ftgmac100.c 49.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Faraday FTGMAC100 Gigabit Ethernet
 *
 * (C) Copyright 2009-2011 Faraday Technology
 * Po-Yu Chuang <ratbert@faraday-tech.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt

24
#include <linux/clk.h>
25 26 27
#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
28
#include <linux/interrupt.h>
29 30 31
#include <linux/io.h>
#include <linux/module.h>
#include <linux/netdevice.h>
32
#include <linux/of.h>
33 34
#include <linux/phy.h>
#include <linux/platform_device.h>
35
#include <linux/property.h>
36
#include <linux/crc32.h>
37
#include <linux/if_vlan.h>
38
#include <linux/of_net.h>
39
#include <net/ip.h>
G
Gavin Shan 已提交
40
#include <net/ncsi.h>
41 42 43 44 45 46

#include "ftgmac100.h"

#define DRV_NAME	"ftgmac100"
#define DRV_VERSION	"0.7"

47 48 49 50 51 52 53
/* Arbitrary values, I am not sure the HW has limits */
#define MAX_RX_QUEUE_ENTRIES	1024
#define MAX_TX_QUEUE_ENTRIES	1024
#define MIN_RX_QUEUE_ENTRIES	32
#define MIN_TX_QUEUE_ENTRIES	32

/* Defaults */
54 55
#define DEF_RX_QUEUE_ENTRIES	128
#define DEF_TX_QUEUE_ENTRIES	128
56

57 58
#define MAX_PKT_SIZE		1536
#define RX_BUF_SIZE		MAX_PKT_SIZE	/* must be smaller than 0x3fff */
59

60
/* Min number of tx ring entries before stopping queue */
61
#define TX_THRESHOLD		(MAX_SKB_FRAGS + 1)
62

63 64 65
#define FTGMAC_100MHZ		100000000
#define FTGMAC_25MHZ		25000000

66
struct ftgmac100 {
67
	/* Registers */
68 69 70
	struct resource *res;
	void __iomem *base;

71
	/* Rx ring */
72 73 74 75
	unsigned int rx_q_entries;
	struct ftgmac100_rxdes *rxdes;
	dma_addr_t rxdes_dma;
	struct sk_buff **rx_skbs;
76
	unsigned int rx_pointer;
77 78 79
	u32 rxdes0_edorr_mask;

	/* Tx ring */
80 81 82 83
	unsigned int tx_q_entries;
	struct ftgmac100_txdes *txdes;
	dma_addr_t txdes_dma;
	struct sk_buff **tx_skbs;
84 85
	unsigned int tx_clean_pointer;
	unsigned int tx_pointer;
86
	u32 txdes0_edotr_mask;
87

88 89 90 91
	/* Used to signal the reset task of ring change request */
	unsigned int new_rx_q_entries;
	unsigned int new_tx_q_entries;

92 93 94 95
	/* Scratch page to use when rx skb alloc fails */
	void *rx_scratch;
	dma_addr_t rx_scratch_dma;

96
	/* Component structures */
97 98
	struct net_device *netdev;
	struct device *dev;
G
Gavin Shan 已提交
99
	struct ncsi_dev *ndev;
100
	struct napi_struct napi;
101
	struct work_struct reset_task;
102
	struct mii_bus *mii_bus;
103
	struct clk *clk;
104 105

	/* Link management */
106 107
	int cur_speed;
	int cur_duplex;
G
Gavin Shan 已提交
108
	bool use_ncsi;
109

110 111 112 113
	/* Multicast filter settings */
	u32 maht0;
	u32 maht1;

114 115 116 117 118
	/* Flow control settings */
	bool tx_pause;
	bool rx_pause;
	bool aneg_pause;

119
	/* Misc */
120
	bool need_mac_restart;
121
	bool is_aspeed;
122 123
};

124
static int ftgmac100_reset_mac(struct ftgmac100 *priv, u32 maccr)
125 126 127 128 129
{
	struct net_device *netdev = priv->netdev;
	int i;

	/* NOTE: reset clears all registers */
130 131 132
	iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
	iowrite32(maccr | FTGMAC100_MACCR_SW_RST,
		  priv->base + FTGMAC100_OFFSET_MACCR);
133
	for (i = 0; i < 200; i++) {
134 135 136 137 138 139
		unsigned int maccr;

		maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
		if (!(maccr & FTGMAC100_MACCR_SW_RST))
			return 0;

140
		udelay(1);
141 142
	}

143
	netdev_err(netdev, "Hardware reset failed\n");
144 145 146
	return -EIO;
}

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
static int ftgmac100_reset_and_config_mac(struct ftgmac100 *priv)
{
	u32 maccr = 0;

	switch (priv->cur_speed) {
	case SPEED_10:
	case 0: /* no link */
		break;

	case SPEED_100:
		maccr |= FTGMAC100_MACCR_FAST_MODE;
		break;

	case SPEED_1000:
		maccr |= FTGMAC100_MACCR_GIGA_MODE;
		break;
	default:
		netdev_err(priv->netdev, "Unknown speed %d !\n",
			   priv->cur_speed);
		break;
	}

	/* (Re)initialize the queue pointers */
	priv->rx_pointer = 0;
	priv->tx_clean_pointer = 0;
	priv->tx_pointer = 0;

	/* The doc says reset twice with 10us interval */
	if (ftgmac100_reset_mac(priv, maccr))
		return -EIO;
	usleep_range(10, 1000);
	return ftgmac100_reset_mac(priv, maccr);
}

181
static void ftgmac100_write_mac_addr(struct ftgmac100 *priv, const u8 *mac)
182 183 184 185 186 187 188 189
{
	unsigned int maddr = mac[0] << 8 | mac[1];
	unsigned int laddr = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];

	iowrite32(maddr, priv->base + FTGMAC100_OFFSET_MAC_MADR);
	iowrite32(laddr, priv->base + FTGMAC100_OFFSET_MAC_LADR);
}

190
static void ftgmac100_initial_mac(struct ftgmac100 *priv)
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
{
	u8 mac[ETH_ALEN];
	unsigned int m;
	unsigned int l;
	void *addr;

	addr = device_get_mac_address(priv->dev, mac, ETH_ALEN);
	if (addr) {
		ether_addr_copy(priv->netdev->dev_addr, mac);
		dev_info(priv->dev, "Read MAC address %pM from device tree\n",
			 mac);
		return;
	}

	m = ioread32(priv->base + FTGMAC100_OFFSET_MAC_MADR);
	l = ioread32(priv->base + FTGMAC100_OFFSET_MAC_LADR);

	mac[0] = (m >> 8) & 0xff;
	mac[1] = m & 0xff;
	mac[2] = (l >> 24) & 0xff;
	mac[3] = (l >> 16) & 0xff;
	mac[4] = (l >> 8) & 0xff;
	mac[5] = l & 0xff;

	if (is_valid_ether_addr(mac)) {
		ether_addr_copy(priv->netdev->dev_addr, mac);
		dev_info(priv->dev, "Read MAC address %pM from chip\n", mac);
	} else {
		eth_hw_addr_random(priv->netdev);
		dev_info(priv->dev, "Generated random MAC address %pM\n",
			 priv->netdev->dev_addr);
	}
}

static int ftgmac100_set_mac_addr(struct net_device *dev, void *p)
{
	int ret;

	ret = eth_prepare_mac_addr_change(dev, p);
	if (ret < 0)
		return ret;

	eth_commit_mac_addr_change(dev, p);
234
	ftgmac100_write_mac_addr(netdev_priv(dev), dev->dev_addr);
235 236 237 238

	return 0;
}

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
static void ftgmac100_config_pause(struct ftgmac100 *priv)
{
	u32 fcr = FTGMAC100_FCR_PAUSE_TIME(16);

	/* Throttle tx queue when receiving pause frames */
	if (priv->rx_pause)
		fcr |= FTGMAC100_FCR_FC_EN;

	/* Enables sending pause frames when the RX queue is past a
	 * certain threshold.
	 */
	if (priv->tx_pause)
		fcr |= FTGMAC100_FCR_FCTHR_EN;

	iowrite32(fcr, priv->base + FTGMAC100_OFFSET_FCR);
}

256 257
static void ftgmac100_init_hw(struct ftgmac100 *priv)
{
258
	u32 reg, rfifo_sz, tfifo_sz;
259

260 261 262
	/* Clear stale interrupts */
	reg = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
	iowrite32(reg, priv->base + FTGMAC100_OFFSET_ISR);
263

264
	/* Setup RX ring buffer base */
265
	iowrite32(priv->rxdes_dma, priv->base + FTGMAC100_OFFSET_RXR_BADR);
266

267
	/* Setup TX ring buffer base */
268
	iowrite32(priv->txdes_dma, priv->base + FTGMAC100_OFFSET_NPTXR_BADR);
269 270 271 272 273 274 275 276 277 278

	/* Configure RX buffer size */
	iowrite32(FTGMAC100_RBSR_SIZE(RX_BUF_SIZE),
		  priv->base + FTGMAC100_OFFSET_RBSR);

	/* Set RX descriptor autopoll */
	iowrite32(FTGMAC100_APTC_RXPOLL_CNT(1),
		  priv->base + FTGMAC100_OFFSET_APTC);

	/* Write MAC address */
279
	ftgmac100_write_mac_addr(priv, priv->netdev->dev_addr);
280

281 282 283 284
	/* Write multicast filter */
	iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
	iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
	/* Configure descriptor sizes and increase burst sizes according
	 * to values in Aspeed SDK. The FIFO arbitration is enabled and
	 * the thresholds set based on the recommended values in the
	 * AST2400 specification.
	 */
	iowrite32(FTGMAC100_DBLAC_RXDES_SIZE(2) |   /* 2*8 bytes RX descs */
		  FTGMAC100_DBLAC_TXDES_SIZE(2) |   /* 2*8 bytes TX descs */
		  FTGMAC100_DBLAC_RXBURST_SIZE(3) | /* 512 bytes max RX bursts */
		  FTGMAC100_DBLAC_TXBURST_SIZE(3) | /* 512 bytes max TX bursts */
		  FTGMAC100_DBLAC_RX_THR_EN |       /* Enable fifo threshold arb */
		  FTGMAC100_DBLAC_RXFIFO_HTHR(6) |  /* 6/8 of FIFO high threshold */
		  FTGMAC100_DBLAC_RXFIFO_LTHR(2),   /* 2/8 of FIFO low threshold */
		  priv->base + FTGMAC100_OFFSET_DBLAC);

	/* Interrupt mitigation configured for 1 interrupt/packet. HW interrupt
	 * mitigation doesn't seem to provide any benefit with NAPI so leave
	 * it at that.
	 */
	iowrite32(FTGMAC100_ITC_RXINT_THR(1) |
		  FTGMAC100_ITC_TXINT_THR(1),
		  priv->base + FTGMAC100_OFFSET_ITC);

	/* Configure FIFO sizes in the TPAFCR register */
	reg = ioread32(priv->base + FTGMAC100_OFFSET_FEAR);
	rfifo_sz = reg & 0x00000007;
	tfifo_sz = (reg >> 3) & 0x00000007;
	reg = ioread32(priv->base + FTGMAC100_OFFSET_TPAFCR);
	reg &= ~0x3f000000;
	reg |= (tfifo_sz << 27);
	reg |= (rfifo_sz << 24);
	iowrite32(reg, priv->base + FTGMAC100_OFFSET_TPAFCR);
316 317
}

318
static void ftgmac100_start_hw(struct ftgmac100 *priv)
319
{
320
	u32 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
321

322 323
	/* Keep the original GMAC and FAST bits */
	maccr &= (FTGMAC100_MACCR_FAST_MODE | FTGMAC100_MACCR_GIGA_MODE);
324

325 326 327 328 329 330 331 332 333
	/* Add all the main enable bits */
	maccr |= FTGMAC100_MACCR_TXDMA_EN	|
		 FTGMAC100_MACCR_RXDMA_EN	|
		 FTGMAC100_MACCR_TXMAC_EN	|
		 FTGMAC100_MACCR_RXMAC_EN	|
		 FTGMAC100_MACCR_CRC_APD	|
		 FTGMAC100_MACCR_PHY_LINK_LEVEL	|
		 FTGMAC100_MACCR_RX_RUNT	|
		 FTGMAC100_MACCR_RX_BROADPKT;
334

335
	/* Add other bits as needed */
336 337
	if (priv->cur_duplex == DUPLEX_FULL)
		maccr |= FTGMAC100_MACCR_FULLDUP;
338 339 340 341 342 343
	if (priv->netdev->flags & IFF_PROMISC)
		maccr |= FTGMAC100_MACCR_RX_ALL;
	if (priv->netdev->flags & IFF_ALLMULTI)
		maccr |= FTGMAC100_MACCR_RX_MULTIPKT;
	else if (netdev_mc_count(priv->netdev))
		maccr |= FTGMAC100_MACCR_HT_MULTI_EN;
344

345 346 347 348
	/* Vlan filtering enabled */
	if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
		maccr |= FTGMAC100_MACCR_RM_VLAN;

349
	/* Hit the HW */
350 351 352 353 354 355 356 357
	iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
}

static void ftgmac100_stop_hw(struct ftgmac100 *priv)
{
	iowrite32(0, priv->base + FTGMAC100_OFFSET_MACCR);
}

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
static void ftgmac100_calc_mc_hash(struct ftgmac100 *priv)
{
	struct netdev_hw_addr *ha;

	priv->maht1 = 0;
	priv->maht0 = 0;
	netdev_for_each_mc_addr(ha, priv->netdev) {
		u32 crc_val = ether_crc_le(ETH_ALEN, ha->addr);

		crc_val = (~(crc_val >> 2)) & 0x3f;
		if (crc_val >= 32)
			priv->maht1 |= 1ul << (crc_val - 32);
		else
			priv->maht0 |= 1ul << (crc_val);
	}
}

static void ftgmac100_set_rx_mode(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);

	/* Setup the hash filter */
	ftgmac100_calc_mc_hash(priv);

	/* Interface down ? that's all there is to do */
	if (!netif_running(netdev))
		return;

	/* Update the HW */
	iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
	iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);

	/* Reconfigure MACCR */
	ftgmac100_start_hw(priv);
}

394 395
static int ftgmac100_alloc_rx_buf(struct ftgmac100 *priv, unsigned int entry,
				  struct ftgmac100_rxdes *rxdes, gfp_t gfp)
396 397
{
	struct net_device *netdev = priv->netdev;
398
	struct sk_buff *skb;
399
	dma_addr_t map;
400
	int err = 0;
401

402 403
	skb = netdev_alloc_skb_ip_align(netdev, RX_BUF_SIZE);
	if (unlikely(!skb)) {
404
		if (net_ratelimit())
405
			netdev_warn(netdev, "failed to allocate rx skb\n");
406 407
		err = -ENOMEM;
		map = priv->rx_scratch_dma;
408 409 410 411 412 413 414 415 416 417 418
	} else {
		map = dma_map_single(priv->dev, skb->data, RX_BUF_SIZE,
				     DMA_FROM_DEVICE);
		if (unlikely(dma_mapping_error(priv->dev, map))) {
			if (net_ratelimit())
				netdev_err(netdev, "failed to map rx page\n");
			dev_kfree_skb_any(skb);
			map = priv->rx_scratch_dma;
			skb = NULL;
			err = -ENOMEM;
		}
419 420
	}

421 422
	/* Store skb */
	priv->rx_skbs[entry] = skb;
423

424
	/* Store DMA address into RX desc */
425
	rxdes->rxdes3 = cpu_to_le32(map);
426 427 428 429

	/* Ensure the above is ordered vs clearing the OWN bit */
	dma_wmb();

430
	/* Clean status (which resets own bit) */
431
	if (entry == (priv->rx_q_entries - 1))
432 433 434
		rxdes->rxdes0 = cpu_to_le32(priv->rxdes0_edorr_mask);
	else
		rxdes->rxdes0 = 0;
435

436
	return err;
437 438
}

439 440
static unsigned int ftgmac100_next_rx_pointer(struct ftgmac100 *priv,
					      unsigned int pointer)
441
{
442
	return (pointer + 1) & (priv->rx_q_entries - 1);
443 444
}

445
static void ftgmac100_rx_packet_error(struct ftgmac100 *priv, u32 status)
446 447 448
{
	struct net_device *netdev = priv->netdev;

449
	if (status & FTGMAC100_RXDES0_RX_ERR)
450 451
		netdev->stats.rx_errors++;

452
	if (status & FTGMAC100_RXDES0_CRC_ERR)
453 454
		netdev->stats.rx_crc_errors++;

455 456 457
	if (status & (FTGMAC100_RXDES0_FTL |
		      FTGMAC100_RXDES0_RUNT |
		      FTGMAC100_RXDES0_RX_ODD_NB))
458 459 460 461 462 463 464 465
		netdev->stats.rx_length_errors++;
}

static bool ftgmac100_rx_packet(struct ftgmac100 *priv, int *processed)
{
	struct net_device *netdev = priv->netdev;
	struct ftgmac100_rxdes *rxdes;
	struct sk_buff *skb;
466
	unsigned int pointer, size;
467
	u32 status, csum_vlan;
468
	dma_addr_t map;
469

470 471
	/* Grab next RX descriptor */
	pointer = priv->rx_pointer;
472
	rxdes = &priv->rxdes[pointer];
473

474 475 476
	/* Grab descriptor status */
	status = le32_to_cpu(rxdes->rxdes0);

477
	/* Do we have a packet ? */
478
	if (!(status & FTGMAC100_RXDES0_RXPKT_RDY))
479 480
		return false;

481 482 483
	/* Order subsequent reads with the test for the ready bit */
	dma_rmb();

484
	/* We don't cope with fragmented RX packets */
485 486
	if (unlikely(!(status & FTGMAC100_RXDES0_FRS) ||
		     !(status & FTGMAC100_RXDES0_LRS)))
487 488
		goto drop;

489 490 491 492
	/* Grab received size and csum vlan field in the descriptor */
	size = status & FTGMAC100_RXDES0_VDBC;
	csum_vlan = le32_to_cpu(rxdes->rxdes1);

493
	/* Any error (other than csum offload) flagged ? */
494
	if (unlikely(status & RXDES0_ANY_ERROR)) {
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
		/* Correct for incorrect flagging of runt packets
		 * with vlan tags... Just accept a runt packet that
		 * has been flagged as vlan and whose size is at
		 * least 60 bytes.
		 */
		if ((status & FTGMAC100_RXDES0_RUNT) &&
		    (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL) &&
		    (size >= 60))
			status &= ~FTGMAC100_RXDES0_RUNT;

		/* Any error still in there ? */
		if (status & RXDES0_ANY_ERROR) {
			ftgmac100_rx_packet_error(priv, status);
			goto drop;
		}
510 511
	}

512
	/* If the packet had no skb (failed to allocate earlier)
513 514
	 * then try to allocate one and skip
	 */
515 516 517
	skb = priv->rx_skbs[pointer];
	if (!unlikely(skb)) {
		ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
518
		goto drop;
519 520
	}

521
	if (unlikely(status & FTGMAC100_RXDES0_MULTICAST))
522 523
		netdev->stats.multicast++;

524 525 526 527 528
	/* If the HW found checksum errors, bounce it to software.
	 *
	 * If we didn't, we need to see if the packet was recognized
	 * by HW as one of the supported checksummed protocols before
	 * we accept the HW test results.
529
	 */
530
	if (netdev->features & NETIF_F_RXCSUM) {
531 532 533
		u32 err_bits = FTGMAC100_RXDES1_TCP_CHKSUM_ERR |
			FTGMAC100_RXDES1_UDP_CHKSUM_ERR |
			FTGMAC100_RXDES1_IP_CHKSUM_ERR;
534
		if ((csum_vlan & err_bits) ||
535
		    !(csum_vlan & FTGMAC100_RXDES1_PROT_MASK))
536 537 538 539
			skb->ip_summed = CHECKSUM_NONE;
		else
			skb->ip_summed = CHECKSUM_UNNECESSARY;
	}
540

541
	/* Transfer received size to skb */
542
	skb_put(skb, size);
543

544 545 546 547 548 549
	/* Extract vlan tag */
	if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
	    (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL))
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
				       csum_vlan & 0xffff);

550
	/* Tear down DMA mapping, do necessary cache management */
551 552
	map = le32_to_cpu(rxdes->rxdes3);

553 554 555 556 557 558 559 560 561
#if defined(CONFIG_ARM) && !defined(CONFIG_ARM_DMA_USE_IOMMU)
	/* When we don't have an iommu, we can save cycles by not
	 * invalidating the cache for the part of the packet that
	 * wasn't received.
	 */
	dma_unmap_single(priv->dev, map, size, DMA_FROM_DEVICE);
#else
	dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
#endif
562 563


564 565
	/* Resplenish rx ring */
	ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
566
	priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
567 568 569 570

	skb->protocol = eth_type_trans(skb, netdev);

	netdev->stats.rx_packets++;
571
	netdev->stats.rx_bytes += size;
572 573

	/* push packet to protocol stack */
574 575 576 577
	if (skb->ip_summed == CHECKSUM_NONE)
		netif_receive_skb(skb);
	else
		napi_gro_receive(&priv->napi, skb);
578 579 580

	(*processed)++;
	return true;
581 582 583

 drop:
	/* Clean rxdes0 (which resets own bit) */
584
	rxdes->rxdes0 = cpu_to_le32(status & priv->rxdes0_edorr_mask);
585
	priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
586 587
	netdev->stats.rx_dropped++;
	return true;
588 589
}

590 591
static u32 ftgmac100_base_tx_ctlstat(struct ftgmac100 *priv,
				     unsigned int index)
592
{
593
	if (index == (priv->tx_q_entries - 1))
594 595 596
		return priv->txdes0_edotr_mask;
	else
		return 0;
597 598
}

599 600
static unsigned int ftgmac100_next_tx_pointer(struct ftgmac100 *priv,
					      unsigned int pointer)
601
{
602
	return (pointer + 1) & (priv->tx_q_entries - 1);
603 604
}

605 606 607 608 609 610 611 612 613
static u32 ftgmac100_tx_buf_avail(struct ftgmac100 *priv)
{
	/* Returns the number of available slots in the TX queue
	 *
	 * This always leaves one free slot so we don't have to
	 * worry about empty vs. full, and this simplifies the
	 * test for ftgmac100_tx_buf_cleanable() below
	 */
	return (priv->tx_clean_pointer - priv->tx_pointer - 1) &
614
		(priv->tx_q_entries - 1);
615 616 617 618 619 620 621
}

static bool ftgmac100_tx_buf_cleanable(struct ftgmac100 *priv)
{
	return priv->tx_pointer != priv->tx_clean_pointer;
}

622 623 624
static void ftgmac100_free_tx_packet(struct ftgmac100 *priv,
				     unsigned int pointer,
				     struct sk_buff *skb,
625 626
				     struct ftgmac100_txdes *txdes,
				     u32 ctl_stat)
627
{
628 629
	dma_addr_t map = le32_to_cpu(txdes->txdes3);
	size_t len;
630

631 632 633
	if (ctl_stat & FTGMAC100_TXDES0_FTS) {
		len = skb_headlen(skb);
		dma_unmap_single(priv->dev, map, len, DMA_TO_DEVICE);
634
	} else {
635 636
		len = FTGMAC100_TXDES0_TXBUF_SIZE(ctl_stat);
		dma_unmap_page(priv->dev, map, len, DMA_TO_DEVICE);
637
	}
638

639 640
	/* Free SKB on last segment */
	if (ctl_stat & FTGMAC100_TXDES0_LTS)
641
		dev_kfree_skb(skb);
642 643 644
	priv->tx_skbs[pointer] = NULL;
}

645 646 647 648 649
static bool ftgmac100_tx_complete_packet(struct ftgmac100 *priv)
{
	struct net_device *netdev = priv->netdev;
	struct ftgmac100_txdes *txdes;
	struct sk_buff *skb;
650
	unsigned int pointer;
651
	u32 ctl_stat;
652

653
	pointer = priv->tx_clean_pointer;
654
	txdes = &priv->txdes[pointer];
655

656 657
	ctl_stat = le32_to_cpu(txdes->txdes0);
	if (ctl_stat & FTGMAC100_TXDES0_TXDMA_OWN)
658 659
		return false;

660
	skb = priv->tx_skbs[pointer];
661 662
	netdev->stats.tx_packets++;
	netdev->stats.tx_bytes += skb->len;
663 664
	ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
	txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
665

666
	priv->tx_clean_pointer = ftgmac100_next_tx_pointer(priv, pointer);
667 668 669 670 671 672

	return true;
}

static void ftgmac100_tx_complete(struct ftgmac100 *priv)
{
673 674 675 676 677
	struct net_device *netdev = priv->netdev;

	/* Process all completed packets */
	while (ftgmac100_tx_buf_cleanable(priv) &&
	       ftgmac100_tx_complete_packet(priv))
678
		;
679 680 681 682 683 684 685 686 687 688 689 690 691 692

	/* Restart queue if needed */
	smp_mb();
	if (unlikely(netif_queue_stopped(netdev) &&
		     ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)) {
		struct netdev_queue *txq;

		txq = netdev_get_tx_queue(netdev, 0);
		__netif_tx_lock(txq, smp_processor_id());
		if (netif_queue_stopped(netdev) &&
		    ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
			netif_wake_queue(netdev);
		__netif_tx_unlock(txq);
	}
693 694
}

695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
static bool ftgmac100_prep_tx_csum(struct sk_buff *skb, u32 *csum_vlan)
{
	if (skb->protocol == cpu_to_be16(ETH_P_IP)) {
		u8 ip_proto = ip_hdr(skb)->protocol;

		*csum_vlan |= FTGMAC100_TXDES1_IP_CHKSUM;
		switch(ip_proto) {
		case IPPROTO_TCP:
			*csum_vlan |= FTGMAC100_TXDES1_TCP_CHKSUM;
			return true;
		case IPPROTO_UDP:
			*csum_vlan |= FTGMAC100_TXDES1_UDP_CHKSUM;
			return true;
		case IPPROTO_IP:
			return true;
		}
	}
	return skb_checksum_help(skb) == 0;
}

715 716
static int ftgmac100_hard_start_xmit(struct sk_buff *skb,
				     struct net_device *netdev)
717
{
718
	struct ftgmac100 *priv = netdev_priv(netdev);
719 720
	struct ftgmac100_txdes *txdes, *first;
	unsigned int pointer, nfrags, len, i, j;
721
	u32 f_ctl_stat, ctl_stat, csum_vlan;
722 723
	dma_addr_t map;

724 725 726 727 728 729 730
	/* The HW doesn't pad small frames */
	if (eth_skb_pad(skb)) {
		netdev->stats.tx_dropped++;
		return NETDEV_TX_OK;
	}

	/* Reject oversize packets */
731 732 733
	if (unlikely(skb->len > MAX_PKT_SIZE)) {
		if (net_ratelimit())
			netdev_dbg(netdev, "tx packet too big\n");
734
		goto drop;
735 736
	}

737 738 739 740 741 742 743 744 745 746 747
	/* Do we have a limit on #fragments ? I yet have to get a reply
	 * from Aspeed. If there's one I haven't hit it.
	 */
	nfrags = skb_shinfo(skb)->nr_frags;

	/* Get header len */
	len = skb_headlen(skb);

	/* Map the packet head */
	map = dma_map_single(priv->dev, skb->data, len, DMA_TO_DEVICE);
	if (dma_mapping_error(priv->dev, map)) {
748
		if (net_ratelimit())
749
			netdev_err(netdev, "map tx packet head failed\n");
750
		goto drop;
751
	}
752

753 754
	/* Grab the next free tx descriptor */
	pointer = priv->tx_pointer;
755
	txdes = first = &priv->txdes[pointer];
756

757 758 759
	/* Setup it up with the packet head. Don't write the head to the
	 * ring just yet
	 */
760
	priv->tx_skbs[pointer] = skb;
761 762 763 764 765 766 767
	f_ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
	f_ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
	f_ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
	f_ctl_stat |= FTGMAC100_TXDES0_FTS;
	if (nfrags == 0)
		f_ctl_stat |= FTGMAC100_TXDES0_LTS;
	txdes->txdes3 = cpu_to_le32(map);
768 769

	/* Setup HW checksumming */
770
	csum_vlan = 0;
771 772 773
	if (skb->ip_summed == CHECKSUM_PARTIAL &&
	    !ftgmac100_prep_tx_csum(skb, &csum_vlan))
		goto drop;
774 775 776 777 778 779 780

	/* Add VLAN tag */
	if (skb_vlan_tag_present(skb)) {
		csum_vlan |= FTGMAC100_TXDES1_INS_VLANTAG;
		csum_vlan |= skb_vlan_tag_get(skb) & 0xffff;
	}

781
	txdes->txdes1 = cpu_to_le32(csum_vlan);
782

783
	/* Next descriptor */
784
	pointer = ftgmac100_next_tx_pointer(priv, pointer);
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799

	/* Add the fragments */
	for (i = 0; i < nfrags; i++) {
		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];

		len = frag->size;

		/* Map it */
		map = skb_frag_dma_map(priv->dev, frag, 0, len,
				       DMA_TO_DEVICE);
		if (dma_mapping_error(priv->dev, map))
			goto dma_err;

		/* Setup descriptor */
		priv->tx_skbs[pointer] = skb;
800
		txdes = &priv->txdes[pointer];
801 802 803 804 805 806 807 808 809 810
		ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
		ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
		ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
		if (i == (nfrags - 1))
			ctl_stat |= FTGMAC100_TXDES0_LTS;
		txdes->txdes0 = cpu_to_le32(ctl_stat);
		txdes->txdes1 = 0;
		txdes->txdes3 = cpu_to_le32(map);

		/* Next one */
811
		pointer = ftgmac100_next_tx_pointer(priv, pointer);
812 813
	}

814
	/* Order the previous packet and descriptor udpates
815
	 * before setting the OWN bit on the first descriptor.
816 817
	 */
	dma_wmb();
818
	first->txdes0 = cpu_to_le32(f_ctl_stat);
819

820
	/* Update next TX pointer */
821
	priv->tx_pointer = pointer;
822

823 824 825 826 827
	/* If there isn't enough room for all the fragments of a new packet
	 * in the TX ring, stop the queue. The sequence below is race free
	 * vs. a concurrent restart in ftgmac100_poll()
	 */
	if (unlikely(ftgmac100_tx_buf_avail(priv) < TX_THRESHOLD)) {
828
		netif_stop_queue(netdev);
829 830 831 832 833
		/* Order the queue stop with the test below */
		smp_mb();
		if (ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
			netif_wake_queue(netdev);
	}
834

835 836
	/* Poke transmitter to read the updated TX descriptors */
	iowrite32(1, priv->base + FTGMAC100_OFFSET_NPTXPD);
837

838 839
	return NETDEV_TX_OK;

840 841 842 843 844 845
 dma_err:
	if (net_ratelimit())
		netdev_err(netdev, "map tx fragment failed\n");

	/* Free head */
	pointer = priv->tx_pointer;
846 847
	ftgmac100_free_tx_packet(priv, pointer, skb, first, f_ctl_stat);
	first->txdes0 = cpu_to_le32(f_ctl_stat & priv->txdes0_edotr_mask);
848 849 850

	/* Then all fragments */
	for (j = 0; j < i; j++) {
851 852
		pointer = ftgmac100_next_tx_pointer(priv, pointer);
		txdes = &priv->txdes[pointer];
853 854 855
		ctl_stat = le32_to_cpu(txdes->txdes0);
		ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
		txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
856 857 858 859 860 861
	}

	/* This cannot be reached if we successfully mapped the
	 * last fragment, so we know ftgmac100_free_tx_packet()
	 * hasn't freed the skb yet.
	 */
862 863 864 865 866
 drop:
	/* Drop the packet */
	dev_kfree_skb_any(skb);
	netdev->stats.tx_dropped++;

867 868 869 870 871 872 873
	return NETDEV_TX_OK;
}

static void ftgmac100_free_buffers(struct ftgmac100 *priv)
{
	int i;

874
	/* Free all RX buffers */
875 876
	for (i = 0; i < priv->rx_q_entries; i++) {
		struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
877
		struct sk_buff *skb = priv->rx_skbs[i];
878
		dma_addr_t map = le32_to_cpu(rxdes->rxdes3);
879

880
		if (!skb)
881 882
			continue;

883 884 885
		priv->rx_skbs[i] = NULL;
		dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
		dev_kfree_skb_any(skb);
886 887
	}

888
	/* Free all TX buffers */
889 890
	for (i = 0; i < priv->tx_q_entries; i++) {
		struct ftgmac100_txdes *txdes = &priv->txdes[i];
891
		struct sk_buff *skb = priv->tx_skbs[i];
892

893 894 895 896
		if (!skb)
			continue;
		ftgmac100_free_tx_packet(priv, i, skb, txdes,
					 le32_to_cpu(txdes->txdes0));
897 898 899
	}
}

900
static void ftgmac100_free_rings(struct ftgmac100 *priv)
901
{
902 903 904 905
	/* Free skb arrays */
	kfree(priv->rx_skbs);
	kfree(priv->tx_skbs);

906
	/* Free descriptors */
907 908 909 910 911 912 913 914 915 916 917
	if (priv->rxdes)
		dma_free_coherent(priv->dev, MAX_RX_QUEUE_ENTRIES *
				  sizeof(struct ftgmac100_rxdes),
				  priv->rxdes, priv->rxdes_dma);
	priv->rxdes = NULL;

	if (priv->txdes)
		dma_free_coherent(priv->dev, MAX_TX_QUEUE_ENTRIES *
				  sizeof(struct ftgmac100_txdes),
				  priv->txdes, priv->txdes_dma);
	priv->txdes = NULL;
918 919 920 921 922

	/* Free scratch packet buffer */
	if (priv->rx_scratch)
		dma_free_coherent(priv->dev, RX_BUF_SIZE,
				  priv->rx_scratch, priv->rx_scratch_dma);
923
}
924

925 926
static int ftgmac100_alloc_rings(struct ftgmac100 *priv)
{
927 928 929 930 931 932 933 934 935 936
	/* Allocate skb arrays */
	priv->rx_skbs = kcalloc(MAX_RX_QUEUE_ENTRIES, sizeof(void *),
				GFP_KERNEL);
	if (!priv->rx_skbs)
		return -ENOMEM;
	priv->tx_skbs = kcalloc(MAX_TX_QUEUE_ENTRIES, sizeof(void *),
				GFP_KERNEL);
	if (!priv->tx_skbs)
		return -ENOMEM;

937
	/* Allocate descriptors */
938 939 940 941 942 943 944 945 946 947 948
	priv->rxdes = dma_zalloc_coherent(priv->dev,
					  MAX_RX_QUEUE_ENTRIES *
					  sizeof(struct ftgmac100_rxdes),
					  &priv->rxdes_dma, GFP_KERNEL);
	if (!priv->rxdes)
		return -ENOMEM;
	priv->txdes = dma_zalloc_coherent(priv->dev,
					  MAX_TX_QUEUE_ENTRIES *
					  sizeof(struct ftgmac100_txdes),
					  &priv->txdes_dma, GFP_KERNEL);
	if (!priv->txdes)
949 950
		return -ENOMEM;

951 952 953 954 955 956 957 958
	/* Allocate scratch packet buffer */
	priv->rx_scratch = dma_alloc_coherent(priv->dev,
					      RX_BUF_SIZE,
					      &priv->rx_scratch_dma,
					      GFP_KERNEL);
	if (!priv->rx_scratch)
		return -ENOMEM;

959 960 961 962 963
	return 0;
}

static void ftgmac100_init_rings(struct ftgmac100 *priv)
{
964 965
	struct ftgmac100_rxdes *rxdes = NULL;
	struct ftgmac100_txdes *txdes = NULL;
966 967
	int i;

968 969 970 971 972 973 974
	/* Update entries counts */
	priv->rx_q_entries = priv->new_rx_q_entries;
	priv->tx_q_entries = priv->new_tx_q_entries;

	if (WARN_ON(priv->rx_q_entries < MIN_RX_QUEUE_ENTRIES))
		return;

975
	/* Initialize RX ring */
976 977
	for (i = 0; i < priv->rx_q_entries; i++) {
		rxdes = &priv->rxdes[i];
978
		rxdes->rxdes0 = 0;
979
		rxdes->rxdes3 = cpu_to_le32(priv->rx_scratch_dma);
980
	}
981 982
	/* Mark the end of the ring */
	rxdes->rxdes0 |= cpu_to_le32(priv->rxdes0_edorr_mask);
983

984 985 986
	if (WARN_ON(priv->tx_q_entries < MIN_RX_QUEUE_ENTRIES))
		return;

987
	/* Initialize TX ring */
988 989
	for (i = 0; i < priv->tx_q_entries; i++) {
		txdes = &priv->txdes[i];
990 991 992
		txdes->txdes0 = 0;
	}
	txdes->txdes0 |= cpu_to_le32(priv->txdes0_edotr_mask);
993 994 995 996 997
}

static int ftgmac100_alloc_rx_buffers(struct ftgmac100 *priv)
{
	int i;
998

999 1000
	for (i = 0; i < priv->rx_q_entries; i++) {
		struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
1001

1002
		if (ftgmac100_alloc_rx_buf(priv, i, rxdes, GFP_KERNEL))
1003
			return -ENOMEM;
1004 1005 1006 1007 1008 1009 1010
	}
	return 0;
}

static void ftgmac100_adjust_link(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);
1011
	struct phy_device *phydev = netdev->phydev;
1012
	bool tx_pause, rx_pause;
1013
	int new_speed;
1014

1015 1016 1017 1018 1019 1020
	/* We store "no link" as speed 0 */
	if (!phydev->link)
		new_speed = 0;
	else
		new_speed = phydev->speed;

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	/* Grab pause settings from PHY if configured to do so */
	if (priv->aneg_pause) {
		rx_pause = tx_pause = phydev->pause;
		if (phydev->asym_pause)
			tx_pause = !rx_pause;
	} else {
		rx_pause = priv->rx_pause;
		tx_pause = priv->tx_pause;
	}

	/* Link hasn't changed, do nothing */
1032
	if (phydev->speed == priv->cur_speed &&
1033 1034 1035
	    phydev->duplex == priv->cur_duplex &&
	    rx_pause == priv->rx_pause &&
	    tx_pause == priv->tx_pause)
1036 1037
		return;

1038 1039 1040 1041 1042 1043 1044 1045
	/* Print status if we have a link or we had one and just lost it,
	 * don't print otherwise.
	 */
	if (new_speed || priv->cur_speed)
		phy_print_status(phydev);

	priv->cur_speed = new_speed;
	priv->cur_duplex = phydev->duplex;
1046 1047
	priv->rx_pause = rx_pause;
	priv->tx_pause = tx_pause;
1048 1049 1050 1051

	/* Link is down, do nothing else */
	if (!new_speed)
		return;
1052

1053
	/* Disable all interrupts */
1054 1055
	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);

1056 1057
	/* Reset the adapter asynchronously */
	schedule_work(&priv->reset_task);
1058 1059
}

1060
static int ftgmac100_mii_probe(struct ftgmac100 *priv, phy_interface_t intf)
1061 1062
{
	struct net_device *netdev = priv->netdev;
1063
	struct phy_device *phydev;
1064

1065
	phydev = phy_find_first(priv->mii_bus);
1066 1067 1068 1069 1070
	if (!phydev) {
		netdev_info(netdev, "%s: no PHY found\n", netdev->name);
		return -ENODEV;
	}

A
Andrew Lunn 已提交
1071
	phydev = phy_connect(netdev, phydev_name(phydev),
1072
			     &ftgmac100_adjust_link, intf);
1073 1074 1075 1076 1077 1078

	if (IS_ERR(phydev)) {
		netdev_err(netdev, "%s: Could not attach to PHY\n", netdev->name);
		return PTR_ERR(phydev);
	}

1079 1080 1081 1082 1083 1084
	/* Indicate that we support PAUSE frames (see comment in
	 * Documentation/networking/phy.txt)
	 */
	phydev->supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
	phydev->advertising = phydev->supported;

1085 1086 1087
	/* Display what we found */
	phy_attached_info(phydev);

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
	return 0;
}

static int ftgmac100_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
{
	struct net_device *netdev = bus->priv;
	struct ftgmac100 *priv = netdev_priv(netdev);
	unsigned int phycr;
	int i;

	phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);

	/* preserve MDC cycle threshold */
	phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;

	phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
		 FTGMAC100_PHYCR_REGAD(regnum) |
		 FTGMAC100_PHYCR_MIIRD;

	iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);

	for (i = 0; i < 10; i++) {
		phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);

		if ((phycr & FTGMAC100_PHYCR_MIIRD) == 0) {
			int data;

			data = ioread32(priv->base + FTGMAC100_OFFSET_PHYDATA);
			return FTGMAC100_PHYDATA_MIIRDATA(data);
		}

		udelay(100);
	}

	netdev_err(netdev, "mdio read timed out\n");
	return -EIO;
}

static int ftgmac100_mdiobus_write(struct mii_bus *bus, int phy_addr,
				   int regnum, u16 value)
{
	struct net_device *netdev = bus->priv;
	struct ftgmac100 *priv = netdev_priv(netdev);
	unsigned int phycr;
	int data;
	int i;

	phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);

	/* preserve MDC cycle threshold */
	phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;

	phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
		 FTGMAC100_PHYCR_REGAD(regnum) |
		 FTGMAC100_PHYCR_MIIWR;

	data = FTGMAC100_PHYDATA_MIIWDATA(value);

	iowrite32(data, priv->base + FTGMAC100_OFFSET_PHYDATA);
	iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);

	for (i = 0; i < 10; i++) {
		phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);

		if ((phycr & FTGMAC100_PHYCR_MIIWR) == 0)
			return 0;

		udelay(100);
	}

	netdev_err(netdev, "mdio write timed out\n");
	return -EIO;
}

static void ftgmac100_get_drvinfo(struct net_device *netdev,
				  struct ethtool_drvinfo *info)
{
1165 1166 1167
	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
	strlcpy(info->bus_info, dev_name(&netdev->dev), sizeof(info->bus_info));
1168 1169
}

1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
static void ftgmac100_get_ringparam(struct net_device *netdev,
				    struct ethtool_ringparam *ering)
{
	struct ftgmac100 *priv = netdev_priv(netdev);

	memset(ering, 0, sizeof(*ering));
	ering->rx_max_pending = MAX_RX_QUEUE_ENTRIES;
	ering->tx_max_pending = MAX_TX_QUEUE_ENTRIES;
	ering->rx_pending = priv->rx_q_entries;
	ering->tx_pending = priv->tx_q_entries;
}

static int ftgmac100_set_ringparam(struct net_device *netdev,
				   struct ethtool_ringparam *ering)
{
	struct ftgmac100 *priv = netdev_priv(netdev);

	if (ering->rx_pending > MAX_RX_QUEUE_ENTRIES ||
	    ering->tx_pending > MAX_TX_QUEUE_ENTRIES ||
	    ering->rx_pending < MIN_RX_QUEUE_ENTRIES ||
	    ering->tx_pending < MIN_TX_QUEUE_ENTRIES ||
	    !is_power_of_2(ering->rx_pending) ||
	    !is_power_of_2(ering->tx_pending))
		return -EINVAL;

	priv->new_rx_q_entries = ering->rx_pending;
	priv->new_tx_q_entries = ering->tx_pending;
	if (netif_running(netdev))
		schedule_work(&priv->reset_task);

	return 0;
}

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
static void ftgmac100_get_pauseparam(struct net_device *netdev,
				     struct ethtool_pauseparam *pause)
{
	struct ftgmac100 *priv = netdev_priv(netdev);

	pause->autoneg = priv->aneg_pause;
	pause->tx_pause = priv->tx_pause;
	pause->rx_pause = priv->rx_pause;
}

static int ftgmac100_set_pauseparam(struct net_device *netdev,
				    struct ethtool_pauseparam *pause)
{
	struct ftgmac100 *priv = netdev_priv(netdev);
	struct phy_device *phydev = netdev->phydev;

	priv->aneg_pause = pause->autoneg;
	priv->tx_pause = pause->tx_pause;
	priv->rx_pause = pause->rx_pause;

	if (phydev) {
		phydev->advertising &= ~ADVERTISED_Pause;
		phydev->advertising &= ~ADVERTISED_Asym_Pause;

		if (pause->rx_pause) {
			phydev->advertising |= ADVERTISED_Pause;
			phydev->advertising |= ADVERTISED_Asym_Pause;
		}

		if (pause->tx_pause)
			phydev->advertising ^= ADVERTISED_Asym_Pause;
	}
	if (netif_running(netdev)) {
		if (phydev && priv->aneg_pause)
			phy_start_aneg(phydev);
		else
			ftgmac100_config_pause(priv);
	}

	return 0;
}

1245 1246 1247
static const struct ethtool_ops ftgmac100_ethtool_ops = {
	.get_drvinfo		= ftgmac100_get_drvinfo,
	.get_link		= ethtool_op_get_link,
1248 1249
	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1250
	.nway_reset		= phy_ethtool_nway_reset,
1251 1252
	.get_ringparam		= ftgmac100_get_ringparam,
	.set_ringparam		= ftgmac100_set_ringparam,
1253 1254
	.get_pauseparam		= ftgmac100_get_pauseparam,
	.set_pauseparam		= ftgmac100_set_pauseparam,
1255 1256 1257 1258 1259 1260
};

static irqreturn_t ftgmac100_interrupt(int irq, void *dev_id)
{
	struct net_device *netdev = dev_id;
	struct ftgmac100 *priv = netdev_priv(netdev);
1261
	unsigned int status, new_mask = FTGMAC100_INT_BAD;
1262

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
	/* Fetch and clear interrupt bits, process abnormal ones */
	status = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
	iowrite32(status, priv->base + FTGMAC100_OFFSET_ISR);
	if (unlikely(status & FTGMAC100_INT_BAD)) {

		/* RX buffer unavailable */
		if (status & FTGMAC100_INT_NO_RXBUF)
			netdev->stats.rx_over_errors++;

		/* received packet lost due to RX FIFO full */
		if (status & FTGMAC100_INT_RPKT_LOST)
			netdev->stats.rx_fifo_errors++;

		/* sent packet lost due to excessive TX collision */
		if (status & FTGMAC100_INT_XPKT_LOST)
			netdev->stats.tx_fifo_errors++;

		/* AHB error -> Reset the chip */
		if (status & FTGMAC100_INT_AHB_ERR) {
			if (net_ratelimit())
				netdev_warn(netdev,
					   "AHB bus error ! Resetting chip.\n");
			iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
			schedule_work(&priv->reset_task);
			return IRQ_HANDLED;
		}

		/* We may need to restart the MAC after such errors, delay
		 * this until after we have freed some Rx buffers though
		 */
		priv->need_mac_restart = true;

		/* Disable those errors until we restart */
		new_mask &= ~status;
	}

	/* Only enable "bad" interrupts while NAPI is on */
	iowrite32(new_mask, priv->base + FTGMAC100_OFFSET_IER);

	/* Schedule NAPI bh */
	napi_schedule_irqoff(&priv->napi);
1304 1305 1306 1307

	return IRQ_HANDLED;
}

1308 1309
static bool ftgmac100_check_rx(struct ftgmac100 *priv)
{
1310
	struct ftgmac100_rxdes *rxdes = &priv->rxdes[priv->rx_pointer];
1311 1312 1313 1314 1315

	/* Do we have a packet ? */
	return !!(rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RXPKT_RDY));
}

1316 1317 1318
static int ftgmac100_poll(struct napi_struct *napi, int budget)
{
	struct ftgmac100 *priv = container_of(napi, struct ftgmac100, napi);
1319 1320
	int work_done = 0;
	bool more;
1321

1322 1323 1324
	/* Handle TX completions */
	if (ftgmac100_tx_buf_cleanable(priv))
		ftgmac100_tx_complete(priv);
1325

1326
	/* Handle RX packets */
1327
	do {
1328 1329
		more = ftgmac100_rx_packet(priv, &work_done);
	} while (more && work_done < budget);
1330 1331


1332 1333 1334 1335 1336
	/* The interrupt is telling us to kick the MAC back to life
	 * after an RX overflow
	 */
	if (unlikely(priv->need_mac_restart)) {
		ftgmac100_start_hw(priv);
1337

1338 1339 1340
		/* Re-enable "bad" interrupts */
		iowrite32(FTGMAC100_INT_BAD,
			  priv->base + FTGMAC100_OFFSET_IER);
1341 1342
	}

1343 1344 1345 1346 1347
	/* As long as we are waiting for transmit packets to be
	 * completed we keep NAPI going
	 */
	if (ftgmac100_tx_buf_cleanable(priv))
		work_done = budget;
1348

1349
	if (work_done < budget) {
1350 1351 1352 1353 1354 1355 1356
		/* We are about to re-enable all interrupts. However
		 * the HW has been latching RX/TX packet interrupts while
		 * they were masked. So we clear them first, then we need
		 * to re-check if there's something to process
		 */
		iowrite32(FTGMAC100_INT_RXTX,
			  priv->base + FTGMAC100_OFFSET_ISR);
1357 1358 1359 1360 1361 1362 1363

		/* Push the above (and provides a barrier vs. subsequent
		 * reads of the descriptor).
		 */
		ioread32(priv->base + FTGMAC100_OFFSET_ISR);

		/* Check RX and TX descriptors for more work to do */
1364 1365
		if (ftgmac100_check_rx(priv) ||
		    ftgmac100_tx_buf_cleanable(priv))
1366 1367 1368
			return budget;

		/* deschedule NAPI */
1369 1370 1371
		napi_complete(napi);

		/* enable all interrupts */
1372
		iowrite32(FTGMAC100_INT_ALL,
1373
			  priv->base + FTGMAC100_OFFSET_IER);
1374 1375
	}

1376
	return work_done;
1377 1378
}

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
static int ftgmac100_init_all(struct ftgmac100 *priv, bool ignore_alloc_err)
{
	int err = 0;

	/* Re-init descriptors (adjust queue sizes) */
	ftgmac100_init_rings(priv);

	/* Realloc rx descriptors */
	err = ftgmac100_alloc_rx_buffers(priv);
	if (err && !ignore_alloc_err)
		return err;

	/* Reinit and restart HW */
	ftgmac100_init_hw(priv);
1393
	ftgmac100_config_pause(priv);
1394 1395 1396 1397 1398 1399 1400
	ftgmac100_start_hw(priv);

	/* Re-enable the device */
	napi_enable(&priv->napi);
	netif_start_queue(priv->netdev);

	/* Enable all interrupts */
1401
	iowrite32(FTGMAC100_INT_ALL, priv->base + FTGMAC100_OFFSET_IER);
1402 1403 1404 1405

	return err;
}

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
static void ftgmac100_reset_task(struct work_struct *work)
{
	struct ftgmac100 *priv = container_of(work, struct ftgmac100,
					      reset_task);
	struct net_device *netdev = priv->netdev;
	int err;

	netdev_dbg(netdev, "Resetting NIC...\n");

	/* Lock the world */
	rtnl_lock();
	if (netdev->phydev)
		mutex_lock(&netdev->phydev->lock);
	if (priv->mii_bus)
		mutex_lock(&priv->mii_bus->mdio_lock);


	/* Check if the interface is still up */
	if (!netif_running(netdev))
		goto bail;

	/* Stop the network stack */
	netif_trans_update(netdev);
	napi_disable(&priv->napi);
	netif_tx_disable(netdev);

	/* Stop and reset the MAC */
	ftgmac100_stop_hw(priv);
1434
	err = ftgmac100_reset_and_config_mac(priv);
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
	if (err) {
		/* Not much we can do ... it might come back... */
		netdev_err(netdev, "attempting to continue...\n");
	}

	/* Free all rx and tx buffers */
	ftgmac100_free_buffers(priv);

	/* Setup everything again and restart chip */
	ftgmac100_init_all(priv, true);

	netdev_dbg(netdev, "Reset done !\n");
 bail:
	if (priv->mii_bus)
		mutex_unlock(&priv->mii_bus->mdio_lock);
	if (netdev->phydev)
		mutex_unlock(&netdev->phydev->lock);
	rtnl_unlock();
}

1455 1456 1457 1458 1459
static int ftgmac100_open(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);
	int err;

1460 1461
	/* Allocate ring buffers  */
	err = ftgmac100_alloc_rings(priv);
1462
	if (err) {
1463 1464
		netdev_err(netdev, "Failed to allocate descriptors\n");
		return err;
1465 1466
	}

1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
	/* When using NC-SI we force the speed to 100Mbit/s full duplex,
	 *
	 * Otherwise we leave it set to 0 (no link), the link
	 * message from the PHY layer will handle setting it up to
	 * something else if needed.
	 */
	if (priv->use_ncsi) {
		priv->cur_duplex = DUPLEX_FULL;
		priv->cur_speed = SPEED_100;
	} else {
		priv->cur_duplex = 0;
		priv->cur_speed = 0;
	}

1481 1482
	/* Reset the hardware */
	err = ftgmac100_reset_and_config_mac(priv);
1483 1484 1485
	if (err)
		goto err_hw;

1486 1487 1488
	/* Initialize NAPI */
	netif_napi_add(netdev, &priv->napi, ftgmac100_poll, 64);

1489 1490 1491 1492 1493 1494 1495
	/* Grab our interrupt */
	err = request_irq(netdev->irq, ftgmac100_interrupt, 0, netdev->name, netdev);
	if (err) {
		netdev_err(netdev, "failed to request irq %d\n", netdev->irq);
		goto err_irq;
	}

1496 1497 1498 1499 1500 1501
	/* Start things up */
	err = ftgmac100_init_all(priv, false);
	if (err) {
		netdev_err(netdev, "Failed to allocate packet buffers\n");
		goto err_alloc;
	}
G
Gavin Shan 已提交
1502

1503 1504
	if (netdev->phydev) {
		/* If we have a PHY, start polling */
G
Gavin Shan 已提交
1505
		phy_start(netdev->phydev);
1506 1507
	} else if (priv->use_ncsi) {
		/* If using NC-SI, set our carrier on and start the stack */
G
Gavin Shan 已提交
1508
		netif_carrier_on(netdev);
1509

1510
		/* Start the NCSI device */
G
Gavin Shan 已提交
1511 1512 1513 1514 1515
		err = ncsi_start_dev(priv->ndev);
		if (err)
			goto err_ncsi;
	}

1516 1517
	return 0;

1518
 err_ncsi:
G
Gavin Shan 已提交
1519 1520
	napi_disable(&priv->napi);
	netif_stop_queue(netdev);
1521 1522
 err_alloc:
	ftgmac100_free_buffers(priv);
1523
	free_irq(netdev->irq, netdev);
1524
 err_irq:
1525
	netif_napi_del(&priv->napi);
1526
 err_hw:
1527
	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1528
	ftgmac100_free_rings(priv);
1529 1530 1531 1532 1533 1534 1535
	return err;
}

static int ftgmac100_stop(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);

1536 1537 1538 1539 1540 1541 1542 1543
	/* Note about the reset task: We are called with the rtnl lock
	 * held, so we are synchronized against the core of the reset
	 * task. We must not try to synchronously cancel it otherwise
	 * we can deadlock. But since it will test for netif_running()
	 * which has already been cleared by the net core, we don't
	 * anything special to do.
	 */

1544 1545 1546 1547 1548
	/* disable all interrupts */
	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);

	netif_stop_queue(netdev);
	napi_disable(&priv->napi);
1549
	netif_napi_del(&priv->napi);
G
Gavin Shan 已提交
1550 1551
	if (netdev->phydev)
		phy_stop(netdev->phydev);
1552 1553
	else if (priv->use_ncsi)
		ncsi_stop_dev(priv->ndev);
1554 1555

	ftgmac100_stop_hw(priv);
1556
	free_irq(netdev->irq, netdev);
1557
	ftgmac100_free_buffers(priv);
1558
	ftgmac100_free_rings(priv);
1559 1560 1561 1562 1563 1564 1565

	return 0;
}

/* optional */
static int ftgmac100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
G
Gavin Shan 已提交
1566 1567 1568
	if (!netdev->phydev)
		return -ENXIO;

1569
	return phy_mii_ioctl(netdev->phydev, ifr, cmd);
1570 1571
}

1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
static void ftgmac100_tx_timeout(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);

	/* Disable all interrupts */
	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);

	/* Do the reset outside of interrupt context */
	schedule_work(&priv->reset_task);
}

1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
static int ftgmac100_set_features(struct net_device *netdev,
				  netdev_features_t features)
{
	struct ftgmac100 *priv = netdev_priv(netdev);
	netdev_features_t changed = netdev->features ^ features;

	if (!netif_running(netdev))
		return 0;

	/* Update the vlan filtering bit */
	if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
		u32 maccr;

		maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
		if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
			maccr |= FTGMAC100_MACCR_RM_VLAN;
		else
			maccr &= ~FTGMAC100_MACCR_RM_VLAN;
		iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
	}

	return 0;
}

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
#ifdef CONFIG_NET_POLL_CONTROLLER
static void ftgmac100_poll_controller(struct net_device *netdev)
{
	unsigned long flags;

	local_irq_save(flags);
	ftgmac100_interrupt(netdev->irq, netdev);
	local_irq_restore(flags);
}
#endif

1618 1619 1620 1621
static const struct net_device_ops ftgmac100_netdev_ops = {
	.ndo_open		= ftgmac100_open,
	.ndo_stop		= ftgmac100_stop,
	.ndo_start_xmit		= ftgmac100_hard_start_xmit,
1622
	.ndo_set_mac_address	= ftgmac100_set_mac_addr,
1623 1624
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= ftgmac100_do_ioctl,
1625
	.ndo_tx_timeout		= ftgmac100_tx_timeout,
1626
	.ndo_set_rx_mode	= ftgmac100_set_rx_mode,
1627
	.ndo_set_features	= ftgmac100_set_features,
1628 1629 1630
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= ftgmac100_poll_controller,
#endif
1631 1632
	.ndo_vlan_rx_add_vid	= ncsi_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= ncsi_vlan_rx_kill_vid,
1633 1634
};

1635 1636 1637 1638
static int ftgmac100_setup_mdio(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);
	struct platform_device *pdev = to_platform_device(priv->dev);
1639 1640
	int phy_intf = PHY_INTERFACE_MODE_RGMII;
	struct device_node *np = pdev->dev.of_node;
1641
	int i, err = 0;
1642
	u32 reg;
1643 1644 1645 1646 1647 1648

	/* initialize mdio bus */
	priv->mii_bus = mdiobus_alloc();
	if (!priv->mii_bus)
		return -EIO;

1649
	if (priv->is_aspeed) {
1650 1651 1652 1653 1654 1655
		/* This driver supports the old MDIO interface */
		reg = ioread32(priv->base + FTGMAC100_OFFSET_REVR);
		reg &= ~FTGMAC100_REVR_NEW_MDIO_INTERFACE;
		iowrite32(reg, priv->base + FTGMAC100_OFFSET_REVR);
	};

1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
	/* Get PHY mode from device-tree */
	if (np) {
		/* Default to RGMII. It's a gigabit part after all */
		phy_intf = of_get_phy_mode(np);
		if (phy_intf < 0)
			phy_intf = PHY_INTERFACE_MODE_RGMII;

		/* Aspeed only supports these. I don't know about other IP
		 * block vendors so I'm going to just let them through for
		 * now. Note that this is only a warning if for some obscure
		 * reason the DT really means to lie about it or it's a newer
		 * part we don't know about.
		 *
		 * On the Aspeed SoC there are additionally straps and SCU
		 * control bits that could tell us what the interface is
		 * (or allow us to configure it while the IP block is held
		 * in reset). For now I chose to keep this driver away from
		 * those SoC specific bits and assume the device-tree is
		 * right and the SCU has been configured properly by pinmux
		 * or the firmware.
		 */
		if (priv->is_aspeed &&
		    phy_intf != PHY_INTERFACE_MODE_RMII &&
		    phy_intf != PHY_INTERFACE_MODE_RGMII &&
		    phy_intf != PHY_INTERFACE_MODE_RGMII_ID &&
		    phy_intf != PHY_INTERFACE_MODE_RGMII_RXID &&
		    phy_intf != PHY_INTERFACE_MODE_RGMII_TXID) {
			netdev_warn(netdev,
				   "Unsupported PHY mode %s !\n",
				   phy_modes(phy_intf));
		}
	}

1689 1690 1691
	priv->mii_bus->name = "ftgmac100_mdio";
	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%d",
		 pdev->name, pdev->id);
1692
	priv->mii_bus->parent = priv->dev;
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
	priv->mii_bus->priv = priv->netdev;
	priv->mii_bus->read = ftgmac100_mdiobus_read;
	priv->mii_bus->write = ftgmac100_mdiobus_write;

	for (i = 0; i < PHY_MAX_ADDR; i++)
		priv->mii_bus->irq[i] = PHY_POLL;

	err = mdiobus_register(priv->mii_bus);
	if (err) {
		dev_err(priv->dev, "Cannot register MDIO bus!\n");
		goto err_register_mdiobus;
	}

1706
	err = ftgmac100_mii_probe(priv, phy_intf);
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
	if (err) {
		dev_err(priv->dev, "MII Probe failed!\n");
		goto err_mii_probe;
	}

	return 0;

err_mii_probe:
	mdiobus_unregister(priv->mii_bus);
err_register_mdiobus:
	mdiobus_free(priv->mii_bus);
	return err;
}

static void ftgmac100_destroy_mdio(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);

	if (!netdev->phydev)
		return;

	phy_disconnect(netdev->phydev);
	mdiobus_unregister(priv->mii_bus);
	mdiobus_free(priv->mii_bus);
}

G
Gavin Shan 已提交
1733 1734 1735 1736 1737 1738 1739 1740 1741
static void ftgmac100_ncsi_handler(struct ncsi_dev *nd)
{
	if (unlikely(nd->state != ncsi_dev_state_functional))
		return;

	netdev_info(nd->dev, "NCSI interface %s\n",
		    nd->link_up ? "up" : "down");
}

1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
static void ftgmac100_setup_clk(struct ftgmac100 *priv)
{
	priv->clk = devm_clk_get(priv->dev, NULL);
	if (IS_ERR(priv->clk))
		return;

	clk_prepare_enable(priv->clk);

	/* Aspeed specifies a 100MHz clock is required for up to
	 * 1000Mbit link speeds. As NCSI is limited to 100Mbit, 25MHz
	 * is sufficient
	 */
	clk_set_rate(priv->clk, priv->use_ncsi ? FTGMAC_25MHZ :
			FTGMAC_100MHZ);
}

1758 1759 1760 1761 1762 1763
static int ftgmac100_probe(struct platform_device *pdev)
{
	struct resource *res;
	int irq;
	struct net_device *netdev;
	struct ftgmac100 *priv;
1764
	struct device_node *np;
G
Gavin Shan 已提交
1765
	int err = 0;
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786

	if (!pdev)
		return -ENODEV;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res)
		return -ENXIO;

	irq = platform_get_irq(pdev, 0);
	if (irq < 0)
		return irq;

	/* setup net_device */
	netdev = alloc_etherdev(sizeof(*priv));
	if (!netdev) {
		err = -ENOMEM;
		goto err_alloc_etherdev;
	}

	SET_NETDEV_DEV(netdev, &pdev->dev);

1787
	netdev->ethtool_ops = &ftgmac100_ethtool_ops;
1788
	netdev->netdev_ops = &ftgmac100_netdev_ops;
1789
	netdev->watchdog_timeo = 5 * HZ;
1790 1791 1792 1793 1794 1795 1796

	platform_set_drvdata(pdev, netdev);

	/* setup private data */
	priv = netdev_priv(netdev);
	priv->netdev = netdev;
	priv->dev = &pdev->dev;
1797
	INIT_WORK(&priv->reset_task, ftgmac100_reset_task);
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814

	/* map io memory */
	priv->res = request_mem_region(res->start, resource_size(res),
				       dev_name(&pdev->dev));
	if (!priv->res) {
		dev_err(&pdev->dev, "Could not reserve memory region\n");
		err = -ENOMEM;
		goto err_req_mem;
	}

	priv->base = ioremap(res->start, resource_size(res));
	if (!priv->base) {
		dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
		err = -EIO;
		goto err_ioremap;
	}

1815
	netdev->irq = irq;
1816

1817 1818 1819 1820 1821
	/* Enable pause */
	priv->tx_pause = true;
	priv->rx_pause = true;
	priv->aneg_pause = true;

1822
	/* MAC address from chip or random one */
1823
	ftgmac100_initial_mac(priv);
1824

1825 1826 1827
	np = pdev->dev.of_node;
	if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
		   of_device_is_compatible(np, "aspeed,ast2500-mac"))) {
1828 1829
		priv->rxdes0_edorr_mask = BIT(30);
		priv->txdes0_edotr_mask = BIT(30);
1830
		priv->is_aspeed = true;
1831 1832 1833 1834 1835
	} else {
		priv->rxdes0_edorr_mask = BIT(15);
		priv->txdes0_edotr_mask = BIT(15);
	}

1836
	if (np && of_get_property(np, "use-ncsi", NULL)) {
G
Gavin Shan 已提交
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
		if (!IS_ENABLED(CONFIG_NET_NCSI)) {
			dev_err(&pdev->dev, "NCSI stack not enabled\n");
			goto err_ncsi_dev;
		}

		dev_info(&pdev->dev, "Using NCSI interface\n");
		priv->use_ncsi = true;
		priv->ndev = ncsi_register_dev(netdev, ftgmac100_ncsi_handler);
		if (!priv->ndev)
			goto err_ncsi_dev;
	} else {
		priv->use_ncsi = false;
		err = ftgmac100_setup_mdio(netdev);
		if (err)
			goto err_setup_mdio;
	}

1854 1855 1856
	if (priv->is_aspeed)
		ftgmac100_setup_clk(priv);

1857 1858 1859 1860
	/* Default ring sizes */
	priv->rx_q_entries = priv->new_rx_q_entries = DEF_RX_QUEUE_ENTRIES;
	priv->tx_q_entries = priv->new_tx_q_entries = DEF_TX_QUEUE_ENTRIES;

1861
	/* Base feature set */
1862
	netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM |
1863 1864
		NETIF_F_GRO | NETIF_F_SG | NETIF_F_HW_VLAN_CTAG_RX |
		NETIF_F_HW_VLAN_CTAG_TX;
1865

1866 1867 1868
	if (priv->use_ncsi)
		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;

1869 1870
	/* AST2400  doesn't have working HW checksum generation */
	if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac")))
1871
		netdev->hw_features &= ~NETIF_F_HW_CSUM;
1872
	if (np && of_get_property(np, "no-hw-checksum", NULL))
1873 1874
		netdev->hw_features &= ~(NETIF_F_HW_CSUM | NETIF_F_RXCSUM);
	netdev->features |= netdev->hw_features;
G
Gavin Shan 已提交
1875

1876 1877 1878 1879 1880 1881 1882
	/* register network device */
	err = register_netdev(netdev);
	if (err) {
		dev_err(&pdev->dev, "Failed to register netdev\n");
		goto err_register_netdev;
	}

1883
	netdev_info(netdev, "irq %d, mapped at %p\n", netdev->irq, priv->base);
1884 1885 1886

	return 0;

G
Gavin Shan 已提交
1887
err_ncsi_dev:
1888
err_register_netdev:
1889 1890
	ftgmac100_destroy_mdio(netdev);
err_setup_mdio:
1891 1892 1893 1894 1895 1896 1897 1898 1899
	iounmap(priv->base);
err_ioremap:
	release_resource(priv->res);
err_req_mem:
	free_netdev(netdev);
err_alloc_etherdev:
	return err;
}

1900
static int ftgmac100_remove(struct platform_device *pdev)
1901 1902 1903 1904 1905 1906 1907 1908
{
	struct net_device *netdev;
	struct ftgmac100 *priv;

	netdev = platform_get_drvdata(pdev);
	priv = netdev_priv(netdev);

	unregister_netdev(netdev);
1909

1910 1911
	clk_disable_unprepare(priv->clk);

1912 1913 1914 1915 1916
	/* There's a small chance the reset task will have been re-queued,
	 * during stop, make sure it's gone before we free the structure.
	 */
	cancel_work_sync(&priv->reset_task);

1917
	ftgmac100_destroy_mdio(netdev);
1918 1919 1920 1921 1922 1923 1924 1925 1926

	iounmap(priv->base);
	release_resource(priv->res);

	netif_napi_del(&priv->napi);
	free_netdev(netdev);
	return 0;
}

1927 1928 1929 1930 1931 1932
static const struct of_device_id ftgmac100_of_match[] = {
	{ .compatible = "faraday,ftgmac100" },
	{ }
};
MODULE_DEVICE_TABLE(of, ftgmac100_of_match);

1933
static struct platform_driver ftgmac100_driver = {
1934
	.probe	= ftgmac100_probe,
1935
	.remove	= ftgmac100_remove,
1936 1937 1938
	.driver	= {
		.name		= DRV_NAME,
		.of_match_table	= ftgmac100_of_match,
1939 1940
	},
};
1941
module_platform_driver(ftgmac100_driver);
1942 1943 1944 1945

MODULE_AUTHOR("Po-Yu Chuang <ratbert@faraday-tech.com>");
MODULE_DESCRIPTION("FTGMAC100 driver");
MODULE_LICENSE("GPL");