 已提交
530
		if (inode == NULL)
531 532 533
			continue;

		/* A leaf or an internal node with skipped bits */
A
Alexander Duyck 已提交
534
		if (!tnode_full(oldtnode, inode)) {
535
			put_child(tn, get_index(inode->key, tn), inode);
536 537 538
			continue;
		}

539 540 541
		/* drop the node in the old tnode free list */
		tnode_free_append(oldtnode, inode);

542 543
		/* An internal node with two children */
		if (inode->bits == 1) {
544 545
			put_child(tn, 2 * i + 1, get_child(inode, 1));
			put_child(tn, 2 * i, get_child(inode, 0));
O
Olof Johansson 已提交
546
			continue;
547 548
		}

O
Olof Johansson 已提交
549
		/* We will replace this node 'inode' with two new
550
		 * ones, 'node0' and 'node1', each with half of the
O
Olof Johansson 已提交
551 552 553 554 555
		 * original children. The two new nodes will have
		 * a position one bit further down the key and this
		 * means that the "significant" part of their keys
		 * (see the discussion near the top of this file)
		 * will differ by one bit, which will be "0" in
556
		 * node0's key and "1" in node1's key. Since we are
O
Olof Johansson 已提交
557 558
		 * moving the key position by one step, the bit that
		 * we are moving away from - the bit at position
559 560 561
		 * (tn->pos) - is the one that will differ between
		 * node0 and node1. So... we synthesize that bit in the
		 * two new keys.
O
Olof Johansson 已提交
562
		 */
563 564 565
		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
		if (!node1)
			goto nomem;
566
		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
567

568
		tnode_free_append(tn, node1);
569 570 571 572 573
		if (!node0)
			goto nomem;
		tnode_free_append(tn, node0);

		/* populate child pointers in new nodes */
574
		for (k = child_length(inode), j = k / 2; j;) {
575 576 577 578
			put_child(node1, --j, get_child(inode, --k));
			put_child(node0, j, get_child(inode, j));
			put_child(node1, --j, get_child(inode, --k));
			put_child(node0, j, get_child(inode, j));
579
		}
580

581 582 583
		/* link new nodes to parent */
		NODE_INIT_PARENT(node1, tn);
		NODE_INIT_PARENT(node0, tn);
584

585 586 587 588
		/* link parent to nodes */
		put_child(tn, 2 * i + 1, node1);
		put_child(tn, 2 * i, node0);
	}
589

590
	/* setup the parent pointers into and out of this node */
591
	return replace(t, oldtnode, tn);
592
nomem:
593 594
	/* all pointers should be clean so we are done */
	tnode_free(tn);
595 596
notnode:
	return NULL;
597 598
}

599 600
static struct key_vector __rcu **halve(struct trie *t,
				       struct key_vector *oldtnode)
601
{
602
	struct key_vector *tn;
603
	unsigned long i;
604

S
Stephen Hemminger 已提交
605
	pr_debug("In halve\n");
606

607
	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
608
	if (!tn)
609
		goto notnode;
610

611 612 613
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

614 615 616 617
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
618
	 */
619
	for (i = child_length(oldtnode); i;) {
620 621
		struct key_vector *node1 = get_child(oldtnode, --i);
		struct key_vector *node0 = get_child(oldtnode, --i);
622
		struct key_vector *inode;
623

624 625 626 627 628
		/* At least one of the children is empty */
		if (!node1 || !node0) {
			put_child(tn, i / 2, node1 ? : node0);
			continue;
		}
629

630
		/* Two nonempty children */
631
		inode = tnode_new(node0->key, oldtnode->pos, 1);
632 633
		if (!inode)
			goto nomem;
634
		tnode_free_append(tn, inode);
635

636 637 638 639 640 641 642
		/* initialize pointers out of node */
		put_child(inode, 1, node1);
		put_child(inode, 0, node0);
		NODE_INIT_PARENT(inode, tn);

		/* link parent to node */
		put_child(tn, i / 2, inode);
643
	}
644

645
	/* setup the parent pointers into and out of this node */
646 647 648 649 650 651
	return replace(t, oldtnode, tn);
nomem:
	/* all pointers should be clean so we are done */
	tnode_free(tn);
notnode:
	return NULL;
652 653
}

654
static void collapse(struct trie *t, struct key_vector *oldtnode)
655
{
656
	struct key_vector *n, *tp;
657 658 659
	unsigned long i;

	/* scan the tnode looking for that one child that might still exist */
660
	for (n = NULL, i = child_length(oldtnode); !n && i;)
661
		n = get_child(oldtnode, --i);
662 663 664 665 666 667 668 669 670 671

	/* compress one level */
	tp = node_parent(oldtnode);
	put_child_root(tp, t, oldtnode->key, n);
	node_set_parent(n, tp);

	/* drop dead node */
	node_free(oldtnode);
}

672
static unsigned char update_suffix(struct key_vector *tn)
673 674 675 676 677 678 679 680 681
{
	unsigned char slen = tn->pos;
	unsigned long stride, i;

	/* search though the list of children looking for nodes that might
	 * have a suffix greater than the one we currently have.  This is
	 * why we start with a stride of 2 since a stride of 1 would
	 * represent the nodes with suffix length equal to tn->pos
	 */
682
	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
683
		struct key_vector *n = get_child(tn, i);
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706

		if (!n || (n->slen <= slen))
			continue;

		/* update stride and slen based on new value */
		stride <<= (n->slen - slen);
		slen = n->slen;
		i &= ~(stride - 1);

		/* if slen covers all but the last bit we can stop here
		 * there will be nothing longer than that since only node
		 * 0 and 1 << (bits - 1) could have that as their suffix
		 * length.
		 */
		if ((slen + 1) >= (tn->pos + tn->bits))
			break;
	}

	tn->slen = slen;

	return slen;
}

707 708 709 710 711 712 713 714
/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 * Telecommunications, page 6:
 * "A node is doubled if the ratio of non-empty children to all
 * children in the *doubled* node is at least 'high'."
 *
 * 'high' in this instance is the variable 'inflate_threshold'. It
 * is expressed as a percentage, so we multiply it with
715
 * child_length() and instead of multiplying by 2 (since the
716 717 718 719
 * child array will be doubled by inflate()) and multiplying
 * the left-hand side by 100 (to handle the percentage thing) we
 * multiply the left-hand side by 50.
 *
720
 * The left-hand side may look a bit weird: child_length(tn)
721 722 723 724 725 726 727 728 729
 * - tn->empty_children is of course the number of non-null children
 * in the current node. tn->full_children is the number of "full"
 * children, that is non-null tnodes with a skip value of 0.
 * All of those will be doubled in the resulting inflated tnode, so
 * we just count them one extra time here.
 *
 * A clearer way to write this would be:
 *
 * to_be_doubled = tn->full_children;
730
 * not_to_be_doubled = child_length(tn) - tn->empty_children -
731 732
 *     tn->full_children;
 *
733
 * new_child_length = child_length(tn) * 2;
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
 *
 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 *      new_child_length;
 * if (new_fill_factor >= inflate_threshold)
 *
 * ...and so on, tho it would mess up the while () loop.
 *
 * anyway,
 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 *      inflate_threshold
 *
 * avoid a division:
 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 *      inflate_threshold * new_child_length
 *
 * expand not_to_be_doubled and to_be_doubled, and shorten:
750
 * 100 * (child_length(tn) - tn->empty_children +
751 752 753
 *    tn->full_children) >= inflate_threshold * new_child_length
 *
 * expand new_child_length:
754
 * 100 * (child_length(tn) - tn->empty_children +
755
 *    tn->full_children) >=
756
 *      inflate_threshold * child_length(tn) * 2
757 758
 *
 * shorten again:
759
 * 50 * (tn->full_children + child_length(tn) -
760
 *    tn->empty_children) >= inflate_threshold *
761
 *    child_length(tn)
762 763
 *
 */
764
static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
765
{
766
	unsigned long used = child_length(tn);
767 768 769
	unsigned long threshold = used;

	/* Keep root node larger */
770
	threshold *= tp ? inflate_threshold : inflate_threshold_root;
771 772
	used -= tn_info(tn)->empty_children;
	used += tn_info(tn)->full_children;
773

774 775 776
	/* if bits == KEYLENGTH then pos = 0, and will fail below */

	return (used > 1) && tn->pos && ((50 * used) >= threshold);
777 778
}

779
static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
780
{
781
	unsigned long used = child_length(tn);
782 783 784
	unsigned long threshold = used;

	/* Keep root node larger */
785
	threshold *= tp ? halve_threshold : halve_threshold_root;
786
	used -= tn_info(tn)->empty_children;
787

788 789 790 791 792
	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */

	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
}

793
static inline bool should_collapse(struct key_vector *tn)
794
{
795
	unsigned long used = child_length(tn);
796

797
	used -= tn_info(tn)->empty_children;
798 799

	/* account for bits == KEYLENGTH case */
800
	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
801 802 803 804
		used -= KEY_MAX;

	/* One child or none, time to drop us from the trie */
	return used < 2;
805 806
}

807
#define MAX_WORK 10
808 809
static struct key_vector __rcu **resize(struct trie *t,
					struct key_vector *tn)
810
{
811 812 813
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
814
	struct key_vector *tp = node_parent(tn);
815
	unsigned long cindex = tp ? get_index(tn->key, tp) : 0;
816
	struct key_vector __rcu **cptr = tp ? tp->tnode : t->tnode;
817
	int max_work = MAX_WORK;
818 819 820 821

	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
		 tn, inflate_threshold, halve_threshold);

822 823 824 825
	/* track the tnode via the pointer from the parent instead of
	 * doing it ourselves.  This way we can let RCU fully do its
	 * thing without us interfering
	 */
826
	BUG_ON(tn != rtnl_dereference(cptr[cindex]));
827

828 829
	/* Double as long as the resulting node has a number of
	 * nonempty nodes that are above the threshold.
830
	 */
831
	while (should_inflate(tp, tn) && max_work) {
832
		struct key_vector __rcu **tcptr = inflate(t, tn);
833 834

		if (!tcptr) {
835
#ifdef CONFIG_IP_FIB_TRIE_STATS
836
			this_cpu_inc(stats->resize_node_skipped);
837 838 839
#endif
			break;
		}
840

841
		max_work--;
842 843
		cptr = tcptr;
		tn = rtnl_dereference(cptr[cindex]);
844 845 846 847
	}

	/* Return if at least one inflate is run */
	if (max_work != MAX_WORK)
848
		return cptr;
849

850
	/* Halve as long as the number of empty children in this
851 852
	 * node is above threshold.
	 */
853
	while (should_halve(tp, tn) && max_work) {
854
		struct key_vector __rcu **tcptr = halve(t, tn);
855 856

		if (!tcptr) {
857
#ifdef CONFIG_IP_FIB_TRIE_STATS
858
			this_cpu_inc(stats->resize_node_skipped);
859 860 861 862
#endif
			break;
		}

863
		max_work--;
864 865
		cptr = tcptr;
		tn = rtnl_dereference(cptr[cindex]);
866
	}
867 868

	/* Only one child remains */
869 870
	if (should_collapse(tn)) {
		collapse(t, tn);
871
		return cptr;
872 873 874 875
	}

	/* Return if at least one deflate was run */
	if (max_work != MAX_WORK)
876
		return cptr;
877 878 879 880 881 882 883

	/* push the suffix length to the parent node */
	if (tn->slen > tn->pos) {
		unsigned char slen = update_suffix(tn);

		if (tp && (slen > tp->slen))
			tp->slen = slen;
884
	}
885 886

	return cptr;
887 888
}

889
static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
890 891 892 893 894 895 896 897
{
	while (tp && (tp->slen > tp->pos) && (tp->slen > l->slen)) {
		if (update_suffix(tp) > l->slen)
			break;
		tp = node_parent(tp);
	}
}

898
static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
899
{
900 901 902 903 904 905 906 907 908
	/* if this is a new leaf then tn will be NULL and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
	while (tn && (tn->slen < l->slen)) {
		tn->slen = l->slen;
		tn = node_parent(tn);
	}
}

R
Robert Olsson 已提交
909
/* rcu_read_lock needs to be hold by caller from readside */
910 911
static struct key_vector *fib_find_node(struct trie *t,
					struct key_vector **tp, u32 key)
912
{
913
	struct key_vector *pn = NULL, *n = rcu_dereference_rtnl(t->tnode[0]);
A
Alexander Duyck 已提交
914 915 916 917 918 919 920 921 922

	while (n) {
		unsigned long index = get_index(key, n);

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the bits in the cindex. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
923
		 *   if (index >= (1ul << bits))
A
Alexander Duyck 已提交
924
		 *     we have a mismatch in skip bits and failed
925 926
		 *   else
		 *     we know the value is cindex
927 928 929 930
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
A
Alexander Duyck 已提交
931
		 */
932 933 934 935
		if (index >= (1ul << n->bits)) {
			n = NULL;
			break;
		}
A
Alexander Duyck 已提交
936 937 938

		/* we have found a leaf. Prefixes have already been compared */
		if (IS_LEAF(n))
939 940
			break;

941
		pn = n;
942
		n = get_child_rcu(n, index);
A
Alexander Duyck 已提交
943
	}
O
Olof Johansson 已提交
944

945
	*tp = pn;
946

A
Alexander Duyck 已提交
947
	return n;
948 949
}

950 951 952
/* Return the first fib alias matching TOS with
 * priority less than or equal to PRIO.
 */
A
Alexander Duyck 已提交
953 954
static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
					u8 tos, u32 prio)
955 956 957 958 959 960
{
	struct fib_alias *fa;

	if (!fah)
		return NULL;

961
	hlist_for_each_entry(fa, fah, fa_list) {
A
Alexander Duyck 已提交
962 963 964 965
		if (fa->fa_slen < slen)
			continue;
		if (fa->fa_slen != slen)
			break;
966 967 968 969 970 971 972 973 974
		if (fa->fa_tos > tos)
			continue;
		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
			return fa;
	}

	return NULL;
}

975
static void trie_rebalance(struct trie *t, struct key_vector *tn)
976
{
977
	struct key_vector __rcu **cptr = t->tnode;
978

979
	while (tn) {
980
		struct key_vector *tp = node_parent(tn);
981 982 983 984

		cptr = resize(t, tn);
		if (!tp)
			break;
985
		tn = container_of(cptr, struct key_vector, tnode[0]);
986 987 988
	}
}

989
static int fib_insert_node(struct trie *t, struct key_vector *tp,
990
			   struct fib_alias *new, t_key key)
991
{
992
	struct key_vector *n, *l;
993

994
	l = leaf_new(key, new);
A
Alexander Duyck 已提交
995
	if (!l)
996
		goto noleaf;
997 998 999

	/* retrieve child from parent node */
	if (tp)
1000
		n = get_child(tp, get_index(key, tp));
1001
	else
1002
		n = rcu_dereference_rtnl(t->tnode[0]);
1003

1004 1005 1006 1007 1008 1009 1010
	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
	 *
	 *  Add a new tnode here
	 *  first tnode need some special handling
	 *  leaves us in position for handling as case 3
	 */
	if (n) {
1011
		struct key_vector *tn;
1012

1013
		tn = tnode_new(key, __fls(key ^ n->key), 1);
1014 1015
		if (!tn)
			goto notnode;
O
Olof Johansson 已提交
1016

1017 1018 1019
		/* initialize routes out of node */
		NODE_INIT_PARENT(tn, tp);
		put_child(tn, get_index(key, tn) ^ 1, n);
1020

1021 1022 1023
		/* start adding routes into the node */
		put_child_root(tp, t, key, tn);
		node_set_parent(n, tn);
1024

1025
		/* parent now has a NULL spot where the leaf can go */
1026
		tp = tn;
1027
	}
O
Olof Johansson 已提交
1028

1029
	/* Case 3: n is NULL, and will just insert a new leaf */
1030 1031 1032 1033 1034
	NODE_INIT_PARENT(l, tp);
	put_child_root(tp, t, key, l);
	trie_rebalance(t, tp);

	return 0;
1035 1036 1037 1038
notnode:
	node_free(l);
noleaf:
	return -ENOMEM;
1039 1040
}

1041 1042
static int fib_insert_alias(struct trie *t, struct key_vector *tp,
			    struct key_vector *l, struct fib_alias *new,
1043 1044 1045 1046 1047 1048 1049
			    struct fib_alias *fa, t_key key)
{
	if (!l)
		return fib_insert_node(t, tp, new, key);

	if (fa) {
		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1050
	} else {
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
		struct fib_alias *last;

		hlist_for_each_entry(last, &l->leaf, fa_list) {
			if (new->fa_slen < last->fa_slen)
				break;
			fa = last;
		}

		if (fa)
			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
		else
			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1063
	}
R
Robert Olsson 已提交
1064

1065 1066 1067 1068 1069 1070 1071
	/* if we added to the tail node then we need to update slen */
	if (l->slen < new->fa_slen) {
		l->slen = new->fa_slen;
		leaf_push_suffix(tp, l);
	}

	return 0;
1072 1073
}

1074
/* Caller must hold RTNL. */
1075
int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1076
{
1077
	struct trie *t = (struct trie *)tb->tb_data;
1078
	struct fib_alias *fa, *new_fa;
1079
	struct key_vector *l, *tp;
1080
	struct fib_info *fi;
A
Alexander Duyck 已提交
1081 1082
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1083
	u8 tos = cfg->fc_tos;
1084
	u32 key;
1085 1086
	int err;

1087
	if (plen > KEYLENGTH)
1088 1089
		return -EINVAL;

1090
	key = ntohl(cfg->fc_dst);
1091

1092
	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1093

1094
	if ((plen < KEYLENGTH) && (key << plen))
1095 1096
		return -EINVAL;

1097 1098 1099
	fi = fib_create_info(cfg);
	if (IS_ERR(fi)) {
		err = PTR_ERR(fi);
1100
		goto err;
1101
	}
1102

1103
	l = fib_find_node(t, &tp, key);
A
Alexander Duyck 已提交
1104
	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority) : NULL;
1105 1106 1107 1108 1109 1110

	/* Now fa, if non-NULL, points to the first fib alias
	 * with the same keys [prefix,tos,priority], if such key already
	 * exists or to the node before which we will insert new one.
	 *
	 * If fa is NULL, we will need to allocate a new one and
1111 1112
	 * insert to the tail of the section matching the suffix length
	 * of the new alias.
1113 1114
	 */

1115 1116 1117
	if (fa && fa->fa_tos == tos &&
	    fa->fa_info->fib_priority == fi->fib_priority) {
		struct fib_alias *fa_first, *fa_match;
1118 1119

		err = -EEXIST;
1120
		if (cfg->fc_nlflags & NLM_F_EXCL)
1121 1122
			goto out;

1123 1124 1125 1126 1127 1128 1129
		/* We have 2 goals:
		 * 1. Find exact match for type, scope, fib_info to avoid
		 * duplicate routes
		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
		 */
		fa_match = NULL;
		fa_first = fa;
1130
		hlist_for_each_entry_from(fa, fa_list) {
A
Alexander Duyck 已提交
1131
			if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
				break;
			if (fa->fa_info->fib_priority != fi->fib_priority)
				break;
			if (fa->fa_type == cfg->fc_type &&
			    fa->fa_info == fi) {
				fa_match = fa;
				break;
			}
		}

1142
		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1143 1144 1145
			struct fib_info *fi_drop;
			u8 state;

1146 1147 1148 1149
			fa = fa_first;
			if (fa_match) {
				if (fa == fa_match)
					err = 0;
1150
				goto out;
1151
			}
R
Robert Olsson 已提交
1152
			err = -ENOBUFS;
1153
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
R
Robert Olsson 已提交
1154 1155
			if (new_fa == NULL)
				goto out;
1156 1157

			fi_drop = fa->fa_info;
R
Robert Olsson 已提交
1158 1159
			new_fa->fa_tos = fa->fa_tos;
			new_fa->fa_info = fi;
1160
			new_fa->fa_type = cfg->fc_type;
1161
			state = fa->fa_state;
1162
			new_fa->fa_state = state & ~FA_S_ACCESSED;
1163
			new_fa->fa_slen = fa->fa_slen;
1164

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
			err = netdev_switch_fib_ipv4_add(key, plen, fi,
							 new_fa->fa_tos,
							 cfg->fc_type,
							 tb->tb_id);
			if (err) {
				netdev_switch_fib_ipv4_abort(fi);
				kmem_cache_free(fn_alias_kmem, new_fa);
				goto out;
			}

1175
			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1176

R
Robert Olsson 已提交
1177
			alias_free_mem_rcu(fa);
1178 1179 1180

			fib_release_info(fi_drop);
			if (state & FA_S_ACCESSED)
1181
				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1182 1183
			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
				tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1184

O
Olof Johansson 已提交
1185
			goto succeeded;
1186 1187 1188 1189 1190
		}
		/* Error if we find a perfect match which
		 * uses the same scope, type, and nexthop
		 * information.
		 */
1191 1192
		if (fa_match)
			goto out;
1193

1194
		if (!(cfg->fc_nlflags & NLM_F_APPEND))
1195
			fa = fa_first;
1196 1197
	}
	err = -ENOENT;
1198
	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1199 1200 1201
		goto out;

	err = -ENOBUFS;
1202
	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1203 1204 1205 1206 1207
	if (new_fa == NULL)
		goto out;

	new_fa->fa_info = fi;
	new_fa->fa_tos = tos;
1208
	new_fa->fa_type = cfg->fc_type;
1209
	new_fa->fa_state = 0;
A
Alexander Duyck 已提交
1210
	new_fa->fa_slen = slen;
1211

1212 1213 1214 1215 1216 1217 1218 1219
	/* (Optionally) offload fib entry to switch hardware. */
	err = netdev_switch_fib_ipv4_add(key, plen, fi, tos,
					 cfg->fc_type, tb->tb_id);
	if (err) {
		netdev_switch_fib_ipv4_abort(fi);
		goto out_free_new_fa;
	}

1220
	/* Insert new entry to the list. */
1221 1222
	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
	if (err)
1223
		goto out_sw_fib_del;
1224

1225 1226 1227
	if (!plen)
		tb->tb_num_default++;

1228
	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1229
	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1230
		  &cfg->fc_nlinfo, 0);
1231 1232
succeeded:
	return 0;
1233

1234 1235
out_sw_fib_del:
	netdev_switch_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
1236 1237
out_free_new_fa:
	kmem_cache_free(fn_alias_kmem, new_fa);
1238 1239
out:
	fib_release_info(fi);
O
Olof Johansson 已提交
1240
err:
1241 1242 1243
	return err;
}

1244
static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1245 1246 1247 1248 1249 1250
{
	t_key prefix = n->key;

	return (key ^ prefix) & (prefix | -prefix);
}

1251
/* should be called with rcu_read_lock */
1252
int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
E
Eric Dumazet 已提交
1253
		     struct fib_result *res, int fib_flags)
1254
{
1255
	struct trie *t = (struct trie *)tb->tb_data;
1256 1257 1258
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
1259
	const t_key key = ntohl(flp->daddr);
1260
	struct key_vector *n, *pn;
A
Alexander Duyck 已提交
1261
	struct fib_alias *fa;
1262
	unsigned long index;
1263
	t_key cindex;
O
Olof Johansson 已提交
1264

1265
	n = rcu_dereference(t->tnode[0]);
1266
	if (!n)
1267
		return -EAGAIN;
1268 1269

#ifdef CONFIG_IP_FIB_TRIE_STATS
1270
	this_cpu_inc(stats->gets);
1271 1272
#endif

A
Alexander Duyck 已提交
1273
	pn = n;
1274 1275 1276 1277
	cindex = 0;

	/* Step 1: Travel to the longest prefix match in the trie */
	for (;;) {
1278
		index = get_index(key, n);
1279 1280 1281 1282 1283 1284

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the "bits" in the prefix. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
1285
		 *   if (index >= (1ul << bits))
1286
		 *     we have a mismatch in skip bits and failed
1287 1288
		 *   else
		 *     we know the value is cindex
1289 1290 1291 1292
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
1293
		 */
1294
		if (index >= (1ul << n->bits))
1295
			break;
1296

1297 1298
		/* we have found a leaf. Prefixes have already been compared */
		if (IS_LEAF(n))
1299
			goto found;
1300

1301 1302
		/* only record pn and cindex if we are going to be chopping
		 * bits later.  Otherwise we are just wasting cycles.
O
Olof Johansson 已提交
1303
		 */
1304
		if (n->slen > n->pos) {
1305 1306
			pn = n;
			cindex = index;
O
Olof Johansson 已提交
1307
		}
1308

1309
		n = get_child_rcu(n, index);
1310 1311 1312
		if (unlikely(!n))
			goto backtrace;
	}
1313

1314 1315 1316
	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
	for (;;) {
		/* record the pointer where our next node pointer is stored */
1317
		struct key_vector __rcu **cptr = n->tnode;
1318

1319 1320 1321
		/* This test verifies that none of the bits that differ
		 * between the key and the prefix exist in the region of
		 * the lsb and higher in the prefix.
O
Olof Johansson 已提交
1322
		 */
1323
		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1324
			goto backtrace;
O
Olof Johansson 已提交
1325

1326 1327 1328
		/* exit out and process leaf */
		if (unlikely(IS_LEAF(n)))
			break;
O
Olof Johansson 已提交
1329

1330 1331 1332
		/* Don't bother recording parent info.  Since we are in
		 * prefix match mode we will have to come back to wherever
		 * we started this traversal anyway
O
Olof Johansson 已提交
1333 1334
		 */

1335
		while ((n = rcu_dereference(*cptr)) == NULL) {
1336 1337
backtrace:
#ifdef CONFIG_IP_FIB_TRIE_STATS
1338 1339
			if (!n)
				this_cpu_inc(stats->null_node_hit);
1340
#endif
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
			/* If we are at cindex 0 there are no more bits for
			 * us to strip at this level so we must ascend back
			 * up one level to see if there are any more bits to
			 * be stripped there.
			 */
			while (!cindex) {
				t_key pkey = pn->key;

				pn = node_parent_rcu(pn);
				if (unlikely(!pn))
1351
					return -EAGAIN;
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
#ifdef CONFIG_IP_FIB_TRIE_STATS
				this_cpu_inc(stats->backtrack);
#endif
				/* Get Child's index */
				cindex = get_index(pkey, pn);
			}

			/* strip the least significant bit from the cindex */
			cindex &= cindex - 1;

			/* grab pointer for next child node */
1363
			cptr = &pn->tnode[cindex];
1364
		}
1365
	}
1366

1367
found:
1368 1369 1370
	/* this line carries forward the xor from earlier in the function */
	index = key ^ n->key;

1371
	/* Step 3: Process the leaf, if that fails fall back to backtracing */
A
Alexander Duyck 已提交
1372 1373 1374
	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;
		int nhsel, err;
1375

1376
		if ((index >= (1ul << fa->fa_slen)) &&
A
Alexander Duyck 已提交
1377
		    ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
1378
			continue;
A
Alexander Duyck 已提交
1379 1380 1381 1382 1383 1384 1385 1386 1387
		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
			continue;
		if (fi->fib_dead)
			continue;
		if (fa->fa_info->fib_scope < flp->flowi4_scope)
			continue;
		fib_alias_accessed(fa);
		err = fib_props[fa->fa_type].error;
		if (unlikely(err < 0)) {
1388
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1389
			this_cpu_inc(stats->semantic_match_passed);
1390
#endif
A
Alexander Duyck 已提交
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
			return err;
		}
		if (fi->fib_flags & RTNH_F_DEAD)
			continue;
		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
			const struct fib_nh *nh = &fi->fib_nh[nhsel];

			if (nh->nh_flags & RTNH_F_DEAD)
				continue;
			if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1401
				continue;
A
Alexander Duyck 已提交
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412

			if (!(fib_flags & FIB_LOOKUP_NOREF))
				atomic_inc(&fi->fib_clntref);

			res->prefixlen = KEYLENGTH - fa->fa_slen;
			res->nh_sel = nhsel;
			res->type = fa->fa_type;
			res->scope = fi->fib_scope;
			res->fi = fi;
			res->table = tb;
			res->fa_head = &n->leaf;
1413
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1414
			this_cpu_inc(stats->semantic_match_passed);
1415
#endif
A
Alexander Duyck 已提交
1416
			return err;
1417
		}
1418
	}
1419
#ifdef CONFIG_IP_FIB_TRIE_STATS
1420
	this_cpu_inc(stats->semantic_match_miss);
1421 1422
#endif
	goto backtrace;
1423
}
1424
EXPORT_SYMBOL_GPL(fib_table_lookup);
1425

1426 1427
static void fib_remove_alias(struct trie *t, struct key_vector *tp,
			     struct key_vector *l, struct fib_alias *old)
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
{
	/* record the location of the previous list_info entry */
	struct hlist_node **pprev = old->fa_list.pprev;
	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);

	/* remove the fib_alias from the list */
	hlist_del_rcu(&old->fa_list);

	/* if we emptied the list this leaf will be freed and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
	if (hlist_empty(&l->leaf)) {
		put_child_root(tp, t, l->key, NULL);
		node_free(l);
		trie_rebalance(t, tp);
		return;
	}

	/* only access fa if it is pointing at the last valid hlist_node */
	if (*pprev)
		return;

	/* update the trie with the latest suffix length */
	l->slen = fa->fa_slen;
	leaf_pull_suffix(tp, l);
}

/* Caller must hold RTNL. */
1456
int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1457 1458 1459
{
	struct trie *t = (struct trie *) tb->tb_data;
	struct fib_alias *fa, *fa_to_delete;
1460
	struct key_vector *l, *tp;
A
Alexander Duyck 已提交
1461 1462
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1463 1464
	u8 tos = cfg->fc_tos;
	u32 key;
O
Olof Johansson 已提交
1465

A
Alexander Duyck 已提交
1466
	if (plen > KEYLENGTH)
1467 1468
		return -EINVAL;

1469
	key = ntohl(cfg->fc_dst);
1470

1471
	if ((plen < KEYLENGTH) && (key << plen))
1472 1473
		return -EINVAL;

1474
	l = fib_find_node(t, &tp, key);
1475
	if (!l)
1476 1477
		return -ESRCH;

A
Alexander Duyck 已提交
1478
	fa = fib_find_alias(&l->leaf, slen, tos, 0);
1479 1480 1481
	if (!fa)
		return -ESRCH;

S
Stephen Hemminger 已提交
1482
	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1483 1484

	fa_to_delete = NULL;
1485
	hlist_for_each_entry_from(fa, fa_list) {
1486 1487
		struct fib_info *fi = fa->fa_info;

A
Alexander Duyck 已提交
1488
		if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
1489 1490
			break;

1491 1492
		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1493
		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1494 1495
		    (!cfg->fc_prefsrc ||
		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1496 1497 1498
		    (!cfg->fc_protocol ||
		     fi->fib_protocol == cfg->fc_protocol) &&
		    fib_nh_match(cfg, fi) == 0) {
1499 1500 1501 1502 1503
			fa_to_delete = fa;
			break;
		}
	}

O
Olof Johansson 已提交
1504 1505
	if (!fa_to_delete)
		return -ESRCH;
1506

1507 1508 1509
	netdev_switch_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
				   cfg->fc_type, tb->tb_id);

1510
	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1511
		  &cfg->fc_nlinfo, 0);
O
Olof Johansson 已提交
1512

1513 1514 1515
	if (!plen)
		tb->tb_num_default--;

1516
	fib_remove_alias(t, tp, l, fa_to_delete);
1517

1518
	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1519
		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1520

1521 1522
	fib_release_info(fa_to_delete->fa_info);
	alias_free_mem_rcu(fa_to_delete);
O
Olof Johansson 已提交
1523
	return 0;
1524 1525
}

1526
/* Scan for the next leaf starting at the provided key value */
1527
static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1528
{
1529
	struct key_vector *pn, *n = *tn;
1530
	unsigned long cindex;
1531

1532 1533 1534
	/* record parent node for backtracing */
	pn = n;
	cindex = n ? get_index(key, n) : 0;
1535

1536 1537 1538
	/* this loop is meant to try and find the key in the trie */
	while (n) {
		unsigned long idx = get_index(key, n);
1539

1540 1541 1542 1543 1544
		/* guarantee forward progress on the keys */
		if (IS_LEAF(n) && (n->key >= key))
			goto found;
		if (idx >= (1ul << n->bits))
			break;
1545

1546 1547 1548
		/* record parent and next child index */
		pn = n;
		cindex = idx;
1549

1550
		/* descend into the next child */
1551
		n = get_child_rcu(pn, cindex++);
1552
	}
1553

1554 1555 1556 1557 1558
	/* this loop will search for the next leaf with a greater key */
	while (pn) {
		/* if we exhausted the parent node we will need to climb */
		if (cindex >= (1ul << pn->bits)) {
			t_key pkey = pn->key;
1559

1560 1561 1562
			pn = node_parent_rcu(pn);
			if (!pn)
				break;
1563

1564 1565 1566
			cindex = get_index(pkey, pn) + 1;
			continue;
		}
1567

1568
		/* grab the next available node */
1569
		n = get_child_rcu(pn, cindex++);
1570 1571
		if (!n)
			continue;
1572

1573 1574 1575
		/* no need to compare keys since we bumped the index */
		if (IS_LEAF(n))
			goto found;
1576

1577 1578 1579 1580
		/* Rescan start scanning in new node */
		pn = n;
		cindex = 0;
	}
S
Stephen Hemminger 已提交
1581

1582 1583 1584 1585 1586 1587
	*tn = pn;
	return NULL; /* Root of trie */
found:
	/* if we are at the limit for keys just return NULL for the tnode */
	*tn = (n->key == KEY_MAX) ? NULL : pn;
	return n;
1588 1589
}

1590 1591 1592 1593 1594
/* Caller must hold RTNL */
void fib_table_flush_external(struct fib_table *tb)
{
	struct trie *t = (struct trie *)tb->tb_data;
	struct fib_alias *fa;
1595
	struct key_vector *n, *pn;
1596 1597
	unsigned long cindex;

1598
	n = rcu_dereference(t->tnode[0]);
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
	if (!n)
		return;

	pn = NULL;
	cindex = 0;

	while (IS_TNODE(n)) {
		/* record pn and cindex for leaf walking */
		pn = n;
		cindex = 1ul << n->bits;
backtrace:
		/* walk trie in reverse order */
		do {
			while (!(cindex--)) {
				t_key pkey = pn->key;

				/* if we got the root we are done */
1616
				pn = node_parent(pn);
1617 1618 1619 1620 1621 1622 1623
				if (!pn)
					return;

				cindex = get_index(pkey, pn);
			}

			/* grab the next available node */
1624
			n = get_child(pn, cindex);
1625 1626 1627 1628 1629 1630
		} while (!n);
	}

	hlist_for_each_entry(fa, &n->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;

1631 1632 1633 1634 1635 1636 1637
		if (!fi || !(fi->fib_flags & RTNH_F_EXTERNAL))
			continue;

		netdev_switch_fib_ipv4_del(n->key,
					   KEYLENGTH - fa->fa_slen,
					   fi, fa->fa_tos,
					   fa->fa_type, tb->tb_id);
1638 1639 1640 1641 1642 1643 1644
	}

	/* if trie is leaf only loop is completed */
	if (pn)
		goto backtrace;
}

1645
/* Caller must hold RTNL. */
1646
int fib_table_flush(struct fib_table *tb)
1647
{
1648
	struct trie *t = (struct trie *)tb->tb_data;
1649
	struct key_vector *n, *pn;
1650 1651 1652 1653
	struct hlist_node *tmp;
	struct fib_alias *fa;
	unsigned long cindex;
	unsigned char slen;
1654
	int found = 0;
1655

1656
	n = rcu_dereference(t->tnode[0]);
1657 1658
	if (!n)
		goto flush_complete;
1659

1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
	pn = NULL;
	cindex = 0;

	while (IS_TNODE(n)) {
		/* record pn and cindex for leaf walking */
		pn = n;
		cindex = 1ul << n->bits;
backtrace:
		/* walk trie in reverse order */
		do {
			while (!(cindex--)) {
1671
				struct key_vector __rcu **cptr;
1672 1673 1674 1675 1676 1677
				t_key pkey = pn->key;

				n = pn;
				pn = node_parent(n);

				/* resize completed node */
1678
				cptr = resize(t, n);
1679 1680 1681 1682 1683

				/* if we got the root we are done */
				if (!pn)
					goto flush_complete;

1684 1685
				pn = container_of(cptr, struct key_vector,
						  tnode[0]);
1686 1687 1688 1689
				cindex = get_index(pkey, pn);
			}

			/* grab the next available node */
1690
			n = get_child(pn, cindex);
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
		} while (!n);
	}

	/* track slen in case any prefixes survive */
	slen = 0;

	hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;

		if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1701 1702 1703 1704
			netdev_switch_fib_ipv4_del(n->key,
						   KEYLENGTH - fa->fa_slen,
						   fi, fa->fa_tos,
						   fa->fa_type, tb->tb_id);
1705 1706 1707 1708 1709 1710
			hlist_del_rcu(&fa->fa_list);
			fib_release_info(fa->fa_info);
			alias_free_mem_rcu(fa);
			found++;

			continue;
1711 1712
		}

1713
		slen = fa->fa_slen;
1714 1715
	}

1716 1717 1718 1719 1720 1721 1722
	/* update leaf slen */
	n->slen = slen;

	if (hlist_empty(&n->leaf)) {
		put_child_root(pn, t, n->key, NULL);
		node_free(n);
	} else {
1723
		leaf_pull_suffix(pn, n);
1724
	}
1725

1726 1727 1728 1729
	/* if trie is leaf only loop is completed */
	if (pn)
		goto backtrace;
flush_complete:
S
Stephen Hemminger 已提交
1730
	pr_debug("trie_flush found=%d\n", found);
1731 1732 1733
	return found;
}

1734
static void __trie_free_rcu(struct rcu_head *head)
1735
{
1736
	struct fib_table *tb = container_of(head, struct fib_table, rcu);
1737 1738 1739 1740 1741
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie *t = (struct trie *)tb->tb_data;

	free_percpu(t->stats);
#endif /* CONFIG_IP_FIB_TRIE_STATS */
1742 1743 1744
	kfree(tb);
}

1745 1746 1747 1748 1749
void fib_free_table(struct fib_table *tb)
{
	call_rcu(&tb->rcu, __trie_free_rcu);
}

1750
static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
A
Alexander Duyck 已提交
1751
			     struct sk_buff *skb, struct netlink_callback *cb)
1752
{
A
Alexander Duyck 已提交
1753
	__be32 xkey = htonl(l->key);
1754
	struct fib_alias *fa;
A
Alexander Duyck 已提交
1755
	int i, s_i;
1756

A
Alexander Duyck 已提交
1757
	s_i = cb->args[4];
1758 1759
	i = 0;

R
Robert Olsson 已提交
1760
	/* rcu_read_lock is hold by caller */
A
Alexander Duyck 已提交
1761
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1762 1763 1764 1765 1766
		if (i < s_i) {
			i++;
			continue;
		}

1767
		if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1768 1769 1770 1771
				  cb->nlh->nlmsg_seq,
				  RTM_NEWROUTE,
				  tb->tb_id,
				  fa->fa_type,
1772
				  xkey,
1773
				  KEYLENGTH - fa->fa_slen,
1774
				  fa->fa_tos,
1775
				  fa->fa_info, NLM_F_MULTI) < 0) {
1776
			cb->args[4] = i;
1777 1778
			return -1;
		}
1779
		i++;
1780
	}
1781

1782
	cb->args[4] = i;
1783 1784 1785
	return skb->len;
}

1786
/* rcu_read_lock needs to be hold by caller from readside */
1787 1788
int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
		   struct netlink_callback *cb)
1789
{
1790
	struct trie *t = (struct trie *)tb->tb_data;
1791
	struct key_vector *l, *tp;
1792 1793 1794
	/* Dump starting at last key.
	 * Note: 0.0.0.0/0 (ie default) is first key.
	 */
1795 1796
	int count = cb->args[2];
	t_key key = cb->args[3];
1797

1798
	tp = rcu_dereference_rtnl(t->tnode[0]);
1799 1800

	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1801
		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1802 1803
			cb->args[3] = key;
			cb->args[2] = count;
1804
			return -1;
1805
		}
1806

1807
		++count;
1808 1809
		key = l->key + 1;

1810 1811
		memset(&cb->args[4], 0,
		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1812 1813 1814 1815

		/* stop loop if key wrapped back to 0 */
		if (key < l->key)
			break;
1816
	}
1817 1818 1819 1820

	cb->args[3] = key;
	cb->args[2] = count;

1821 1822 1823
	return skb->len;
}

1824
void __init fib_trie_init(void)
1825
{
1826 1827
	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
					  sizeof(struct fib_alias),
1828 1829 1830
					  0, SLAB_PANIC, NULL);

	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1831
					   LEAF_SIZE,
1832
					   0, SLAB_PANIC, NULL);
1833
}
1834

1835

1836
struct fib_table *fib_trie_table(u32 id)
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
{
	struct fib_table *tb;
	struct trie *t;

	tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
		     GFP_KERNEL);
	if (tb == NULL)
		return NULL;

	tb->tb_id = id;
1847
	tb->tb_default = -1;
1848
	tb->tb_num_default = 0;
1849 1850

	t = (struct trie *) tb->tb_data;
1851
	RCU_INIT_POINTER(t->tnode[0], NULL);
1852 1853 1854 1855 1856 1857 1858
#ifdef CONFIG_IP_FIB_TRIE_STATS
	t->stats = alloc_percpu(struct trie_use_stats);
	if (!t->stats) {
		kfree(tb);
		tb = NULL;
	}
#endif
1859 1860 1861 1862

	return tb;
}

1863 1864 1865
#ifdef CONFIG_PROC_FS
/* Depth first Trie walk iterator */
struct fib_trie_iter {
1866
	struct seq_net_private p;
1867
	struct fib_table *tb;
1868
	struct key_vector *tnode;
E
Eric Dumazet 已提交
1869 1870
	unsigned int index;
	unsigned int depth;
1871
};
1872

1873
static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
1874
{
1875
	unsigned long cindex = iter->index;
1876 1877
	struct key_vector *tn = iter->tnode;
	struct key_vector *p;
1878

1879 1880 1881 1882
	/* A single entry routing table */
	if (!tn)
		return NULL;

1883 1884 1885
	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
		 iter->tnode, iter->index, iter->depth);
rescan:
1886
	while (cindex < child_length(tn)) {
1887
		struct key_vector *n = get_child_rcu(tn, cindex);
1888

1889 1890 1891 1892 1893 1894
		if (n) {
			if (IS_LEAF(n)) {
				iter->tnode = tn;
				iter->index = cindex + 1;
			} else {
				/* push down one level */
A
Alexander Duyck 已提交
1895
				iter->tnode = n;
1896 1897 1898 1899 1900
				iter->index = 0;
				++iter->depth;
			}
			return n;
		}
1901

1902 1903
		++cindex;
	}
O
Olof Johansson 已提交
1904

1905
	/* Current node exhausted, pop back up */
A
Alexander Duyck 已提交
1906
	p = node_parent_rcu(tn);
1907
	if (p) {
1908
		cindex = get_index(tn->key, p) + 1;
1909 1910 1911
		tn = p;
		--iter->depth;
		goto rescan;
1912
	}
1913 1914 1915

	/* got root? */
	return NULL;
1916 1917
}

1918 1919
static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
					     struct trie *t)
1920
{
1921
	struct key_vector *n;
1922

S
Stephen Hemminger 已提交
1923
	if (!t)
1924 1925
		return NULL;

1926
	n = rcu_dereference(t->tnode[0]);
1927
	if (!n)
1928
		return NULL;
1929

1930
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
1931
		iter->tnode = n;
1932 1933 1934 1935 1936 1937
		iter->index = 0;
		iter->depth = 1;
	} else {
		iter->tnode = NULL;
		iter->index = 0;
		iter->depth = 0;
O
Olof Johansson 已提交
1938
	}
1939 1940

	return n;
1941
}
O
Olof Johansson 已提交
1942

1943 1944
static void trie_collect_stats(struct trie *t, struct trie_stat *s)
{
1945
	struct key_vector *n;
1946
	struct fib_trie_iter iter;
O
Olof Johansson 已提交
1947

1948
	memset(s, 0, sizeof(*s));
O
Olof Johansson 已提交
1949

1950
	rcu_read_lock();
1951
	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
1952
		if (IS_LEAF(n)) {
A
Alexander Duyck 已提交
1953
			struct fib_alias *fa;
1954

1955 1956 1957 1958
			s->leaves++;
			s->totdepth += iter.depth;
			if (iter.depth > s->maxdepth)
				s->maxdepth = iter.depth;
1959

A
Alexander Duyck 已提交
1960
			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
1961
				++s->prefixes;
1962 1963
		} else {
			s->tnodes++;
A
Alexander Duyck 已提交
1964 1965
			if (n->bits < MAX_STAT_DEPTH)
				s->nodesizes[n->bits]++;
1966
			s->nullpointers += tn_info(n)->empty_children;
1967 1968
		}
	}
R
Robert Olsson 已提交
1969
	rcu_read_unlock();
1970 1971
}

1972 1973 1974 1975
/*
 *	This outputs /proc/net/fib_triestats
 */
static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
1976
{
E
Eric Dumazet 已提交
1977
	unsigned int i, max, pointers, bytes, avdepth;
1978

1979 1980 1981 1982
	if (stat->leaves)
		avdepth = stat->totdepth*100 / stat->leaves;
	else
		avdepth = 0;
O
Olof Johansson 已提交
1983

1984 1985
	seq_printf(seq, "\tAver depth:     %u.%02d\n",
		   avdepth / 100, avdepth % 100);
1986
	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
O
Olof Johansson 已提交
1987

1988
	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
1989
	bytes = LEAF_SIZE * stat->leaves;
1990 1991

	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
A
Alexander Duyck 已提交
1992
	bytes += sizeof(struct fib_alias) * stat->prefixes;
1993

1994
	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
1995
	bytes += TNODE_SIZE(0) * stat->tnodes;
1996

R
Robert Olsson 已提交
1997 1998
	max = MAX_STAT_DEPTH;
	while (max > 0 && stat->nodesizes[max-1] == 0)
1999
		max--;
2000

2001
	pointers = 0;
2002
	for (i = 1; i < max; i++)
2003
		if (stat->nodesizes[i] != 0) {
2004
			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2005 2006 2007
			pointers += (1<<i) * stat->nodesizes[i];
		}
	seq_putc(seq, '\n');
2008
	seq_printf(seq, "\tPointers: %u\n", pointers);
R
Robert Olsson 已提交
2009

2010
	bytes += sizeof(struct key_vector *) * pointers;
2011 2012
	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2013
}
R
Robert Olsson 已提交
2014

2015
#ifdef CONFIG_IP_FIB_TRIE_STATS
2016
static void trie_show_usage(struct seq_file *seq,
2017
			    const struct trie_use_stats __percpu *stats)
2018
{
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
	struct trie_use_stats s = { 0 };
	int cpu;

	/* loop through all of the CPUs and gather up the stats */
	for_each_possible_cpu(cpu) {
		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);

		s.gets += pcpu->gets;
		s.backtrack += pcpu->backtrack;
		s.semantic_match_passed += pcpu->semantic_match_passed;
		s.semantic_match_miss += pcpu->semantic_match_miss;
		s.null_node_hit += pcpu->null_node_hit;
		s.resize_node_skipped += pcpu->resize_node_skipped;
	}

2034
	seq_printf(seq, "\nCounters:\n---------\n");
2035 2036
	seq_printf(seq, "gets = %u\n", s.gets);
	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2037
	seq_printf(seq, "semantic match passed = %u\n",
2038 2039 2040 2041
		   s.semantic_match_passed);
	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2042
}
2043 2044
#endif /*  CONFIG_IP_FIB_TRIE_STATS */

2045
static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2046
{
2047 2048 2049 2050 2051 2052
	if (tb->tb_id == RT_TABLE_LOCAL)
		seq_puts(seq, "Local:\n");
	else if (tb->tb_id == RT_TABLE_MAIN)
		seq_puts(seq, "Main:\n");
	else
		seq_printf(seq, "Id %d:\n", tb->tb_id);
2053
}
2054

2055

2056 2057
static int fib_triestat_seq_show(struct seq_file *seq, void *v)
{
2058
	struct net *net = (struct net *)seq->private;
2059
	unsigned int h;
2060

2061
	seq_printf(seq,
2062 2063
		   "Basic info: size of leaf:"
		   " %Zd bytes, size of tnode: %Zd bytes.\n",
2064
		   LEAF_SIZE, TNODE_SIZE(0));
2065

2066 2067 2068 2069
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;

2070
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2071 2072
			struct trie *t = (struct trie *) tb->tb_data;
			struct trie_stat stat;
2073

2074 2075 2076 2077 2078 2079 2080 2081
			if (!t)
				continue;

			fib_table_print(seq, tb);

			trie_collect_stats(t, &stat);
			trie_show_stats(seq, &stat);
#ifdef CONFIG_IP_FIB_TRIE_STATS
2082
			trie_show_usage(seq, t->stats);
2083 2084 2085
#endif
		}
	}
2086

2087
	return 0;
2088 2089
}

2090
static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2091
{
2092
	return single_open_net(inode, file, fib_triestat_seq_show);
2093 2094
}

2095
static const struct file_operations fib_triestat_fops = {
2096 2097 2098 2099
	.owner	= THIS_MODULE,
	.open	= fib_triestat_seq_open,
	.read	= seq_read,
	.llseek	= seq_lseek,
2100
	.release = single_release_net,
2101 2102
};

2103
static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2104
{
2105 2106
	struct fib_trie_iter *iter = seq->private;
	struct net *net = seq_file_net(seq);
2107
	loff_t idx = 0;
2108
	unsigned int h;
2109

2110 2111 2112
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;
2113

2114
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2115
			struct key_vector *n;
2116 2117 2118 2119 2120 2121 2122 2123 2124

			for (n = fib_trie_get_first(iter,
						    (struct trie *) tb->tb_data);
			     n; n = fib_trie_get_next(iter))
				if (pos == idx++) {
					iter->tb = tb;
					return n;
				}
		}
2125
	}
2126

2127 2128 2129
	return NULL;
}

2130
static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2131
	__acquires(RCU)
2132
{
2133
	rcu_read_lock();
2134
	return fib_trie_get_idx(seq, *pos);
2135 2136
}

2137
static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2138
{
2139
	struct fib_trie_iter *iter = seq->private;
2140
	struct net *net = seq_file_net(seq);
2141 2142 2143
	struct fib_table *tb = iter->tb;
	struct hlist_node *tb_node;
	unsigned int h;
2144
	struct key_vector *n;
2145

2146
	++*pos;
2147 2148 2149 2150
	/* next node in same table */
	n = fib_trie_get_next(iter);
	if (n)
		return n;
2151

2152 2153
	/* walk rest of this hash chain */
	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
E
Eric Dumazet 已提交
2154
	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2155 2156 2157 2158 2159
		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
		if (n)
			goto found;
	}
2160

2161 2162 2163
	/* new hash chain */
	while (++h < FIB_TABLE_HASHSZ) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2164
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2165 2166 2167 2168 2169
			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
			if (n)
				goto found;
		}
	}
2170
	return NULL;
2171 2172 2173 2174

found:
	iter->tb = tb;
	return n;
2175
}
2176

2177
static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2178
	__releases(RCU)
2179
{
2180 2181
	rcu_read_unlock();
}
O
Olof Johansson 已提交
2182

2183 2184
static void seq_indent(struct seq_file *seq, int n)
{
E
Eric Dumazet 已提交
2185 2186
	while (n-- > 0)
		seq_puts(seq, "   ");
2187
}
2188

2189
static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2190
{
S
Stephen Hemminger 已提交
2191
	switch (s) {
2192 2193 2194 2195 2196 2197
	case RT_SCOPE_UNIVERSE: return "universe";
	case RT_SCOPE_SITE:	return "site";
	case RT_SCOPE_LINK:	return "link";
	case RT_SCOPE_HOST:	return "host";
	case RT_SCOPE_NOWHERE:	return "nowhere";
	default:
2198
		snprintf(buf, len, "scope=%d", s);
2199 2200 2201
		return buf;
	}
}
2202

2203
static const char *const rtn_type_names[__RTN_MAX] = {
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
	[RTN_UNSPEC] = "UNSPEC",
	[RTN_UNICAST] = "UNICAST",
	[RTN_LOCAL] = "LOCAL",
	[RTN_BROADCAST] = "BROADCAST",
	[RTN_ANYCAST] = "ANYCAST",
	[RTN_MULTICAST] = "MULTICAST",
	[RTN_BLACKHOLE] = "BLACKHOLE",
	[RTN_UNREACHABLE] = "UNREACHABLE",
	[RTN_PROHIBIT] = "PROHIBIT",
	[RTN_THROW] = "THROW",
	[RTN_NAT] = "NAT",
	[RTN_XRESOLVE] = "XRESOLVE",
};
2217

E
Eric Dumazet 已提交
2218
static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2219 2220 2221
{
	if (t < __RTN_MAX && rtn_type_names[t])
		return rtn_type_names[t];
2222
	snprintf(buf, len, "type %u", t);
2223
	return buf;
2224 2225
}

2226 2227
/* Pretty print the trie */
static int fib_trie_seq_show(struct seq_file *seq, void *v)
2228
{
2229
	const struct fib_trie_iter *iter = seq->private;
2230
	struct key_vector *n = v;
2231

2232 2233
	if (!node_parent_rcu(n))
		fib_table_print(seq, iter->tb);
2234

2235
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
2236
		__be32 prf = htonl(n->key);
O
Olof Johansson 已提交
2237

2238 2239 2240
		seq_indent(seq, iter->depth-1);
		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2241 2242
			   tn_info(n)->full_children,
			   tn_info(n)->empty_children);
2243
	} else {
A
Alexander Duyck 已提交
2244
		__be32 val = htonl(n->key);
A
Alexander Duyck 已提交
2245
		struct fib_alias *fa;
2246 2247

		seq_indent(seq, iter->depth);
2248
		seq_printf(seq, "  |-- %pI4\n", &val);
2249

A
Alexander Duyck 已提交
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
			char buf1[32], buf2[32];

			seq_indent(seq, iter->depth + 1);
			seq_printf(seq, "  /%zu %s %s",
				   KEYLENGTH - fa->fa_slen,
				   rtn_scope(buf1, sizeof(buf1),
					     fa->fa_info->fib_scope),
				   rtn_type(buf2, sizeof(buf2),
					    fa->fa_type));
			if (fa->fa_tos)
				seq_printf(seq, " tos=%d", fa->fa_tos);
			seq_putc(seq, '\n');
2263
		}
2264
	}
2265

2266 2267 2268
	return 0;
}

2269
static const struct seq_operations fib_trie_seq_ops = {
2270 2271 2272 2273
	.start  = fib_trie_seq_start,
	.next   = fib_trie_seq_next,
	.stop   = fib_trie_seq_stop,
	.show   = fib_trie_seq_show,
2274 2275
};

2276
static int fib_trie_seq_open(struct inode *inode, struct file *file)
2277
{
2278 2279
	return seq_open_net(inode, file, &fib_trie_seq_ops,
			    sizeof(struct fib_trie_iter));
2280 2281
}

2282
static const struct file_operations fib_trie_fops = {
2283 2284 2285 2286
	.owner  = THIS_MODULE,
	.open   = fib_trie_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2287
	.release = seq_release_net,
2288 2289
};

2290 2291
struct fib_route_iter {
	struct seq_net_private p;
2292
	struct fib_table *main_tb;
2293
	struct key_vector *tnode;
2294 2295 2296 2297
	loff_t	pos;
	t_key	key;
};

2298 2299
static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
					    loff_t pos)
2300
{
2301
	struct fib_table *tb = iter->main_tb;
2302
	struct key_vector *l, **tp = &iter->tnode;
2303 2304
	struct trie *t;
	t_key key;
2305

2306 2307
	/* use cache location of next-to-find key */
	if (iter->pos > 0 && pos >= iter->pos) {
2308
		pos -= iter->pos;
2309 2310 2311
		key = iter->key;
	} else {
		t = (struct trie *)tb->tb_data;
2312
		iter->tnode = rcu_dereference_rtnl(t->tnode[0]);
2313
		iter->pos = 0;
2314
		key = 0;
2315 2316
	}

2317 2318
	while ((l = leaf_walk_rcu(tp, key)) != NULL) {
		key = l->key + 1;
2319
		iter->pos++;
2320 2321 2322 2323 2324 2325 2326 2327 2328

		if (pos-- <= 0)
			break;

		l = NULL;

		/* handle unlikely case of a key wrap */
		if (!key)
			break;
2329 2330 2331
	}

	if (l)
2332
		iter->key = key;	/* remember it */
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
	else
		iter->pos = 0;		/* forget it */

	return l;
}

static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
	__acquires(RCU)
{
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb;
2344
	struct trie *t;
2345 2346

	rcu_read_lock();
2347

2348
	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2349 2350 2351
	if (!tb)
		return NULL;

2352 2353 2354 2355 2356 2357
	iter->main_tb = tb;

	if (*pos != 0)
		return fib_route_get_idx(iter, *pos);

	t = (struct trie *)tb->tb_data;
2358
	iter->tnode = rcu_dereference_rtnl(t->tnode[0]);
2359 2360 2361 2362
	iter->pos = 0;
	iter->key = 0;

	return SEQ_START_TOKEN;
2363 2364 2365 2366 2367
}

static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
	struct fib_route_iter *iter = seq->private;
2368
	struct key_vector *l = NULL;
2369
	t_key key = iter->key;
2370 2371

	++*pos;
2372 2373 2374 2375 2376 2377 2378

	/* only allow key of 0 for start of sequence */
	if ((v == SEQ_START_TOKEN) || key)
		l = leaf_walk_rcu(&iter->tnode, key);

	if (l) {
		iter->key = l->key + 1;
2379
		iter->pos++;
2380 2381
	} else {
		iter->pos = 0;
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
	}

	return l;
}

static void fib_route_seq_stop(struct seq_file *seq, void *v)
	__releases(RCU)
{
	rcu_read_unlock();
}

E
Eric Dumazet 已提交
2393
static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2394
{
E
Eric Dumazet 已提交
2395
	unsigned int flags = 0;
2396

E
Eric Dumazet 已提交
2397 2398
	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
		flags = RTF_REJECT;
2399 2400
	if (fi && fi->fib_nh->nh_gw)
		flags |= RTF_GATEWAY;
A
Al Viro 已提交
2401
	if (mask == htonl(0xFFFFFFFF))
2402 2403 2404
		flags |= RTF_HOST;
	flags |= RTF_UP;
	return flags;
2405 2406
}

2407 2408 2409
/*
 *	This outputs /proc/net/route.
 *	The format of the file is not supposed to be changed
E
Eric Dumazet 已提交
2410
 *	and needs to be same as fib_hash output to avoid breaking
2411 2412 2413
 *	legacy utilities
 */
static int fib_route_seq_show(struct seq_file *seq, void *v)
2414
{
A
Alexander Duyck 已提交
2415
	struct fib_alias *fa;
2416
	struct key_vector *l = v;
2417
	__be32 prefix;
2418

2419 2420 2421 2422 2423 2424
	if (v == SEQ_START_TOKEN) {
		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
			   "\tWindow\tIRTT");
		return 0;
	}
2425

2426 2427
	prefix = htonl(l->key);

A
Alexander Duyck 已提交
2428 2429 2430 2431
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
		const struct fib_info *fi = fa->fa_info;
		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2432

A
Alexander Duyck 已提交
2433 2434 2435
		if ((fa->fa_type == RTN_BROADCAST) ||
		    (fa->fa_type == RTN_MULTICAST))
			continue;
2436

A
Alexander Duyck 已提交
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
		seq_setwidth(seq, 127);

		if (fi)
			seq_printf(seq,
				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   fi->fib_dev ? fi->fib_dev->name : "*",
				   prefix,
				   fi->fib_nh->nh_gw, flags, 0, 0,
				   fi->fib_priority,
				   mask,
				   (fi->fib_advmss ?
				    fi->fib_advmss + 40 : 0),
				   fi->fib_window,
				   fi->fib_rtt >> 3);
		else
			seq_printf(seq,
				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   prefix, 0, flags, 0, 0, 0,
				   mask, 0, 0, 0);
2458

A
Alexander Duyck 已提交
2459
		seq_pad(seq, '\n');
2460 2461 2462 2463 2464
	}

	return 0;
}

2465
static const struct seq_operations fib_route_seq_ops = {
2466 2467 2468
	.start  = fib_route_seq_start,
	.next   = fib_route_seq_next,
	.stop   = fib_route_seq_stop,
2469
	.show   = fib_route_seq_show,
2470 2471
};

2472
static int fib_route_seq_open(struct inode *inode, struct file *file)
2473
{
2474
	return seq_open_net(inode, file, &fib_route_seq_ops,
2475
			    sizeof(struct fib_route_iter));
2476 2477
}

2478
static const struct file_operations fib_route_fops = {
2479 2480 2481 2482
	.owner  = THIS_MODULE,
	.open   = fib_route_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2483
	.release = seq_release_net,
2484 2485
};

2486
int __net_init fib_proc_init(struct net *net)
2487
{
2488
	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2489 2490
		goto out1;

2491 2492
	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
			 &fib_triestat_fops))
2493 2494
		goto out2;

2495
	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2496 2497
		goto out3;

2498
	return 0;
2499 2500

out3:
2501
	remove_proc_entry("fib_triestat", net->proc_net);
2502
out2:
2503
	remove_proc_entry("fib_trie", net->proc_net);
2504 2505
out1:
	return -ENOMEM;
2506 2507
}

2508
void __net_exit fib_proc_exit(struct net *net)
2509
{
2510 2511 2512
	remove_proc_entry("fib_trie", net->proc_net);
	remove_proc_entry("fib_triestat", net->proc_net);
	remove_proc_entry("route", net->proc_net);
2513 2514 2515
}

#endif /* CONFIG_PROC_FS */