fib_trie.c 59.7 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation; either version
 *   2 of the License, or (at your option) any later version.
 *
 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
 *     & Swedish University of Agricultural Sciences.
 *
10
 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11
 *     Agricultural Sciences.
12
 *
13 14
 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
 *
L
Lucas De Marchi 已提交
15
 * This work is based on the LPC-trie which is originally described in:
16
 *
17 18
 * An experimental study of compression methods for dynamic tries
 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19
 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 *
 *
 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
 *
 *
 * Code from fib_hash has been reused which includes the following header:
 *
 *
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 *		operating system.  INET is implemented using the  BSD Socket
 *		interface as the means of communication with the user level.
 *
 *		IPv4 FIB: lookup engine and maintenance routines.
 *
 *
 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
 *
 *		This program is free software; you can redistribute it and/or
 *		modify it under the terms of the GNU General Public License
 *		as published by the Free Software Foundation; either version
 *		2 of the License, or (at your option) any later version.
R
Robert Olsson 已提交
42 43 44 45 46 47 48
 *
 * Substantial contributions to this work comes from:
 *
 *		David S. Miller, <davem@davemloft.net>
 *		Stephen Hemminger <shemminger@osdl.org>
 *		Paul E. McKenney <paulmck@us.ibm.com>
 *		Patrick McHardy <kaber@trash.net>
49 50
 */

J
Jens Låås 已提交
51
#define VERSION "0.409"
52 53

#include <asm/uaccess.h>
J
Jiri Slaby 已提交
54
#include <linux/bitops.h>
55 56 57 58 59 60 61 62 63
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/inet.h>
S
Stephen Hemminger 已提交
64
#include <linux/inetdevice.h>
65 66 67
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/proc_fs.h>
R
Robert Olsson 已提交
68
#include <linux/rcupdate.h>
69 70 71 72
#include <linux/skbuff.h>
#include <linux/netlink.h>
#include <linux/init.h>
#include <linux/list.h>
73
#include <linux/slab.h>
74
#include <linux/export.h>
75
#include <net/net_namespace.h>
76 77 78 79 80 81 82 83
#include <net/ip.h>
#include <net/protocol.h>
#include <net/route.h>
#include <net/tcp.h>
#include <net/sock.h>
#include <net/ip_fib.h>
#include "fib_lookup.h"

R
Robert Olsson 已提交
84
#define MAX_STAT_DEPTH 32
85

86 87
#define KEYLENGTH	(8*sizeof(t_key))
#define KEY_MAX		((t_key)~0)
88 89 90

typedef unsigned int t_key;

91 92
#define IS_TNODE(n) ((n)->bits)
#define IS_LEAF(n) (!(n)->bits)
R
Robert Olsson 已提交
93

94
#define get_index(_key, _kv) (((_key) ^ (_kv)->key) >> (_kv)->pos)
95

96 97 98 99
struct tnode {
	t_key key;
	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
100
	unsigned char slen;
101
	struct tnode __rcu *parent;
102
	struct rcu_head rcu;
A
Alexander Duyck 已提交
103 104 105
	union {
		/* The fields in this struct are valid if bits > 0 (TNODE) */
		struct {
106 107
			t_key empty_children; /* KEYLENGTH bits needed */
			t_key full_children;  /* KEYLENGTH bits needed */
A
Alexander Duyck 已提交
108 109 110 111 112
			struct tnode __rcu *child[0];
		};
		/* This list pointer if valid if bits == 0 (LEAF) */
		struct hlist_head list;
	};
113 114 115 116 117
};

struct leaf_info {
	struct hlist_node hlist;
	int plen;
118
	u32 mask_plen; /* ntohl(inet_make_mask(plen)) */
119
	struct list_head falh;
120
	struct rcu_head rcu;
121 122 123 124 125 126 127 128 129
};

#ifdef CONFIG_IP_FIB_TRIE_STATS
struct trie_use_stats {
	unsigned int gets;
	unsigned int backtrack;
	unsigned int semantic_match_passed;
	unsigned int semantic_match_miss;
	unsigned int null_node_hit;
130
	unsigned int resize_node_skipped;
131 132 133 134 135 136 137 138 139
};
#endif

struct trie_stat {
	unsigned int totdepth;
	unsigned int maxdepth;
	unsigned int tnodes;
	unsigned int leaves;
	unsigned int nullpointers;
140
	unsigned int prefixes;
R
Robert Olsson 已提交
141
	unsigned int nodesizes[MAX_STAT_DEPTH];
142
};
143 144

struct trie {
A
Alexander Duyck 已提交
145
	struct tnode __rcu *trie;
146
#ifdef CONFIG_IP_FIB_TRIE_STATS
147
	struct trie_use_stats __percpu *stats;
148 149 150
#endif
};

151
static void resize(struct trie *t, struct tnode *tn);
152 153 154 155 156 157 158 159
static size_t tnode_free_size;

/*
 * synchronize_rcu after call_rcu for that many pages; it should be especially
 * useful before resizing the root node with PREEMPT_NONE configs; the value was
 * obtained experimentally, aiming to avoid visible slowdown.
 */
static const int sync_pages = 128;
160

161
static struct kmem_cache *fn_alias_kmem __read_mostly;
162
static struct kmem_cache *trie_leaf_kmem __read_mostly;
163

164 165
/* caller must hold RTNL */
#define node_parent(n) rtnl_dereference((n)->parent)
E
Eric Dumazet 已提交
166

167 168
/* caller must hold RCU read lock or RTNL */
#define node_parent_rcu(n) rcu_dereference_rtnl((n)->parent)
E
Eric Dumazet 已提交
169

170
/* wrapper for rcu_assign_pointer */
A
Alexander Duyck 已提交
171
static inline void node_set_parent(struct tnode *n, struct tnode *tp)
172
{
A
Alexander Duyck 已提交
173 174
	if (n)
		rcu_assign_pointer(n->parent, tp);
S
Stephen Hemminger 已提交
175 176
}

177 178 179 180
#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER((n)->parent, p)

/* This provides us with the number of children in this node, in the case of a
 * leaf this will return 0 meaning none of the children are accessible.
181
 */
182
static inline unsigned long tnode_child_length(const struct tnode *tn)
S
Stephen Hemminger 已提交
183
{
184
	return (1ul << tn->bits) & ~(1ul);
S
Stephen Hemminger 已提交
185
}
R
Robert Olsson 已提交
186

187 188 189
/* caller must hold RTNL */
static inline struct tnode *tnode_get_child(const struct tnode *tn,
					    unsigned long i)
190
{
E
Eric Dumazet 已提交
191
	return rtnl_dereference(tn->child[i]);
192 193
}

194 195 196
/* caller must hold RCU read lock or RTNL */
static inline struct tnode *tnode_get_child_rcu(const struct tnode *tn,
						unsigned long i)
197
{
E
Eric Dumazet 已提交
198
	return rcu_dereference_rtnl(tn->child[i]);
199 200
}

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
/* To understand this stuff, an understanding of keys and all their bits is
 * necessary. Every node in the trie has a key associated with it, but not
 * all of the bits in that key are significant.
 *
 * Consider a node 'n' and its parent 'tp'.
 *
 * If n is a leaf, every bit in its key is significant. Its presence is
 * necessitated by path compression, since during a tree traversal (when
 * searching for a leaf - unless we are doing an insertion) we will completely
 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 * a potentially successful search, that we have indeed been walking the
 * correct key path.
 *
 * Note that we can never "miss" the correct key in the tree if present by
 * following the wrong path. Path compression ensures that segments of the key
 * that are the same for all keys with a given prefix are skipped, but the
 * skipped part *is* identical for each node in the subtrie below the skipped
 * bit! trie_insert() in this implementation takes care of that.
 *
 * if n is an internal node - a 'tnode' here, the various parts of its key
 * have many different meanings.
 *
 * Example:
 * _________________________________________________________________
 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 * -----------------------------------------------------------------
 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 *
 * _________________________________________________________________
 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 * -----------------------------------------------------------------
 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 *
 * tp->pos = 22
 * tp->bits = 3
 * n->pos = 13
 * n->bits = 4
 *
 * First, let's just ignore the bits that come before the parent tp, that is
 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 * point we do not use them for anything.
 *
 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 * index into the parent's child array. That is, they will be used to find
 * 'n' among tp's children.
 *
 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
 * for the node n.
 *
 * All the bits we have seen so far are significant to the node n. The rest
 * of the bits are really not needed or indeed known in n->key.
 *
 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 * n's child array, and will of course be different for each child.
 *
 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
 * at this point.
 */
259

260 261
static const int halve_threshold = 25;
static const int inflate_threshold = 50;
262
static const int halve_threshold_root = 15;
J
Jens Låås 已提交
263
static const int inflate_threshold_root = 30;
R
Robert Olsson 已提交
264 265

static void __alias_free_mem(struct rcu_head *head)
266
{
R
Robert Olsson 已提交
267 268
	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
	kmem_cache_free(fn_alias_kmem, fa);
269 270
}

R
Robert Olsson 已提交
271
static inline void alias_free_mem_rcu(struct fib_alias *fa)
272
{
R
Robert Olsson 已提交
273 274
	call_rcu(&fa->rcu, __alias_free_mem);
}
O
Olof Johansson 已提交
275

276
#define TNODE_KMALLOC_MAX \
A
Alexander Duyck 已提交
277
	ilog2((PAGE_SIZE - sizeof(struct tnode)) / sizeof(struct tnode *))
O
Olof Johansson 已提交
278

279
static void __node_free_rcu(struct rcu_head *head)
280
{
A
Alexander Duyck 已提交
281
	struct tnode *n = container_of(head, struct tnode, rcu);
282 283 284 285 286 287 288

	if (IS_LEAF(n))
		kmem_cache_free(trie_leaf_kmem, n);
	else if (n->bits <= TNODE_KMALLOC_MAX)
		kfree(n);
	else
		vfree(n);
289 290
}

291 292
#define node_free(n) call_rcu(&n->rcu, __node_free_rcu)

R
Robert Olsson 已提交
293
static inline void free_leaf_info(struct leaf_info *leaf)
294
{
295
	kfree_rcu(leaf, rcu);
296 297
}

298
static struct tnode *tnode_alloc(size_t size)
299
{
R
Robert Olsson 已提交
300
	if (size <= PAGE_SIZE)
301
		return kzalloc(size, GFP_KERNEL);
302
	else
303
		return vzalloc(size);
304
}
R
Robert Olsson 已提交
305

306 307 308 309 310 311 312 313 314 315
static inline void empty_child_inc(struct tnode *n)
{
	++n->empty_children ? : ++n->full_children;
}

static inline void empty_child_dec(struct tnode *n)
{
	n->empty_children-- ? : n->full_children--;
}

A
Alexander Duyck 已提交
316
static struct tnode *leaf_new(t_key key)
R
Robert Olsson 已提交
317
{
A
Alexander Duyck 已提交
318
	struct tnode *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
R
Robert Olsson 已提交
319
	if (l) {
320 321 322 323 324 325
		l->parent = NULL;
		/* set key and pos to reflect full key value
		 * any trailing zeros in the key should be ignored
		 * as the nodes are searched
		 */
		l->key = key;
326
		l->slen = 0;
327
		l->pos = 0;
328 329 330
		/* set bits to 0 indicating we are not a tnode */
		l->bits = 0;

R
Robert Olsson 已提交
331 332 333 334 335 336 337 338 339 340
		INIT_HLIST_HEAD(&l->list);
	}
	return l;
}

static struct leaf_info *leaf_info_new(int plen)
{
	struct leaf_info *li = kmalloc(sizeof(struct leaf_info),  GFP_KERNEL);
	if (li) {
		li->plen = plen;
341
		li->mask_plen = ntohl(inet_make_mask(plen));
R
Robert Olsson 已提交
342 343 344 345 346
		INIT_LIST_HEAD(&li->falh);
	}
	return li;
}

347
static struct tnode *tnode_new(t_key key, int pos, int bits)
348
{
349
	size_t sz = offsetof(struct tnode, child[1ul << bits]);
350
	struct tnode *tn = tnode_alloc(sz);
351 352 353 354
	unsigned int shift = pos + bits;

	/* verify bits and pos their msb bits clear and values are valid */
	BUG_ON(!bits || (shift > KEYLENGTH));
355

O
Olof Johansson 已提交
356
	if (tn) {
357
		tn->parent = NULL;
358
		tn->slen = pos;
359 360
		tn->pos = pos;
		tn->bits = bits;
361
		tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
362 363 364 365
		if (bits == KEYLENGTH)
			tn->full_children = 1;
		else
			tn->empty_children = 1ul << bits;
366
	}
367

E
Eric Dumazet 已提交
368
	pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
A
Alexander Duyck 已提交
369
		 sizeof(struct tnode *) << bits);
370 371 372
	return tn;
}

373
/* Check whether a tnode 'n' is "full", i.e. it is an internal node
374 375
 * and no bits are skipped. See discussion in dyntree paper p. 6
 */
A
Alexander Duyck 已提交
376
static inline int tnode_full(const struct tnode *tn, const struct tnode *n)
377
{
378
	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
379 380
}

381 382 383 384
/* Add a child at position i overwriting the old value.
 * Update the value of full_children and empty_children.
 */
static void put_child(struct tnode *tn, unsigned long i, struct tnode *n)
385
{
386
	struct tnode *chi = tnode_get_child(tn, i);
387
	int isfull, wasfull;
388

389
	BUG_ON(i >= tnode_child_length(tn));
S
Stephen Hemminger 已提交
390

391
	/* update emptyChildren, overflow into fullChildren */
392
	if (n == NULL && chi != NULL)
393 394 395
		empty_child_inc(tn);
	if (n != NULL && chi == NULL)
		empty_child_dec(tn);
396

397
	/* update fullChildren */
398
	wasfull = tnode_full(tn, chi);
399
	isfull = tnode_full(tn, n);
400

401
	if (wasfull && !isfull)
402
		tn->full_children--;
403
	else if (!wasfull && isfull)
404
		tn->full_children++;
O
Olof Johansson 已提交
405

406 407 408
	if (n && (tn->slen < n->slen))
		tn->slen = n->slen;

409
	rcu_assign_pointer(tn->child[i], n);
410 411
}

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
static void update_children(struct tnode *tn)
{
	unsigned long i;

	/* update all of the child parent pointers */
	for (i = tnode_child_length(tn); i;) {
		struct tnode *inode = tnode_get_child(tn, --i);

		if (!inode)
			continue;

		/* Either update the children of a tnode that
		 * already belongs to us or update the child
		 * to point to ourselves.
		 */
		if (node_parent(inode) == tn)
			update_children(inode);
		else
			node_set_parent(inode, tn);
	}
}

static inline void put_child_root(struct tnode *tp, struct trie *t,
				  t_key key, struct tnode *n)
436 437 438 439 440 441 442
{
	if (tp)
		put_child(tp, get_index(key, tp), n);
	else
		rcu_assign_pointer(t->trie, n);
}

443
static inline void tnode_free_init(struct tnode *tn)
E
Eric Dumazet 已提交
444
{
445 446 447 448 449 450 451 452
	tn->rcu.next = NULL;
}

static inline void tnode_free_append(struct tnode *tn, struct tnode *n)
{
	n->rcu.next = tn->rcu.next;
	tn->rcu.next = &n->rcu;
}
E
Eric Dumazet 已提交
453

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
static void tnode_free(struct tnode *tn)
{
	struct callback_head *head = &tn->rcu;

	while (head) {
		head = head->next;
		tnode_free_size += offsetof(struct tnode, child[1 << tn->bits]);
		node_free(tn);

		tn = container_of(head, struct tnode, rcu);
	}

	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
		tnode_free_size = 0;
		synchronize_rcu();
E
Eric Dumazet 已提交
469 470 471
	}
}

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
static void replace(struct trie *t, struct tnode *oldtnode, struct tnode *tn)
{
	struct tnode *tp = node_parent(oldtnode);
	unsigned long i;

	/* setup the parent pointer out of and back into this node */
	NODE_INIT_PARENT(tn, tp);
	put_child_root(tp, t, tn->key, tn);

	/* update all of the child parent pointers */
	update_children(tn);

	/* all pointers should be clean so we are done */
	tnode_free(oldtnode);

	/* resize children now that oldtnode is freed */
	for (i = tnode_child_length(tn); i;) {
		struct tnode *inode = tnode_get_child(tn, --i);

		/* resize child node */
		if (tnode_full(tn, inode))
			resize(t, inode);
	}
}

497
static int inflate(struct trie *t, struct tnode *oldtnode)
498
{
499 500
	struct tnode *tn;
	unsigned long i;
501
	t_key m;
502

S
Stephen Hemminger 已提交
503
	pr_debug("In inflate\n");
504

505
	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
S
Stephen Hemminger 已提交
506
	if (!tn)
507
		return -ENOMEM;
508

509 510 511
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

512 513 514 515
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
516
	 */
517
	for (i = tnode_child_length(oldtnode), m = 1u << tn->pos; i;) {
518 519 520
		struct tnode *inode = tnode_get_child(oldtnode, --i);
		struct tnode *node0, *node1;
		unsigned long j, k;
521

522
		/* An empty child */
A
Alexander Duyck 已提交
523
		if (inode == NULL)
524 525 526
			continue;

		/* A leaf or an internal node with skipped bits */
A
Alexander Duyck 已提交
527
		if (!tnode_full(oldtnode, inode)) {
528
			put_child(tn, get_index(inode->key, tn), inode);
529 530 531
			continue;
		}

532 533 534
		/* drop the node in the old tnode free list */
		tnode_free_append(oldtnode, inode);

535 536
		/* An internal node with two children */
		if (inode->bits == 1) {
537 538
			put_child(tn, 2 * i + 1, tnode_get_child(inode, 1));
			put_child(tn, 2 * i, tnode_get_child(inode, 0));
O
Olof Johansson 已提交
539
			continue;
540 541
		}

O
Olof Johansson 已提交
542
		/* We will replace this node 'inode' with two new
543
		 * ones, 'node0' and 'node1', each with half of the
O
Olof Johansson 已提交
544 545 546 547 548
		 * original children. The two new nodes will have
		 * a position one bit further down the key and this
		 * means that the "significant" part of their keys
		 * (see the discussion near the top of this file)
		 * will differ by one bit, which will be "0" in
549
		 * node0's key and "1" in node1's key. Since we are
O
Olof Johansson 已提交
550 551
		 * moving the key position by one step, the bit that
		 * we are moving away from - the bit at position
552 553 554
		 * (tn->pos) - is the one that will differ between
		 * node0 and node1. So... we synthesize that bit in the
		 * two new keys.
O
Olof Johansson 已提交
555
		 */
556 557 558
		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
		if (!node1)
			goto nomem;
559
		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
560

561
		tnode_free_append(tn, node1);
562 563 564 565 566 567 568 569 570 571 572
		if (!node0)
			goto nomem;
		tnode_free_append(tn, node0);

		/* populate child pointers in new nodes */
		for (k = tnode_child_length(inode), j = k / 2; j;) {
			put_child(node1, --j, tnode_get_child(inode, --k));
			put_child(node0, j, tnode_get_child(inode, j));
			put_child(node1, --j, tnode_get_child(inode, --k));
			put_child(node0, j, tnode_get_child(inode, j));
		}
573

574 575 576
		/* link new nodes to parent */
		NODE_INIT_PARENT(node1, tn);
		NODE_INIT_PARENT(node0, tn);
577

578 579 580 581
		/* link parent to nodes */
		put_child(tn, 2 * i + 1, node1);
		put_child(tn, 2 * i, node0);
	}
582

583 584
	/* setup the parent pointers into and out of this node */
	replace(t, oldtnode, tn);
585

586
	return 0;
587
nomem:
588 589
	/* all pointers should be clean so we are done */
	tnode_free(tn);
590
	return -ENOMEM;
591 592
}

593
static int halve(struct trie *t, struct tnode *oldtnode)
594
{
595
	struct tnode *tn;
596
	unsigned long i;
597

S
Stephen Hemminger 已提交
598
	pr_debug("In halve\n");
599

600
	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
601
	if (!tn)
602
		return -ENOMEM;
603

604 605 606
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

607 608 609 610
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
611
	 */
612
	for (i = tnode_child_length(oldtnode); i;) {
613 614 615
		struct tnode *node1 = tnode_get_child(oldtnode, --i);
		struct tnode *node0 = tnode_get_child(oldtnode, --i);
		struct tnode *inode;
616

617 618 619 620 621
		/* At least one of the children is empty */
		if (!node1 || !node0) {
			put_child(tn, i / 2, node1 ? : node0);
			continue;
		}
622

623
		/* Two nonempty children */
624 625 626 627
		inode = tnode_new(node0->key, oldtnode->pos, 1);
		if (!inode) {
			tnode_free(tn);
			return -ENOMEM;
628
		}
629
		tnode_free_append(tn, inode);
630

631 632 633 634 635 636 637
		/* initialize pointers out of node */
		put_child(inode, 1, node1);
		put_child(inode, 0, node0);
		NODE_INIT_PARENT(inode, tn);

		/* link parent to node */
		put_child(tn, i / 2, inode);
638
	}
639

640 641
	/* setup the parent pointers into and out of this node */
	replace(t, oldtnode, tn);
642 643

	return 0;
644 645
}

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
static void collapse(struct trie *t, struct tnode *oldtnode)
{
	struct tnode *n, *tp;
	unsigned long i;

	/* scan the tnode looking for that one child that might still exist */
	for (n = NULL, i = tnode_child_length(oldtnode); !n && i;)
		n = tnode_get_child(oldtnode, --i);

	/* compress one level */
	tp = node_parent(oldtnode);
	put_child_root(tp, t, oldtnode->key, n);
	node_set_parent(n, tp);

	/* drop dead node */
	node_free(oldtnode);
}

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
static unsigned char update_suffix(struct tnode *tn)
{
	unsigned char slen = tn->pos;
	unsigned long stride, i;

	/* search though the list of children looking for nodes that might
	 * have a suffix greater than the one we currently have.  This is
	 * why we start with a stride of 2 since a stride of 1 would
	 * represent the nodes with suffix length equal to tn->pos
	 */
	for (i = 0, stride = 0x2ul ; i < tnode_child_length(tn); i += stride) {
		struct tnode *n = tnode_get_child(tn, i);

		if (!n || (n->slen <= slen))
			continue;

		/* update stride and slen based on new value */
		stride <<= (n->slen - slen);
		slen = n->slen;
		i &= ~(stride - 1);

		/* if slen covers all but the last bit we can stop here
		 * there will be nothing longer than that since only node
		 * 0 and 1 << (bits - 1) could have that as their suffix
		 * length.
		 */
		if ((slen + 1) >= (tn->pos + tn->bits))
			break;
	}

	tn->slen = slen;

	return slen;
}

699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 * Telecommunications, page 6:
 * "A node is doubled if the ratio of non-empty children to all
 * children in the *doubled* node is at least 'high'."
 *
 * 'high' in this instance is the variable 'inflate_threshold'. It
 * is expressed as a percentage, so we multiply it with
 * tnode_child_length() and instead of multiplying by 2 (since the
 * child array will be doubled by inflate()) and multiplying
 * the left-hand side by 100 (to handle the percentage thing) we
 * multiply the left-hand side by 50.
 *
 * The left-hand side may look a bit weird: tnode_child_length(tn)
 * - tn->empty_children is of course the number of non-null children
 * in the current node. tn->full_children is the number of "full"
 * children, that is non-null tnodes with a skip value of 0.
 * All of those will be doubled in the resulting inflated tnode, so
 * we just count them one extra time here.
 *
 * A clearer way to write this would be:
 *
 * to_be_doubled = tn->full_children;
 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
 *     tn->full_children;
 *
 * new_child_length = tnode_child_length(tn) * 2;
 *
 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 *      new_child_length;
 * if (new_fill_factor >= inflate_threshold)
 *
 * ...and so on, tho it would mess up the while () loop.
 *
 * anyway,
 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 *      inflate_threshold
 *
 * avoid a division:
 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 *      inflate_threshold * new_child_length
 *
 * expand not_to_be_doubled and to_be_doubled, and shorten:
 * 100 * (tnode_child_length(tn) - tn->empty_children +
 *    tn->full_children) >= inflate_threshold * new_child_length
 *
 * expand new_child_length:
 * 100 * (tnode_child_length(tn) - tn->empty_children +
 *    tn->full_children) >=
 *      inflate_threshold * tnode_child_length(tn) * 2
 *
 * shorten again:
 * 50 * (tn->full_children + tnode_child_length(tn) -
 *    tn->empty_children) >= inflate_threshold *
 *    tnode_child_length(tn)
 *
 */
756
static bool should_inflate(const struct tnode *tp, const struct tnode *tn)
757 758 759 760 761
{
	unsigned long used = tnode_child_length(tn);
	unsigned long threshold = used;

	/* Keep root node larger */
762
	threshold *= tp ? inflate_threshold : inflate_threshold_root;
763
	used -= tn->empty_children;
764
	used += tn->full_children;
765

766 767 768
	/* if bits == KEYLENGTH then pos = 0, and will fail below */

	return (used > 1) && tn->pos && ((50 * used) >= threshold);
769 770
}

771
static bool should_halve(const struct tnode *tp, const struct tnode *tn)
772 773 774 775 776
{
	unsigned long used = tnode_child_length(tn);
	unsigned long threshold = used;

	/* Keep root node larger */
777
	threshold *= tp ? halve_threshold : halve_threshold_root;
778 779
	used -= tn->empty_children;

780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */

	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
}

static bool should_collapse(const struct tnode *tn)
{
	unsigned long used = tnode_child_length(tn);

	used -= tn->empty_children;

	/* account for bits == KEYLENGTH case */
	if ((tn->bits == KEYLENGTH) && tn->full_children)
		used -= KEY_MAX;

	/* One child or none, time to drop us from the trie */
	return used < 2;
797 798
}

799
#define MAX_WORK 10
800
static void resize(struct trie *t, struct tnode *tn)
801
{
802
	struct tnode *tp = node_parent(tn);
803
	struct tnode __rcu **cptr;
804
	int max_work = MAX_WORK;
805 806 807 808

	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
		 tn, inflate_threshold, halve_threshold);

809 810 811 812 813 814 815
	/* track the tnode via the pointer from the parent instead of
	 * doing it ourselves.  This way we can let RCU fully do its
	 * thing without us interfering
	 */
	cptr = tp ? &tp->child[get_index(tn->key, tp)] : &t->trie;
	BUG_ON(tn != rtnl_dereference(*cptr));

816 817
	/* Double as long as the resulting node has a number of
	 * nonempty nodes that are above the threshold.
818
	 */
819
	while (should_inflate(tp, tn) && max_work) {
820
		if (inflate(t, tn)) {
821 822 823 824 825
#ifdef CONFIG_IP_FIB_TRIE_STATS
			this_cpu_inc(t->stats->resize_node_skipped);
#endif
			break;
		}
826

827
		max_work--;
828
		tn = rtnl_dereference(*cptr);
829 830 831 832
	}

	/* Return if at least one inflate is run */
	if (max_work != MAX_WORK)
833
		return;
834

835
	/* Halve as long as the number of empty children in this
836 837
	 * node is above threshold.
	 */
838
	while (should_halve(tp, tn) && max_work) {
839
		if (halve(t, tn)) {
840 841 842 843 844 845
#ifdef CONFIG_IP_FIB_TRIE_STATS
			this_cpu_inc(t->stats->resize_node_skipped);
#endif
			break;
		}

846
		max_work--;
847 848
		tn = rtnl_dereference(*cptr);
	}
849 850

	/* Only one child remains */
851 852
	if (should_collapse(tn)) {
		collapse(t, tn);
853 854 855 856 857 858 859 860 861 862 863 864 865
		return;
	}

	/* Return if at least one deflate was run */
	if (max_work != MAX_WORK)
		return;

	/* push the suffix length to the parent node */
	if (tn->slen > tn->pos) {
		unsigned char slen = update_suffix(tn);

		if (tp && (slen > tp->slen))
			tp->slen = slen;
866 867 868
	}
}

R
Robert Olsson 已提交
869
/* readside must use rcu_read_lock currently dump routines
R
Robert Olsson 已提交
870 871
 via get_fa_head and dump */

A
Alexander Duyck 已提交
872
static struct leaf_info *find_leaf_info(struct tnode *l, int plen)
873
{
R
Robert Olsson 已提交
874
	struct hlist_head *head = &l->list;
875 876
	struct leaf_info *li;

877
	hlist_for_each_entry_rcu(li, head, hlist)
878
		if (li->plen == plen)
879
			return li;
O
Olof Johansson 已提交
880

881 882 883
	return NULL;
}

A
Alexander Duyck 已提交
884
static inline struct list_head *get_fa_head(struct tnode *l, int plen)
885
{
R
Robert Olsson 已提交
886
	struct leaf_info *li = find_leaf_info(l, plen);
887

O
Olof Johansson 已提交
888 889
	if (!li)
		return NULL;
890

O
Olof Johansson 已提交
891
	return &li->falh;
892 893
}

894 895 896 897 898 899 900 901 902 903 904 905
static void leaf_pull_suffix(struct tnode *l)
{
	struct tnode *tp = node_parent(l);

	while (tp && (tp->slen > tp->pos) && (tp->slen > l->slen)) {
		if (update_suffix(tp) > l->slen)
			break;
		tp = node_parent(tp);
	}
}

static void leaf_push_suffix(struct tnode *l)
906
{
907 908 909 910 911 912 913 914 915 916 917 918 919
	struct tnode *tn = node_parent(l);

	/* if this is a new leaf then tn will be NULL and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
	while (tn && (tn->slen < l->slen)) {
		tn->slen = l->slen;
		tn = node_parent(tn);
	}
}

static void remove_leaf_info(struct tnode *l, struct leaf_info *old)
{
920 921 922
	/* record the location of the previous list_info entry */
	struct hlist_node **pprev = old->hlist.pprev;
	struct leaf_info *li = hlist_entry(pprev, typeof(*li), hlist.next);
923 924 925 926

	/* remove the leaf info from the list */
	hlist_del_rcu(&old->hlist);

927 928
	/* only access li if it is pointing at the last valid hlist_node */
	if (hlist_empty(&l->list) || (*pprev))
929 930
		return;

931 932 933
	/* update the trie with the latest suffix length */
	l->slen = KEYLENGTH - li->plen;
	leaf_pull_suffix(l);
934 935 936 937 938
}

static void insert_leaf_info(struct tnode *l, struct leaf_info *new)
{
	struct hlist_head *head = &l->list;
939 940 941 942 943
	struct leaf_info *li = NULL, *last = NULL;

	if (hlist_empty(head)) {
		hlist_add_head_rcu(&new->hlist, head);
	} else {
944
		hlist_for_each_entry(li, head, hlist) {
945 946 947 948 949 950
			if (new->plen > li->plen)
				break;

			last = li;
		}
		if (last)
951
			hlist_add_behind_rcu(&new->hlist, &last->hlist);
952 953 954
		else
			hlist_add_before_rcu(&new->hlist, &li->hlist);
	}
955 956

	/* if we added to the tail node then we need to update slen */
957
	if (l->slen < (KEYLENGTH - new->plen)) {
958 959 960
		l->slen = KEYLENGTH - new->plen;
		leaf_push_suffix(l);
	}
961 962
}

R
Robert Olsson 已提交
963
/* rcu_read_lock needs to be hold by caller from readside */
A
Alexander Duyck 已提交
964
static struct tnode *fib_find_node(struct trie *t, u32 key)
965
{
A
Alexander Duyck 已提交
966
	struct tnode *n = rcu_dereference_rtnl(t->trie);
A
Alexander Duyck 已提交
967 968 969 970 971 972 973 974 975

	while (n) {
		unsigned long index = get_index(key, n);

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the bits in the cindex. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
976
		 *   if (index & (~0ul << bits))
A
Alexander Duyck 已提交
977
		 *     we have a mismatch in skip bits and failed
978 979
		 *   else
		 *     we know the value is cindex
A
Alexander Duyck 已提交
980
		 */
981
		if (index & (~0ul << n->bits))
A
Alexander Duyck 已提交
982 983 984 985
			return NULL;

		/* we have found a leaf. Prefixes have already been compared */
		if (IS_LEAF(n))
986 987
			break;

988
		n = tnode_get_child_rcu(n, index);
A
Alexander Duyck 已提交
989
	}
O
Olof Johansson 已提交
990

A
Alexander Duyck 已提交
991
	return n;
992 993
}

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
/* Return the first fib alias matching TOS with
 * priority less than or equal to PRIO.
 */
static struct fib_alias *fib_find_alias(struct list_head *fah, u8 tos, u32 prio)
{
	struct fib_alias *fa;

	if (!fah)
		return NULL;

	list_for_each_entry(fa, fah, fa_list) {
		if (fa->fa_tos > tos)
			continue;
		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
			return fa;
	}

	return NULL;
}

1014
static void trie_rebalance(struct trie *t, struct tnode *tn)
1015
{
S
Stephen Hemminger 已提交
1016
	struct tnode *tp;
1017

1018 1019
	while ((tp = node_parent(tn)) != NULL) {
		resize(t, tn);
S
Stephen Hemminger 已提交
1020
		tn = tp;
1021
	}
S
Stephen Hemminger 已提交
1022

1023
	/* Handle last (top) tnode */
1024
	if (IS_TNODE(tn))
1025
		resize(t, tn);
1026 1027
}

R
Robert Olsson 已提交
1028 1029
/* only used from updater-side */

1030
static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
1031
{
1032
	struct list_head *fa_head = NULL;
1033
	struct tnode *l, *n, *tp = NULL;
1034 1035
	struct leaf_info *li;

1036 1037 1038 1039 1040
	li = leaf_info_new(plen);
	if (!li)
		return NULL;
	fa_head = &li->falh;

E
Eric Dumazet 已提交
1041
	n = rtnl_dereference(t->trie);
1042

1043 1044
	/* If we point to NULL, stop. Either the tree is empty and we should
	 * just put a new leaf in if, or we have reached an empty child slot,
1045 1046
	 * and we should just put our new leaf in that.
	 *
1047 1048 1049
	 * If we hit a node with a key that does't match then we should stop
	 * and create a new tnode to replace that node and insert ourselves
	 * and the other node into the new tnode.
1050
	 */
1051 1052
	while (n) {
		unsigned long index = get_index(key, n);
1053

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the "bits" in the prefix. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
		 *   if !(index >> bits)
		 *     we know the value is child index
		 *   else
		 *     we have a mismatch in skip bits and failed
		 */
		if (index >> n->bits)
1065 1066
			break;

1067 1068 1069
		/* we have found a leaf. Prefixes have already been compared */
		if (IS_LEAF(n)) {
			/* Case 1: n is a leaf, and prefixes match*/
1070
			insert_leaf_info(n, li);
1071 1072
			return fa_head;
		}
1073

1074
		tp = n;
1075
		n = tnode_get_child_rcu(n, index);
1076 1077
	}

1078 1079 1080
	l = leaf_new(key);
	if (!l) {
		free_leaf_info(li);
1081
		return NULL;
1082
	}
1083

1084
	insert_leaf_info(l, li);
1085

1086 1087 1088 1089 1090 1091 1092 1093
	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
	 *
	 *  Add a new tnode here
	 *  first tnode need some special handling
	 *  leaves us in position for handling as case 3
	 */
	if (n) {
		struct tnode *tn;
1094

1095
		tn = tnode_new(key, __fls(key ^ n->key), 1);
1096
		if (!tn) {
1097
			free_leaf_info(li);
1098
			node_free(l);
1099
			return NULL;
O
Olof Johansson 已提交
1100 1101
		}

1102 1103 1104
		/* initialize routes out of node */
		NODE_INIT_PARENT(tn, tp);
		put_child(tn, get_index(key, tn) ^ 1, n);
1105

1106 1107 1108
		/* start adding routes into the node */
		put_child_root(tp, t, key, tn);
		node_set_parent(n, tn);
1109

1110
		/* parent now has a NULL spot where the leaf can go */
1111
		tp = tn;
1112
	}
O
Olof Johansson 已提交
1113

1114 1115 1116 1117 1118 1119 1120 1121
	/* Case 3: n is NULL, and will just insert a new leaf */
	if (tp) {
		NODE_INIT_PARENT(l, tp);
		put_child(tp, get_index(key, tp), l);
		trie_rebalance(t, tp);
	} else {
		rcu_assign_pointer(t->trie, l);
	}
R
Robert Olsson 已提交
1122

1123 1124 1125
	return fa_head;
}

1126 1127 1128
/*
 * Caller must hold RTNL.
 */
1129
int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1130 1131 1132
{
	struct trie *t = (struct trie *) tb->tb_data;
	struct fib_alias *fa, *new_fa;
1133
	struct list_head *fa_head = NULL;
1134
	struct fib_info *fi;
1135 1136
	int plen = cfg->fc_dst_len;
	u8 tos = cfg->fc_tos;
1137 1138
	u32 key, mask;
	int err;
A
Alexander Duyck 已提交
1139
	struct tnode *l;
1140 1141 1142 1143

	if (plen > 32)
		return -EINVAL;

1144
	key = ntohl(cfg->fc_dst);
1145

1146
	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1147

O
Olof Johansson 已提交
1148
	mask = ntohl(inet_make_mask(plen));
1149

1150
	if (key & ~mask)
1151 1152 1153 1154
		return -EINVAL;

	key = key & mask;

1155 1156 1157
	fi = fib_create_info(cfg);
	if (IS_ERR(fi)) {
		err = PTR_ERR(fi);
1158
		goto err;
1159
	}
1160 1161

	l = fib_find_node(t, key);
1162
	fa = NULL;
1163

1164
	if (l) {
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
		fa_head = get_fa_head(l, plen);
		fa = fib_find_alias(fa_head, tos, fi->fib_priority);
	}

	/* Now fa, if non-NULL, points to the first fib alias
	 * with the same keys [prefix,tos,priority], if such key already
	 * exists or to the node before which we will insert new one.
	 *
	 * If fa is NULL, we will need to allocate a new one and
	 * insert to the head of f.
	 *
	 * If f is NULL, no fib node matched the destination key
	 * and we need to allocate a new one of those as well.
	 */

1180 1181 1182
	if (fa && fa->fa_tos == tos &&
	    fa->fa_info->fib_priority == fi->fib_priority) {
		struct fib_alias *fa_first, *fa_match;
1183 1184

		err = -EEXIST;
1185
		if (cfg->fc_nlflags & NLM_F_EXCL)
1186 1187
			goto out;

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
		/* We have 2 goals:
		 * 1. Find exact match for type, scope, fib_info to avoid
		 * duplicate routes
		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
		 */
		fa_match = NULL;
		fa_first = fa;
		fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
		list_for_each_entry_continue(fa, fa_head, fa_list) {
			if (fa->fa_tos != tos)
				break;
			if (fa->fa_info->fib_priority != fi->fib_priority)
				break;
			if (fa->fa_type == cfg->fc_type &&
			    fa->fa_info == fi) {
				fa_match = fa;
				break;
			}
		}

1208
		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1209 1210 1211
			struct fib_info *fi_drop;
			u8 state;

1212 1213 1214 1215
			fa = fa_first;
			if (fa_match) {
				if (fa == fa_match)
					err = 0;
1216
				goto out;
1217
			}
R
Robert Olsson 已提交
1218
			err = -ENOBUFS;
1219
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
R
Robert Olsson 已提交
1220 1221
			if (new_fa == NULL)
				goto out;
1222 1223

			fi_drop = fa->fa_info;
R
Robert Olsson 已提交
1224 1225
			new_fa->fa_tos = fa->fa_tos;
			new_fa->fa_info = fi;
1226
			new_fa->fa_type = cfg->fc_type;
1227
			state = fa->fa_state;
1228
			new_fa->fa_state = state & ~FA_S_ACCESSED;
1229

R
Robert Olsson 已提交
1230 1231
			list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
			alias_free_mem_rcu(fa);
1232 1233 1234

			fib_release_info(fi_drop);
			if (state & FA_S_ACCESSED)
1235
				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1236 1237
			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
				tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1238

O
Olof Johansson 已提交
1239
			goto succeeded;
1240 1241 1242 1243 1244
		}
		/* Error if we find a perfect match which
		 * uses the same scope, type, and nexthop
		 * information.
		 */
1245 1246
		if (fa_match)
			goto out;
1247

1248
		if (!(cfg->fc_nlflags & NLM_F_APPEND))
1249
			fa = fa_first;
1250 1251
	}
	err = -ENOENT;
1252
	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1253 1254 1255
		goto out;

	err = -ENOBUFS;
1256
	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1257 1258 1259 1260 1261
	if (new_fa == NULL)
		goto out;

	new_fa->fa_info = fi;
	new_fa->fa_tos = tos;
1262
	new_fa->fa_type = cfg->fc_type;
1263 1264 1265 1266 1267
	new_fa->fa_state = 0;
	/*
	 * Insert new entry to the list.
	 */

1268
	if (!fa_head) {
1269 1270 1271
		fa_head = fib_insert_node(t, key, plen);
		if (unlikely(!fa_head)) {
			err = -ENOMEM;
1272
			goto out_free_new_fa;
1273
		}
1274
	}
1275

1276 1277 1278
	if (!plen)
		tb->tb_num_default++;

R
Robert Olsson 已提交
1279 1280
	list_add_tail_rcu(&new_fa->fa_list,
			  (fa ? &fa->fa_list : fa_head));
1281

1282
	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1283
	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1284
		  &cfg->fc_nlinfo, 0);
1285 1286
succeeded:
	return 0;
1287 1288 1289

out_free_new_fa:
	kmem_cache_free(fn_alias_kmem, new_fa);
1290 1291
out:
	fib_release_info(fi);
O
Olof Johansson 已提交
1292
err:
1293 1294 1295
	return err;
}

1296 1297 1298 1299 1300 1301 1302
static inline t_key prefix_mismatch(t_key key, struct tnode *n)
{
	t_key prefix = n->key;

	return (key ^ prefix) & (prefix | -prefix);
}

1303
/* should be called with rcu_read_lock */
1304
int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
E
Eric Dumazet 已提交
1305
		     struct fib_result *res, int fib_flags)
1306
{
1307
	struct trie *t = (struct trie *)tb->tb_data;
1308 1309 1310
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
1311 1312
	const t_key key = ntohl(flp->daddr);
	struct tnode *n, *pn;
1313
	struct leaf_info *li;
1314
	t_key cindex;
O
Olof Johansson 已提交
1315

R
Robert Olsson 已提交
1316
	n = rcu_dereference(t->trie);
1317
	if (!n)
1318
		return -EAGAIN;
1319 1320

#ifdef CONFIG_IP_FIB_TRIE_STATS
1321
	this_cpu_inc(stats->gets);
1322 1323
#endif

A
Alexander Duyck 已提交
1324
	pn = n;
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
	cindex = 0;

	/* Step 1: Travel to the longest prefix match in the trie */
	for (;;) {
		unsigned long index = get_index(key, n);

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the "bits" in the prefix. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
1336
		 *   if (index & (~0ul << bits))
1337
		 *     we have a mismatch in skip bits and failed
1338 1339
		 *   else
		 *     we know the value is cindex
1340
		 */
1341
		if (index & (~0ul << n->bits))
1342
			break;
1343

1344 1345
		/* we have found a leaf. Prefixes have already been compared */
		if (IS_LEAF(n))
1346
			goto found;
1347

1348 1349
		/* only record pn and cindex if we are going to be chopping
		 * bits later.  Otherwise we are just wasting cycles.
O
Olof Johansson 已提交
1350
		 */
1351
		if (n->slen > n->pos) {
1352 1353
			pn = n;
			cindex = index;
O
Olof Johansson 已提交
1354
		}
1355

1356
		n = tnode_get_child_rcu(n, index);
1357 1358 1359
		if (unlikely(!n))
			goto backtrace;
	}
1360

1361 1362 1363 1364
	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
	for (;;) {
		/* record the pointer where our next node pointer is stored */
		struct tnode __rcu **cptr = n->child;
1365

1366 1367 1368
		/* This test verifies that none of the bits that differ
		 * between the key and the prefix exist in the region of
		 * the lsb and higher in the prefix.
O
Olof Johansson 已提交
1369
		 */
1370
		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1371
			goto backtrace;
O
Olof Johansson 已提交
1372

1373 1374 1375
		/* exit out and process leaf */
		if (unlikely(IS_LEAF(n)))
			break;
O
Olof Johansson 已提交
1376

1377 1378 1379
		/* Don't bother recording parent info.  Since we are in
		 * prefix match mode we will have to come back to wherever
		 * we started this traversal anyway
O
Olof Johansson 已提交
1380 1381
		 */

1382
		while ((n = rcu_dereference(*cptr)) == NULL) {
1383 1384
backtrace:
#ifdef CONFIG_IP_FIB_TRIE_STATS
1385 1386
			if (!n)
				this_cpu_inc(stats->null_node_hit);
1387
#endif
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
			/* If we are at cindex 0 there are no more bits for
			 * us to strip at this level so we must ascend back
			 * up one level to see if there are any more bits to
			 * be stripped there.
			 */
			while (!cindex) {
				t_key pkey = pn->key;

				pn = node_parent_rcu(pn);
				if (unlikely(!pn))
1398
					return -EAGAIN;
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
#ifdef CONFIG_IP_FIB_TRIE_STATS
				this_cpu_inc(stats->backtrack);
#endif
				/* Get Child's index */
				cindex = get_index(pkey, pn);
			}

			/* strip the least significant bit from the cindex */
			cindex &= cindex - 1;

			/* grab pointer for next child node */
			cptr = &pn->child[cindex];
1411
		}
1412
	}
1413

1414
found:
1415
	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
	hlist_for_each_entry_rcu(li, &n->list, hlist) {
		struct fib_alias *fa;

		if ((key ^ n->key) & li->mask_plen)
			continue;

		list_for_each_entry_rcu(fa, &li->falh, fa_list) {
			struct fib_info *fi = fa->fa_info;
			int nhsel, err;

			if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
				continue;
			if (fi->fib_dead)
				continue;
			if (fa->fa_info->fib_scope < flp->flowi4_scope)
				continue;
			fib_alias_accessed(fa);
			err = fib_props[fa->fa_type].error;
			if (unlikely(err < 0)) {
#ifdef CONFIG_IP_FIB_TRIE_STATS
				this_cpu_inc(stats->semantic_match_passed);
#endif
				return err;
			}
			if (fi->fib_flags & RTNH_F_DEAD)
				continue;
			for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
				const struct fib_nh *nh = &fi->fib_nh[nhsel];

				if (nh->nh_flags & RTNH_F_DEAD)
					continue;
				if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
					continue;

				if (!(fib_flags & FIB_LOOKUP_NOREF))
					atomic_inc(&fi->fib_clntref);

				res->prefixlen = li->plen;
				res->nh_sel = nhsel;
				res->type = fa->fa_type;
				res->scope = fi->fib_scope;
				res->fi = fi;
				res->table = tb;
				res->fa_head = &li->falh;
#ifdef CONFIG_IP_FIB_TRIE_STATS
				this_cpu_inc(stats->semantic_match_passed);
#endif
				return err;
			}
		}

#ifdef CONFIG_IP_FIB_TRIE_STATS
		this_cpu_inc(stats->semantic_match_miss);
#endif
	}
	goto backtrace;
1472
}
1473
EXPORT_SYMBOL_GPL(fib_table_lookup);
1474

1475 1476 1477
/*
 * Remove the leaf and return parent.
 */
A
Alexander Duyck 已提交
1478
static void trie_leaf_remove(struct trie *t, struct tnode *l)
1479
{
1480
	struct tnode *tp = node_parent(l);
1481

1482
	pr_debug("entering trie_leaf_remove(%p)\n", l);
1483

1484
	if (tp) {
1485
		put_child(tp, get_index(l->key, tp), NULL);
1486
		trie_rebalance(t, tp);
1487
	} else {
1488
		RCU_INIT_POINTER(t->trie, NULL);
1489
	}
1490

1491
	node_free(l);
1492 1493
}

1494 1495 1496
/*
 * Caller must hold RTNL.
 */
1497
int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1498 1499 1500
{
	struct trie *t = (struct trie *) tb->tb_data;
	u32 key, mask;
1501 1502
	int plen = cfg->fc_dst_len;
	u8 tos = cfg->fc_tos;
1503 1504
	struct fib_alias *fa, *fa_to_delete;
	struct list_head *fa_head;
A
Alexander Duyck 已提交
1505
	struct tnode *l;
O
Olof Johansson 已提交
1506 1507
	struct leaf_info *li;

1508
	if (plen > 32)
1509 1510
		return -EINVAL;

1511
	key = ntohl(cfg->fc_dst);
O
Olof Johansson 已提交
1512
	mask = ntohl(inet_make_mask(plen));
1513

1514
	if (key & ~mask)
1515 1516 1517 1518 1519
		return -EINVAL;

	key = key & mask;
	l = fib_find_node(t, key);

1520
	if (!l)
1521 1522
		return -ESRCH;

1523 1524 1525 1526 1527 1528
	li = find_leaf_info(l, plen);

	if (!li)
		return -ESRCH;

	fa_head = &li->falh;
1529 1530 1531 1532 1533
	fa = fib_find_alias(fa_head, tos, 0);

	if (!fa)
		return -ESRCH;

S
Stephen Hemminger 已提交
1534
	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1535 1536

	fa_to_delete = NULL;
1537 1538
	fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
	list_for_each_entry_continue(fa, fa_head, fa_list) {
1539 1540 1541 1542 1543
		struct fib_info *fi = fa->fa_info;

		if (fa->fa_tos != tos)
			break;

1544 1545
		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1546
		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1547 1548
		    (!cfg->fc_prefsrc ||
		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1549 1550 1551
		    (!cfg->fc_protocol ||
		     fi->fib_protocol == cfg->fc_protocol) &&
		    fib_nh_match(cfg, fi) == 0) {
1552 1553 1554 1555 1556
			fa_to_delete = fa;
			break;
		}
	}

O
Olof Johansson 已提交
1557 1558
	if (!fa_to_delete)
		return -ESRCH;
1559

O
Olof Johansson 已提交
1560
	fa = fa_to_delete;
1561
	rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1562
		  &cfg->fc_nlinfo, 0);
O
Olof Johansson 已提交
1563

R
Robert Olsson 已提交
1564
	list_del_rcu(&fa->fa_list);
1565

1566 1567 1568
	if (!plen)
		tb->tb_num_default--;

O
Olof Johansson 已提交
1569
	if (list_empty(fa_head)) {
1570
		remove_leaf_info(l, li);
O
Olof Johansson 已提交
1571
		free_leaf_info(li);
R
Robert Olsson 已提交
1572
	}
1573

O
Olof Johansson 已提交
1574
	if (hlist_empty(&l->list))
1575
		trie_leaf_remove(t, l);
1576

O
Olof Johansson 已提交
1577
	if (fa->fa_state & FA_S_ACCESSED)
1578
		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1579

R
Robert Olsson 已提交
1580 1581
	fib_release_info(fa->fa_info);
	alias_free_mem_rcu(fa);
O
Olof Johansson 已提交
1582
	return 0;
1583 1584
}

1585
static int trie_flush_list(struct list_head *head)
1586 1587 1588 1589 1590 1591 1592
{
	struct fib_alias *fa, *fa_node;
	int found = 0;

	list_for_each_entry_safe(fa, fa_node, head, fa_list) {
		struct fib_info *fi = fa->fa_info;

R
Robert Olsson 已提交
1593 1594 1595 1596
		if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
			list_del_rcu(&fa->fa_list);
			fib_release_info(fa->fa_info);
			alias_free_mem_rcu(fa);
1597 1598 1599 1600 1601 1602
			found++;
		}
	}
	return found;
}

A
Alexander Duyck 已提交
1603
static int trie_flush_leaf(struct tnode *l)
1604 1605 1606
{
	int found = 0;
	struct hlist_head *lih = &l->list;
1607
	struct hlist_node *tmp;
1608
	struct leaf_info *li = NULL;
1609
	unsigned char plen = KEYLENGTH;
1610

1611
	hlist_for_each_entry_safe(li, tmp, lih, hlist) {
1612
		found += trie_flush_list(&li->falh);
1613 1614

		if (list_empty(&li->falh)) {
R
Robert Olsson 已提交
1615
			hlist_del_rcu(&li->hlist);
1616
			free_leaf_info(li);
1617
			continue;
1618
		}
1619 1620

		plen = li->plen;
1621
	}
1622 1623 1624

	l->slen = KEYLENGTH - plen;

1625 1626 1627
	return found;
}

1628 1629 1630 1631
/*
 * Scan for the next right leaf starting at node p->child[idx]
 * Since we have back pointer, no recursion necessary.
 */
A
Alexander Duyck 已提交
1632
static struct tnode *leaf_walk_rcu(struct tnode *p, struct tnode *c)
1633
{
1634
	do {
1635
		unsigned long idx = c ? idx = get_index(c->key, p) + 1 : 0;
R
Robert Olsson 已提交
1636

1637
		while (idx < tnode_child_length(p)) {
1638
			c = tnode_get_child_rcu(p, idx++);
R
Robert Olsson 已提交
1639
			if (!c)
O
Olof Johansson 已提交
1640 1641
				continue;

1642
			if (IS_LEAF(c))
A
Alexander Duyck 已提交
1643
				return c;
1644 1645

			/* Rescan start scanning in new node */
A
Alexander Duyck 已提交
1646
			p = c;
1647
			idx = 0;
1648
		}
1649 1650

		/* Node empty, walk back up to parent */
A
Alexander Duyck 已提交
1651
		c = p;
E
Eric Dumazet 已提交
1652
	} while ((p = node_parent_rcu(c)) != NULL);
1653 1654 1655 1656

	return NULL; /* Root of trie */
}

A
Alexander Duyck 已提交
1657
static struct tnode *trie_firstleaf(struct trie *t)
1658
{
A
Alexander Duyck 已提交
1659
	struct tnode *n = rcu_dereference_rtnl(t->trie);
1660 1661 1662 1663 1664

	if (!n)
		return NULL;

	if (IS_LEAF(n))          /* trie is just a leaf */
A
Alexander Duyck 已提交
1665
		return n;
1666 1667 1668 1669

	return leaf_walk_rcu(n, NULL);
}

A
Alexander Duyck 已提交
1670
static struct tnode *trie_nextleaf(struct tnode *l)
1671
{
A
Alexander Duyck 已提交
1672
	struct tnode *p = node_parent_rcu(l);
1673 1674 1675 1676

	if (!p)
		return NULL;	/* trie with just one leaf */

A
Alexander Duyck 已提交
1677
	return leaf_walk_rcu(p, l);
1678 1679
}

A
Alexander Duyck 已提交
1680
static struct tnode *trie_leafindex(struct trie *t, int index)
1681
{
A
Alexander Duyck 已提交
1682
	struct tnode *l = trie_firstleaf(t);
1683

S
Stephen Hemminger 已提交
1684
	while (l && index-- > 0)
1685
		l = trie_nextleaf(l);
S
Stephen Hemminger 已提交
1686

1687 1688 1689 1690
	return l;
}


1691 1692 1693
/*
 * Caller must hold RTNL.
 */
1694
int fib_table_flush(struct fib_table *tb)
1695 1696
{
	struct trie *t = (struct trie *) tb->tb_data;
A
Alexander Duyck 已提交
1697
	struct tnode *l, *ll = NULL;
1698
	int found = 0;
1699

1700
	for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1701
		found += trie_flush_leaf(l);
1702

1703 1704 1705 1706 1707 1708 1709
		if (ll) {
			if (hlist_empty(&ll->list))
				trie_leaf_remove(t, ll);
			else
				leaf_pull_suffix(ll);
		}

1710 1711 1712
		ll = l;
	}

1713 1714 1715 1716 1717 1718
	if (ll) {
		if (hlist_empty(&ll->list))
			trie_leaf_remove(t, ll);
		else
			leaf_pull_suffix(ll);
	}
1719

S
Stephen Hemminger 已提交
1720
	pr_debug("trie_flush found=%d\n", found);
1721 1722 1723
	return found;
}

1724 1725
void fib_free_table(struct fib_table *tb)
{
1726 1727 1728 1729 1730
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie *t = (struct trie *)tb->tb_data;

	free_percpu(t->stats);
#endif /* CONFIG_IP_FIB_TRIE_STATS */
1731 1732 1733
	kfree(tb);
}

1734 1735
static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
			   struct fib_table *tb,
1736 1737 1738 1739
			   struct sk_buff *skb, struct netlink_callback *cb)
{
	int i, s_i;
	struct fib_alias *fa;
A
Al Viro 已提交
1740
	__be32 xkey = htonl(key);
1741

1742
	s_i = cb->args[5];
1743 1744
	i = 0;

R
Robert Olsson 已提交
1745 1746 1747
	/* rcu_read_lock is hold by caller */

	list_for_each_entry_rcu(fa, fah, fa_list) {
1748 1749 1750 1751 1752
		if (i < s_i) {
			i++;
			continue;
		}

1753
		if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1754 1755 1756 1757
				  cb->nlh->nlmsg_seq,
				  RTM_NEWROUTE,
				  tb->tb_id,
				  fa->fa_type,
1758
				  xkey,
1759 1760
				  plen,
				  fa->fa_tos,
1761
				  fa->fa_info, NLM_F_MULTI) < 0) {
1762
			cb->args[5] = i;
1763
			return -1;
O
Olof Johansson 已提交
1764
		}
1765 1766
		i++;
	}
1767
	cb->args[5] = i;
1768 1769 1770
	return skb->len;
}

A
Alexander Duyck 已提交
1771
static int fn_trie_dump_leaf(struct tnode *l, struct fib_table *tb,
1772
			struct sk_buff *skb, struct netlink_callback *cb)
1773
{
1774 1775
	struct leaf_info *li;
	int i, s_i;
1776

1777
	s_i = cb->args[4];
1778
	i = 0;
1779

1780
	/* rcu_read_lock is hold by caller */
1781
	hlist_for_each_entry_rcu(li, &l->list, hlist) {
1782 1783
		if (i < s_i) {
			i++;
1784
			continue;
1785
		}
O
Olof Johansson 已提交
1786

1787
		if (i > s_i)
1788
			cb->args[5] = 0;
1789

1790
		if (list_empty(&li->falh))
1791 1792
			continue;

1793
		if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1794
			cb->args[4] = i;
1795 1796
			return -1;
		}
1797
		i++;
1798
	}
1799

1800
	cb->args[4] = i;
1801 1802 1803
	return skb->len;
}

1804 1805
int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
		   struct netlink_callback *cb)
1806
{
A
Alexander Duyck 已提交
1807
	struct tnode *l;
1808
	struct trie *t = (struct trie *) tb->tb_data;
1809
	t_key key = cb->args[2];
1810
	int count = cb->args[3];
1811

R
Robert Olsson 已提交
1812
	rcu_read_lock();
1813 1814 1815
	/* Dump starting at last key.
	 * Note: 0.0.0.0/0 (ie default) is first key.
	 */
1816
	if (count == 0)
1817 1818
		l = trie_firstleaf(t);
	else {
1819 1820 1821
		/* Normally, continue from last key, but if that is missing
		 * fallback to using slow rescan
		 */
1822
		l = fib_find_node(t, key);
1823 1824
		if (!l)
			l = trie_leafindex(t, count);
1825
	}
1826

1827 1828
	while (l) {
		cb->args[2] = l->key;
1829
		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1830
			cb->args[3] = count;
1831 1832
			rcu_read_unlock();
			return -1;
1833
		}
1834

1835
		++count;
1836
		l = trie_nextleaf(l);
1837 1838
		memset(&cb->args[4], 0,
		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1839
	}
1840
	cb->args[3] = count;
R
Robert Olsson 已提交
1841
	rcu_read_unlock();
1842

1843 1844 1845
	return skb->len;
}

1846
void __init fib_trie_init(void)
1847
{
1848 1849
	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
					  sizeof(struct fib_alias),
1850 1851 1852
					  0, SLAB_PANIC, NULL);

	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
A
Alexander Duyck 已提交
1853
					   max(sizeof(struct tnode),
1854 1855
					       sizeof(struct leaf_info)),
					   0, SLAB_PANIC, NULL);
1856
}
1857

1858

1859
struct fib_table *fib_trie_table(u32 id)
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
{
	struct fib_table *tb;
	struct trie *t;

	tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
		     GFP_KERNEL);
	if (tb == NULL)
		return NULL;

	tb->tb_id = id;
1870
	tb->tb_default = -1;
1871
	tb->tb_num_default = 0;
1872 1873

	t = (struct trie *) tb->tb_data;
1874 1875 1876 1877 1878 1879 1880 1881
	RCU_INIT_POINTER(t->trie, NULL);
#ifdef CONFIG_IP_FIB_TRIE_STATS
	t->stats = alloc_percpu(struct trie_use_stats);
	if (!t->stats) {
		kfree(tb);
		tb = NULL;
	}
#endif
1882 1883 1884 1885

	return tb;
}

1886 1887 1888
#ifdef CONFIG_PROC_FS
/* Depth first Trie walk iterator */
struct fib_trie_iter {
1889
	struct seq_net_private p;
1890
	struct fib_table *tb;
1891
	struct tnode *tnode;
E
Eric Dumazet 已提交
1892 1893
	unsigned int index;
	unsigned int depth;
1894
};
1895

A
Alexander Duyck 已提交
1896
static struct tnode *fib_trie_get_next(struct fib_trie_iter *iter)
1897
{
1898
	unsigned long cindex = iter->index;
1899 1900
	struct tnode *tn = iter->tnode;
	struct tnode *p;
1901

1902 1903 1904 1905
	/* A single entry routing table */
	if (!tn)
		return NULL;

1906 1907 1908
	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
		 iter->tnode, iter->index, iter->depth);
rescan:
1909
	while (cindex < tnode_child_length(tn)) {
A
Alexander Duyck 已提交
1910
		struct tnode *n = tnode_get_child_rcu(tn, cindex);
1911

1912 1913 1914 1915 1916 1917
		if (n) {
			if (IS_LEAF(n)) {
				iter->tnode = tn;
				iter->index = cindex + 1;
			} else {
				/* push down one level */
A
Alexander Duyck 已提交
1918
				iter->tnode = n;
1919 1920 1921 1922 1923
				iter->index = 0;
				++iter->depth;
			}
			return n;
		}
1924

1925 1926
		++cindex;
	}
O
Olof Johansson 已提交
1927

1928
	/* Current node exhausted, pop back up */
A
Alexander Duyck 已提交
1929
	p = node_parent_rcu(tn);
1930
	if (p) {
1931
		cindex = get_index(tn->key, p) + 1;
1932 1933 1934
		tn = p;
		--iter->depth;
		goto rescan;
1935
	}
1936 1937 1938

	/* got root? */
	return NULL;
1939 1940
}

A
Alexander Duyck 已提交
1941
static struct tnode *fib_trie_get_first(struct fib_trie_iter *iter,
1942
				       struct trie *t)
1943
{
A
Alexander Duyck 已提交
1944
	struct tnode *n;
1945

S
Stephen Hemminger 已提交
1946
	if (!t)
1947 1948 1949
		return NULL;

	n = rcu_dereference(t->trie);
1950
	if (!n)
1951
		return NULL;
1952

1953
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
1954
		iter->tnode = n;
1955 1956 1957 1958 1959 1960
		iter->index = 0;
		iter->depth = 1;
	} else {
		iter->tnode = NULL;
		iter->index = 0;
		iter->depth = 0;
O
Olof Johansson 已提交
1961
	}
1962 1963

	return n;
1964
}
O
Olof Johansson 已提交
1965

1966 1967
static void trie_collect_stats(struct trie *t, struct trie_stat *s)
{
A
Alexander Duyck 已提交
1968
	struct tnode *n;
1969
	struct fib_trie_iter iter;
O
Olof Johansson 已提交
1970

1971
	memset(s, 0, sizeof(*s));
O
Olof Johansson 已提交
1972

1973
	rcu_read_lock();
1974
	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
1975
		if (IS_LEAF(n)) {
1976 1977
			struct leaf_info *li;

1978 1979 1980 1981
			s->leaves++;
			s->totdepth += iter.depth;
			if (iter.depth > s->maxdepth)
				s->maxdepth = iter.depth;
1982

A
Alexander Duyck 已提交
1983
			hlist_for_each_entry_rcu(li, &n->list, hlist)
1984
				++s->prefixes;
1985 1986
		} else {
			s->tnodes++;
A
Alexander Duyck 已提交
1987 1988
			if (n->bits < MAX_STAT_DEPTH)
				s->nodesizes[n->bits]++;
1989
			s->nullpointers += n->empty_children;
1990 1991
		}
	}
R
Robert Olsson 已提交
1992
	rcu_read_unlock();
1993 1994
}

1995 1996 1997 1998
/*
 *	This outputs /proc/net/fib_triestats
 */
static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
1999
{
E
Eric Dumazet 已提交
2000
	unsigned int i, max, pointers, bytes, avdepth;
2001

2002 2003 2004 2005
	if (stat->leaves)
		avdepth = stat->totdepth*100 / stat->leaves;
	else
		avdepth = 0;
O
Olof Johansson 已提交
2006

2007 2008
	seq_printf(seq, "\tAver depth:     %u.%02d\n",
		   avdepth / 100, avdepth % 100);
2009
	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
O
Olof Johansson 已提交
2010

2011
	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
A
Alexander Duyck 已提交
2012
	bytes = sizeof(struct tnode) * stat->leaves;
2013 2014 2015 2016

	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
	bytes += sizeof(struct leaf_info) * stat->prefixes;

2017
	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2018
	bytes += sizeof(struct tnode) * stat->tnodes;
2019

R
Robert Olsson 已提交
2020 2021
	max = MAX_STAT_DEPTH;
	while (max > 0 && stat->nodesizes[max-1] == 0)
2022
		max--;
2023

2024
	pointers = 0;
2025
	for (i = 1; i < max; i++)
2026
		if (stat->nodesizes[i] != 0) {
2027
			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2028 2029 2030
			pointers += (1<<i) * stat->nodesizes[i];
		}
	seq_putc(seq, '\n');
2031
	seq_printf(seq, "\tPointers: %u\n", pointers);
R
Robert Olsson 已提交
2032

A
Alexander Duyck 已提交
2033
	bytes += sizeof(struct tnode *) * pointers;
2034 2035
	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2036
}
R
Robert Olsson 已提交
2037

2038
#ifdef CONFIG_IP_FIB_TRIE_STATS
2039
static void trie_show_usage(struct seq_file *seq,
2040
			    const struct trie_use_stats __percpu *stats)
2041
{
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
	struct trie_use_stats s = { 0 };
	int cpu;

	/* loop through all of the CPUs and gather up the stats */
	for_each_possible_cpu(cpu) {
		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);

		s.gets += pcpu->gets;
		s.backtrack += pcpu->backtrack;
		s.semantic_match_passed += pcpu->semantic_match_passed;
		s.semantic_match_miss += pcpu->semantic_match_miss;
		s.null_node_hit += pcpu->null_node_hit;
		s.resize_node_skipped += pcpu->resize_node_skipped;
	}

2057
	seq_printf(seq, "\nCounters:\n---------\n");
2058 2059
	seq_printf(seq, "gets = %u\n", s.gets);
	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2060
	seq_printf(seq, "semantic match passed = %u\n",
2061 2062 2063 2064
		   s.semantic_match_passed);
	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2065
}
2066 2067
#endif /*  CONFIG_IP_FIB_TRIE_STATS */

2068
static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2069
{
2070 2071 2072 2073 2074 2075
	if (tb->tb_id == RT_TABLE_LOCAL)
		seq_puts(seq, "Local:\n");
	else if (tb->tb_id == RT_TABLE_MAIN)
		seq_puts(seq, "Main:\n");
	else
		seq_printf(seq, "Id %d:\n", tb->tb_id);
2076
}
2077

2078

2079 2080
static int fib_triestat_seq_show(struct seq_file *seq, void *v)
{
2081
	struct net *net = (struct net *)seq->private;
2082
	unsigned int h;
2083

2084
	seq_printf(seq,
2085 2086
		   "Basic info: size of leaf:"
		   " %Zd bytes, size of tnode: %Zd bytes.\n",
A
Alexander Duyck 已提交
2087
		   sizeof(struct tnode), sizeof(struct tnode));
2088

2089 2090 2091 2092
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;

2093
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2094 2095
			struct trie *t = (struct trie *) tb->tb_data;
			struct trie_stat stat;
2096

2097 2098 2099 2100 2101 2102 2103 2104
			if (!t)
				continue;

			fib_table_print(seq, tb);

			trie_collect_stats(t, &stat);
			trie_show_stats(seq, &stat);
#ifdef CONFIG_IP_FIB_TRIE_STATS
2105
			trie_show_usage(seq, t->stats);
2106 2107 2108
#endif
		}
	}
2109

2110
	return 0;
2111 2112
}

2113
static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2114
{
2115
	return single_open_net(inode, file, fib_triestat_seq_show);
2116 2117
}

2118
static const struct file_operations fib_triestat_fops = {
2119 2120 2121 2122
	.owner	= THIS_MODULE,
	.open	= fib_triestat_seq_open,
	.read	= seq_read,
	.llseek	= seq_lseek,
2123
	.release = single_release_net,
2124 2125
};

A
Alexander Duyck 已提交
2126
static struct tnode *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2127
{
2128 2129
	struct fib_trie_iter *iter = seq->private;
	struct net *net = seq_file_net(seq);
2130
	loff_t idx = 0;
2131
	unsigned int h;
2132

2133 2134 2135
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;
2136

2137
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
A
Alexander Duyck 已提交
2138
			struct tnode *n;
2139 2140 2141 2142 2143 2144 2145 2146 2147

			for (n = fib_trie_get_first(iter,
						    (struct trie *) tb->tb_data);
			     n; n = fib_trie_get_next(iter))
				if (pos == idx++) {
					iter->tb = tb;
					return n;
				}
		}
2148
	}
2149

2150 2151 2152
	return NULL;
}

2153
static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2154
	__acquires(RCU)
2155
{
2156
	rcu_read_lock();
2157
	return fib_trie_get_idx(seq, *pos);
2158 2159
}

2160
static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2161
{
2162
	struct fib_trie_iter *iter = seq->private;
2163
	struct net *net = seq_file_net(seq);
2164 2165 2166
	struct fib_table *tb = iter->tb;
	struct hlist_node *tb_node;
	unsigned int h;
A
Alexander Duyck 已提交
2167
	struct tnode *n;
2168

2169
	++*pos;
2170 2171 2172 2173
	/* next node in same table */
	n = fib_trie_get_next(iter);
	if (n)
		return n;
2174

2175 2176
	/* walk rest of this hash chain */
	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
E
Eric Dumazet 已提交
2177
	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2178 2179 2180 2181 2182
		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
		if (n)
			goto found;
	}
2183

2184 2185 2186
	/* new hash chain */
	while (++h < FIB_TABLE_HASHSZ) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2187
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2188 2189 2190 2191 2192
			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
			if (n)
				goto found;
		}
	}
2193
	return NULL;
2194 2195 2196 2197

found:
	iter->tb = tb;
	return n;
2198
}
2199

2200
static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2201
	__releases(RCU)
2202
{
2203 2204
	rcu_read_unlock();
}
O
Olof Johansson 已提交
2205

2206 2207
static void seq_indent(struct seq_file *seq, int n)
{
E
Eric Dumazet 已提交
2208 2209
	while (n-- > 0)
		seq_puts(seq, "   ");
2210
}
2211

2212
static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2213
{
S
Stephen Hemminger 已提交
2214
	switch (s) {
2215 2216 2217 2218 2219 2220
	case RT_SCOPE_UNIVERSE: return "universe";
	case RT_SCOPE_SITE:	return "site";
	case RT_SCOPE_LINK:	return "link";
	case RT_SCOPE_HOST:	return "host";
	case RT_SCOPE_NOWHERE:	return "nowhere";
	default:
2221
		snprintf(buf, len, "scope=%d", s);
2222 2223 2224
		return buf;
	}
}
2225

2226
static const char *const rtn_type_names[__RTN_MAX] = {
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
	[RTN_UNSPEC] = "UNSPEC",
	[RTN_UNICAST] = "UNICAST",
	[RTN_LOCAL] = "LOCAL",
	[RTN_BROADCAST] = "BROADCAST",
	[RTN_ANYCAST] = "ANYCAST",
	[RTN_MULTICAST] = "MULTICAST",
	[RTN_BLACKHOLE] = "BLACKHOLE",
	[RTN_UNREACHABLE] = "UNREACHABLE",
	[RTN_PROHIBIT] = "PROHIBIT",
	[RTN_THROW] = "THROW",
	[RTN_NAT] = "NAT",
	[RTN_XRESOLVE] = "XRESOLVE",
};
2240

E
Eric Dumazet 已提交
2241
static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2242 2243 2244
{
	if (t < __RTN_MAX && rtn_type_names[t])
		return rtn_type_names[t];
2245
	snprintf(buf, len, "type %u", t);
2246
	return buf;
2247 2248
}

2249 2250
/* Pretty print the trie */
static int fib_trie_seq_show(struct seq_file *seq, void *v)
2251
{
2252
	const struct fib_trie_iter *iter = seq->private;
A
Alexander Duyck 已提交
2253
	struct tnode *n = v;
2254

2255 2256
	if (!node_parent_rcu(n))
		fib_table_print(seq, iter->tb);
2257

2258
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
2259
		__be32 prf = htonl(n->key);
O
Olof Johansson 已提交
2260

2261 2262 2263 2264
		seq_indent(seq, iter->depth-1);
		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
			   n->full_children, n->empty_children);
2265
	} else {
2266
		struct leaf_info *li;
A
Alexander Duyck 已提交
2267
		__be32 val = htonl(n->key);
2268 2269

		seq_indent(seq, iter->depth);
2270
		seq_printf(seq, "  |-- %pI4\n", &val);
2271

A
Alexander Duyck 已提交
2272
		hlist_for_each_entry_rcu(li, &n->list, hlist) {
2273 2274 2275 2276 2277 2278 2279 2280
			struct fib_alias *fa;

			list_for_each_entry_rcu(fa, &li->falh, fa_list) {
				char buf1[32], buf2[32];

				seq_indent(seq, iter->depth+1);
				seq_printf(seq, "  /%d %s %s", li->plen,
					   rtn_scope(buf1, sizeof(buf1),
2281
						     fa->fa_info->fib_scope),
2282 2283 2284
					   rtn_type(buf2, sizeof(buf2),
						    fa->fa_type));
				if (fa->fa_tos)
2285
					seq_printf(seq, " tos=%d", fa->fa_tos);
2286
				seq_putc(seq, '\n');
2287 2288
			}
		}
2289
	}
2290

2291 2292 2293
	return 0;
}

2294
static const struct seq_operations fib_trie_seq_ops = {
2295 2296 2297 2298
	.start  = fib_trie_seq_start,
	.next   = fib_trie_seq_next,
	.stop   = fib_trie_seq_stop,
	.show   = fib_trie_seq_show,
2299 2300
};

2301
static int fib_trie_seq_open(struct inode *inode, struct file *file)
2302
{
2303 2304
	return seq_open_net(inode, file, &fib_trie_seq_ops,
			    sizeof(struct fib_trie_iter));
2305 2306
}

2307
static const struct file_operations fib_trie_fops = {
2308 2309 2310 2311
	.owner  = THIS_MODULE,
	.open   = fib_trie_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2312
	.release = seq_release_net,
2313 2314
};

2315 2316 2317 2318 2319 2320 2321
struct fib_route_iter {
	struct seq_net_private p;
	struct trie *main_trie;
	loff_t	pos;
	t_key	key;
};

A
Alexander Duyck 已提交
2322
static struct tnode *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2323
{
A
Alexander Duyck 已提交
2324
	struct tnode *l = NULL;
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
	struct trie *t = iter->main_trie;

	/* use cache location of last found key */
	if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
		pos -= iter->pos;
	else {
		iter->pos = 0;
		l = trie_firstleaf(t);
	}

	while (l && pos-- > 0) {
		iter->pos++;
		l = trie_nextleaf(l);
	}

	if (l)
		iter->key = pos;	/* remember it */
	else
		iter->pos = 0;		/* forget it */

	return l;
}

static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
	__acquires(RCU)
{
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb;

	rcu_read_lock();
2355
	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
	if (!tb)
		return NULL;

	iter->main_trie = (struct trie *) tb->tb_data;
	if (*pos == 0)
		return SEQ_START_TOKEN;
	else
		return fib_route_get_idx(iter, *pos - 1);
}

static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
	struct fib_route_iter *iter = seq->private;
A
Alexander Duyck 已提交
2369
	struct tnode *l = v;
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392

	++*pos;
	if (v == SEQ_START_TOKEN) {
		iter->pos = 0;
		l = trie_firstleaf(iter->main_trie);
	} else {
		iter->pos++;
		l = trie_nextleaf(l);
	}

	if (l)
		iter->key = l->key;
	else
		iter->pos = 0;
	return l;
}

static void fib_route_seq_stop(struct seq_file *seq, void *v)
	__releases(RCU)
{
	rcu_read_unlock();
}

E
Eric Dumazet 已提交
2393
static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2394
{
E
Eric Dumazet 已提交
2395
	unsigned int flags = 0;
2396

E
Eric Dumazet 已提交
2397 2398
	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
		flags = RTF_REJECT;
2399 2400
	if (fi && fi->fib_nh->nh_gw)
		flags |= RTF_GATEWAY;
A
Al Viro 已提交
2401
	if (mask == htonl(0xFFFFFFFF))
2402 2403 2404
		flags |= RTF_HOST;
	flags |= RTF_UP;
	return flags;
2405 2406
}

2407 2408 2409
/*
 *	This outputs /proc/net/route.
 *	The format of the file is not supposed to be changed
E
Eric Dumazet 已提交
2410
 *	and needs to be same as fib_hash output to avoid breaking
2411 2412 2413
 *	legacy utilities
 */
static int fib_route_seq_show(struct seq_file *seq, void *v)
2414
{
A
Alexander Duyck 已提交
2415
	struct tnode *l = v;
2416
	struct leaf_info *li;
2417

2418 2419 2420 2421 2422 2423
	if (v == SEQ_START_TOKEN) {
		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
			   "\tWindow\tIRTT");
		return 0;
	}
2424

2425
	hlist_for_each_entry_rcu(li, &l->list, hlist) {
2426
		struct fib_alias *fa;
A
Al Viro 已提交
2427
		__be32 mask, prefix;
O
Olof Johansson 已提交
2428

2429 2430
		mask = inet_make_mask(li->plen);
		prefix = htonl(l->key);
2431

2432
		list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2433
			const struct fib_info *fi = fa->fa_info;
E
Eric Dumazet 已提交
2434
			unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2435

2436 2437 2438
			if (fa->fa_type == RTN_BROADCAST
			    || fa->fa_type == RTN_MULTICAST)
				continue;
2439

2440 2441
			seq_setwidth(seq, 127);

2442
			if (fi)
2443 2444
				seq_printf(seq,
					 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2445
					 "%d\t%08X\t%d\t%u\t%u",
2446 2447 2448 2449 2450
					 fi->fib_dev ? fi->fib_dev->name : "*",
					 prefix,
					 fi->fib_nh->nh_gw, flags, 0, 0,
					 fi->fib_priority,
					 mask,
2451 2452
					 (fi->fib_advmss ?
					  fi->fib_advmss + 40 : 0),
2453
					 fi->fib_window,
2454
					 fi->fib_rtt >> 3);
2455
			else
2456 2457
				seq_printf(seq,
					 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2458
					 "%d\t%08X\t%d\t%u\t%u",
2459
					 prefix, 0, flags, 0, 0, 0,
2460
					 mask, 0, 0, 0);
2461

2462
			seq_pad(seq, '\n');
2463
		}
2464 2465 2466 2467 2468
	}

	return 0;
}

2469
static const struct seq_operations fib_route_seq_ops = {
2470 2471 2472
	.start  = fib_route_seq_start,
	.next   = fib_route_seq_next,
	.stop   = fib_route_seq_stop,
2473
	.show   = fib_route_seq_show,
2474 2475
};

2476
static int fib_route_seq_open(struct inode *inode, struct file *file)
2477
{
2478
	return seq_open_net(inode, file, &fib_route_seq_ops,
2479
			    sizeof(struct fib_route_iter));
2480 2481
}

2482
static const struct file_operations fib_route_fops = {
2483 2484 2485 2486
	.owner  = THIS_MODULE,
	.open   = fib_route_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2487
	.release = seq_release_net,
2488 2489
};

2490
int __net_init fib_proc_init(struct net *net)
2491
{
2492
	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2493 2494
		goto out1;

2495 2496
	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
			 &fib_triestat_fops))
2497 2498
		goto out2;

2499
	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2500 2501
		goto out3;

2502
	return 0;
2503 2504

out3:
2505
	remove_proc_entry("fib_triestat", net->proc_net);
2506
out2:
2507
	remove_proc_entry("fib_trie", net->proc_net);
2508 2509
out1:
	return -ENOMEM;
2510 2511
}

2512
void __net_exit fib_proc_exit(struct net *net)
2513
{
2514 2515 2516
	remove_proc_entry("fib_trie", net->proc_net);
	remove_proc_entry("fib_triestat", net->proc_net);
	remove_proc_entry("route", net->proc_net);
2517 2518 2519
}

#endif /* CONFIG_PROC_FS */