fib_trie.c 61.3 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation; either version
 *   2 of the License, or (at your option) any later version.
 *
 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
 *     & Swedish University of Agricultural Sciences.
 *
10
 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11
 *     Agricultural Sciences.
12
 *
13 14
 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
 *
L
Lucas De Marchi 已提交
15
 * This work is based on the LPC-trie which is originally described in:
16
 *
17 18
 * An experimental study of compression methods for dynamic tries
 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19
 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 *
 *
 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
 *
 *
 * Code from fib_hash has been reused which includes the following header:
 *
 *
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 *		operating system.  INET is implemented using the  BSD Socket
 *		interface as the means of communication with the user level.
 *
 *		IPv4 FIB: lookup engine and maintenance routines.
 *
 *
 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
 *
 *		This program is free software; you can redistribute it and/or
 *		modify it under the terms of the GNU General Public License
 *		as published by the Free Software Foundation; either version
 *		2 of the License, or (at your option) any later version.
R
Robert Olsson 已提交
42 43 44 45 46 47 48
 *
 * Substantial contributions to this work comes from:
 *
 *		David S. Miller, <davem@davemloft.net>
 *		Stephen Hemminger <shemminger@osdl.org>
 *		Paul E. McKenney <paulmck@us.ibm.com>
 *		Patrick McHardy <kaber@trash.net>
49 50
 */

J
Jens Låås 已提交
51
#define VERSION "0.409"
52 53

#include <asm/uaccess.h>
J
Jiri Slaby 已提交
54
#include <linux/bitops.h>
55 56 57 58 59 60 61 62 63
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/inet.h>
S
Stephen Hemminger 已提交
64
#include <linux/inetdevice.h>
65 66 67
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/proc_fs.h>
R
Robert Olsson 已提交
68
#include <linux/rcupdate.h>
69 70 71 72
#include <linux/skbuff.h>
#include <linux/netlink.h>
#include <linux/init.h>
#include <linux/list.h>
73
#include <linux/slab.h>
74
#include <linux/export.h>
75
#include <net/net_namespace.h>
76 77 78 79 80 81
#include <net/ip.h>
#include <net/protocol.h>
#include <net/route.h>
#include <net/tcp.h>
#include <net/sock.h>
#include <net/ip_fib.h>
82
#include <net/switchdev.h>
83 84
#include "fib_lookup.h"

R
Robert Olsson 已提交
85
#define MAX_STAT_DEPTH 32
86

87 88
#define KEYLENGTH	(8*sizeof(t_key))
#define KEY_MAX		((t_key)~0)
89 90 91

typedef unsigned int t_key;

92 93
#define IS_TNODE(n) ((n)->bits)
#define IS_LEAF(n) (!(n)->bits)
R
Robert Olsson 已提交
94

95
#define get_index(_key, _kv) (((_key) ^ (_kv)->key) >> (_kv)->pos)
96

97
struct key_vector {
98 99 100 101
	struct rcu_head rcu;

	t_key empty_children; /* KEYLENGTH bits needed */
	t_key full_children;  /* KEYLENGTH bits needed */
102
	struct key_vector __rcu *parent;
103

104 105
	t_key key;
	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
106
	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
107
	unsigned char slen;
A
Alexander Duyck 已提交
108
	union {
109
		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
A
Alexander Duyck 已提交
110
		struct hlist_head leaf;
111
		/* This array is valid if (pos | bits) > 0 (TNODE) */
112
		struct key_vector __rcu *tnode[0];
A
Alexander Duyck 已提交
113
	};
114 115
};

116
#define TNODE_SIZE(n)	offsetof(struct key_vector, tnode[n])
117 118
#define LEAF_SIZE	TNODE_SIZE(1)

119 120 121 122 123 124 125
#ifdef CONFIG_IP_FIB_TRIE_STATS
struct trie_use_stats {
	unsigned int gets;
	unsigned int backtrack;
	unsigned int semantic_match_passed;
	unsigned int semantic_match_miss;
	unsigned int null_node_hit;
126
	unsigned int resize_node_skipped;
127 128 129 130 131 132 133 134 135
};
#endif

struct trie_stat {
	unsigned int totdepth;
	unsigned int maxdepth;
	unsigned int tnodes;
	unsigned int leaves;
	unsigned int nullpointers;
136
	unsigned int prefixes;
R
Robert Olsson 已提交
137
	unsigned int nodesizes[MAX_STAT_DEPTH];
138
};
139 140

struct trie {
141
	struct key_vector __rcu *tnode[1];
142
#ifdef CONFIG_IP_FIB_TRIE_STATS
143
	struct trie_use_stats __percpu *stats;
144 145 146
#endif
};

147
static struct key_vector **resize(struct trie *t, struct key_vector *tn);
148 149 150 151 152 153 154 155
static size_t tnode_free_size;

/*
 * synchronize_rcu after call_rcu for that many pages; it should be especially
 * useful before resizing the root node with PREEMPT_NONE configs; the value was
 * obtained experimentally, aiming to avoid visible slowdown.
 */
static const int sync_pages = 128;
156

157
static struct kmem_cache *fn_alias_kmem __read_mostly;
158
static struct kmem_cache *trie_leaf_kmem __read_mostly;
159

160 161
/* caller must hold RTNL */
#define node_parent(n) rtnl_dereference((n)->parent)
E
Eric Dumazet 已提交
162

163 164
/* caller must hold RCU read lock or RTNL */
#define node_parent_rcu(n) rcu_dereference_rtnl((n)->parent)
E
Eric Dumazet 已提交
165

166
/* wrapper for rcu_assign_pointer */
167
static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
168
{
A
Alexander Duyck 已提交
169 170
	if (n)
		rcu_assign_pointer(n->parent, tp);
S
Stephen Hemminger 已提交
171 172
}

173 174 175 176
#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER((n)->parent, p)

/* This provides us with the number of children in this node, in the case of a
 * leaf this will return 0 meaning none of the children are accessible.
177
 */
178
static inline unsigned long tnode_child_length(const struct key_vector *tn)
S
Stephen Hemminger 已提交
179
{
180
	return (1ul << tn->bits) & ~(1ul);
S
Stephen Hemminger 已提交
181
}
R
Robert Olsson 已提交
182

183
/* caller must hold RTNL */
184 185
static inline struct key_vector *tnode_get_child(struct key_vector *tn,
						 unsigned long i)
186
{
187
	return rtnl_dereference(tn->tnode[i]);
188 189
}

190
/* caller must hold RCU read lock or RTNL */
191 192
static inline struct key_vector *tnode_get_child_rcu(struct key_vector *tn,
						     unsigned long i)
193
{
194
	return rcu_dereference_rtnl(tn->tnode[i]);
195 196
}

197 198 199 200 201 202 203
static inline struct fib_table *trie_get_table(struct trie *t)
{
	unsigned long *tb_data = (unsigned long *)t;

	return container_of(tb_data, struct fib_table, tb_data[0]);
}

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
/* To understand this stuff, an understanding of keys and all their bits is
 * necessary. Every node in the trie has a key associated with it, but not
 * all of the bits in that key are significant.
 *
 * Consider a node 'n' and its parent 'tp'.
 *
 * If n is a leaf, every bit in its key is significant. Its presence is
 * necessitated by path compression, since during a tree traversal (when
 * searching for a leaf - unless we are doing an insertion) we will completely
 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 * a potentially successful search, that we have indeed been walking the
 * correct key path.
 *
 * Note that we can never "miss" the correct key in the tree if present by
 * following the wrong path. Path compression ensures that segments of the key
 * that are the same for all keys with a given prefix are skipped, but the
 * skipped part *is* identical for each node in the subtrie below the skipped
 * bit! trie_insert() in this implementation takes care of that.
 *
 * if n is an internal node - a 'tnode' here, the various parts of its key
 * have many different meanings.
 *
 * Example:
 * _________________________________________________________________
 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 * -----------------------------------------------------------------
 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 *
 * _________________________________________________________________
 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 * -----------------------------------------------------------------
 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 *
 * tp->pos = 22
 * tp->bits = 3
 * n->pos = 13
 * n->bits = 4
 *
 * First, let's just ignore the bits that come before the parent tp, that is
 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 * point we do not use them for anything.
 *
 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 * index into the parent's child array. That is, they will be used to find
 * 'n' among tp's children.
 *
 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
 * for the node n.
 *
 * All the bits we have seen so far are significant to the node n. The rest
 * of the bits are really not needed or indeed known in n->key.
 *
 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 * n's child array, and will of course be different for each child.
 *
 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
 * at this point.
 */
262

263 264
static const int halve_threshold = 25;
static const int inflate_threshold = 50;
265
static const int halve_threshold_root = 15;
J
Jens Låås 已提交
266
static const int inflate_threshold_root = 30;
R
Robert Olsson 已提交
267 268

static void __alias_free_mem(struct rcu_head *head)
269
{
R
Robert Olsson 已提交
270 271
	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
	kmem_cache_free(fn_alias_kmem, fa);
272 273
}

R
Robert Olsson 已提交
274
static inline void alias_free_mem_rcu(struct fib_alias *fa)
275
{
R
Robert Olsson 已提交
276 277
	call_rcu(&fa->rcu, __alias_free_mem);
}
O
Olof Johansson 已提交
278

279
#define TNODE_KMALLOC_MAX \
280
	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
281
#define TNODE_VMALLOC_MAX \
282
	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
O
Olof Johansson 已提交
283

284
static void __node_free_rcu(struct rcu_head *head)
285
{
286
	struct key_vector *n = container_of(head, struct key_vector, rcu);
287 288 289 290 291 292 293

	if (IS_LEAF(n))
		kmem_cache_free(trie_leaf_kmem, n);
	else if (n->bits <= TNODE_KMALLOC_MAX)
		kfree(n);
	else
		vfree(n);
294 295
}

296 297
#define node_free(n) call_rcu(&n->rcu, __node_free_rcu)

298
static struct key_vector *tnode_alloc(int bits)
299
{
300 301 302 303 304 305 306 307 308
	size_t size;

	/* verify bits is within bounds */
	if (bits > TNODE_VMALLOC_MAX)
		return NULL;

	/* determine size and verify it is non-zero and didn't overflow */
	size = TNODE_SIZE(1ul << bits);

R
Robert Olsson 已提交
309
	if (size <= PAGE_SIZE)
310
		return kzalloc(size, GFP_KERNEL);
311
	else
312
		return vzalloc(size);
313
}
R
Robert Olsson 已提交
314

315
static inline void empty_child_inc(struct key_vector *n)
316 317 318 319
{
	++n->empty_children ? : ++n->full_children;
}

320
static inline void empty_child_dec(struct key_vector *n)
321 322 323 324
{
	n->empty_children-- ? : n->full_children--;
}

325
static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
R
Robert Olsson 已提交
326
{
327
	struct key_vector *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
R
Robert Olsson 已提交
328
	if (l) {
329 330 331 332 333 334
		l->parent = NULL;
		/* set key and pos to reflect full key value
		 * any trailing zeros in the key should be ignored
		 * as the nodes are searched
		 */
		l->key = key;
335
		l->slen = fa->fa_slen;
336
		l->pos = 0;
337 338 339
		/* set bits to 0 indicating we are not a tnode */
		l->bits = 0;

340
		/* link leaf to fib alias */
A
Alexander Duyck 已提交
341
		INIT_HLIST_HEAD(&l->leaf);
342
		hlist_add_head(&fa->fa_list, &l->leaf);
R
Robert Olsson 已提交
343 344 345 346
	}
	return l;
}

347
static struct key_vector *tnode_new(t_key key, int pos, int bits)
348
{
349
	struct key_vector *tn = tnode_alloc(bits);
350 351 352 353
	unsigned int shift = pos + bits;

	/* verify bits and pos their msb bits clear and values are valid */
	BUG_ON(!bits || (shift > KEYLENGTH));
354

O
Olof Johansson 已提交
355
	if (tn) {
356
		tn->parent = NULL;
357
		tn->slen = pos;
358 359
		tn->pos = pos;
		tn->bits = bits;
360
		tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
361 362 363 364
		if (bits == KEYLENGTH)
			tn->full_children = 1;
		else
			tn->empty_children = 1ul << bits;
365
	}
366

367
	pr_debug("AT %p s=%zu %zu\n", tn, TNODE_SIZE(0),
368
		 sizeof(struct key_vector *) << bits);
369 370 371
	return tn;
}

372
/* Check whether a tnode 'n' is "full", i.e. it is an internal node
373 374
 * and no bits are skipped. See discussion in dyntree paper p. 6
 */
375
static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
376
{
377
	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
378 379
}

380 381 382
/* Add a child at position i overwriting the old value.
 * Update the value of full_children and empty_children.
 */
383 384
static void put_child(struct key_vector *tn, unsigned long i,
		      struct key_vector *n)
385
{
386
	struct key_vector *chi = tnode_get_child(tn, i);
387
	int isfull, wasfull;
388

389
	BUG_ON(i >= tnode_child_length(tn));
S
Stephen Hemminger 已提交
390

391
	/* update emptyChildren, overflow into fullChildren */
392
	if (n == NULL && chi != NULL)
393 394 395
		empty_child_inc(tn);
	if (n != NULL && chi == NULL)
		empty_child_dec(tn);
396

397
	/* update fullChildren */
398
	wasfull = tnode_full(tn, chi);
399
	isfull = tnode_full(tn, n);
400

401
	if (wasfull && !isfull)
402
		tn->full_children--;
403
	else if (!wasfull && isfull)
404
		tn->full_children++;
O
Olof Johansson 已提交
405

406 407 408
	if (n && (tn->slen < n->slen))
		tn->slen = n->slen;

409
	rcu_assign_pointer(tn->tnode[i], n);
410 411
}

412
static void update_children(struct key_vector *tn)
413 414 415 416 417
{
	unsigned long i;

	/* update all of the child parent pointers */
	for (i = tnode_child_length(tn); i;) {
418
		struct key_vector *inode = tnode_get_child(tn, --i);
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433

		if (!inode)
			continue;

		/* Either update the children of a tnode that
		 * already belongs to us or update the child
		 * to point to ourselves.
		 */
		if (node_parent(inode) == tn)
			update_children(inode);
		else
			node_set_parent(inode, tn);
	}
}

434 435
static inline void put_child_root(struct key_vector *tp, struct trie *t,
				  t_key key, struct key_vector *n)
436 437 438 439
{
	if (tp)
		put_child(tp, get_index(key, tp), n);
	else
440
		rcu_assign_pointer(t->tnode[0], n);
441 442
}

443
static inline void tnode_free_init(struct key_vector *tn)
E
Eric Dumazet 已提交
444
{
445 446 447
	tn->rcu.next = NULL;
}

448 449
static inline void tnode_free_append(struct key_vector *tn,
				     struct key_vector *n)
450 451 452 453
{
	n->rcu.next = tn->rcu.next;
	tn->rcu.next = &n->rcu;
}
E
Eric Dumazet 已提交
454

455
static void tnode_free(struct key_vector *tn)
456 457 458 459 460
{
	struct callback_head *head = &tn->rcu;

	while (head) {
		head = head->next;
461
		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
462 463
		node_free(tn);

464
		tn = container_of(head, struct key_vector, rcu);
465 466 467 468 469
	}

	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
		tnode_free_size = 0;
		synchronize_rcu();
E
Eric Dumazet 已提交
470 471 472
	}
}

473 474 475
static struct key_vector __rcu **replace(struct trie *t,
					 struct key_vector *oldtnode,
					 struct key_vector *tn)
476
{
477 478
	struct key_vector *tp = node_parent(oldtnode);
	struct key_vector **cptr;
479 480 481 482 483 484 485 486 487 488 489 490
	unsigned long i;

	/* setup the parent pointer out of and back into this node */
	NODE_INIT_PARENT(tn, tp);
	put_child_root(tp, t, tn->key, tn);

	/* update all of the child parent pointers */
	update_children(tn);

	/* all pointers should be clean so we are done */
	tnode_free(oldtnode);

491
	/* record the pointer that is pointing to this node */
492
	cptr = tp ? tp->tnode : t->tnode;
493

494 495
	/* resize children now that oldtnode is freed */
	for (i = tnode_child_length(tn); i;) {
496
		struct key_vector *inode = tnode_get_child(tn, --i);
497 498 499 500 501

		/* resize child node */
		if (tnode_full(tn, inode))
			resize(t, inode);
	}
502 503

	return cptr;
504 505
}

506 507
static struct key_vector __rcu **inflate(struct trie *t,
					 struct key_vector *oldtnode)
508
{
509
	struct key_vector *tn;
510
	unsigned long i;
511
	t_key m;
512

S
Stephen Hemminger 已提交
513
	pr_debug("In inflate\n");
514

515
	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
S
Stephen Hemminger 已提交
516
	if (!tn)
517
		goto notnode;
518

519 520 521
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

522 523 524 525
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
526
	 */
527
	for (i = tnode_child_length(oldtnode), m = 1u << tn->pos; i;) {
528 529
		struct key_vector *inode = tnode_get_child(oldtnode, --i);
		struct key_vector *node0, *node1;
530
		unsigned long j, k;
531

532
		/* An empty child */
A
Alexander Duyck 已提交
533
		if (inode == NULL)
534 535 536
			continue;

		/* A leaf or an internal node with skipped bits */
A
Alexander Duyck 已提交
537
		if (!tnode_full(oldtnode, inode)) {
538
			put_child(tn, get_index(inode->key, tn), inode);
539 540 541
			continue;
		}

542 543 544
		/* drop the node in the old tnode free list */
		tnode_free_append(oldtnode, inode);

545 546
		/* An internal node with two children */
		if (inode->bits == 1) {
547 548
			put_child(tn, 2 * i + 1, tnode_get_child(inode, 1));
			put_child(tn, 2 * i, tnode_get_child(inode, 0));
O
Olof Johansson 已提交
549
			continue;
550 551
		}

O
Olof Johansson 已提交
552
		/* We will replace this node 'inode' with two new
553
		 * ones, 'node0' and 'node1', each with half of the
O
Olof Johansson 已提交
554 555 556 557 558
		 * original children. The two new nodes will have
		 * a position one bit further down the key and this
		 * means that the "significant" part of their keys
		 * (see the discussion near the top of this file)
		 * will differ by one bit, which will be "0" in
559
		 * node0's key and "1" in node1's key. Since we are
O
Olof Johansson 已提交
560 561
		 * moving the key position by one step, the bit that
		 * we are moving away from - the bit at position
562 563 564
		 * (tn->pos) - is the one that will differ between
		 * node0 and node1. So... we synthesize that bit in the
		 * two new keys.
O
Olof Johansson 已提交
565
		 */
566 567 568
		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
		if (!node1)
			goto nomem;
569
		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
570

571
		tnode_free_append(tn, node1);
572 573 574 575 576 577 578 579 580 581 582
		if (!node0)
			goto nomem;
		tnode_free_append(tn, node0);

		/* populate child pointers in new nodes */
		for (k = tnode_child_length(inode), j = k / 2; j;) {
			put_child(node1, --j, tnode_get_child(inode, --k));
			put_child(node0, j, tnode_get_child(inode, j));
			put_child(node1, --j, tnode_get_child(inode, --k));
			put_child(node0, j, tnode_get_child(inode, j));
		}
583

584 585 586
		/* link new nodes to parent */
		NODE_INIT_PARENT(node1, tn);
		NODE_INIT_PARENT(node0, tn);
587

588 589 590 591
		/* link parent to nodes */
		put_child(tn, 2 * i + 1, node1);
		put_child(tn, 2 * i, node0);
	}
592

593
	/* setup the parent pointers into and out of this node */
594
	return replace(t, oldtnode, tn);
595
nomem:
596 597
	/* all pointers should be clean so we are done */
	tnode_free(tn);
598 599
notnode:
	return NULL;
600 601
}

602 603
static struct key_vector __rcu **halve(struct trie *t,
				       struct key_vector *oldtnode)
604
{
605
	struct key_vector *tn;
606
	unsigned long i;
607

S
Stephen Hemminger 已提交
608
	pr_debug("In halve\n");
609

610
	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
611
	if (!tn)
612
		goto notnode;
613

614 615 616
	/* prepare oldtnode to be freed */
	tnode_free_init(oldtnode);

617 618 619 620
	/* Assemble all of the pointers in our cluster, in this case that
	 * represents all of the pointers out of our allocated nodes that
	 * point to existing tnodes and the links between our allocated
	 * nodes.
621
	 */
622
	for (i = tnode_child_length(oldtnode); i;) {
623 624 625
		struct key_vector *node1 = tnode_get_child(oldtnode, --i);
		struct key_vector *node0 = tnode_get_child(oldtnode, --i);
		struct key_vector *inode;
626

627 628 629 630 631
		/* At least one of the children is empty */
		if (!node1 || !node0) {
			put_child(tn, i / 2, node1 ? : node0);
			continue;
		}
632

633
		/* Two nonempty children */
634
		inode = tnode_new(node0->key, oldtnode->pos, 1);
635 636
		if (!inode)
			goto nomem;
637
		tnode_free_append(tn, inode);
638

639 640 641 642 643 644 645
		/* initialize pointers out of node */
		put_child(inode, 1, node1);
		put_child(inode, 0, node0);
		NODE_INIT_PARENT(inode, tn);

		/* link parent to node */
		put_child(tn, i / 2, inode);
646
	}
647

648
	/* setup the parent pointers into and out of this node */
649 650 651 652 653 654
	return replace(t, oldtnode, tn);
nomem:
	/* all pointers should be clean so we are done */
	tnode_free(tn);
notnode:
	return NULL;
655 656
}

657
static void collapse(struct trie *t, struct key_vector *oldtnode)
658
{
659
	struct key_vector *n, *tp;
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
	unsigned long i;

	/* scan the tnode looking for that one child that might still exist */
	for (n = NULL, i = tnode_child_length(oldtnode); !n && i;)
		n = tnode_get_child(oldtnode, --i);

	/* compress one level */
	tp = node_parent(oldtnode);
	put_child_root(tp, t, oldtnode->key, n);
	node_set_parent(n, tp);

	/* drop dead node */
	node_free(oldtnode);
}

675
static unsigned char update_suffix(struct key_vector *tn)
676 677 678 679 680 681 682 683 684 685
{
	unsigned char slen = tn->pos;
	unsigned long stride, i;

	/* search though the list of children looking for nodes that might
	 * have a suffix greater than the one we currently have.  This is
	 * why we start with a stride of 2 since a stride of 1 would
	 * represent the nodes with suffix length equal to tn->pos
	 */
	for (i = 0, stride = 0x2ul ; i < tnode_child_length(tn); i += stride) {
686
		struct key_vector *n = tnode_get_child(tn, i);
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709

		if (!n || (n->slen <= slen))
			continue;

		/* update stride and slen based on new value */
		stride <<= (n->slen - slen);
		slen = n->slen;
		i &= ~(stride - 1);

		/* if slen covers all but the last bit we can stop here
		 * there will be nothing longer than that since only node
		 * 0 and 1 << (bits - 1) could have that as their suffix
		 * length.
		 */
		if ((slen + 1) >= (tn->pos + tn->bits))
			break;
	}

	tn->slen = slen;

	return slen;
}

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 * Telecommunications, page 6:
 * "A node is doubled if the ratio of non-empty children to all
 * children in the *doubled* node is at least 'high'."
 *
 * 'high' in this instance is the variable 'inflate_threshold'. It
 * is expressed as a percentage, so we multiply it with
 * tnode_child_length() and instead of multiplying by 2 (since the
 * child array will be doubled by inflate()) and multiplying
 * the left-hand side by 100 (to handle the percentage thing) we
 * multiply the left-hand side by 50.
 *
 * The left-hand side may look a bit weird: tnode_child_length(tn)
 * - tn->empty_children is of course the number of non-null children
 * in the current node. tn->full_children is the number of "full"
 * children, that is non-null tnodes with a skip value of 0.
 * All of those will be doubled in the resulting inflated tnode, so
 * we just count them one extra time here.
 *
 * A clearer way to write this would be:
 *
 * to_be_doubled = tn->full_children;
 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
 *     tn->full_children;
 *
 * new_child_length = tnode_child_length(tn) * 2;
 *
 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 *      new_child_length;
 * if (new_fill_factor >= inflate_threshold)
 *
 * ...and so on, tho it would mess up the while () loop.
 *
 * anyway,
 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 *      inflate_threshold
 *
 * avoid a division:
 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 *      inflate_threshold * new_child_length
 *
 * expand not_to_be_doubled and to_be_doubled, and shorten:
 * 100 * (tnode_child_length(tn) - tn->empty_children +
 *    tn->full_children) >= inflate_threshold * new_child_length
 *
 * expand new_child_length:
 * 100 * (tnode_child_length(tn) - tn->empty_children +
 *    tn->full_children) >=
 *      inflate_threshold * tnode_child_length(tn) * 2
 *
 * shorten again:
 * 50 * (tn->full_children + tnode_child_length(tn) -
 *    tn->empty_children) >= inflate_threshold *
 *    tnode_child_length(tn)
 *
 */
767
static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
768 769 770 771 772
{
	unsigned long used = tnode_child_length(tn);
	unsigned long threshold = used;

	/* Keep root node larger */
773
	threshold *= tp ? inflate_threshold : inflate_threshold_root;
774
	used -= tn->empty_children;
775
	used += tn->full_children;
776

777 778 779
	/* if bits == KEYLENGTH then pos = 0, and will fail below */

	return (used > 1) && tn->pos && ((50 * used) >= threshold);
780 781
}

782
static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
783 784 785 786 787
{
	unsigned long used = tnode_child_length(tn);
	unsigned long threshold = used;

	/* Keep root node larger */
788
	threshold *= tp ? halve_threshold : halve_threshold_root;
789 790
	used -= tn->empty_children;

791 792 793 794 795
	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */

	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
}

796
static inline bool should_collapse(struct key_vector *tn)
797 798 799 800 801 802 803 804 805 806 807
{
	unsigned long used = tnode_child_length(tn);

	used -= tn->empty_children;

	/* account for bits == KEYLENGTH case */
	if ((tn->bits == KEYLENGTH) && tn->full_children)
		used -= KEY_MAX;

	/* One child or none, time to drop us from the trie */
	return used < 2;
808 809
}

810
#define MAX_WORK 10
811 812
static struct key_vector __rcu **resize(struct trie *t,
					struct key_vector *tn)
813
{
814 815 816
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
817
	struct key_vector *tp = node_parent(tn);
818
	unsigned long cindex = tp ? get_index(tn->key, tp) : 0;
819
	struct key_vector __rcu **cptr = tp ? tp->tnode : t->tnode;
820
	int max_work = MAX_WORK;
821 822 823 824

	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
		 tn, inflate_threshold, halve_threshold);

825 826 827 828
	/* track the tnode via the pointer from the parent instead of
	 * doing it ourselves.  This way we can let RCU fully do its
	 * thing without us interfering
	 */
829
	BUG_ON(tn != rtnl_dereference(cptr[cindex]));
830

831 832
	/* Double as long as the resulting node has a number of
	 * nonempty nodes that are above the threshold.
833
	 */
834
	while (should_inflate(tp, tn) && max_work) {
835
		struct key_vector __rcu **tcptr = inflate(t, tn);
836 837

		if (!tcptr) {
838
#ifdef CONFIG_IP_FIB_TRIE_STATS
839
			this_cpu_inc(stats->resize_node_skipped);
840 841 842
#endif
			break;
		}
843

844
		max_work--;
845 846
		cptr = tcptr;
		tn = rtnl_dereference(cptr[cindex]);
847 848 849 850
	}

	/* Return if at least one inflate is run */
	if (max_work != MAX_WORK)
851
		return cptr;
852

853
	/* Halve as long as the number of empty children in this
854 855
	 * node is above threshold.
	 */
856
	while (should_halve(tp, tn) && max_work) {
857
		struct key_vector __rcu **tcptr = halve(t, tn);
858 859

		if (!tcptr) {
860
#ifdef CONFIG_IP_FIB_TRIE_STATS
861
			this_cpu_inc(stats->resize_node_skipped);
862 863 864 865
#endif
			break;
		}

866
		max_work--;
867 868
		cptr = tcptr;
		tn = rtnl_dereference(cptr[cindex]);
869
	}
870 871

	/* Only one child remains */
872 873
	if (should_collapse(tn)) {
		collapse(t, tn);
874
		return cptr;
875 876 877 878
	}

	/* Return if at least one deflate was run */
	if (max_work != MAX_WORK)
879
		return cptr;
880 881 882 883 884 885 886

	/* push the suffix length to the parent node */
	if (tn->slen > tn->pos) {
		unsigned char slen = update_suffix(tn);

		if (tp && (slen > tp->slen))
			tp->slen = slen;
887
	}
888 889

	return cptr;
890 891
}

892
static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
893 894 895 896 897 898 899 900
{
	while (tp && (tp->slen > tp->pos) && (tp->slen > l->slen)) {
		if (update_suffix(tp) > l->slen)
			break;
		tp = node_parent(tp);
	}
}

901
static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
902
{
903 904 905 906 907 908 909 910 911
	/* if this is a new leaf then tn will be NULL and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
	while (tn && (tn->slen < l->slen)) {
		tn->slen = l->slen;
		tn = node_parent(tn);
	}
}

R
Robert Olsson 已提交
912
/* rcu_read_lock needs to be hold by caller from readside */
913 914
static struct key_vector *fib_find_node(struct trie *t,
					struct key_vector **tp, u32 key)
915
{
916
	struct key_vector *pn = NULL, *n = rcu_dereference_rtnl(t->tnode[0]);
A
Alexander Duyck 已提交
917 918 919 920 921 922 923 924 925

	while (n) {
		unsigned long index = get_index(key, n);

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the bits in the cindex. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
926
		 *   if (index >= (1ul << bits))
A
Alexander Duyck 已提交
927
		 *     we have a mismatch in skip bits and failed
928 929
		 *   else
		 *     we know the value is cindex
930 931 932 933
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
A
Alexander Duyck 已提交
934
		 */
935 936 937 938
		if (index >= (1ul << n->bits)) {
			n = NULL;
			break;
		}
A
Alexander Duyck 已提交
939 940 941

		/* we have found a leaf. Prefixes have already been compared */
		if (IS_LEAF(n))
942 943
			break;

944
		pn = n;
945
		n = tnode_get_child_rcu(n, index);
A
Alexander Duyck 已提交
946
	}
O
Olof Johansson 已提交
947

948
	*tp = pn;
949

A
Alexander Duyck 已提交
950
	return n;
951 952
}

953 954 955
/* Return the first fib alias matching TOS with
 * priority less than or equal to PRIO.
 */
A
Alexander Duyck 已提交
956 957
static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
					u8 tos, u32 prio)
958 959 960 961 962 963
{
	struct fib_alias *fa;

	if (!fah)
		return NULL;

964
	hlist_for_each_entry(fa, fah, fa_list) {
A
Alexander Duyck 已提交
965 966 967 968
		if (fa->fa_slen < slen)
			continue;
		if (fa->fa_slen != slen)
			break;
969 970 971 972 973 974 975 976 977
		if (fa->fa_tos > tos)
			continue;
		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
			return fa;
	}

	return NULL;
}

978
static void trie_rebalance(struct trie *t, struct key_vector *tn)
979
{
980
	struct key_vector __rcu **cptr = t->tnode;
981

982
	while (tn) {
983
		struct key_vector *tp = node_parent(tn);
984 985 986 987

		cptr = resize(t, tn);
		if (!tp)
			break;
988
		tn = container_of(cptr, struct key_vector, tnode[0]);
989 990 991
	}
}

992
static int fib_insert_node(struct trie *t, struct key_vector *tp,
993
			   struct fib_alias *new, t_key key)
994
{
995
	struct key_vector *n, *l;
996

997
	l = leaf_new(key, new);
A
Alexander Duyck 已提交
998
	if (!l)
999
		goto noleaf;
1000 1001 1002 1003 1004

	/* retrieve child from parent node */
	if (tp)
		n = tnode_get_child(tp, get_index(key, tp));
	else
1005
		n = rcu_dereference_rtnl(t->tnode[0]);
1006

1007 1008 1009 1010 1011 1012 1013
	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
	 *
	 *  Add a new tnode here
	 *  first tnode need some special handling
	 *  leaves us in position for handling as case 3
	 */
	if (n) {
1014
		struct key_vector *tn;
1015

1016
		tn = tnode_new(key, __fls(key ^ n->key), 1);
1017 1018
		if (!tn)
			goto notnode;
O
Olof Johansson 已提交
1019

1020 1021 1022
		/* initialize routes out of node */
		NODE_INIT_PARENT(tn, tp);
		put_child(tn, get_index(key, tn) ^ 1, n);
1023

1024 1025 1026
		/* start adding routes into the node */
		put_child_root(tp, t, key, tn);
		node_set_parent(n, tn);
1027

1028
		/* parent now has a NULL spot where the leaf can go */
1029
		tp = tn;
1030
	}
O
Olof Johansson 已提交
1031

1032
	/* Case 3: n is NULL, and will just insert a new leaf */
1033 1034 1035 1036 1037
	NODE_INIT_PARENT(l, tp);
	put_child_root(tp, t, key, l);
	trie_rebalance(t, tp);

	return 0;
1038 1039 1040 1041
notnode:
	node_free(l);
noleaf:
	return -ENOMEM;
1042 1043
}

1044 1045
static int fib_insert_alias(struct trie *t, struct key_vector *tp,
			    struct key_vector *l, struct fib_alias *new,
1046 1047 1048 1049 1050 1051 1052
			    struct fib_alias *fa, t_key key)
{
	if (!l)
		return fib_insert_node(t, tp, new, key);

	if (fa) {
		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1053
	} else {
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
		struct fib_alias *last;

		hlist_for_each_entry(last, &l->leaf, fa_list) {
			if (new->fa_slen < last->fa_slen)
				break;
			fa = last;
		}

		if (fa)
			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
		else
			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1066
	}
R
Robert Olsson 已提交
1067

1068 1069 1070 1071 1072 1073 1074
	/* if we added to the tail node then we need to update slen */
	if (l->slen < new->fa_slen) {
		l->slen = new->fa_slen;
		leaf_push_suffix(tp, l);
	}

	return 0;
1075 1076
}

1077
/* Caller must hold RTNL. */
1078
int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1079
{
1080
	struct trie *t = (struct trie *)tb->tb_data;
1081
	struct fib_alias *fa, *new_fa;
1082
	struct key_vector *l, *tp;
1083
	struct fib_info *fi;
A
Alexander Duyck 已提交
1084 1085
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1086
	u8 tos = cfg->fc_tos;
1087
	u32 key;
1088 1089
	int err;

1090
	if (plen > KEYLENGTH)
1091 1092
		return -EINVAL;

1093
	key = ntohl(cfg->fc_dst);
1094

1095
	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1096

1097
	if ((plen < KEYLENGTH) && (key << plen))
1098 1099
		return -EINVAL;

1100 1101 1102
	fi = fib_create_info(cfg);
	if (IS_ERR(fi)) {
		err = PTR_ERR(fi);
1103
		goto err;
1104
	}
1105

1106
	l = fib_find_node(t, &tp, key);
A
Alexander Duyck 已提交
1107
	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority) : NULL;
1108 1109 1110 1111 1112 1113

	/* Now fa, if non-NULL, points to the first fib alias
	 * with the same keys [prefix,tos,priority], if such key already
	 * exists or to the node before which we will insert new one.
	 *
	 * If fa is NULL, we will need to allocate a new one and
1114 1115
	 * insert to the tail of the section matching the suffix length
	 * of the new alias.
1116 1117
	 */

1118 1119 1120
	if (fa && fa->fa_tos == tos &&
	    fa->fa_info->fib_priority == fi->fib_priority) {
		struct fib_alias *fa_first, *fa_match;
1121 1122

		err = -EEXIST;
1123
		if (cfg->fc_nlflags & NLM_F_EXCL)
1124 1125
			goto out;

1126 1127 1128 1129 1130 1131 1132
		/* We have 2 goals:
		 * 1. Find exact match for type, scope, fib_info to avoid
		 * duplicate routes
		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
		 */
		fa_match = NULL;
		fa_first = fa;
1133
		hlist_for_each_entry_from(fa, fa_list) {
A
Alexander Duyck 已提交
1134
			if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
				break;
			if (fa->fa_info->fib_priority != fi->fib_priority)
				break;
			if (fa->fa_type == cfg->fc_type &&
			    fa->fa_info == fi) {
				fa_match = fa;
				break;
			}
		}

1145
		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1146 1147 1148
			struct fib_info *fi_drop;
			u8 state;

1149 1150 1151 1152
			fa = fa_first;
			if (fa_match) {
				if (fa == fa_match)
					err = 0;
1153
				goto out;
1154
			}
R
Robert Olsson 已提交
1155
			err = -ENOBUFS;
1156
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
R
Robert Olsson 已提交
1157 1158
			if (new_fa == NULL)
				goto out;
1159 1160

			fi_drop = fa->fa_info;
R
Robert Olsson 已提交
1161 1162
			new_fa->fa_tos = fa->fa_tos;
			new_fa->fa_info = fi;
1163
			new_fa->fa_type = cfg->fc_type;
1164
			state = fa->fa_state;
1165
			new_fa->fa_state = state & ~FA_S_ACCESSED;
1166
			new_fa->fa_slen = fa->fa_slen;
1167

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
			err = netdev_switch_fib_ipv4_add(key, plen, fi,
							 new_fa->fa_tos,
							 cfg->fc_type,
							 tb->tb_id);
			if (err) {
				netdev_switch_fib_ipv4_abort(fi);
				kmem_cache_free(fn_alias_kmem, new_fa);
				goto out;
			}

1178
			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1179

R
Robert Olsson 已提交
1180
			alias_free_mem_rcu(fa);
1181 1182 1183

			fib_release_info(fi_drop);
			if (state & FA_S_ACCESSED)
1184
				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1185 1186
			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
				tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1187

O
Olof Johansson 已提交
1188
			goto succeeded;
1189 1190 1191 1192 1193
		}
		/* Error if we find a perfect match which
		 * uses the same scope, type, and nexthop
		 * information.
		 */
1194 1195
		if (fa_match)
			goto out;
1196

1197
		if (!(cfg->fc_nlflags & NLM_F_APPEND))
1198
			fa = fa_first;
1199 1200
	}
	err = -ENOENT;
1201
	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1202 1203 1204
		goto out;

	err = -ENOBUFS;
1205
	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1206 1207 1208 1209 1210
	if (new_fa == NULL)
		goto out;

	new_fa->fa_info = fi;
	new_fa->fa_tos = tos;
1211
	new_fa->fa_type = cfg->fc_type;
1212
	new_fa->fa_state = 0;
A
Alexander Duyck 已提交
1213
	new_fa->fa_slen = slen;
1214

1215 1216 1217 1218 1219 1220 1221 1222
	/* (Optionally) offload fib entry to switch hardware. */
	err = netdev_switch_fib_ipv4_add(key, plen, fi, tos,
					 cfg->fc_type, tb->tb_id);
	if (err) {
		netdev_switch_fib_ipv4_abort(fi);
		goto out_free_new_fa;
	}

1223
	/* Insert new entry to the list. */
1224 1225
	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
	if (err)
1226
		goto out_sw_fib_del;
1227

1228 1229 1230
	if (!plen)
		tb->tb_num_default++;

1231
	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1232
	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1233
		  &cfg->fc_nlinfo, 0);
1234 1235
succeeded:
	return 0;
1236

1237 1238
out_sw_fib_del:
	netdev_switch_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
1239 1240
out_free_new_fa:
	kmem_cache_free(fn_alias_kmem, new_fa);
1241 1242
out:
	fib_release_info(fi);
O
Olof Johansson 已提交
1243
err:
1244 1245 1246
	return err;
}

1247
static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1248 1249 1250 1251 1252 1253
{
	t_key prefix = n->key;

	return (key ^ prefix) & (prefix | -prefix);
}

1254
/* should be called with rcu_read_lock */
1255
int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
E
Eric Dumazet 已提交
1256
		     struct fib_result *res, int fib_flags)
1257
{
1258
	struct trie *t = (struct trie *)tb->tb_data;
1259 1260 1261
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats __percpu *stats = t->stats;
#endif
1262
	const t_key key = ntohl(flp->daddr);
1263
	struct key_vector *n, *pn;
A
Alexander Duyck 已提交
1264
	struct fib_alias *fa;
1265
	unsigned long index;
1266
	t_key cindex;
O
Olof Johansson 已提交
1267

1268
	n = rcu_dereference(t->tnode[0]);
1269
	if (!n)
1270
		return -EAGAIN;
1271 1272

#ifdef CONFIG_IP_FIB_TRIE_STATS
1273
	this_cpu_inc(stats->gets);
1274 1275
#endif

A
Alexander Duyck 已提交
1276
	pn = n;
1277 1278 1279 1280
	cindex = 0;

	/* Step 1: Travel to the longest prefix match in the trie */
	for (;;) {
1281
		index = get_index(key, n);
1282 1283 1284 1285 1286 1287

		/* This bit of code is a bit tricky but it combines multiple
		 * checks into a single check.  The prefix consists of the
		 * prefix plus zeros for the "bits" in the prefix. The index
		 * is the difference between the key and this value.  From
		 * this we can actually derive several pieces of data.
1288
		 *   if (index >= (1ul << bits))
1289
		 *     we have a mismatch in skip bits and failed
1290 1291
		 *   else
		 *     we know the value is cindex
1292 1293 1294 1295
		 *
		 * This check is safe even if bits == KEYLENGTH due to the
		 * fact that we can only allocate a node with 32 bits if a
		 * long is greater than 32 bits.
1296
		 */
1297
		if (index >= (1ul << n->bits))
1298
			break;
1299

1300 1301
		/* we have found a leaf. Prefixes have already been compared */
		if (IS_LEAF(n))
1302
			goto found;
1303

1304 1305
		/* only record pn and cindex if we are going to be chopping
		 * bits later.  Otherwise we are just wasting cycles.
O
Olof Johansson 已提交
1306
		 */
1307
		if (n->slen > n->pos) {
1308 1309
			pn = n;
			cindex = index;
O
Olof Johansson 已提交
1310
		}
1311

1312
		n = tnode_get_child_rcu(n, index);
1313 1314 1315
		if (unlikely(!n))
			goto backtrace;
	}
1316

1317 1318 1319
	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
	for (;;) {
		/* record the pointer where our next node pointer is stored */
1320
		struct key_vector __rcu **cptr = n->tnode;
1321

1322 1323 1324
		/* This test verifies that none of the bits that differ
		 * between the key and the prefix exist in the region of
		 * the lsb and higher in the prefix.
O
Olof Johansson 已提交
1325
		 */
1326
		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1327
			goto backtrace;
O
Olof Johansson 已提交
1328

1329 1330 1331
		/* exit out and process leaf */
		if (unlikely(IS_LEAF(n)))
			break;
O
Olof Johansson 已提交
1332

1333 1334 1335
		/* Don't bother recording parent info.  Since we are in
		 * prefix match mode we will have to come back to wherever
		 * we started this traversal anyway
O
Olof Johansson 已提交
1336 1337
		 */

1338
		while ((n = rcu_dereference(*cptr)) == NULL) {
1339 1340
backtrace:
#ifdef CONFIG_IP_FIB_TRIE_STATS
1341 1342
			if (!n)
				this_cpu_inc(stats->null_node_hit);
1343
#endif
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
			/* If we are at cindex 0 there are no more bits for
			 * us to strip at this level so we must ascend back
			 * up one level to see if there are any more bits to
			 * be stripped there.
			 */
			while (!cindex) {
				t_key pkey = pn->key;

				pn = node_parent_rcu(pn);
				if (unlikely(!pn))
1354
					return -EAGAIN;
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
#ifdef CONFIG_IP_FIB_TRIE_STATS
				this_cpu_inc(stats->backtrack);
#endif
				/* Get Child's index */
				cindex = get_index(pkey, pn);
			}

			/* strip the least significant bit from the cindex */
			cindex &= cindex - 1;

			/* grab pointer for next child node */
1366
			cptr = &pn->tnode[cindex];
1367
		}
1368
	}
1369

1370
found:
1371 1372 1373
	/* this line carries forward the xor from earlier in the function */
	index = key ^ n->key;

1374
	/* Step 3: Process the leaf, if that fails fall back to backtracing */
A
Alexander Duyck 已提交
1375 1376 1377
	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;
		int nhsel, err;
1378

1379
		if ((index >= (1ul << fa->fa_slen)) &&
A
Alexander Duyck 已提交
1380
		    ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
1381
			continue;
A
Alexander Duyck 已提交
1382 1383 1384 1385 1386 1387 1388 1389 1390
		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
			continue;
		if (fi->fib_dead)
			continue;
		if (fa->fa_info->fib_scope < flp->flowi4_scope)
			continue;
		fib_alias_accessed(fa);
		err = fib_props[fa->fa_type].error;
		if (unlikely(err < 0)) {
1391
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1392
			this_cpu_inc(stats->semantic_match_passed);
1393
#endif
A
Alexander Duyck 已提交
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
			return err;
		}
		if (fi->fib_flags & RTNH_F_DEAD)
			continue;
		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
			const struct fib_nh *nh = &fi->fib_nh[nhsel];

			if (nh->nh_flags & RTNH_F_DEAD)
				continue;
			if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1404
				continue;
A
Alexander Duyck 已提交
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415

			if (!(fib_flags & FIB_LOOKUP_NOREF))
				atomic_inc(&fi->fib_clntref);

			res->prefixlen = KEYLENGTH - fa->fa_slen;
			res->nh_sel = nhsel;
			res->type = fa->fa_type;
			res->scope = fi->fib_scope;
			res->fi = fi;
			res->table = tb;
			res->fa_head = &n->leaf;
1416
#ifdef CONFIG_IP_FIB_TRIE_STATS
A
Alexander Duyck 已提交
1417
			this_cpu_inc(stats->semantic_match_passed);
1418
#endif
A
Alexander Duyck 已提交
1419
			return err;
1420
		}
1421
	}
1422
#ifdef CONFIG_IP_FIB_TRIE_STATS
1423
	this_cpu_inc(stats->semantic_match_miss);
1424 1425
#endif
	goto backtrace;
1426
}
1427
EXPORT_SYMBOL_GPL(fib_table_lookup);
1428

1429 1430
static void fib_remove_alias(struct trie *t, struct key_vector *tp,
			     struct key_vector *l, struct fib_alias *old)
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
{
	/* record the location of the previous list_info entry */
	struct hlist_node **pprev = old->fa_list.pprev;
	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);

	/* remove the fib_alias from the list */
	hlist_del_rcu(&old->fa_list);

	/* if we emptied the list this leaf will be freed and we can sort
	 * out parent suffix lengths as a part of trie_rebalance
	 */
	if (hlist_empty(&l->leaf)) {
		put_child_root(tp, t, l->key, NULL);
		node_free(l);
		trie_rebalance(t, tp);
		return;
	}

	/* only access fa if it is pointing at the last valid hlist_node */
	if (*pprev)
		return;

	/* update the trie with the latest suffix length */
	l->slen = fa->fa_slen;
	leaf_pull_suffix(tp, l);
}

/* Caller must hold RTNL. */
1459
int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1460 1461 1462
{
	struct trie *t = (struct trie *) tb->tb_data;
	struct fib_alias *fa, *fa_to_delete;
1463
	struct key_vector *l, *tp;
A
Alexander Duyck 已提交
1464 1465
	u8 plen = cfg->fc_dst_len;
	u8 slen = KEYLENGTH - plen;
1466 1467
	u8 tos = cfg->fc_tos;
	u32 key;
O
Olof Johansson 已提交
1468

A
Alexander Duyck 已提交
1469
	if (plen > KEYLENGTH)
1470 1471
		return -EINVAL;

1472
	key = ntohl(cfg->fc_dst);
1473

1474
	if ((plen < KEYLENGTH) && (key << plen))
1475 1476
		return -EINVAL;

1477
	l = fib_find_node(t, &tp, key);
1478
	if (!l)
1479 1480
		return -ESRCH;

A
Alexander Duyck 已提交
1481
	fa = fib_find_alias(&l->leaf, slen, tos, 0);
1482 1483 1484
	if (!fa)
		return -ESRCH;

S
Stephen Hemminger 已提交
1485
	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1486 1487

	fa_to_delete = NULL;
1488
	hlist_for_each_entry_from(fa, fa_list) {
1489 1490
		struct fib_info *fi = fa->fa_info;

A
Alexander Duyck 已提交
1491
		if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
1492 1493
			break;

1494 1495
		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1496
		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1497 1498
		    (!cfg->fc_prefsrc ||
		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1499 1500 1501
		    (!cfg->fc_protocol ||
		     fi->fib_protocol == cfg->fc_protocol) &&
		    fib_nh_match(cfg, fi) == 0) {
1502 1503 1504 1505 1506
			fa_to_delete = fa;
			break;
		}
	}

O
Olof Johansson 已提交
1507 1508
	if (!fa_to_delete)
		return -ESRCH;
1509

1510 1511 1512
	netdev_switch_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
				   cfg->fc_type, tb->tb_id);

1513
	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1514
		  &cfg->fc_nlinfo, 0);
O
Olof Johansson 已提交
1515

1516 1517 1518
	if (!plen)
		tb->tb_num_default--;

1519
	fib_remove_alias(t, tp, l, fa_to_delete);
1520

1521
	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1522
		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1523

1524 1525
	fib_release_info(fa_to_delete->fa_info);
	alias_free_mem_rcu(fa_to_delete);
O
Olof Johansson 已提交
1526
	return 0;
1527 1528
}

1529
/* Scan for the next leaf starting at the provided key value */
1530
static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1531
{
1532
	struct key_vector *pn, *n = *tn;
1533
	unsigned long cindex;
1534

1535 1536 1537
	/* record parent node for backtracing */
	pn = n;
	cindex = n ? get_index(key, n) : 0;
1538

1539 1540 1541
	/* this loop is meant to try and find the key in the trie */
	while (n) {
		unsigned long idx = get_index(key, n);
1542

1543 1544 1545 1546 1547
		/* guarantee forward progress on the keys */
		if (IS_LEAF(n) && (n->key >= key))
			goto found;
		if (idx >= (1ul << n->bits))
			break;
1548

1549 1550 1551
		/* record parent and next child index */
		pn = n;
		cindex = idx;
1552

1553 1554 1555
		/* descend into the next child */
		n = tnode_get_child_rcu(pn, cindex++);
	}
1556

1557 1558 1559 1560 1561
	/* this loop will search for the next leaf with a greater key */
	while (pn) {
		/* if we exhausted the parent node we will need to climb */
		if (cindex >= (1ul << pn->bits)) {
			t_key pkey = pn->key;
1562

1563 1564 1565
			pn = node_parent_rcu(pn);
			if (!pn)
				break;
1566

1567 1568 1569
			cindex = get_index(pkey, pn) + 1;
			continue;
		}
1570

1571 1572 1573 1574
		/* grab the next available node */
		n = tnode_get_child_rcu(pn, cindex++);
		if (!n)
			continue;
1575

1576 1577 1578
		/* no need to compare keys since we bumped the index */
		if (IS_LEAF(n))
			goto found;
1579

1580 1581 1582 1583
		/* Rescan start scanning in new node */
		pn = n;
		cindex = 0;
	}
S
Stephen Hemminger 已提交
1584

1585 1586 1587 1588 1589 1590
	*tn = pn;
	return NULL; /* Root of trie */
found:
	/* if we are at the limit for keys just return NULL for the tnode */
	*tn = (n->key == KEY_MAX) ? NULL : pn;
	return n;
1591 1592
}

1593 1594 1595 1596 1597
/* Caller must hold RTNL */
void fib_table_flush_external(struct fib_table *tb)
{
	struct trie *t = (struct trie *)tb->tb_data;
	struct fib_alias *fa;
1598
	struct key_vector *n, *pn;
1599 1600
	unsigned long cindex;

1601
	n = rcu_dereference(t->tnode[0]);
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
	if (!n)
		return;

	pn = NULL;
	cindex = 0;

	while (IS_TNODE(n)) {
		/* record pn and cindex for leaf walking */
		pn = n;
		cindex = 1ul << n->bits;
backtrace:
		/* walk trie in reverse order */
		do {
			while (!(cindex--)) {
				t_key pkey = pn->key;

				/* if we got the root we are done */
1619
				pn = node_parent(pn);
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
				if (!pn)
					return;

				cindex = get_index(pkey, pn);
			}

			/* grab the next available node */
			n = tnode_get_child(pn, cindex);
		} while (!n);
	}

	hlist_for_each_entry(fa, &n->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;

1634 1635 1636 1637 1638 1639 1640
		if (!fi || !(fi->fib_flags & RTNH_F_EXTERNAL))
			continue;

		netdev_switch_fib_ipv4_del(n->key,
					   KEYLENGTH - fa->fa_slen,
					   fi, fa->fa_tos,
					   fa->fa_type, tb->tb_id);
1641 1642 1643 1644 1645 1646 1647
	}

	/* if trie is leaf only loop is completed */
	if (pn)
		goto backtrace;
}

1648
/* Caller must hold RTNL. */
1649
int fib_table_flush(struct fib_table *tb)
1650
{
1651
	struct trie *t = (struct trie *)tb->tb_data;
1652
	struct key_vector *n, *pn;
1653 1654 1655 1656
	struct hlist_node *tmp;
	struct fib_alias *fa;
	unsigned long cindex;
	unsigned char slen;
1657
	int found = 0;
1658

1659
	n = rcu_dereference(t->tnode[0]);
1660 1661
	if (!n)
		goto flush_complete;
1662

1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
	pn = NULL;
	cindex = 0;

	while (IS_TNODE(n)) {
		/* record pn and cindex for leaf walking */
		pn = n;
		cindex = 1ul << n->bits;
backtrace:
		/* walk trie in reverse order */
		do {
			while (!(cindex--)) {
1674
				struct key_vector __rcu **cptr;
1675 1676 1677 1678 1679 1680
				t_key pkey = pn->key;

				n = pn;
				pn = node_parent(n);

				/* resize completed node */
1681
				cptr = resize(t, n);
1682 1683 1684 1685 1686

				/* if we got the root we are done */
				if (!pn)
					goto flush_complete;

1687 1688
				pn = container_of(cptr, struct key_vector,
						  tnode[0]);
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
				cindex = get_index(pkey, pn);
			}

			/* grab the next available node */
			n = tnode_get_child(pn, cindex);
		} while (!n);
	}

	/* track slen in case any prefixes survive */
	slen = 0;

	hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
		struct fib_info *fi = fa->fa_info;

		if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1704 1705 1706 1707
			netdev_switch_fib_ipv4_del(n->key,
						   KEYLENGTH - fa->fa_slen,
						   fi, fa->fa_tos,
						   fa->fa_type, tb->tb_id);
1708 1709 1710 1711 1712 1713
			hlist_del_rcu(&fa->fa_list);
			fib_release_info(fa->fa_info);
			alias_free_mem_rcu(fa);
			found++;

			continue;
1714 1715
		}

1716
		slen = fa->fa_slen;
1717 1718
	}

1719 1720 1721 1722 1723 1724 1725
	/* update leaf slen */
	n->slen = slen;

	if (hlist_empty(&n->leaf)) {
		put_child_root(pn, t, n->key, NULL);
		node_free(n);
	} else {
1726
		leaf_pull_suffix(pn, n);
1727
	}
1728

1729 1730 1731 1732
	/* if trie is leaf only loop is completed */
	if (pn)
		goto backtrace;
flush_complete:
S
Stephen Hemminger 已提交
1733
	pr_debug("trie_flush found=%d\n", found);
1734 1735 1736
	return found;
}

1737
static void __trie_free_rcu(struct rcu_head *head)
1738
{
1739
	struct fib_table *tb = container_of(head, struct fib_table, rcu);
1740 1741 1742 1743 1744
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie *t = (struct trie *)tb->tb_data;

	free_percpu(t->stats);
#endif /* CONFIG_IP_FIB_TRIE_STATS */
1745 1746 1747
	kfree(tb);
}

1748 1749 1750 1751 1752
void fib_free_table(struct fib_table *tb)
{
	call_rcu(&tb->rcu, __trie_free_rcu);
}

1753
static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
A
Alexander Duyck 已提交
1754
			     struct sk_buff *skb, struct netlink_callback *cb)
1755
{
A
Alexander Duyck 已提交
1756
	__be32 xkey = htonl(l->key);
1757
	struct fib_alias *fa;
A
Alexander Duyck 已提交
1758
	int i, s_i;
1759

A
Alexander Duyck 已提交
1760
	s_i = cb->args[4];
1761 1762
	i = 0;

R
Robert Olsson 已提交
1763
	/* rcu_read_lock is hold by caller */
A
Alexander Duyck 已提交
1764
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1765 1766 1767 1768 1769
		if (i < s_i) {
			i++;
			continue;
		}

1770
		if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1771 1772 1773 1774
				  cb->nlh->nlmsg_seq,
				  RTM_NEWROUTE,
				  tb->tb_id,
				  fa->fa_type,
1775
				  xkey,
1776
				  KEYLENGTH - fa->fa_slen,
1777
				  fa->fa_tos,
1778
				  fa->fa_info, NLM_F_MULTI) < 0) {
1779
			cb->args[4] = i;
1780 1781
			return -1;
		}
1782
		i++;
1783
	}
1784

1785
	cb->args[4] = i;
1786 1787 1788
	return skb->len;
}

1789
/* rcu_read_lock needs to be hold by caller from readside */
1790 1791
int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
		   struct netlink_callback *cb)
1792
{
1793
	struct trie *t = (struct trie *)tb->tb_data;
1794
	struct key_vector *l, *tp;
1795 1796 1797
	/* Dump starting at last key.
	 * Note: 0.0.0.0/0 (ie default) is first key.
	 */
1798 1799
	int count = cb->args[2];
	t_key key = cb->args[3];
1800

1801
	tp = rcu_dereference_rtnl(t->tnode[0]);
1802 1803

	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1804
		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1805 1806
			cb->args[3] = key;
			cb->args[2] = count;
1807
			return -1;
1808
		}
1809

1810
		++count;
1811 1812
		key = l->key + 1;

1813 1814
		memset(&cb->args[4], 0,
		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1815 1816 1817 1818

		/* stop loop if key wrapped back to 0 */
		if (key < l->key)
			break;
1819
	}
1820 1821 1822 1823

	cb->args[3] = key;
	cb->args[2] = count;

1824 1825 1826
	return skb->len;
}

1827
void __init fib_trie_init(void)
1828
{
1829 1830
	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
					  sizeof(struct fib_alias),
1831 1832 1833
					  0, SLAB_PANIC, NULL);

	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1834
					   LEAF_SIZE,
1835
					   0, SLAB_PANIC, NULL);
1836
}
1837

1838

1839
struct fib_table *fib_trie_table(u32 id)
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
{
	struct fib_table *tb;
	struct trie *t;

	tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
		     GFP_KERNEL);
	if (tb == NULL)
		return NULL;

	tb->tb_id = id;
1850
	tb->tb_default = -1;
1851
	tb->tb_num_default = 0;
1852 1853

	t = (struct trie *) tb->tb_data;
1854
	RCU_INIT_POINTER(t->tnode[0], NULL);
1855 1856 1857 1858 1859 1860 1861
#ifdef CONFIG_IP_FIB_TRIE_STATS
	t->stats = alloc_percpu(struct trie_use_stats);
	if (!t->stats) {
		kfree(tb);
		tb = NULL;
	}
#endif
1862 1863 1864 1865

	return tb;
}

1866 1867 1868
#ifdef CONFIG_PROC_FS
/* Depth first Trie walk iterator */
struct fib_trie_iter {
1869
	struct seq_net_private p;
1870
	struct fib_table *tb;
1871
	struct key_vector *tnode;
E
Eric Dumazet 已提交
1872 1873
	unsigned int index;
	unsigned int depth;
1874
};
1875

1876
static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
1877
{
1878
	unsigned long cindex = iter->index;
1879 1880
	struct key_vector *tn = iter->tnode;
	struct key_vector *p;
1881

1882 1883 1884 1885
	/* A single entry routing table */
	if (!tn)
		return NULL;

1886 1887 1888
	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
		 iter->tnode, iter->index, iter->depth);
rescan:
1889
	while (cindex < tnode_child_length(tn)) {
1890
		struct key_vector *n = tnode_get_child_rcu(tn, cindex);
1891

1892 1893 1894 1895 1896 1897
		if (n) {
			if (IS_LEAF(n)) {
				iter->tnode = tn;
				iter->index = cindex + 1;
			} else {
				/* push down one level */
A
Alexander Duyck 已提交
1898
				iter->tnode = n;
1899 1900 1901 1902 1903
				iter->index = 0;
				++iter->depth;
			}
			return n;
		}
1904

1905 1906
		++cindex;
	}
O
Olof Johansson 已提交
1907

1908
	/* Current node exhausted, pop back up */
A
Alexander Duyck 已提交
1909
	p = node_parent_rcu(tn);
1910
	if (p) {
1911
		cindex = get_index(tn->key, p) + 1;
1912 1913 1914
		tn = p;
		--iter->depth;
		goto rescan;
1915
	}
1916 1917 1918

	/* got root? */
	return NULL;
1919 1920
}

1921 1922
static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
					     struct trie *t)
1923
{
1924
	struct key_vector *n;
1925

S
Stephen Hemminger 已提交
1926
	if (!t)
1927 1928
		return NULL;

1929
	n = rcu_dereference(t->tnode[0]);
1930
	if (!n)
1931
		return NULL;
1932

1933
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
1934
		iter->tnode = n;
1935 1936 1937 1938 1939 1940
		iter->index = 0;
		iter->depth = 1;
	} else {
		iter->tnode = NULL;
		iter->index = 0;
		iter->depth = 0;
O
Olof Johansson 已提交
1941
	}
1942 1943

	return n;
1944
}
O
Olof Johansson 已提交
1945

1946 1947
static void trie_collect_stats(struct trie *t, struct trie_stat *s)
{
1948
	struct key_vector *n;
1949
	struct fib_trie_iter iter;
O
Olof Johansson 已提交
1950

1951
	memset(s, 0, sizeof(*s));
O
Olof Johansson 已提交
1952

1953
	rcu_read_lock();
1954
	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
1955
		if (IS_LEAF(n)) {
A
Alexander Duyck 已提交
1956
			struct fib_alias *fa;
1957

1958 1959 1960 1961
			s->leaves++;
			s->totdepth += iter.depth;
			if (iter.depth > s->maxdepth)
				s->maxdepth = iter.depth;
1962

A
Alexander Duyck 已提交
1963
			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
1964
				++s->prefixes;
1965 1966
		} else {
			s->tnodes++;
A
Alexander Duyck 已提交
1967 1968
			if (n->bits < MAX_STAT_DEPTH)
				s->nodesizes[n->bits]++;
1969
			s->nullpointers += n->empty_children;
1970 1971
		}
	}
R
Robert Olsson 已提交
1972
	rcu_read_unlock();
1973 1974
}

1975 1976 1977 1978
/*
 *	This outputs /proc/net/fib_triestats
 */
static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
1979
{
E
Eric Dumazet 已提交
1980
	unsigned int i, max, pointers, bytes, avdepth;
1981

1982 1983 1984 1985
	if (stat->leaves)
		avdepth = stat->totdepth*100 / stat->leaves;
	else
		avdepth = 0;
O
Olof Johansson 已提交
1986

1987 1988
	seq_printf(seq, "\tAver depth:     %u.%02d\n",
		   avdepth / 100, avdepth % 100);
1989
	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
O
Olof Johansson 已提交
1990

1991
	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
1992
	bytes = LEAF_SIZE * stat->leaves;
1993 1994

	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
A
Alexander Duyck 已提交
1995
	bytes += sizeof(struct fib_alias) * stat->prefixes;
1996

1997
	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
1998
	bytes += TNODE_SIZE(0) * stat->tnodes;
1999

R
Robert Olsson 已提交
2000 2001
	max = MAX_STAT_DEPTH;
	while (max > 0 && stat->nodesizes[max-1] == 0)
2002
		max--;
2003

2004
	pointers = 0;
2005
	for (i = 1; i < max; i++)
2006
		if (stat->nodesizes[i] != 0) {
2007
			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2008 2009 2010
			pointers += (1<<i) * stat->nodesizes[i];
		}
	seq_putc(seq, '\n');
2011
	seq_printf(seq, "\tPointers: %u\n", pointers);
R
Robert Olsson 已提交
2012

2013
	bytes += sizeof(struct key_vector *) * pointers;
2014 2015
	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2016
}
R
Robert Olsson 已提交
2017

2018
#ifdef CONFIG_IP_FIB_TRIE_STATS
2019
static void trie_show_usage(struct seq_file *seq,
2020
			    const struct trie_use_stats __percpu *stats)
2021
{
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
	struct trie_use_stats s = { 0 };
	int cpu;

	/* loop through all of the CPUs and gather up the stats */
	for_each_possible_cpu(cpu) {
		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);

		s.gets += pcpu->gets;
		s.backtrack += pcpu->backtrack;
		s.semantic_match_passed += pcpu->semantic_match_passed;
		s.semantic_match_miss += pcpu->semantic_match_miss;
		s.null_node_hit += pcpu->null_node_hit;
		s.resize_node_skipped += pcpu->resize_node_skipped;
	}

2037
	seq_printf(seq, "\nCounters:\n---------\n");
2038 2039
	seq_printf(seq, "gets = %u\n", s.gets);
	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2040
	seq_printf(seq, "semantic match passed = %u\n",
2041 2042 2043 2044
		   s.semantic_match_passed);
	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2045
}
2046 2047
#endif /*  CONFIG_IP_FIB_TRIE_STATS */

2048
static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2049
{
2050 2051 2052 2053 2054 2055
	if (tb->tb_id == RT_TABLE_LOCAL)
		seq_puts(seq, "Local:\n");
	else if (tb->tb_id == RT_TABLE_MAIN)
		seq_puts(seq, "Main:\n");
	else
		seq_printf(seq, "Id %d:\n", tb->tb_id);
2056
}
2057

2058

2059 2060
static int fib_triestat_seq_show(struct seq_file *seq, void *v)
{
2061
	struct net *net = (struct net *)seq->private;
2062
	unsigned int h;
2063

2064
	seq_printf(seq,
2065 2066
		   "Basic info: size of leaf:"
		   " %Zd bytes, size of tnode: %Zd bytes.\n",
2067
		   LEAF_SIZE, TNODE_SIZE(0));
2068

2069 2070 2071 2072
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;

2073
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2074 2075
			struct trie *t = (struct trie *) tb->tb_data;
			struct trie_stat stat;
2076

2077 2078 2079 2080 2081 2082 2083 2084
			if (!t)
				continue;

			fib_table_print(seq, tb);

			trie_collect_stats(t, &stat);
			trie_show_stats(seq, &stat);
#ifdef CONFIG_IP_FIB_TRIE_STATS
2085
			trie_show_usage(seq, t->stats);
2086 2087 2088
#endif
		}
	}
2089

2090
	return 0;
2091 2092
}

2093
static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2094
{
2095
	return single_open_net(inode, file, fib_triestat_seq_show);
2096 2097
}

2098
static const struct file_operations fib_triestat_fops = {
2099 2100 2101 2102
	.owner	= THIS_MODULE,
	.open	= fib_triestat_seq_open,
	.read	= seq_read,
	.llseek	= seq_lseek,
2103
	.release = single_release_net,
2104 2105
};

2106
static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2107
{
2108 2109
	struct fib_trie_iter *iter = seq->private;
	struct net *net = seq_file_net(seq);
2110
	loff_t idx = 0;
2111
	unsigned int h;
2112

2113 2114 2115
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct fib_table *tb;
2116

2117
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2118
			struct key_vector *n;
2119 2120 2121 2122 2123 2124 2125 2126 2127

			for (n = fib_trie_get_first(iter,
						    (struct trie *) tb->tb_data);
			     n; n = fib_trie_get_next(iter))
				if (pos == idx++) {
					iter->tb = tb;
					return n;
				}
		}
2128
	}
2129

2130 2131 2132
	return NULL;
}

2133
static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2134
	__acquires(RCU)
2135
{
2136
	rcu_read_lock();
2137
	return fib_trie_get_idx(seq, *pos);
2138 2139
}

2140
static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2141
{
2142
	struct fib_trie_iter *iter = seq->private;
2143
	struct net *net = seq_file_net(seq);
2144 2145 2146
	struct fib_table *tb = iter->tb;
	struct hlist_node *tb_node;
	unsigned int h;
2147
	struct key_vector *n;
2148

2149
	++*pos;
2150 2151 2152 2153
	/* next node in same table */
	n = fib_trie_get_next(iter);
	if (n)
		return n;
2154

2155 2156
	/* walk rest of this hash chain */
	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
E
Eric Dumazet 已提交
2157
	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2158 2159 2160 2161 2162
		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
		if (n)
			goto found;
	}
2163

2164 2165 2166
	/* new hash chain */
	while (++h < FIB_TABLE_HASHSZ) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2167
		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2168 2169 2170 2171 2172
			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
			if (n)
				goto found;
		}
	}
2173
	return NULL;
2174 2175 2176 2177

found:
	iter->tb = tb;
	return n;
2178
}
2179

2180
static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2181
	__releases(RCU)
2182
{
2183 2184
	rcu_read_unlock();
}
O
Olof Johansson 已提交
2185

2186 2187
static void seq_indent(struct seq_file *seq, int n)
{
E
Eric Dumazet 已提交
2188 2189
	while (n-- > 0)
		seq_puts(seq, "   ");
2190
}
2191

2192
static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2193
{
S
Stephen Hemminger 已提交
2194
	switch (s) {
2195 2196 2197 2198 2199 2200
	case RT_SCOPE_UNIVERSE: return "universe";
	case RT_SCOPE_SITE:	return "site";
	case RT_SCOPE_LINK:	return "link";
	case RT_SCOPE_HOST:	return "host";
	case RT_SCOPE_NOWHERE:	return "nowhere";
	default:
2201
		snprintf(buf, len, "scope=%d", s);
2202 2203 2204
		return buf;
	}
}
2205

2206
static const char *const rtn_type_names[__RTN_MAX] = {
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
	[RTN_UNSPEC] = "UNSPEC",
	[RTN_UNICAST] = "UNICAST",
	[RTN_LOCAL] = "LOCAL",
	[RTN_BROADCAST] = "BROADCAST",
	[RTN_ANYCAST] = "ANYCAST",
	[RTN_MULTICAST] = "MULTICAST",
	[RTN_BLACKHOLE] = "BLACKHOLE",
	[RTN_UNREACHABLE] = "UNREACHABLE",
	[RTN_PROHIBIT] = "PROHIBIT",
	[RTN_THROW] = "THROW",
	[RTN_NAT] = "NAT",
	[RTN_XRESOLVE] = "XRESOLVE",
};
2220

E
Eric Dumazet 已提交
2221
static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2222 2223 2224
{
	if (t < __RTN_MAX && rtn_type_names[t])
		return rtn_type_names[t];
2225
	snprintf(buf, len, "type %u", t);
2226
	return buf;
2227 2228
}

2229 2230
/* Pretty print the trie */
static int fib_trie_seq_show(struct seq_file *seq, void *v)
2231
{
2232
	const struct fib_trie_iter *iter = seq->private;
2233
	struct key_vector *n = v;
2234

2235 2236
	if (!node_parent_rcu(n))
		fib_table_print(seq, iter->tb);
2237

2238
	if (IS_TNODE(n)) {
A
Alexander Duyck 已提交
2239
		__be32 prf = htonl(n->key);
O
Olof Johansson 已提交
2240

2241 2242 2243 2244
		seq_indent(seq, iter->depth-1);
		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
			   n->full_children, n->empty_children);
2245
	} else {
A
Alexander Duyck 已提交
2246
		__be32 val = htonl(n->key);
A
Alexander Duyck 已提交
2247
		struct fib_alias *fa;
2248 2249

		seq_indent(seq, iter->depth);
2250
		seq_printf(seq, "  |-- %pI4\n", &val);
2251

A
Alexander Duyck 已提交
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
			char buf1[32], buf2[32];

			seq_indent(seq, iter->depth + 1);
			seq_printf(seq, "  /%zu %s %s",
				   KEYLENGTH - fa->fa_slen,
				   rtn_scope(buf1, sizeof(buf1),
					     fa->fa_info->fib_scope),
				   rtn_type(buf2, sizeof(buf2),
					    fa->fa_type));
			if (fa->fa_tos)
				seq_printf(seq, " tos=%d", fa->fa_tos);
			seq_putc(seq, '\n');
2265
		}
2266
	}
2267

2268 2269 2270
	return 0;
}

2271
static const struct seq_operations fib_trie_seq_ops = {
2272 2273 2274 2275
	.start  = fib_trie_seq_start,
	.next   = fib_trie_seq_next,
	.stop   = fib_trie_seq_stop,
	.show   = fib_trie_seq_show,
2276 2277
};

2278
static int fib_trie_seq_open(struct inode *inode, struct file *file)
2279
{
2280 2281
	return seq_open_net(inode, file, &fib_trie_seq_ops,
			    sizeof(struct fib_trie_iter));
2282 2283
}

2284
static const struct file_operations fib_trie_fops = {
2285 2286 2287 2288
	.owner  = THIS_MODULE,
	.open   = fib_trie_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2289
	.release = seq_release_net,
2290 2291
};

2292 2293
struct fib_route_iter {
	struct seq_net_private p;
2294
	struct fib_table *main_tb;
2295
	struct key_vector *tnode;
2296 2297 2298 2299
	loff_t	pos;
	t_key	key;
};

2300 2301
static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
					    loff_t pos)
2302
{
2303
	struct fib_table *tb = iter->main_tb;
2304
	struct key_vector *l, **tp = &iter->tnode;
2305 2306
	struct trie *t;
	t_key key;
2307

2308 2309
	/* use cache location of next-to-find key */
	if (iter->pos > 0 && pos >= iter->pos) {
2310
		pos -= iter->pos;
2311 2312 2313
		key = iter->key;
	} else {
		t = (struct trie *)tb->tb_data;
2314
		iter->tnode = rcu_dereference_rtnl(t->tnode[0]);
2315
		iter->pos = 0;
2316
		key = 0;
2317 2318
	}

2319 2320
	while ((l = leaf_walk_rcu(tp, key)) != NULL) {
		key = l->key + 1;
2321
		iter->pos++;
2322 2323 2324 2325 2326 2327 2328 2329 2330

		if (pos-- <= 0)
			break;

		l = NULL;

		/* handle unlikely case of a key wrap */
		if (!key)
			break;
2331 2332 2333
	}

	if (l)
2334
		iter->key = key;	/* remember it */
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
	else
		iter->pos = 0;		/* forget it */

	return l;
}

static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
	__acquires(RCU)
{
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb;
2346
	struct trie *t;
2347 2348

	rcu_read_lock();
2349

2350
	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2351 2352 2353
	if (!tb)
		return NULL;

2354 2355 2356 2357 2358 2359
	iter->main_tb = tb;

	if (*pos != 0)
		return fib_route_get_idx(iter, *pos);

	t = (struct trie *)tb->tb_data;
2360
	iter->tnode = rcu_dereference_rtnl(t->tnode[0]);
2361 2362 2363 2364
	iter->pos = 0;
	iter->key = 0;

	return SEQ_START_TOKEN;
2365 2366 2367 2368 2369
}

static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
	struct fib_route_iter *iter = seq->private;
2370
	struct key_vector *l = NULL;
2371
	t_key key = iter->key;
2372 2373

	++*pos;
2374 2375 2376 2377 2378 2379 2380

	/* only allow key of 0 for start of sequence */
	if ((v == SEQ_START_TOKEN) || key)
		l = leaf_walk_rcu(&iter->tnode, key);

	if (l) {
		iter->key = l->key + 1;
2381
		iter->pos++;
2382 2383
	} else {
		iter->pos = 0;
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
	}

	return l;
}

static void fib_route_seq_stop(struct seq_file *seq, void *v)
	__releases(RCU)
{
	rcu_read_unlock();
}

E
Eric Dumazet 已提交
2395
static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2396
{
E
Eric Dumazet 已提交
2397
	unsigned int flags = 0;
2398

E
Eric Dumazet 已提交
2399 2400
	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
		flags = RTF_REJECT;
2401 2402
	if (fi && fi->fib_nh->nh_gw)
		flags |= RTF_GATEWAY;
A
Al Viro 已提交
2403
	if (mask == htonl(0xFFFFFFFF))
2404 2405 2406
		flags |= RTF_HOST;
	flags |= RTF_UP;
	return flags;
2407 2408
}

2409 2410 2411
/*
 *	This outputs /proc/net/route.
 *	The format of the file is not supposed to be changed
E
Eric Dumazet 已提交
2412
 *	and needs to be same as fib_hash output to avoid breaking
2413 2414 2415
 *	legacy utilities
 */
static int fib_route_seq_show(struct seq_file *seq, void *v)
2416
{
A
Alexander Duyck 已提交
2417
	struct fib_alias *fa;
2418
	struct key_vector *l = v;
2419
	__be32 prefix;
2420

2421 2422 2423 2424 2425 2426
	if (v == SEQ_START_TOKEN) {
		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
			   "\tWindow\tIRTT");
		return 0;
	}
2427

2428 2429
	prefix = htonl(l->key);

A
Alexander Duyck 已提交
2430 2431 2432 2433
	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
		const struct fib_info *fi = fa->fa_info;
		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2434

A
Alexander Duyck 已提交
2435 2436 2437
		if ((fa->fa_type == RTN_BROADCAST) ||
		    (fa->fa_type == RTN_MULTICAST))
			continue;
2438

A
Alexander Duyck 已提交
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
		seq_setwidth(seq, 127);

		if (fi)
			seq_printf(seq,
				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   fi->fib_dev ? fi->fib_dev->name : "*",
				   prefix,
				   fi->fib_nh->nh_gw, flags, 0, 0,
				   fi->fib_priority,
				   mask,
				   (fi->fib_advmss ?
				    fi->fib_advmss + 40 : 0),
				   fi->fib_window,
				   fi->fib_rtt >> 3);
		else
			seq_printf(seq,
				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
				   "%d\t%08X\t%d\t%u\t%u",
				   prefix, 0, flags, 0, 0, 0,
				   mask, 0, 0, 0);
2460

A
Alexander Duyck 已提交
2461
		seq_pad(seq, '\n');
2462 2463 2464 2465 2466
	}

	return 0;
}

2467
static const struct seq_operations fib_route_seq_ops = {
2468 2469 2470
	.start  = fib_route_seq_start,
	.next   = fib_route_seq_next,
	.stop   = fib_route_seq_stop,
2471
	.show   = fib_route_seq_show,
2472 2473
};

2474
static int fib_route_seq_open(struct inode *inode, struct file *file)
2475
{
2476
	return seq_open_net(inode, file, &fib_route_seq_ops,
2477
			    sizeof(struct fib_route_iter));
2478 2479
}

2480
static const struct file_operations fib_route_fops = {
2481 2482 2483 2484
	.owner  = THIS_MODULE,
	.open   = fib_route_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2485
	.release = seq_release_net,
2486 2487
};

2488
int __net_init fib_proc_init(struct net *net)
2489
{
2490
	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2491 2492
		goto out1;

2493 2494
	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
			 &fib_triestat_fops))
2495 2496
		goto out2;

2497
	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2498 2499
		goto out3;

2500
	return 0;
2501 2502

out3:
2503
	remove_proc_entry("fib_triestat", net->proc_net);
2504
out2:
2505
	remove_proc_entry("fib_trie", net->proc_net);
2506 2507
out1:
	return -ENOMEM;
2508 2509
}

2510
void __net_exit fib_proc_exit(struct net *net)
2511
{
2512 2513 2514
	remove_proc_entry("fib_trie", net->proc_net);
	remove_proc_entry("fib_triestat", net->proc_net);
	remove_proc_entry("route", net->proc_net);
2515 2516 2517
}

#endif /* CONFIG_PROC_FS */