uprobes.c 38.6 KB
Newer Older
1
/*
2
 * User-space Probes (UProbes)
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
I
Ingo Molnar 已提交
18
 * Copyright (C) IBM Corporation, 2008-2012
19 20 21
 * Authors:
 *	Srikar Dronamraju
 *	Jim Keniston
I
Ingo Molnar 已提交
22
 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 24 25 26 27 28 29 30 31 32
 */

#include <linux/kernel.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>	/* read_mapping_page */
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/rmap.h>		/* anon_vma_prepare */
#include <linux/mmu_notifier.h>	/* set_pte_at_notify */
#include <linux/swap.h>		/* try_to_free_swap */
33 34
#include <linux/ptrace.h>	/* user_enable_single_step */
#include <linux/kdebug.h>	/* notifier mechanism */
35
#include "../../mm/internal.h"	/* munlock_vma_page */
36

37 38
#include <linux/uprobes.h>

39 40 41
#define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
#define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE

42
static struct rb_root uprobes_tree = RB_ROOT;
43

44 45 46
static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */

#define UPROBES_HASH_SZ	13
47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
/*
 * We need separate register/unregister and mmap/munmap lock hashes because
 * of mmap_sem nesting.
 *
 * uprobe_register() needs to install probes on (potentially) all processes
 * and thus needs to acquire multiple mmap_sems (consequtively, not
 * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
 * for the particular process doing the mmap.
 *
 * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
 * because of lock order against i_mmap_mutex. This means there's a hole in
 * the register vma iteration where a mmap() can happen.
 *
 * Thus uprobe_register() can race with uprobe_mmap() and we can try and
 * install a probe where one is already installed.
 */

65 66
/* serialize (un)register */
static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
67 68

#define uprobes_hash(v)		(&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
69 70 71

/* serialize uprobe->pending_list */
static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
72
#define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
73 74

/*
75
 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
76 77 78 79 80
 * events active at this time.  Probably a fine grained per inode count is
 * better?
 */
static atomic_t uprobe_events = ATOMIC_INIT(0);

81 82 83 84 85 86 87 88 89 90 91 92
struct uprobe {
	struct rb_node		rb_node;	/* node in the rb tree */
	atomic_t		ref;
	struct rw_semaphore	consumer_rwsem;
	struct list_head	pending_list;
	struct uprobe_consumer	*consumers;
	struct inode		*inode;		/* Also hold a ref to inode */
	loff_t			offset;
	int			flags;
	struct arch_uprobe	arch;
};

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
/*
 * valid_vma: Verify if the specified vma is an executable vma
 * Relax restrictions while unregistering: vm_flags might have
 * changed after breakpoint was inserted.
 *	- is_register: indicates if we are in register context.
 *	- Return 1 if the specified virtual address is in an
 *	  executable vma.
 */
static bool valid_vma(struct vm_area_struct *vma, bool is_register)
{
	if (!vma->vm_file)
		return false;

	if (!is_register)
		return true;

109 110
	if ((vma->vm_flags & (VM_HUGETLB|VM_READ|VM_WRITE|VM_EXEC|VM_SHARED))
				== (VM_READ|VM_EXEC))
111 112 113 114 115
		return true;

	return false;
}

116
static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
117
{
118
	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
119 120
}

121 122 123 124 125
static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
{
	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
}

126 127 128 129 130
/**
 * __replace_page - replace page in vma by new page.
 * based on replace_page in mm/ksm.c
 *
 * @vma:      vma that holds the pte pointing to page
131
 * @addr:     address the old @page is mapped at
132 133 134 135 136
 * @page:     the cowed page we are replacing by kpage
 * @kpage:    the modified page we replace page by
 *
 * Returns 0 on success, -EFAULT on failure.
 */
137 138
static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
				struct page *page, struct page *kpage)
139 140
{
	struct mm_struct *mm = vma->vm_mm;
141 142
	spinlock_t *ptl;
	pte_t *ptep;
143
	int err;
144

145
	/* For try_to_free_swap() and munlock_vma_page() below */
146 147 148
	lock_page(page);

	err = -EAGAIN;
149
	ptep = page_check_address(page, mm, addr, &ptl, 0);
150
	if (!ptep)
151
		goto unlock;
152 153 154 155

	get_page(kpage);
	page_add_new_anon_rmap(kpage, vma, addr);

156 157 158 159 160
	if (!PageAnon(page)) {
		dec_mm_counter(mm, MM_FILEPAGES);
		inc_mm_counter(mm, MM_ANONPAGES);
	}

161 162 163 164 165 166 167 168 169
	flush_cache_page(vma, addr, pte_pfn(*ptep));
	ptep_clear_flush(vma, addr, ptep);
	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));

	page_remove_rmap(page);
	if (!page_mapped(page))
		try_to_free_swap(page);
	pte_unmap_unlock(ptep, ptl);

170 171 172 173
	if (vma->vm_flags & VM_LOCKED)
		munlock_vma_page(page);
	put_page(page);

174 175 176 177
	err = 0;
 unlock:
	unlock_page(page);
	return err;
178 179 180
}

/**
181
 * is_swbp_insn - check if instruction is breakpoint instruction.
182
 * @insn: instruction to be checked.
183
 * Default implementation of is_swbp_insn
184 185
 * Returns true if @insn is a breakpoint instruction.
 */
186
bool __weak is_swbp_insn(uprobe_opcode_t *insn)
187
{
188
	return *insn == UPROBE_SWBP_INSN;
189 190 191 192 193 194 195 196 197 198 199 200 201 202
}

/*
 * NOTE:
 * Expect the breakpoint instruction to be the smallest size instruction for
 * the architecture. If an arch has variable length instruction and the
 * breakpoint instruction is not of the smallest length instruction
 * supported by that architecture then we need to modify read_opcode /
 * write_opcode accordingly. This would never be a problem for archs that
 * have fixed length instructions.
 */

/*
 * write_opcode - write the opcode at a given virtual address.
203
 * @auprobe: arch breakpointing information.
204 205 206 207 208 209 210 211 212 213
 * @mm: the probed process address space.
 * @vaddr: the virtual address to store the opcode.
 * @opcode: opcode to be written at @vaddr.
 *
 * Called with mm->mmap_sem held (for read and with a reference to
 * mm).
 *
 * For mm @mm, write the opcode at @vaddr.
 * Return 0 (success) or a negative errno.
 */
214
static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
215 216 217 218 219 220
			unsigned long vaddr, uprobe_opcode_t opcode)
{
	struct page *old_page, *new_page;
	void *vaddr_old, *vaddr_new;
	struct vm_area_struct *vma;
	int ret;
221

222
retry:
223 224 225 226
	/* Read the page with vaddr into memory */
	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
	if (ret <= 0)
		return ret;
227

228 229 230
	ret = -ENOMEM;
	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
	if (!new_page)
231
		goto put_old;
232 233 234 235 236 237 238 239

	__SetPageUptodate(new_page);

	/* copy the page now that we've got it stable */
	vaddr_old = kmap_atomic(old_page);
	vaddr_new = kmap_atomic(new_page);

	memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
240
	memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
241 242 243 244 245 246

	kunmap_atomic(vaddr_new);
	kunmap_atomic(vaddr_old);

	ret = anon_vma_prepare(vma);
	if (ret)
247
		goto put_new;
248

249
	ret = __replace_page(vma, vaddr, old_page, new_page);
250

251
put_new:
252
	page_cache_release(new_page);
253
put_old:
254 255
	put_page(old_page);

256 257
	if (unlikely(ret == -EAGAIN))
		goto retry;
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
	return ret;
}

/**
 * read_opcode - read the opcode at a given virtual address.
 * @mm: the probed process address space.
 * @vaddr: the virtual address to read the opcode.
 * @opcode: location to store the read opcode.
 *
 * Called with mm->mmap_sem held (for read and with a reference to
 * mm.
 *
 * For mm @mm, read the opcode at @vaddr and store it in @opcode.
 * Return 0 (success) or a negative errno.
 */
273
static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode)
274 275 276 277 278
{
	struct page *page;
	void *vaddr_new;
	int ret;

279
	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
280 281 282 283 284
	if (ret <= 0)
		return ret;

	vaddr_new = kmap_atomic(page);
	vaddr &= ~PAGE_MASK;
285
	memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE);
286
	kunmap_atomic(vaddr_new);
287 288 289

	put_page(page);

290 291 292
	return 0;
}

293
static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
294 295
{
	uprobe_opcode_t opcode;
296
	int result;
297

298 299 300 301 302 303 304 305 306 307
	if (current->mm == mm) {
		pagefault_disable();
		result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
								sizeof(opcode));
		pagefault_enable();

		if (likely(result == 0))
			goto out;
	}

308
	result = read_opcode(mm, vaddr, &opcode);
309 310
	if (result)
		return result;
311
out:
312
	if (is_swbp_insn(&opcode))
313 314 315 316 317 318
		return 1;

	return 0;
}

/**
319
 * set_swbp - store breakpoint at a given address.
320
 * @auprobe: arch specific probepoint information.
321 322 323 324 325 326
 * @mm: the probed process address space.
 * @vaddr: the virtual address to insert the opcode.
 *
 * For mm @mm, store the breakpoint instruction at @vaddr.
 * Return 0 (success) or a negative errno.
 */
327
int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
328
{
329
	int result;
330 331 332
	/*
	 * See the comment near uprobes_hash().
	 */
333
	result = is_swbp_at_addr(mm, vaddr);
334
	if (result == 1)
335
		return 0;
336 337 338 339

	if (result)
		return result;

340
	return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
341 342 343 344 345
}

/**
 * set_orig_insn - Restore the original instruction.
 * @mm: the probed process address space.
346
 * @auprobe: arch specific probepoint information.
347 348 349 350 351
 * @vaddr: the virtual address to insert the opcode.
 *
 * For mm @mm, restore the original opcode (opcode) at @vaddr.
 * Return 0 (success) or a negative errno.
 */
352
int __weak
353
set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
354
{
355 356 357 358 359
	int result;

	result = is_swbp_at_addr(mm, vaddr);
	if (!result)
		return -EINVAL;
360

361 362
	if (result != 1)
		return result;
363

364
	return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
365 366 367 368 369 370
}

static int match_uprobe(struct uprobe *l, struct uprobe *r)
{
	if (l->inode < r->inode)
		return -1;
371

372 373 374
	if (l->inode > r->inode)
		return 1;

375 376 377 378 379
	if (l->offset < r->offset)
		return -1;

	if (l->offset > r->offset)
		return 1;
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397

	return 0;
}

static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe u = { .inode = inode, .offset = offset };
	struct rb_node *n = uprobes_tree.rb_node;
	struct uprobe *uprobe;
	int match;

	while (n) {
		uprobe = rb_entry(n, struct uprobe, rb_node);
		match = match_uprobe(&u, uprobe);
		if (!match) {
			atomic_inc(&uprobe->ref);
			return uprobe;
		}
398

399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
		if (match < 0)
			n = n->rb_left;
		else
			n = n->rb_right;
	}
	return NULL;
}

/*
 * Find a uprobe corresponding to a given inode:offset
 * Acquires uprobes_treelock
 */
static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe *uprobe;

415
	spin_lock(&uprobes_treelock);
416
	uprobe = __find_uprobe(inode, offset);
417
	spin_unlock(&uprobes_treelock);
418

419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
	return uprobe;
}

static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
{
	struct rb_node **p = &uprobes_tree.rb_node;
	struct rb_node *parent = NULL;
	struct uprobe *u;
	int match;

	while (*p) {
		parent = *p;
		u = rb_entry(parent, struct uprobe, rb_node);
		match = match_uprobe(uprobe, u);
		if (!match) {
			atomic_inc(&u->ref);
			return u;
		}

		if (match < 0)
			p = &parent->rb_left;
		else
			p = &parent->rb_right;

	}
444

445 446 447 448 449
	u = NULL;
	rb_link_node(&uprobe->rb_node, parent, p);
	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
	/* get access + creation ref */
	atomic_set(&uprobe->ref, 2);
450

451 452 453 454
	return u;
}

/*
455
 * Acquire uprobes_treelock.
456 457 458 459 460 461 462 463 464 465
 * Matching uprobe already exists in rbtree;
 *	increment (access refcount) and return the matching uprobe.
 *
 * No matching uprobe; insert the uprobe in rb_tree;
 *	get a double refcount (access + creation) and return NULL.
 */
static struct uprobe *insert_uprobe(struct uprobe *uprobe)
{
	struct uprobe *u;

466
	spin_lock(&uprobes_treelock);
467
	u = __insert_uprobe(uprobe);
468
	spin_unlock(&uprobes_treelock);
469

470 471 472
	/* For now assume that the instruction need not be single-stepped */
	uprobe->flags |= UPROBE_SKIP_SSTEP;

473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
	return u;
}

static void put_uprobe(struct uprobe *uprobe)
{
	if (atomic_dec_and_test(&uprobe->ref))
		kfree(uprobe);
}

static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe *uprobe, *cur_uprobe;

	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
	if (!uprobe)
		return NULL;

	uprobe->inode = igrab(inode);
	uprobe->offset = offset;
	init_rwsem(&uprobe->consumer_rwsem);

	/* add to uprobes_tree, sorted on inode:offset */
	cur_uprobe = insert_uprobe(uprobe);

	/* a uprobe exists for this inode:offset combination */
	if (cur_uprobe) {
		kfree(uprobe);
		uprobe = cur_uprobe;
		iput(inode);
502
	} else {
503
		atomic_inc(&uprobe_events);
504 505
	}

506 507 508
	return uprobe;
}

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
{
	struct uprobe_consumer *uc;

	if (!(uprobe->flags & UPROBE_RUN_HANDLER))
		return;

	down_read(&uprobe->consumer_rwsem);
	for (uc = uprobe->consumers; uc; uc = uc->next) {
		if (!uc->filter || uc->filter(uc, current))
			uc->handler(uc, regs);
	}
	up_read(&uprobe->consumer_rwsem);
}

524
/* Returns the previous consumer */
525
static struct uprobe_consumer *
526
consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
527 528
{
	down_write(&uprobe->consumer_rwsem);
529 530
	uc->next = uprobe->consumers;
	uprobe->consumers = uc;
531
	up_write(&uprobe->consumer_rwsem);
532

533
	return uc->next;
534 535 536
}

/*
537 538
 * For uprobe @uprobe, delete the consumer @uc.
 * Return true if the @uc is deleted successfully
539 540
 * or return false.
 */
541
static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
542 543 544 545 546 547
{
	struct uprobe_consumer **con;
	bool ret = false;

	down_write(&uprobe->consumer_rwsem);
	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
548 549
		if (*con == uc) {
			*con = uc->next;
550 551 552 553 554
			ret = true;
			break;
		}
	}
	up_write(&uprobe->consumer_rwsem);
555

556 557 558
	return ret;
}

559
static int
560
__copy_insn(struct address_space *mapping, struct file *filp, char *insn,
561
			unsigned long nbytes, loff_t offset)
562 563 564
{
	struct page *page;
	void *vaddr;
565 566
	unsigned long off;
	pgoff_t idx;
567 568 569 570

	if (!filp)
		return -EINVAL;

571 572 573
	if (!mapping->a_ops->readpage)
		return -EIO;

574 575
	idx = offset >> PAGE_CACHE_SHIFT;
	off = offset & ~PAGE_MASK;
576 577 578 579 580 581 582 583 584 585

	/*
	 * Ensure that the page that has the original instruction is
	 * populated and in page-cache.
	 */
	page = read_mapping_page(mapping, idx, filp);
	if (IS_ERR(page))
		return PTR_ERR(page);

	vaddr = kmap_atomic(page);
586
	memcpy(insn, vaddr + off, nbytes);
587 588
	kunmap_atomic(vaddr);
	page_cache_release(page);
589

590 591 592
	return 0;
}

593
static int copy_insn(struct uprobe *uprobe, struct file *filp)
594 595 596
{
	struct address_space *mapping;
	unsigned long nbytes;
597
	int bytes;
598

599
	nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
600 601 602 603 604 605 606 607 608 609
	mapping = uprobe->inode->i_mapping;

	/* Instruction at end of binary; copy only available bytes */
	if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
		bytes = uprobe->inode->i_size - uprobe->offset;
	else
		bytes = MAX_UINSN_BYTES;

	/* Instruction at the page-boundary; copy bytes in second page */
	if (nbytes < bytes) {
610 611 612 613
		int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
				bytes - nbytes, uprobe->offset + nbytes);
		if (err)
			return err;
614 615
		bytes = nbytes;
	}
616
	return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
617 618
}

619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
/*
 * How mm->uprobes_state.count gets updated
 * uprobe_mmap() increments the count if
 * 	- it successfully adds a breakpoint.
 * 	- it cannot add a breakpoint, but sees that there is a underlying
 * 	  breakpoint (via a is_swbp_at_addr()).
 *
 * uprobe_munmap() decrements the count if
 * 	- it sees a underlying breakpoint, (via is_swbp_at_addr)
 * 	  (Subsequent uprobe_unregister wouldnt find the breakpoint
 * 	  unless a uprobe_mmap kicks in, since the old vma would be
 * 	  dropped just after uprobe_munmap.)
 *
 * uprobe_register increments the count if:
 * 	- it successfully adds a breakpoint.
 *
 * uprobe_unregister decrements the count if:
 * 	- it sees a underlying breakpoint and removes successfully.
 * 	  (via is_swbp_at_addr)
 * 	  (Subsequent uprobe_munmap wouldnt find the breakpoint
 * 	  since there is no underlying breakpoint after the
 * 	  breakpoint removal.)
 */
642 643
static int
install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
644
			struct vm_area_struct *vma, unsigned long vaddr)
645
{
646
	bool first_uprobe;
647 648 649 650 651 652 653 654 655 656
	int ret;

	/*
	 * If probe is being deleted, unregister thread could be done with
	 * the vma-rmap-walk through. Adding a probe now can be fatal since
	 * nobody will be able to cleanup. Also we could be from fork or
	 * mremap path, where the probe might have already been inserted.
	 * Hence behave as if probe already existed.
	 */
	if (!uprobe->consumers)
657
		return 0;
658

659
	if (!(uprobe->flags & UPROBE_COPY_INSN)) {
660
		ret = copy_insn(uprobe, vma->vm_file);
661 662 663
		if (ret)
			return ret;

664
		if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
665
			return -ENOTSUPP;
666

667
		ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
668 669 670
		if (ret)
			return ret;

671 672 673 674
		/* write_opcode() assumes we don't cross page boundary */
		BUG_ON((uprobe->offset & ~PAGE_MASK) +
				UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);

675
		uprobe->flags |= UPROBE_COPY_INSN;
676
	}
677

678 679 680 681 682 683 684 685
	/*
	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
	 * the task can hit this breakpoint right after __replace_page().
	 */
	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
	if (first_uprobe)
		set_bit(MMF_HAS_UPROBES, &mm->flags);

686
	ret = set_swbp(&uprobe->arch, mm, vaddr);
687 688 689
	if (!ret)
		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
	else if (first_uprobe)
690
		clear_bit(MMF_HAS_UPROBES, &mm->flags);
691 692 693 694

	return ret;
}

695
static void
696
remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
697
{
698 699 700 701 702
	/* can happen if uprobe_register() fails */
	if (!test_bit(MMF_HAS_UPROBES, &mm->flags))
		return;

	set_bit(MMF_RECALC_UPROBES, &mm->flags);
703
	set_orig_insn(&uprobe->arch, mm, vaddr);
704 705
}

706
/*
707 708 709
 * There could be threads that have already hit the breakpoint. They
 * will recheck the current insn and restart if find_uprobe() fails.
 * See find_active_uprobe().
710
 */
711 712
static void delete_uprobe(struct uprobe *uprobe)
{
713
	spin_lock(&uprobes_treelock);
714
	rb_erase(&uprobe->rb_node, &uprobes_tree);
715
	spin_unlock(&uprobes_treelock);
716 717 718 719 720
	iput(uprobe->inode);
	put_uprobe(uprobe);
	atomic_dec(&uprobe_events);
}

721 722 723
struct map_info {
	struct map_info *next;
	struct mm_struct *mm;
724
	unsigned long vaddr;
725 726 727
};

static inline struct map_info *free_map_info(struct map_info *info)
728
{
729 730 731 732 733 734 735 736 737
	struct map_info *next = info->next;
	kfree(info);
	return next;
}

static struct map_info *
build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
{
	unsigned long pgoff = offset >> PAGE_SHIFT;
738 739
	struct prio_tree_iter iter;
	struct vm_area_struct *vma;
740 741 742 743
	struct map_info *curr = NULL;
	struct map_info *prev = NULL;
	struct map_info *info;
	int more = 0;
744

745 746
 again:
	mutex_lock(&mapping->i_mmap_mutex);
747 748 749 750
	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		if (!valid_vma(vma, is_register))
			continue;

751 752 753 754 755 756 757 758 759 760
		if (!prev && !more) {
			/*
			 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
			 * reclaim. This is optimistic, no harm done if it fails.
			 */
			prev = kmalloc(sizeof(struct map_info),
					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
			if (prev)
				prev->next = NULL;
		}
761 762 763
		if (!prev) {
			more++;
			continue;
764 765
		}

766 767
		if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
			continue;
768

769 770 771 772
		info = prev;
		prev = prev->next;
		info->next = curr;
		curr = info;
773

774
		info->mm = vma->vm_mm;
775
		info->vaddr = offset_to_vaddr(vma, offset);
776
	}
777 778
	mutex_unlock(&mapping->i_mmap_mutex);

779 780 781 782 783 784 785 786
	if (!more)
		goto out;

	prev = curr;
	while (curr) {
		mmput(curr->mm);
		curr = curr->next;
	}
787

788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
	do {
		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
		if (!info) {
			curr = ERR_PTR(-ENOMEM);
			goto out;
		}
		info->next = prev;
		prev = info;
	} while (--more);

	goto again;
 out:
	while (prev)
		prev = free_map_info(prev);
	return curr;
803 804 805 806
}

static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
{
807 808
	struct map_info *info;
	int err = 0;
809

810 811 812 813
	info = build_map_info(uprobe->inode->i_mapping,
					uprobe->offset, is_register);
	if (IS_ERR(info))
		return PTR_ERR(info);
814

815 816 817
	while (info) {
		struct mm_struct *mm = info->mm;
		struct vm_area_struct *vma;
818

819 820
		if (err)
			goto free;
821

822
		down_write(&mm->mmap_sem);
823 824 825
		vma = find_vma(mm, info->vaddr);
		if (!vma || !valid_vma(vma, is_register) ||
		    vma->vm_file->f_mapping->host != uprobe->inode)
826 827
			goto unlock;

828 829
		if (vma->vm_start > info->vaddr ||
		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
830
			goto unlock;
831

832
		if (is_register)
833
			err = install_breakpoint(uprobe, mm, vma, info->vaddr);
834
		else
835
			remove_breakpoint(uprobe, mm, info->vaddr);
836

837 838 839 840 841
 unlock:
		up_write(&mm->mmap_sem);
 free:
		mmput(mm);
		info = free_map_info(info);
842
	}
843

844
	return err;
845 846
}

847
static int __uprobe_register(struct uprobe *uprobe)
848 849 850 851
{
	return register_for_each_vma(uprobe, true);
}

852
static void __uprobe_unregister(struct uprobe *uprobe)
853 854 855 856 857 858 859 860
{
	if (!register_for_each_vma(uprobe, false))
		delete_uprobe(uprobe);

	/* TODO : cant unregister? schedule a worker thread */
}

/*
861
 * uprobe_register - register a probe
862 863
 * @inode: the file in which the probe has to be placed.
 * @offset: offset from the start of the file.
864
 * @uc: information on howto handle the probe..
865
 *
866
 * Apart from the access refcount, uprobe_register() takes a creation
867 868
 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
 * inserted into the rbtree (i.e first consumer for a @inode:@offset
869
 * tuple).  Creation refcount stops uprobe_unregister from freeing the
870
 * @uprobe even before the register operation is complete. Creation
871
 * refcount is released when the last @uc for the @uprobe
872 873 874 875 876
 * unregisters.
 *
 * Return errno if it cannot successully install probes
 * else return 0 (success)
 */
877
int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
878 879
{
	struct uprobe *uprobe;
880
	int ret;
881

882
	if (!inode || !uc || uc->next)
883
		return -EINVAL;
884 885

	if (offset > i_size_read(inode))
886
		return -EINVAL;
887 888 889 890

	ret = 0;
	mutex_lock(uprobes_hash(inode));
	uprobe = alloc_uprobe(inode, offset);
891

892
	if (uprobe && !consumer_add(uprobe, uc)) {
893
		ret = __uprobe_register(uprobe);
894 895
		if (ret) {
			uprobe->consumers = NULL;
896 897
			__uprobe_unregister(uprobe);
		} else {
898
			uprobe->flags |= UPROBE_RUN_HANDLER;
899
		}
900 901 902
	}

	mutex_unlock(uprobes_hash(inode));
903 904
	if (uprobe)
		put_uprobe(uprobe);
905 906 907 908 909

	return ret;
}

/*
910
 * uprobe_unregister - unregister a already registered probe.
911 912
 * @inode: the file in which the probe has to be removed.
 * @offset: offset from the start of the file.
913
 * @uc: identify which probe if multiple probes are colocated.
914
 */
915
void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
916
{
917
	struct uprobe *uprobe;
918

919
	if (!inode || !uc)
920 921 922 923 924 925 926 927
		return;

	uprobe = find_uprobe(inode, offset);
	if (!uprobe)
		return;

	mutex_lock(uprobes_hash(inode));

928
	if (consumer_del(uprobe, uc)) {
929 930
		if (!uprobe->consumers) {
			__uprobe_unregister(uprobe);
931
			uprobe->flags &= ~UPROBE_RUN_HANDLER;
932
		}
933 934 935 936 937 938 939
	}

	mutex_unlock(uprobes_hash(inode));
	if (uprobe)
		put_uprobe(uprobe);
}

940 941
static struct rb_node *
find_node_in_range(struct inode *inode, loff_t min, loff_t max)
942 943 944 945
{
	struct rb_node *n = uprobes_tree.rb_node;

	while (n) {
946
		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
947

948
		if (inode < u->inode) {
949
			n = n->rb_left;
950
		} else if (inode > u->inode) {
951
			n = n->rb_right;
952 953 954 955 956 957 958 959
		} else {
			if (max < u->offset)
				n = n->rb_left;
			else if (min > u->offset)
				n = n->rb_right;
			else
				break;
		}
960
	}
961

962
	return n;
963 964 965
}

/*
966
 * For a given range in vma, build a list of probes that need to be inserted.
967
 */
968 969 970 971
static void build_probe_list(struct inode *inode,
				struct vm_area_struct *vma,
				unsigned long start, unsigned long end,
				struct list_head *head)
972
{
973 974 975
	loff_t min, max;
	struct rb_node *n, *t;
	struct uprobe *u;
976

977
	INIT_LIST_HEAD(head);
978
	min = vaddr_to_offset(vma, start);
979
	max = min + (end - start) - 1;
980

981
	spin_lock(&uprobes_treelock);
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
	n = find_node_in_range(inode, min, max);
	if (n) {
		for (t = n; t; t = rb_prev(t)) {
			u = rb_entry(t, struct uprobe, rb_node);
			if (u->inode != inode || u->offset < min)
				break;
			list_add(&u->pending_list, head);
			atomic_inc(&u->ref);
		}
		for (t = n; (t = rb_next(t)); ) {
			u = rb_entry(t, struct uprobe, rb_node);
			if (u->inode != inode || u->offset > max)
				break;
			list_add(&u->pending_list, head);
			atomic_inc(&u->ref);
		}
998
	}
999
	spin_unlock(&uprobes_treelock);
1000 1001 1002
}

/*
1003
 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1004
 *
1005 1006
 * Currently we ignore all errors and always return 0, the callers
 * can't handle the failure anyway.
1007
 */
1008
int uprobe_mmap(struct vm_area_struct *vma)
1009 1010
{
	struct list_head tmp_list;
1011
	struct uprobe *uprobe, *u;
1012 1013 1014
	struct inode *inode;

	if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
1015
		return 0;
1016 1017 1018

	inode = vma->vm_file->f_mapping->host;
	if (!inode)
1019
		return 0;
1020 1021

	mutex_lock(uprobes_mmap_hash(inode));
1022
	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1023

1024
	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1025
		if (!fatal_signal_pending(current)) {
1026
			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1027
			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1028 1029 1030 1031 1032
		}
		put_uprobe(uprobe);
	}
	mutex_unlock(uprobes_mmap_hash(inode));

1033
	return 0;
1034 1035
}

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
static bool
vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
{
	loff_t min, max;
	struct inode *inode;
	struct rb_node *n;

	inode = vma->vm_file->f_mapping->host;

	min = vaddr_to_offset(vma, start);
	max = min + (end - start) - 1;

	spin_lock(&uprobes_treelock);
	n = find_node_in_range(inode, min, max);
	spin_unlock(&uprobes_treelock);

	return !!n;
}

1055 1056 1057
/*
 * Called in context of a munmap of a vma.
 */
1058
void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1059 1060 1061 1062
{
	if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
		return;

1063 1064 1065
	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
		return;

1066 1067
	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1068 1069
		return;

1070 1071
	if (vma_has_uprobes(vma, start, end))
		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1072 1073
}

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
/* Slot allocation for XOL */
static int xol_add_vma(struct xol_area *area)
{
	struct mm_struct *mm;
	int ret;

	area->page = alloc_page(GFP_HIGHUSER);
	if (!area->page)
		return -ENOMEM;

	ret = -EALREADY;
	mm = current->mm;

	down_write(&mm->mmap_sem);
	if (mm->uprobes_state.xol_area)
		goto fail;

	ret = -ENOMEM;

	/* Try to map as high as possible, this is only a hint. */
	area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
	if (area->vaddr & ~PAGE_MASK) {
		ret = area->vaddr;
		goto fail;
	}

	ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
	if (ret)
		goto fail;

	smp_wmb();	/* pairs with get_xol_area() */
	mm->uprobes_state.xol_area = area;
	ret = 0;

fail:
	up_write(&mm->mmap_sem);
	if (ret)
		__free_page(area->page);

	return ret;
}

static struct xol_area *get_xol_area(struct mm_struct *mm)
{
	struct xol_area *area;

	area = mm->uprobes_state.xol_area;
	smp_read_barrier_depends();	/* pairs with wmb in xol_add_vma() */

	return area;
}

/*
 * xol_alloc_area - Allocate process's xol_area.
 * This area will be used for storing instructions for execution out of
 * line.
 *
 * Returns the allocated area or NULL.
 */
static struct xol_area *xol_alloc_area(void)
{
	struct xol_area *area;

	area = kzalloc(sizeof(*area), GFP_KERNEL);
	if (unlikely(!area))
		return NULL;

	area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);

	if (!area->bitmap)
		goto fail;

	init_waitqueue_head(&area->wq);
	if (!xol_add_vma(area))
		return area;

fail:
	kfree(area->bitmap);
	kfree(area);

	return get_xol_area(current->mm);
}

/*
 * uprobe_clear_state - Free the area allocated for slots.
 */
void uprobe_clear_state(struct mm_struct *mm)
{
	struct xol_area *area = mm->uprobes_state.xol_area;

	if (!area)
		return;

	put_page(area->page);
	kfree(area->bitmap);
	kfree(area);
}

1173 1174
void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
{
1175 1176
	newmm->uprobes_state.xol_area = NULL;

1177
	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1178
		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1179 1180 1181
		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
	}
1182 1183
}

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
/*
 *  - search for a free slot.
 */
static unsigned long xol_take_insn_slot(struct xol_area *area)
{
	unsigned long slot_addr;
	int slot_nr;

	do {
		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
		if (slot_nr < UINSNS_PER_PAGE) {
			if (!test_and_set_bit(slot_nr, area->bitmap))
				break;

			slot_nr = UINSNS_PER_PAGE;
			continue;
		}
		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
	} while (slot_nr >= UINSNS_PER_PAGE);

	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
	atomic_inc(&area->slot_count);

	return slot_addr;
}

/*
 * xol_get_insn_slot - If was not allocated a slot, then
 * allocate a slot.
 * Returns the allocated slot address or 0.
 */
static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
{
	struct xol_area *area;
	unsigned long offset;
	void *vaddr;

	area = get_xol_area(current->mm);
	if (!area) {
		area = xol_alloc_area();
		if (!area)
			return 0;
	}
	current->utask->xol_vaddr = xol_take_insn_slot(area);

	/*
	 * Initialize the slot if xol_vaddr points to valid
	 * instruction slot.
	 */
	if (unlikely(!current->utask->xol_vaddr))
		return 0;

	current->utask->vaddr = slot_addr;
	offset = current->utask->xol_vaddr & ~PAGE_MASK;
	vaddr = kmap_atomic(area->page);
	memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
	kunmap_atomic(vaddr);

	return current->utask->xol_vaddr;
}

/*
 * xol_free_insn_slot - If slot was earlier allocated by
 * @xol_get_insn_slot(), make the slot available for
 * subsequent requests.
 */
static void xol_free_insn_slot(struct task_struct *tsk)
{
	struct xol_area *area;
	unsigned long vma_end;
	unsigned long slot_addr;

	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
		return;

	slot_addr = tsk->utask->xol_vaddr;

	if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
		return;

	area = tsk->mm->uprobes_state.xol_area;
	vma_end = area->vaddr + PAGE_SIZE;
	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
		unsigned long offset;
		int slot_nr;

		offset = slot_addr - area->vaddr;
		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
		if (slot_nr >= UINSNS_PER_PAGE)
			return;

		clear_bit(slot_nr, area->bitmap);
		atomic_dec(&area->slot_count);
		if (waitqueue_active(&area->wq))
			wake_up(&area->wq);

		tsk->utask->xol_vaddr = 0;
	}
}

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
/**
 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
 * @regs: Reflects the saved state of the task after it has hit a breakpoint
 * instruction.
 * Return the address of the breakpoint instruction.
 */
unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
{
	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
}

/*
 * Called with no locks held.
 * Called in context of a exiting or a exec-ing thread.
 */
void uprobe_free_utask(struct task_struct *t)
{
	struct uprobe_task *utask = t->utask;

	if (!utask)
		return;

	if (utask->active_uprobe)
		put_uprobe(utask->active_uprobe);

1309
	xol_free_insn_slot(t);
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
	kfree(utask);
	t->utask = NULL;
}

/*
 * Called in context of a new clone/fork from copy_process.
 */
void uprobe_copy_process(struct task_struct *t)
{
	t->utask = NULL;
}

/*
 * Allocate a uprobe_task object for the task.
 * Called when the thread hits a breakpoint for the first time.
 *
 * Returns:
 * - pointer to new uprobe_task on success
 * - NULL otherwise
 */
static struct uprobe_task *add_utask(void)
{
	struct uprobe_task *utask;

	utask = kzalloc(sizeof *utask, GFP_KERNEL);
	if (unlikely(!utask))
		return NULL;

	current->utask = utask;
	return utask;
}

/* Prepare to single-step probed instruction out of line. */
static int
pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
{
1346 1347 1348
	if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
		return 0;

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
	return -EFAULT;
}

/*
 * If we are singlestepping, then ensure this thread is not connected to
 * non-fatal signals until completion of singlestep.  When xol insn itself
 * triggers the signal,  restart the original insn even if the task is
 * already SIGKILL'ed (since coredump should report the correct ip).  This
 * is even more important if the task has a handler for SIGSEGV/etc, The
 * _same_ instruction should be repeated again after return from the signal
 * handler, and SSTEP can never finish in this case.
 */
bool uprobe_deny_signal(void)
{
	struct task_struct *t = current;
	struct uprobe_task *utask = t->utask;

	if (likely(!utask || !utask->active_uprobe))
		return false;

	WARN_ON_ONCE(utask->state != UTASK_SSTEP);

	if (signal_pending(t)) {
		spin_lock_irq(&t->sighand->siglock);
		clear_tsk_thread_flag(t, TIF_SIGPENDING);
		spin_unlock_irq(&t->sighand->siglock);

		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
			utask->state = UTASK_SSTEP_TRAPPED;
			set_tsk_thread_flag(t, TIF_UPROBE);
			set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
		}
	}

	return true;
}

/*
 * Avoid singlestepping the original instruction if the original instruction
 * is a NOP or can be emulated.
 */
static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
{
	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
		return true;

	uprobe->flags &= ~UPROBE_SKIP_SSTEP;
	return false;
}

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
static void mmf_recalc_uprobes(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		if (!valid_vma(vma, false))
			continue;
		/*
		 * This is not strictly accurate, we can race with
		 * uprobe_unregister() and see the already removed
		 * uprobe if delete_uprobe() was not yet called.
		 */
		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
			return;
	}

	clear_bit(MMF_HAS_UPROBES, &mm->flags);
}

1418
static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1419
{
1420 1421
	struct mm_struct *mm = current->mm;
	struct uprobe *uprobe = NULL;
1422 1423 1424 1425
	struct vm_area_struct *vma;

	down_read(&mm->mmap_sem);
	vma = find_vma(mm, bp_vaddr);
1426 1427
	if (vma && vma->vm_start <= bp_vaddr) {
		if (valid_vma(vma, false)) {
1428 1429
			struct inode *inode = vma->vm_file->f_mapping->host;
			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1430

1431 1432
			uprobe = find_uprobe(inode, offset);
		}
1433 1434 1435 1436 1437

		if (!uprobe)
			*is_swbp = is_swbp_at_addr(mm, bp_vaddr);
	} else {
		*is_swbp = -EFAULT;
1438
	}
1439 1440 1441

	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
		mmf_recalc_uprobes(mm);
1442 1443
	up_read(&mm->mmap_sem);

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
	return uprobe;
}

/*
 * Run handler and ask thread to singlestep.
 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
 */
static void handle_swbp(struct pt_regs *regs)
{
	struct uprobe_task *utask;
	struct uprobe *uprobe;
	unsigned long bp_vaddr;
1456
	int uninitialized_var(is_swbp);
1457 1458

	bp_vaddr = uprobe_get_swbp_addr(regs);
1459
	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1460

1461
	if (!uprobe) {
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
		if (is_swbp > 0) {
			/* No matching uprobe; signal SIGTRAP. */
			send_sig(SIGTRAP, current, 0);
		} else {
			/*
			 * Either we raced with uprobe_unregister() or we can't
			 * access this memory. The latter is only possible if
			 * another thread plays with our ->mm. In both cases
			 * we can simply restart. If this vma was unmapped we
			 * can pretend this insn was not executed yet and get
			 * the (correct) SIGSEGV after restart.
			 */
			instruction_pointer_set(regs, bp_vaddr);
		}
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
		return;
	}

	utask = current->utask;
	if (!utask) {
		utask = add_utask();
		/* Cannot allocate; re-execute the instruction. */
		if (!utask)
			goto cleanup_ret;
	}
	utask->active_uprobe = uprobe;
	handler_chain(uprobe, regs);
	if (uprobe->flags & UPROBE_SKIP_SSTEP && can_skip_sstep(uprobe, regs))
		goto cleanup_ret;

	utask->state = UTASK_SSTEP;
	if (!pre_ssout(uprobe, regs, bp_vaddr)) {
		user_enable_single_step(current);
		return;
	}

cleanup_ret:
	if (utask) {
		utask->active_uprobe = NULL;
		utask->state = UTASK_RUNNING;
	}
1502
	if (!(uprobe->flags & UPROBE_SKIP_SSTEP))
1503

1504 1505 1506 1507 1508
		/*
		 * cannot singlestep; cannot skip instruction;
		 * re-execute the instruction.
		 */
		instruction_pointer_set(regs, bp_vaddr);
1509

1510
	put_uprobe(uprobe);
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
}

/*
 * Perform required fix-ups and disable singlestep.
 * Allow pending signals to take effect.
 */
static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
{
	struct uprobe *uprobe;

	uprobe = utask->active_uprobe;
	if (utask->state == UTASK_SSTEP_ACK)
		arch_uprobe_post_xol(&uprobe->arch, regs);
	else if (utask->state == UTASK_SSTEP_TRAPPED)
		arch_uprobe_abort_xol(&uprobe->arch, regs);
	else
		WARN_ON_ONCE(1);

	put_uprobe(uprobe);
	utask->active_uprobe = NULL;
	utask->state = UTASK_RUNNING;
	user_disable_single_step(current);
1533
	xol_free_insn_slot(current);
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570

	spin_lock_irq(&current->sighand->siglock);
	recalc_sigpending(); /* see uprobe_deny_signal() */
	spin_unlock_irq(&current->sighand->siglock);
}

/*
 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag.  (and on
 * subsequent probe hits on the thread sets the state to UTASK_BP_HIT) and
 * allows the thread to return from interrupt.
 *
 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag and
 * also sets the state to UTASK_SSTEP_ACK and allows the thread to return from
 * interrupt.
 *
 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
 * uprobe_notify_resume().
 */
void uprobe_notify_resume(struct pt_regs *regs)
{
	struct uprobe_task *utask;

	utask = current->utask;
	if (!utask || utask->state == UTASK_BP_HIT)
		handle_swbp(regs);
	else
		handle_singlestep(utask, regs);
}

/*
 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
 */
int uprobe_pre_sstep_notifier(struct pt_regs *regs)
{
	struct uprobe_task *utask;

1571
	if (!current->mm || !test_bit(MMF_HAS_UPROBES, &current->mm->flags))
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
		return 0;

	utask = current->utask;
	if (utask)
		utask->state = UTASK_BP_HIT;

	set_thread_flag(TIF_UPROBE);

	return 1;
}

/*
 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
 */
int uprobe_post_sstep_notifier(struct pt_regs *regs)
{
	struct uprobe_task *utask = current->utask;

	if (!current->mm || !utask || !utask->active_uprobe)
		/* task is currently not uprobed */
		return 0;

	utask->state = UTASK_SSTEP_ACK;
	set_thread_flag(TIF_UPROBE);
	return 1;
}

static struct notifier_block uprobe_exception_nb = {
	.notifier_call		= arch_uprobe_exception_notify,
	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
};

1605 1606 1607 1608 1609 1610 1611 1612
static int __init init_uprobes(void)
{
	int i;

	for (i = 0; i < UPROBES_HASH_SZ; i++) {
		mutex_init(&uprobes_mutex[i]);
		mutex_init(&uprobes_mmap_mutex[i]);
	}
1613 1614

	return register_die_notifier(&uprobe_exception_nb);
1615
}
1616
module_init(init_uprobes);
1617 1618 1619 1620 1621

static void __exit exit_uprobes(void)
{
}
module_exit(exit_uprobes);