ftgmac100.c 38.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Faraday FTGMAC100 Gigabit Ethernet
 *
 * (C) Copyright 2009-2011 Faraday Technology
 * Po-Yu Chuang <ratbert@faraday-tech.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt

#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
27
#include <linux/interrupt.h>
28 29 30
#include <linux/io.h>
#include <linux/module.h>
#include <linux/netdevice.h>
31
#include <linux/of.h>
32 33
#include <linux/phy.h>
#include <linux/platform_device.h>
34
#include <linux/property.h>
35
#include <net/ip.h>
G
Gavin Shan 已提交
36
#include <net/ncsi.h>
37 38 39 40 41 42 43 44 45

#include "ftgmac100.h"

#define DRV_NAME	"ftgmac100"
#define DRV_VERSION	"0.7"

#define RX_QUEUE_ENTRIES	256	/* must be power of 2 */
#define TX_QUEUE_ENTRIES	512	/* must be power of 2 */

46 47
#define MAX_PKT_SIZE		1536
#define RX_BUF_SIZE		MAX_PKT_SIZE	/* must be smaller than 0x3fff */
48

49
/* Min number of tx ring entries before stopping queue */
50
#define TX_THRESHOLD		(MAX_SKB_FRAGS + 1)
51

52 53 54 55 56 57
struct ftgmac100_descs {
	struct ftgmac100_rxdes rxdes[RX_QUEUE_ENTRIES];
	struct ftgmac100_txdes txdes[TX_QUEUE_ENTRIES];
};

struct ftgmac100 {
58
	/* Registers */
59 60 61 62 63 64
	struct resource *res;
	void __iomem *base;

	struct ftgmac100_descs *descs;
	dma_addr_t descs_dma_addr;

65
	/* Rx ring */
66
	struct sk_buff *rx_skbs[RX_QUEUE_ENTRIES];
67
	unsigned int rx_pointer;
68 69 70
	u32 rxdes0_edorr_mask;

	/* Tx ring */
71
	struct sk_buff *tx_skbs[TX_QUEUE_ENTRIES];
72 73
	unsigned int tx_clean_pointer;
	unsigned int tx_pointer;
74
	u32 txdes0_edotr_mask;
75

76 77 78 79
	/* Scratch page to use when rx skb alloc fails */
	void *rx_scratch;
	dma_addr_t rx_scratch_dma;

80
	/* Component structures */
81 82
	struct net_device *netdev;
	struct device *dev;
G
Gavin Shan 已提交
83
	struct ncsi_dev *ndev;
84
	struct napi_struct napi;
85
	struct work_struct reset_task;
86
	struct mii_bus *mii_bus;
87 88

	/* Link management */
89 90
	int cur_speed;
	int cur_duplex;
G
Gavin Shan 已提交
91
	bool use_ncsi;
92

93
	/* Misc */
94
	bool need_mac_restart;
95
	bool is_aspeed;
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
};

static void ftgmac100_set_rx_ring_base(struct ftgmac100 *priv, dma_addr_t addr)
{
	iowrite32(addr, priv->base + FTGMAC100_OFFSET_RXR_BADR);
}

static void ftgmac100_set_rx_buffer_size(struct ftgmac100 *priv,
		unsigned int size)
{
	size = FTGMAC100_RBSR_SIZE(size);
	iowrite32(size, priv->base + FTGMAC100_OFFSET_RBSR);
}

static void ftgmac100_set_normal_prio_tx_ring_base(struct ftgmac100 *priv,
						   dma_addr_t addr)
{
	iowrite32(addr, priv->base + FTGMAC100_OFFSET_NPTXR_BADR);
}

static void ftgmac100_txdma_normal_prio_start_polling(struct ftgmac100 *priv)
{
	iowrite32(1, priv->base + FTGMAC100_OFFSET_NPTXPD);
}

121
static int ftgmac100_reset_mac(struct ftgmac100 *priv, u32 maccr)
122 123 124 125 126
{
	struct net_device *netdev = priv->netdev;
	int i;

	/* NOTE: reset clears all registers */
127 128 129 130
	iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
	iowrite32(maccr | FTGMAC100_MACCR_SW_RST,
		  priv->base + FTGMAC100_OFFSET_MACCR);
	for (i = 0; i < 50; i++) {
131 132 133 134 135 136
		unsigned int maccr;

		maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
		if (!(maccr & FTGMAC100_MACCR_SW_RST))
			return 0;

137
		udelay(1);
138 139
	}

140
	netdev_err(netdev, "Hardware reset failed\n");
141 142 143
	return -EIO;
}

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
static int ftgmac100_reset_and_config_mac(struct ftgmac100 *priv)
{
	u32 maccr = 0;

	switch (priv->cur_speed) {
	case SPEED_10:
	case 0: /* no link */
		break;

	case SPEED_100:
		maccr |= FTGMAC100_MACCR_FAST_MODE;
		break;

	case SPEED_1000:
		maccr |= FTGMAC100_MACCR_GIGA_MODE;
		break;
	default:
		netdev_err(priv->netdev, "Unknown speed %d !\n",
			   priv->cur_speed);
		break;
	}

	/* (Re)initialize the queue pointers */
	priv->rx_pointer = 0;
	priv->tx_clean_pointer = 0;
	priv->tx_pointer = 0;

	/* The doc says reset twice with 10us interval */
	if (ftgmac100_reset_mac(priv, maccr))
		return -EIO;
	usleep_range(10, 1000);
	return ftgmac100_reset_mac(priv, maccr);
}

178
static void ftgmac100_write_mac_addr(struct ftgmac100 *priv, const u8 *mac)
179 180 181 182 183 184 185 186
{
	unsigned int maddr = mac[0] << 8 | mac[1];
	unsigned int laddr = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];

	iowrite32(maddr, priv->base + FTGMAC100_OFFSET_MAC_MADR);
	iowrite32(laddr, priv->base + FTGMAC100_OFFSET_MAC_LADR);
}

187
static void ftgmac100_initial_mac(struct ftgmac100 *priv)
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
{
	u8 mac[ETH_ALEN];
	unsigned int m;
	unsigned int l;
	void *addr;

	addr = device_get_mac_address(priv->dev, mac, ETH_ALEN);
	if (addr) {
		ether_addr_copy(priv->netdev->dev_addr, mac);
		dev_info(priv->dev, "Read MAC address %pM from device tree\n",
			 mac);
		return;
	}

	m = ioread32(priv->base + FTGMAC100_OFFSET_MAC_MADR);
	l = ioread32(priv->base + FTGMAC100_OFFSET_MAC_LADR);

	mac[0] = (m >> 8) & 0xff;
	mac[1] = m & 0xff;
	mac[2] = (l >> 24) & 0xff;
	mac[3] = (l >> 16) & 0xff;
	mac[4] = (l >> 8) & 0xff;
	mac[5] = l & 0xff;

	if (is_valid_ether_addr(mac)) {
		ether_addr_copy(priv->netdev->dev_addr, mac);
		dev_info(priv->dev, "Read MAC address %pM from chip\n", mac);
	} else {
		eth_hw_addr_random(priv->netdev);
		dev_info(priv->dev, "Generated random MAC address %pM\n",
			 priv->netdev->dev_addr);
	}
}

static int ftgmac100_set_mac_addr(struct net_device *dev, void *p)
{
	int ret;

	ret = eth_prepare_mac_addr_change(dev, p);
	if (ret < 0)
		return ret;

	eth_commit_mac_addr_change(dev, p);
231
	ftgmac100_write_mac_addr(netdev_priv(dev), dev->dev_addr);
232 233 234 235

	return 0;
}

236 237 238 239 240 241 242 243 244 245 246 247 248 249
static void ftgmac100_init_hw(struct ftgmac100 *priv)
{
	/* setup ring buffer base registers */
	ftgmac100_set_rx_ring_base(priv,
				   priv->descs_dma_addr +
				   offsetof(struct ftgmac100_descs, rxdes));
	ftgmac100_set_normal_prio_tx_ring_base(priv,
					       priv->descs_dma_addr +
					       offsetof(struct ftgmac100_descs, txdes));

	ftgmac100_set_rx_buffer_size(priv, RX_BUF_SIZE);

	iowrite32(FTGMAC100_APTC_RXPOLL_CNT(1), priv->base + FTGMAC100_OFFSET_APTC);

250
	ftgmac100_write_mac_addr(priv, priv->netdev->dev_addr);
251 252
}

253
static void ftgmac100_start_hw(struct ftgmac100 *priv)
254
{
255
	u32 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
256

257 258
	/* Keep the original GMAC and FAST bits */
	maccr &= (FTGMAC100_MACCR_FAST_MODE | FTGMAC100_MACCR_GIGA_MODE);
259

260 261 262 263 264 265 266 267 268
	/* Add all the main enable bits */
	maccr |= FTGMAC100_MACCR_TXDMA_EN	|
		 FTGMAC100_MACCR_RXDMA_EN	|
		 FTGMAC100_MACCR_TXMAC_EN	|
		 FTGMAC100_MACCR_RXMAC_EN	|
		 FTGMAC100_MACCR_CRC_APD	|
		 FTGMAC100_MACCR_PHY_LINK_LEVEL	|
		 FTGMAC100_MACCR_RX_RUNT	|
		 FTGMAC100_MACCR_RX_BROADPKT;
269

270
	/* Add other bits as needed */
271 272 273
	if (priv->cur_duplex == DUPLEX_FULL)
		maccr |= FTGMAC100_MACCR_FULLDUP;

274
	/* Hit the HW */
275 276 277 278 279 280 281 282
	iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
}

static void ftgmac100_stop_hw(struct ftgmac100 *priv)
{
	iowrite32(0, priv->base + FTGMAC100_OFFSET_MACCR);
}

283 284
static int ftgmac100_alloc_rx_buf(struct ftgmac100 *priv, unsigned int entry,
				  struct ftgmac100_rxdes *rxdes, gfp_t gfp)
285 286
{
	struct net_device *netdev = priv->netdev;
287
	struct sk_buff *skb;
288
	dma_addr_t map;
289
	int err;
290

291 292
	skb = netdev_alloc_skb_ip_align(netdev, RX_BUF_SIZE);
	if (unlikely(!skb)) {
293
		if (net_ratelimit())
294
			netdev_warn(netdev, "failed to allocate rx skb\n");
295 296
		err = -ENOMEM;
		map = priv->rx_scratch_dma;
297 298 299 300 301 302 303 304 305 306 307
	} else {
		map = dma_map_single(priv->dev, skb->data, RX_BUF_SIZE,
				     DMA_FROM_DEVICE);
		if (unlikely(dma_mapping_error(priv->dev, map))) {
			if (net_ratelimit())
				netdev_err(netdev, "failed to map rx page\n");
			dev_kfree_skb_any(skb);
			map = priv->rx_scratch_dma;
			skb = NULL;
			err = -ENOMEM;
		}
308 309
	}

310 311
	/* Store skb */
	priv->rx_skbs[entry] = skb;
312

313
	/* Store DMA address into RX desc */
314
	rxdes->rxdes3 = cpu_to_le32(map);
315 316 317 318

	/* Ensure the above is ordered vs clearing the OWN bit */
	dma_wmb();

319 320 321 322 323
	/* Clean status (which resets own bit) */
	if (entry == (RX_QUEUE_ENTRIES - 1))
		rxdes->rxdes0 = cpu_to_le32(priv->rxdes0_edorr_mask);
	else
		rxdes->rxdes0 = 0;
324

325 326 327
	return 0;
}

328 329 330 331 332
static int ftgmac100_next_rx_pointer(int pointer)
{
	return (pointer + 1) & (RX_QUEUE_ENTRIES - 1);
}

333
static void ftgmac100_rx_packet_error(struct ftgmac100 *priv, u32 status)
334 335 336
{
	struct net_device *netdev = priv->netdev;

337
	if (status & FTGMAC100_RXDES0_RX_ERR)
338 339
		netdev->stats.rx_errors++;

340
	if (status & FTGMAC100_RXDES0_CRC_ERR)
341 342
		netdev->stats.rx_crc_errors++;

343 344 345
	if (status & (FTGMAC100_RXDES0_FTL |
		      FTGMAC100_RXDES0_RUNT |
		      FTGMAC100_RXDES0_RX_ODD_NB))
346 347 348 349 350 351 352 353
		netdev->stats.rx_length_errors++;
}

static bool ftgmac100_rx_packet(struct ftgmac100 *priv, int *processed)
{
	struct net_device *netdev = priv->netdev;
	struct ftgmac100_rxdes *rxdes;
	struct sk_buff *skb;
354
	unsigned int pointer, size;
355
	u32 status, csum_vlan;
356
	dma_addr_t map;
357

358 359 360 361
	/* Grab next RX descriptor */
	pointer = priv->rx_pointer;
	rxdes = &priv->descs->rxdes[pointer];

362 363 364
	/* Grab descriptor status */
	status = le32_to_cpu(rxdes->rxdes0);

365
	/* Do we have a packet ? */
366
	if (!(status & FTGMAC100_RXDES0_RXPKT_RDY))
367 368
		return false;

369 370 371
	/* Order subsequent reads with the test for the ready bit */
	dma_rmb();

372
	/* We don't cope with fragmented RX packets */
373 374
	if (unlikely(!(status & FTGMAC100_RXDES0_FRS) ||
		     !(status & FTGMAC100_RXDES0_LRS)))
375 376
		goto drop;

377 378 379 380
	/* Grab received size and csum vlan field in the descriptor */
	size = status & FTGMAC100_RXDES0_VDBC;
	csum_vlan = le32_to_cpu(rxdes->rxdes1);

381
	/* Any error (other than csum offload) flagged ? */
382
	if (unlikely(status & RXDES0_ANY_ERROR)) {
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
		/* Correct for incorrect flagging of runt packets
		 * with vlan tags... Just accept a runt packet that
		 * has been flagged as vlan and whose size is at
		 * least 60 bytes.
		 */
		if ((status & FTGMAC100_RXDES0_RUNT) &&
		    (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL) &&
		    (size >= 60))
			status &= ~FTGMAC100_RXDES0_RUNT;

		/* Any error still in there ? */
		if (status & RXDES0_ANY_ERROR) {
			ftgmac100_rx_packet_error(priv, status);
			goto drop;
		}
398 399
	}

400
	/* If the packet had no skb (failed to allocate earlier)
401 402
	 * then try to allocate one and skip
	 */
403 404 405
	skb = priv->rx_skbs[pointer];
	if (!unlikely(skb)) {
		ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
406
		goto drop;
407 408
	}

409
	if (unlikely(status & FTGMAC100_RXDES0_MULTICAST))
410 411
		netdev->stats.multicast++;

412 413 414 415 416
	/* If the HW found checksum errors, bounce it to software.
	 *
	 * If we didn't, we need to see if the packet was recognized
	 * by HW as one of the supported checksummed protocols before
	 * we accept the HW test results.
417
	 */
418
	if (netdev->features & NETIF_F_RXCSUM) {
419 420 421
		u32 err_bits = FTGMAC100_RXDES1_TCP_CHKSUM_ERR |
			FTGMAC100_RXDES1_UDP_CHKSUM_ERR |
			FTGMAC100_RXDES1_IP_CHKSUM_ERR;
422
		if ((csum_vlan & err_bits) ||
423
		    !(csum_vlan & FTGMAC100_RXDES1_PROT_MASK))
424 425 426 427
			skb->ip_summed = CHECKSUM_NONE;
		else
			skb->ip_summed = CHECKSUM_UNNECESSARY;
	}
428

429
	/* Transfer received size to skb */
430
	skb_put(skb, size);
431

432
	/* Tear down DMA mapping, do necessary cache management */
433 434
	map = le32_to_cpu(rxdes->rxdes3);

435 436 437 438 439 440 441 442 443
#if defined(CONFIG_ARM) && !defined(CONFIG_ARM_DMA_USE_IOMMU)
	/* When we don't have an iommu, we can save cycles by not
	 * invalidating the cache for the part of the packet that
	 * wasn't received.
	 */
	dma_unmap_single(priv->dev, map, size, DMA_FROM_DEVICE);
#else
	dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
#endif
444 445


446 447
	/* Resplenish rx ring */
	ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
448
	priv->rx_pointer = ftgmac100_next_rx_pointer(pointer);
449 450 451 452

	skb->protocol = eth_type_trans(skb, netdev);

	netdev->stats.rx_packets++;
453
	netdev->stats.rx_bytes += size;
454 455

	/* push packet to protocol stack */
456 457 458 459
	if (skb->ip_summed == CHECKSUM_NONE)
		netif_receive_skb(skb);
	else
		napi_gro_receive(&priv->napi, skb);
460 461 462

	(*processed)++;
	return true;
463 464 465

 drop:
	/* Clean rxdes0 (which resets own bit) */
466
	rxdes->rxdes0 = cpu_to_le32(status & priv->rxdes0_edorr_mask);
467 468 469
	priv->rx_pointer = ftgmac100_next_rx_pointer(pointer);
	netdev->stats.rx_dropped++;
	return true;
470 471
}

472 473
static u32 ftgmac100_base_tx_ctlstat(struct ftgmac100 *priv,
				     unsigned int index)
474
{
475 476 477 478
	if (index == (TX_QUEUE_ENTRIES - 1))
		return priv->txdes0_edotr_mask;
	else
		return 0;
479 480 481 482 483 484 485
}

static int ftgmac100_next_tx_pointer(int pointer)
{
	return (pointer + 1) & (TX_QUEUE_ENTRIES - 1);
}

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
static u32 ftgmac100_tx_buf_avail(struct ftgmac100 *priv)
{
	/* Returns the number of available slots in the TX queue
	 *
	 * This always leaves one free slot so we don't have to
	 * worry about empty vs. full, and this simplifies the
	 * test for ftgmac100_tx_buf_cleanable() below
	 */
	return (priv->tx_clean_pointer - priv->tx_pointer - 1) &
		(TX_QUEUE_ENTRIES - 1);
}

static bool ftgmac100_tx_buf_cleanable(struct ftgmac100 *priv)
{
	return priv->tx_pointer != priv->tx_clean_pointer;
}

503 504 505
static void ftgmac100_free_tx_packet(struct ftgmac100 *priv,
				     unsigned int pointer,
				     struct sk_buff *skb,
506 507
				     struct ftgmac100_txdes *txdes,
				     u32 ctl_stat)
508
{
509 510
	dma_addr_t map = le32_to_cpu(txdes->txdes3);
	size_t len;
511

512 513 514
	if (ctl_stat & FTGMAC100_TXDES0_FTS) {
		len = skb_headlen(skb);
		dma_unmap_single(priv->dev, map, len, DMA_TO_DEVICE);
515
	} else {
516 517
		len = FTGMAC100_TXDES0_TXBUF_SIZE(ctl_stat);
		dma_unmap_page(priv->dev, map, len, DMA_TO_DEVICE);
518
	}
519

520 521
	/* Free SKB on last segment */
	if (ctl_stat & FTGMAC100_TXDES0_LTS)
522
		dev_kfree_skb(skb);
523 524 525
	priv->tx_skbs[pointer] = NULL;
}

526 527 528 529 530
static bool ftgmac100_tx_complete_packet(struct ftgmac100 *priv)
{
	struct net_device *netdev = priv->netdev;
	struct ftgmac100_txdes *txdes;
	struct sk_buff *skb;
531
	unsigned int pointer;
532
	u32 ctl_stat;
533

534 535
	pointer = priv->tx_clean_pointer;
	txdes = &priv->descs->txdes[pointer];
536

537 538
	ctl_stat = le32_to_cpu(txdes->txdes0);
	if (ctl_stat & FTGMAC100_TXDES0_TXDMA_OWN)
539 540
		return false;

541
	skb = priv->tx_skbs[pointer];
542 543
	netdev->stats.tx_packets++;
	netdev->stats.tx_bytes += skb->len;
544 545
	ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
	txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
546

547
	priv->tx_clean_pointer = ftgmac100_next_tx_pointer(pointer);
548 549 550 551 552 553

	return true;
}

static void ftgmac100_tx_complete(struct ftgmac100 *priv)
{
554 555 556 557 558
	struct net_device *netdev = priv->netdev;

	/* Process all completed packets */
	while (ftgmac100_tx_buf_cleanable(priv) &&
	       ftgmac100_tx_complete_packet(priv))
559
		;
560 561 562 563 564 565 566 567 568 569 570 571 572 573

	/* Restart queue if needed */
	smp_mb();
	if (unlikely(netif_queue_stopped(netdev) &&
		     ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)) {
		struct netdev_queue *txq;

		txq = netdev_get_tx_queue(netdev, 0);
		__netif_tx_lock(txq, smp_processor_id());
		if (netif_queue_stopped(netdev) &&
		    ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
			netif_wake_queue(netdev);
		__netif_tx_unlock(txq);
	}
574 575
}

576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
static bool ftgmac100_prep_tx_csum(struct sk_buff *skb, u32 *csum_vlan)
{
	if (skb->protocol == cpu_to_be16(ETH_P_IP)) {
		u8 ip_proto = ip_hdr(skb)->protocol;

		*csum_vlan |= FTGMAC100_TXDES1_IP_CHKSUM;
		switch(ip_proto) {
		case IPPROTO_TCP:
			*csum_vlan |= FTGMAC100_TXDES1_TCP_CHKSUM;
			return true;
		case IPPROTO_UDP:
			*csum_vlan |= FTGMAC100_TXDES1_UDP_CHKSUM;
			return true;
		case IPPROTO_IP:
			return true;
		}
	}
	return skb_checksum_help(skb) == 0;
}

596 597
static int ftgmac100_hard_start_xmit(struct sk_buff *skb,
				     struct net_device *netdev)
598
{
599
	struct ftgmac100 *priv = netdev_priv(netdev);
600 601
	struct ftgmac100_txdes *txdes, *first;
	unsigned int pointer, nfrags, len, i, j;
602
	u32 f_ctl_stat, ctl_stat, csum_vlan;
603 604
	dma_addr_t map;

605 606 607 608 609 610 611
	/* The HW doesn't pad small frames */
	if (eth_skb_pad(skb)) {
		netdev->stats.tx_dropped++;
		return NETDEV_TX_OK;
	}

	/* Reject oversize packets */
612 613 614
	if (unlikely(skb->len > MAX_PKT_SIZE)) {
		if (net_ratelimit())
			netdev_dbg(netdev, "tx packet too big\n");
615
		goto drop;
616 617
	}

618 619 620 621 622 623 624 625 626 627 628
	/* Do we have a limit on #fragments ? I yet have to get a reply
	 * from Aspeed. If there's one I haven't hit it.
	 */
	nfrags = skb_shinfo(skb)->nr_frags;

	/* Get header len */
	len = skb_headlen(skb);

	/* Map the packet head */
	map = dma_map_single(priv->dev, skb->data, len, DMA_TO_DEVICE);
	if (dma_mapping_error(priv->dev, map)) {
629
		if (net_ratelimit())
630
			netdev_err(netdev, "map tx packet head failed\n");
631
		goto drop;
632
	}
633

634 635
	/* Grab the next free tx descriptor */
	pointer = priv->tx_pointer;
636
	txdes = first = &priv->descs->txdes[pointer];
637

638 639 640
	/* Setup it up with the packet head. Don't write the head to the
	 * ring just yet
	 */
641
	priv->tx_skbs[pointer] = skb;
642 643 644 645 646 647 648
	f_ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
	f_ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
	f_ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
	f_ctl_stat |= FTGMAC100_TXDES0_FTS;
	if (nfrags == 0)
		f_ctl_stat |= FTGMAC100_TXDES0_LTS;
	txdes->txdes3 = cpu_to_le32(map);
649 650

	/* Setup HW checksumming */
651
	csum_vlan = 0;
652 653 654
	if (skb->ip_summed == CHECKSUM_PARTIAL &&
	    !ftgmac100_prep_tx_csum(skb, &csum_vlan))
		goto drop;
655
	txdes->txdes1 = cpu_to_le32(csum_vlan);
656

657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
	/* Next descriptor */
	pointer = ftgmac100_next_tx_pointer(pointer);

	/* Add the fragments */
	for (i = 0; i < nfrags; i++) {
		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];

		len = frag->size;

		/* Map it */
		map = skb_frag_dma_map(priv->dev, frag, 0, len,
				       DMA_TO_DEVICE);
		if (dma_mapping_error(priv->dev, map))
			goto dma_err;

		/* Setup descriptor */
		priv->tx_skbs[pointer] = skb;
		txdes = &priv->descs->txdes[pointer];
675 676 677 678 679 680 681 682 683 684
		ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
		ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
		ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
		if (i == (nfrags - 1))
			ctl_stat |= FTGMAC100_TXDES0_LTS;
		txdes->txdes0 = cpu_to_le32(ctl_stat);
		txdes->txdes1 = 0;
		txdes->txdes3 = cpu_to_le32(map);

		/* Next one */
685 686 687
		pointer = ftgmac100_next_tx_pointer(pointer);
	}

688
	/* Order the previous packet and descriptor udpates
689
	 * before setting the OWN bit on the first descriptor.
690 691
	 */
	dma_wmb();
692
	first->txdes0 = cpu_to_le32(f_ctl_stat);
693

694
	/* Update next TX pointer */
695
	priv->tx_pointer = pointer;
696

697 698 699 700 701
	/* If there isn't enough room for all the fragments of a new packet
	 * in the TX ring, stop the queue. The sequence below is race free
	 * vs. a concurrent restart in ftgmac100_poll()
	 */
	if (unlikely(ftgmac100_tx_buf_avail(priv) < TX_THRESHOLD)) {
702
		netif_stop_queue(netdev);
703 704 705 706 707
		/* Order the queue stop with the test below */
		smp_mb();
		if (ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
			netif_wake_queue(netdev);
	}
708 709 710

	ftgmac100_txdma_normal_prio_start_polling(priv);

711 712
	return NETDEV_TX_OK;

713 714 715 716 717 718
 dma_err:
	if (net_ratelimit())
		netdev_err(netdev, "map tx fragment failed\n");

	/* Free head */
	pointer = priv->tx_pointer;
719 720
	ftgmac100_free_tx_packet(priv, pointer, skb, first, f_ctl_stat);
	first->txdes0 = cpu_to_le32(f_ctl_stat & priv->txdes0_edotr_mask);
721 722 723 724 725

	/* Then all fragments */
	for (j = 0; j < i; j++) {
		pointer = ftgmac100_next_tx_pointer(pointer);
		txdes = &priv->descs->txdes[pointer];
726 727 728
		ctl_stat = le32_to_cpu(txdes->txdes0);
		ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
		txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
729 730 731 732 733 734
	}

	/* This cannot be reached if we successfully mapped the
	 * last fragment, so we know ftgmac100_free_tx_packet()
	 * hasn't freed the skb yet.
	 */
735 736 737 738 739
 drop:
	/* Drop the packet */
	dev_kfree_skb_any(skb);
	netdev->stats.tx_dropped++;

740 741 742 743 744 745 746
	return NETDEV_TX_OK;
}

static void ftgmac100_free_buffers(struct ftgmac100 *priv)
{
	int i;

747
	/* Free all RX buffers */
748 749
	for (i = 0; i < RX_QUEUE_ENTRIES; i++) {
		struct ftgmac100_rxdes *rxdes = &priv->descs->rxdes[i];
750
		struct sk_buff *skb = priv->rx_skbs[i];
751
		dma_addr_t map = le32_to_cpu(rxdes->rxdes3);
752

753
		if (!skb)
754 755
			continue;

756 757 758
		priv->rx_skbs[i] = NULL;
		dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
		dev_kfree_skb_any(skb);
759 760
	}

761
	/* Free all TX buffers */
762 763
	for (i = 0; i < TX_QUEUE_ENTRIES; i++) {
		struct ftgmac100_txdes *txdes = &priv->descs->txdes[i];
764
		struct sk_buff *skb = priv->tx_skbs[i];
765

766 767 768 769
		if (!skb)
			continue;
		ftgmac100_free_tx_packet(priv, i, skb, txdes,
					 le32_to_cpu(txdes->txdes0));
770 771 772
	}
}

773
static void ftgmac100_free_rings(struct ftgmac100 *priv)
774
{
775 776 777 778
	/* Free descriptors */
	if (priv->descs)
		dma_free_coherent(priv->dev, sizeof(struct ftgmac100_descs),
				  priv->descs, priv->descs_dma_addr);
779 780 781 782 783

	/* Free scratch packet buffer */
	if (priv->rx_scratch)
		dma_free_coherent(priv->dev, RX_BUF_SIZE,
				  priv->rx_scratch, priv->rx_scratch_dma);
784
}
785

786 787 788
static int ftgmac100_alloc_rings(struct ftgmac100 *priv)
{
	/* Allocate descriptors */
789 790 791
	priv->descs = dma_zalloc_coherent(priv->dev,
					  sizeof(struct ftgmac100_descs),
					  &priv->descs_dma_addr, GFP_KERNEL);
792 793 794
	if (!priv->descs)
		return -ENOMEM;

795 796 797 798 799 800 801 802
	/* Allocate scratch packet buffer */
	priv->rx_scratch = dma_alloc_coherent(priv->dev,
					      RX_BUF_SIZE,
					      &priv->rx_scratch_dma,
					      GFP_KERNEL);
	if (!priv->rx_scratch)
		return -ENOMEM;

803 804 805 806 807
	return 0;
}

static void ftgmac100_init_rings(struct ftgmac100 *priv)
{
808
	struct ftgmac100_rxdes *rxdes;
809
	struct ftgmac100_txdes *txdes;
810 811 812
	int i;

	/* Initialize RX ring */
813
	for (i = 0; i < RX_QUEUE_ENTRIES; i++) {
814
		rxdes = &priv->descs->rxdes[i];
815
		rxdes->rxdes0 = 0;
816
		rxdes->rxdes3 = cpu_to_le32(priv->rx_scratch_dma);
817
	}
818 819
	/* Mark the end of the ring */
	rxdes->rxdes0 |= cpu_to_le32(priv->rxdes0_edorr_mask);
820 821

	/* Initialize TX ring */
822 823 824 825 826
	for (i = 0; i < TX_QUEUE_ENTRIES; i++) {
		txdes = &priv->descs->txdes[i];
		txdes->txdes0 = 0;
	}
	txdes->txdes0 |= cpu_to_le32(priv->txdes0_edotr_mask);
827 828 829 830 831
}

static int ftgmac100_alloc_rx_buffers(struct ftgmac100 *priv)
{
	int i;
832 833 834 835

	for (i = 0; i < RX_QUEUE_ENTRIES; i++) {
		struct ftgmac100_rxdes *rxdes = &priv->descs->rxdes[i];

836
		if (ftgmac100_alloc_rx_buf(priv, i, rxdes, GFP_KERNEL))
837
			return -ENOMEM;
838 839 840 841 842 843 844
	}
	return 0;
}

static void ftgmac100_adjust_link(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);
845
	struct phy_device *phydev = netdev->phydev;
846
	int new_speed;
847

848 849 850 851 852 853 854 855
	/* We store "no link" as speed 0 */
	if (!phydev->link)
		new_speed = 0;
	else
		new_speed = phydev->speed;

	if (phydev->speed == priv->cur_speed &&
	    phydev->duplex == priv->cur_duplex)
856 857
		return;

858 859 860 861 862 863 864 865 866 867 868 869
	/* Print status if we have a link or we had one and just lost it,
	 * don't print otherwise.
	 */
	if (new_speed || priv->cur_speed)
		phy_print_status(phydev);

	priv->cur_speed = new_speed;
	priv->cur_duplex = phydev->duplex;

	/* Link is down, do nothing else */
	if (!new_speed)
		return;
870

871
	/* Disable all interrupts */
872 873
	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);

874 875
	/* Reset the adapter asynchronously */
	schedule_work(&priv->reset_task);
876 877 878 879 880
}

static int ftgmac100_mii_probe(struct ftgmac100 *priv)
{
	struct net_device *netdev = priv->netdev;
881
	struct phy_device *phydev;
882

883
	phydev = phy_find_first(priv->mii_bus);
884 885 886 887 888
	if (!phydev) {
		netdev_info(netdev, "%s: no PHY found\n", netdev->name);
		return -ENODEV;
	}

A
Andrew Lunn 已提交
889
	phydev = phy_connect(netdev, phydev_name(phydev),
890
			     &ftgmac100_adjust_link, PHY_INTERFACE_MODE_GMII);
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973

	if (IS_ERR(phydev)) {
		netdev_err(netdev, "%s: Could not attach to PHY\n", netdev->name);
		return PTR_ERR(phydev);
	}

	return 0;
}

static int ftgmac100_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
{
	struct net_device *netdev = bus->priv;
	struct ftgmac100 *priv = netdev_priv(netdev);
	unsigned int phycr;
	int i;

	phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);

	/* preserve MDC cycle threshold */
	phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;

	phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
		 FTGMAC100_PHYCR_REGAD(regnum) |
		 FTGMAC100_PHYCR_MIIRD;

	iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);

	for (i = 0; i < 10; i++) {
		phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);

		if ((phycr & FTGMAC100_PHYCR_MIIRD) == 0) {
			int data;

			data = ioread32(priv->base + FTGMAC100_OFFSET_PHYDATA);
			return FTGMAC100_PHYDATA_MIIRDATA(data);
		}

		udelay(100);
	}

	netdev_err(netdev, "mdio read timed out\n");
	return -EIO;
}

static int ftgmac100_mdiobus_write(struct mii_bus *bus, int phy_addr,
				   int regnum, u16 value)
{
	struct net_device *netdev = bus->priv;
	struct ftgmac100 *priv = netdev_priv(netdev);
	unsigned int phycr;
	int data;
	int i;

	phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);

	/* preserve MDC cycle threshold */
	phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;

	phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
		 FTGMAC100_PHYCR_REGAD(regnum) |
		 FTGMAC100_PHYCR_MIIWR;

	data = FTGMAC100_PHYDATA_MIIWDATA(value);

	iowrite32(data, priv->base + FTGMAC100_OFFSET_PHYDATA);
	iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);

	for (i = 0; i < 10; i++) {
		phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);

		if ((phycr & FTGMAC100_PHYCR_MIIWR) == 0)
			return 0;

		udelay(100);
	}

	netdev_err(netdev, "mdio write timed out\n");
	return -EIO;
}

static void ftgmac100_get_drvinfo(struct net_device *netdev,
				  struct ethtool_drvinfo *info)
{
974 975 976
	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
	strlcpy(info->bus_info, dev_name(&netdev->dev), sizeof(info->bus_info));
977 978 979 980 981
}

static const struct ethtool_ops ftgmac100_ethtool_ops = {
	.get_drvinfo		= ftgmac100_get_drvinfo,
	.get_link		= ethtool_op_get_link,
982 983
	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
984 985 986 987 988 989
};

static irqreturn_t ftgmac100_interrupt(int irq, void *dev_id)
{
	struct net_device *netdev = dev_id;
	struct ftgmac100 *priv = netdev_priv(netdev);
990
	unsigned int status, new_mask = FTGMAC100_INT_BAD;
991

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
	/* Fetch and clear interrupt bits, process abnormal ones */
	status = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
	iowrite32(status, priv->base + FTGMAC100_OFFSET_ISR);
	if (unlikely(status & FTGMAC100_INT_BAD)) {

		/* RX buffer unavailable */
		if (status & FTGMAC100_INT_NO_RXBUF)
			netdev->stats.rx_over_errors++;

		/* received packet lost due to RX FIFO full */
		if (status & FTGMAC100_INT_RPKT_LOST)
			netdev->stats.rx_fifo_errors++;

		/* sent packet lost due to excessive TX collision */
		if (status & FTGMAC100_INT_XPKT_LOST)
			netdev->stats.tx_fifo_errors++;

		/* AHB error -> Reset the chip */
		if (status & FTGMAC100_INT_AHB_ERR) {
			if (net_ratelimit())
				netdev_warn(netdev,
					   "AHB bus error ! Resetting chip.\n");
			iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
			schedule_work(&priv->reset_task);
			return IRQ_HANDLED;
		}

		/* We may need to restart the MAC after such errors, delay
		 * this until after we have freed some Rx buffers though
		 */
		priv->need_mac_restart = true;

		/* Disable those errors until we restart */
		new_mask &= ~status;
	}

	/* Only enable "bad" interrupts while NAPI is on */
	iowrite32(new_mask, priv->base + FTGMAC100_OFFSET_IER);

	/* Schedule NAPI bh */
	napi_schedule_irqoff(&priv->napi);
1033 1034 1035 1036

	return IRQ_HANDLED;
}

1037 1038 1039 1040 1041 1042 1043 1044
static bool ftgmac100_check_rx(struct ftgmac100 *priv)
{
	struct ftgmac100_rxdes *rxdes = &priv->descs->rxdes[priv->rx_pointer];

	/* Do we have a packet ? */
	return !!(rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RXPKT_RDY));
}

1045 1046 1047
static int ftgmac100_poll(struct napi_struct *napi, int budget)
{
	struct ftgmac100 *priv = container_of(napi, struct ftgmac100, napi);
1048 1049
	int work_done = 0;
	bool more;
1050

1051 1052 1053
	/* Handle TX completions */
	if (ftgmac100_tx_buf_cleanable(priv))
		ftgmac100_tx_complete(priv);
1054

1055
	/* Handle RX packets */
1056
	do {
1057 1058
		more = ftgmac100_rx_packet(priv, &work_done);
	} while (more && work_done < budget);
1059 1060


1061 1062 1063 1064 1065
	/* The interrupt is telling us to kick the MAC back to life
	 * after an RX overflow
	 */
	if (unlikely(priv->need_mac_restart)) {
		ftgmac100_start_hw(priv);
1066

1067 1068 1069
		/* Re-enable "bad" interrupts */
		iowrite32(FTGMAC100_INT_BAD,
			  priv->base + FTGMAC100_OFFSET_IER);
1070 1071
	}

1072 1073 1074 1075 1076
	/* As long as we are waiting for transmit packets to be
	 * completed we keep NAPI going
	 */
	if (ftgmac100_tx_buf_cleanable(priv))
		work_done = budget;
1077

1078
	if (work_done < budget) {
1079 1080 1081 1082 1083 1084 1085
		/* We are about to re-enable all interrupts. However
		 * the HW has been latching RX/TX packet interrupts while
		 * they were masked. So we clear them first, then we need
		 * to re-check if there's something to process
		 */
		iowrite32(FTGMAC100_INT_RXTX,
			  priv->base + FTGMAC100_OFFSET_ISR);
1086 1087
		if (ftgmac100_check_rx(priv) ||
		    ftgmac100_tx_buf_cleanable(priv))
1088 1089 1090
			return budget;

		/* deschedule NAPI */
1091 1092 1093
		napi_complete(napi);

		/* enable all interrupts */
1094
		iowrite32(FTGMAC100_INT_ALL,
1095
			  priv->base + FTGMAC100_OFFSET_IER);
1096 1097
	}

1098
	return work_done;
1099 1100
}

1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
static int ftgmac100_init_all(struct ftgmac100 *priv, bool ignore_alloc_err)
{
	int err = 0;

	/* Re-init descriptors (adjust queue sizes) */
	ftgmac100_init_rings(priv);

	/* Realloc rx descriptors */
	err = ftgmac100_alloc_rx_buffers(priv);
	if (err && !ignore_alloc_err)
		return err;

	/* Reinit and restart HW */
	ftgmac100_init_hw(priv);
	ftgmac100_start_hw(priv);

	/* Re-enable the device */
	napi_enable(&priv->napi);
	netif_start_queue(priv->netdev);

	/* Enable all interrupts */
1122
	iowrite32(FTGMAC100_INT_ALL, priv->base + FTGMAC100_OFFSET_IER);
1123 1124 1125 1126

	return err;
}

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
static void ftgmac100_reset_task(struct work_struct *work)
{
	struct ftgmac100 *priv = container_of(work, struct ftgmac100,
					      reset_task);
	struct net_device *netdev = priv->netdev;
	int err;

	netdev_dbg(netdev, "Resetting NIC...\n");

	/* Lock the world */
	rtnl_lock();
	if (netdev->phydev)
		mutex_lock(&netdev->phydev->lock);
	if (priv->mii_bus)
		mutex_lock(&priv->mii_bus->mdio_lock);


	/* Check if the interface is still up */
	if (!netif_running(netdev))
		goto bail;

	/* Stop the network stack */
	netif_trans_update(netdev);
	napi_disable(&priv->napi);
	netif_tx_disable(netdev);

	/* Stop and reset the MAC */
	ftgmac100_stop_hw(priv);
1155
	err = ftgmac100_reset_and_config_mac(priv);
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
	if (err) {
		/* Not much we can do ... it might come back... */
		netdev_err(netdev, "attempting to continue...\n");
	}

	/* Free all rx and tx buffers */
	ftgmac100_free_buffers(priv);

	/* Setup everything again and restart chip */
	ftgmac100_init_all(priv, true);

	netdev_dbg(netdev, "Reset done !\n");
 bail:
	if (priv->mii_bus)
		mutex_unlock(&priv->mii_bus->mdio_lock);
	if (netdev->phydev)
		mutex_unlock(&netdev->phydev->lock);
	rtnl_unlock();
}

1176 1177 1178 1179 1180
static int ftgmac100_open(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);
	int err;

1181 1182
	/* Allocate ring buffers  */
	err = ftgmac100_alloc_rings(priv);
1183
	if (err) {
1184 1185
		netdev_err(netdev, "Failed to allocate descriptors\n");
		return err;
1186 1187
	}

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	/* When using NC-SI we force the speed to 100Mbit/s full duplex,
	 *
	 * Otherwise we leave it set to 0 (no link), the link
	 * message from the PHY layer will handle setting it up to
	 * something else if needed.
	 */
	if (priv->use_ncsi) {
		priv->cur_duplex = DUPLEX_FULL;
		priv->cur_speed = SPEED_100;
	} else {
		priv->cur_duplex = 0;
		priv->cur_speed = 0;
	}

1202 1203
	/* Reset the hardware */
	err = ftgmac100_reset_and_config_mac(priv);
1204 1205 1206
	if (err)
		goto err_hw;

1207 1208 1209
	/* Initialize NAPI */
	netif_napi_add(netdev, &priv->napi, ftgmac100_poll, 64);

1210 1211 1212 1213 1214 1215 1216
	/* Grab our interrupt */
	err = request_irq(netdev->irq, ftgmac100_interrupt, 0, netdev->name, netdev);
	if (err) {
		netdev_err(netdev, "failed to request irq %d\n", netdev->irq);
		goto err_irq;
	}

1217 1218 1219 1220 1221 1222
	/* Start things up */
	err = ftgmac100_init_all(priv, false);
	if (err) {
		netdev_err(netdev, "Failed to allocate packet buffers\n");
		goto err_alloc;
	}
G
Gavin Shan 已提交
1223

1224 1225
	if (netdev->phydev) {
		/* If we have a PHY, start polling */
G
Gavin Shan 已提交
1226
		phy_start(netdev->phydev);
1227 1228
	} else if (priv->use_ncsi) {
		/* If using NC-SI, set our carrier on and start the stack */
G
Gavin Shan 已提交
1229
		netif_carrier_on(netdev);
1230

1231
		/* Start the NCSI device */
G
Gavin Shan 已提交
1232 1233 1234 1235 1236
		err = ncsi_start_dev(priv->ndev);
		if (err)
			goto err_ncsi;
	}

1237 1238
	return 0;

1239
 err_ncsi:
G
Gavin Shan 已提交
1240 1241
	napi_disable(&priv->napi);
	netif_stop_queue(netdev);
1242 1243
 err_alloc:
	ftgmac100_free_buffers(priv);
1244
	free_irq(netdev->irq, netdev);
1245
 err_irq:
1246
	netif_napi_del(&priv->napi);
1247
 err_hw:
1248
	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1249
	ftgmac100_free_rings(priv);
1250 1251 1252 1253 1254 1255 1256
	return err;
}

static int ftgmac100_stop(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);

1257 1258 1259 1260 1261 1262 1263 1264
	/* Note about the reset task: We are called with the rtnl lock
	 * held, so we are synchronized against the core of the reset
	 * task. We must not try to synchronously cancel it otherwise
	 * we can deadlock. But since it will test for netif_running()
	 * which has already been cleared by the net core, we don't
	 * anything special to do.
	 */

1265 1266 1267 1268 1269
	/* disable all interrupts */
	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);

	netif_stop_queue(netdev);
	napi_disable(&priv->napi);
1270
	netif_napi_del(&priv->napi);
G
Gavin Shan 已提交
1271 1272
	if (netdev->phydev)
		phy_stop(netdev->phydev);
1273 1274
	else if (priv->use_ncsi)
		ncsi_stop_dev(priv->ndev);
1275 1276

	ftgmac100_stop_hw(priv);
1277
	free_irq(netdev->irq, netdev);
1278
	ftgmac100_free_buffers(priv);
1279
	ftgmac100_free_rings(priv);
1280 1281 1282 1283 1284 1285 1286

	return 0;
}

/* optional */
static int ftgmac100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
G
Gavin Shan 已提交
1287 1288 1289
	if (!netdev->phydev)
		return -ENXIO;

1290
	return phy_mii_ioctl(netdev->phydev, ifr, cmd);
1291 1292
}

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
static void ftgmac100_tx_timeout(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);

	/* Disable all interrupts */
	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);

	/* Do the reset outside of interrupt context */
	schedule_work(&priv->reset_task);
}

1304 1305 1306 1307
static const struct net_device_ops ftgmac100_netdev_ops = {
	.ndo_open		= ftgmac100_open,
	.ndo_stop		= ftgmac100_stop,
	.ndo_start_xmit		= ftgmac100_hard_start_xmit,
1308
	.ndo_set_mac_address	= ftgmac100_set_mac_addr,
1309 1310
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= ftgmac100_do_ioctl,
1311
	.ndo_tx_timeout		= ftgmac100_tx_timeout,
1312 1313
};

1314 1315 1316 1317 1318
static int ftgmac100_setup_mdio(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);
	struct platform_device *pdev = to_platform_device(priv->dev);
	int i, err = 0;
1319
	u32 reg;
1320 1321 1322 1323 1324 1325

	/* initialize mdio bus */
	priv->mii_bus = mdiobus_alloc();
	if (!priv->mii_bus)
		return -EIO;

1326
	if (priv->is_aspeed) {
1327 1328 1329 1330 1331 1332
		/* This driver supports the old MDIO interface */
		reg = ioread32(priv->base + FTGMAC100_OFFSET_REVR);
		reg &= ~FTGMAC100_REVR_NEW_MDIO_INTERFACE;
		iowrite32(reg, priv->base + FTGMAC100_OFFSET_REVR);
	};

1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
	priv->mii_bus->name = "ftgmac100_mdio";
	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%d",
		 pdev->name, pdev->id);
	priv->mii_bus->priv = priv->netdev;
	priv->mii_bus->read = ftgmac100_mdiobus_read;
	priv->mii_bus->write = ftgmac100_mdiobus_write;

	for (i = 0; i < PHY_MAX_ADDR; i++)
		priv->mii_bus->irq[i] = PHY_POLL;

	err = mdiobus_register(priv->mii_bus);
	if (err) {
		dev_err(priv->dev, "Cannot register MDIO bus!\n");
		goto err_register_mdiobus;
	}

	err = ftgmac100_mii_probe(priv);
	if (err) {
		dev_err(priv->dev, "MII Probe failed!\n");
		goto err_mii_probe;
	}

	return 0;

err_mii_probe:
	mdiobus_unregister(priv->mii_bus);
err_register_mdiobus:
	mdiobus_free(priv->mii_bus);
	return err;
}

static void ftgmac100_destroy_mdio(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);

	if (!netdev->phydev)
		return;

	phy_disconnect(netdev->phydev);
	mdiobus_unregister(priv->mii_bus);
	mdiobus_free(priv->mii_bus);
}

G
Gavin Shan 已提交
1376 1377 1378 1379 1380 1381 1382 1383 1384
static void ftgmac100_ncsi_handler(struct ncsi_dev *nd)
{
	if (unlikely(nd->state != ncsi_dev_state_functional))
		return;

	netdev_info(nd->dev, "NCSI interface %s\n",
		    nd->link_up ? "up" : "down");
}

1385 1386 1387 1388 1389 1390
static int ftgmac100_probe(struct platform_device *pdev)
{
	struct resource *res;
	int irq;
	struct net_device *netdev;
	struct ftgmac100 *priv;
1391
	struct device_node *np;
G
Gavin Shan 已提交
1392
	int err = 0;
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413

	if (!pdev)
		return -ENODEV;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res)
		return -ENXIO;

	irq = platform_get_irq(pdev, 0);
	if (irq < 0)
		return irq;

	/* setup net_device */
	netdev = alloc_etherdev(sizeof(*priv));
	if (!netdev) {
		err = -ENOMEM;
		goto err_alloc_etherdev;
	}

	SET_NETDEV_DEV(netdev, &pdev->dev);

1414
	netdev->ethtool_ops = &ftgmac100_ethtool_ops;
1415
	netdev->netdev_ops = &ftgmac100_netdev_ops;
1416
	netdev->watchdog_timeo = 5 * HZ;
1417 1418 1419 1420 1421 1422 1423

	platform_set_drvdata(pdev, netdev);

	/* setup private data */
	priv = netdev_priv(netdev);
	priv->netdev = netdev;
	priv->dev = &pdev->dev;
1424
	INIT_WORK(&priv->reset_task, ftgmac100_reset_task);
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441

	/* map io memory */
	priv->res = request_mem_region(res->start, resource_size(res),
				       dev_name(&pdev->dev));
	if (!priv->res) {
		dev_err(&pdev->dev, "Could not reserve memory region\n");
		err = -ENOMEM;
		goto err_req_mem;
	}

	priv->base = ioremap(res->start, resource_size(res));
	if (!priv->base) {
		dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
		err = -EIO;
		goto err_ioremap;
	}

1442
	netdev->irq = irq;
1443

1444
	/* MAC address from chip or random one */
1445
	ftgmac100_initial_mac(priv);
1446

1447 1448 1449
	np = pdev->dev.of_node;
	if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
		   of_device_is_compatible(np, "aspeed,ast2500-mac"))) {
1450 1451
		priv->rxdes0_edorr_mask = BIT(30);
		priv->txdes0_edotr_mask = BIT(30);
1452
		priv->is_aspeed = true;
1453 1454 1455 1456 1457
	} else {
		priv->rxdes0_edorr_mask = BIT(15);
		priv->txdes0_edotr_mask = BIT(15);
	}

1458
	if (np && of_get_property(np, "use-ncsi", NULL)) {
G
Gavin Shan 已提交
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
		if (!IS_ENABLED(CONFIG_NET_NCSI)) {
			dev_err(&pdev->dev, "NCSI stack not enabled\n");
			goto err_ncsi_dev;
		}

		dev_info(&pdev->dev, "Using NCSI interface\n");
		priv->use_ncsi = true;
		priv->ndev = ncsi_register_dev(netdev, ftgmac100_ncsi_handler);
		if (!priv->ndev)
			goto err_ncsi_dev;
	} else {
		priv->use_ncsi = false;
		err = ftgmac100_setup_mdio(netdev);
		if (err)
			goto err_setup_mdio;
	}

1476
	/* Base feature set */
1477
	netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM |
1478
		NETIF_F_GRO | NETIF_F_SG;
1479 1480 1481

	/* AST2400  doesn't have working HW checksum generation */
	if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac")))
1482
		netdev->hw_features &= ~NETIF_F_HW_CSUM;
1483
	if (np && of_get_property(np, "no-hw-checksum", NULL))
1484 1485
		netdev->hw_features &= ~(NETIF_F_HW_CSUM | NETIF_F_RXCSUM);
	netdev->features |= netdev->hw_features;
G
Gavin Shan 已提交
1486

1487 1488 1489 1490 1491 1492 1493
	/* register network device */
	err = register_netdev(netdev);
	if (err) {
		dev_err(&pdev->dev, "Failed to register netdev\n");
		goto err_register_netdev;
	}

1494
	netdev_info(netdev, "irq %d, mapped at %p\n", netdev->irq, priv->base);
1495 1496 1497

	return 0;

G
Gavin Shan 已提交
1498
err_ncsi_dev:
1499
err_register_netdev:
1500 1501
	ftgmac100_destroy_mdio(netdev);
err_setup_mdio:
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
	iounmap(priv->base);
err_ioremap:
	release_resource(priv->res);
err_req_mem:
	netif_napi_del(&priv->napi);
	free_netdev(netdev);
err_alloc_etherdev:
	return err;
}

1512
static int ftgmac100_remove(struct platform_device *pdev)
1513 1514 1515 1516 1517 1518 1519 1520
{
	struct net_device *netdev;
	struct ftgmac100 *priv;

	netdev = platform_get_drvdata(pdev);
	priv = netdev_priv(netdev);

	unregister_netdev(netdev);
1521 1522 1523 1524 1525 1526

	/* There's a small chance the reset task will have been re-queued,
	 * during stop, make sure it's gone before we free the structure.
	 */
	cancel_work_sync(&priv->reset_task);

1527
	ftgmac100_destroy_mdio(netdev);
1528 1529 1530 1531 1532 1533 1534 1535 1536

	iounmap(priv->base);
	release_resource(priv->res);

	netif_napi_del(&priv->napi);
	free_netdev(netdev);
	return 0;
}

1537 1538 1539 1540 1541 1542
static const struct of_device_id ftgmac100_of_match[] = {
	{ .compatible = "faraday,ftgmac100" },
	{ }
};
MODULE_DEVICE_TABLE(of, ftgmac100_of_match);

1543
static struct platform_driver ftgmac100_driver = {
1544
	.probe	= ftgmac100_probe,
1545
	.remove	= ftgmac100_remove,
1546 1547 1548
	.driver	= {
		.name		= DRV_NAME,
		.of_match_table	= ftgmac100_of_match,
1549 1550
	},
};
1551
module_platform_driver(ftgmac100_driver);
1552 1553 1554 1555

MODULE_AUTHOR("Po-Yu Chuang <ratbert@faraday-tech.com>");
MODULE_DESCRIPTION("FTGMAC100 driver");
MODULE_LICENSE("GPL");