ftgmac100.c 37.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Faraday FTGMAC100 Gigabit Ethernet
 *
 * (C) Copyright 2009-2011 Faraday Technology
 * Po-Yu Chuang <ratbert@faraday-tech.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt

#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
27
#include <linux/interrupt.h>
28 29 30
#include <linux/io.h>
#include <linux/module.h>
#include <linux/netdevice.h>
31
#include <linux/of.h>
32 33
#include <linux/phy.h>
#include <linux/platform_device.h>
34
#include <linux/property.h>
35
#include <net/ip.h>
G
Gavin Shan 已提交
36
#include <net/ncsi.h>
37 38 39 40 41 42 43 44 45

#include "ftgmac100.h"

#define DRV_NAME	"ftgmac100"
#define DRV_VERSION	"0.7"

#define RX_QUEUE_ENTRIES	256	/* must be power of 2 */
#define TX_QUEUE_ENTRIES	512	/* must be power of 2 */

46 47
#define MAX_PKT_SIZE		1536
#define RX_BUF_SIZE		MAX_PKT_SIZE	/* must be smaller than 0x3fff */
48 49 50 51 52 53 54

struct ftgmac100_descs {
	struct ftgmac100_rxdes rxdes[RX_QUEUE_ENTRIES];
	struct ftgmac100_txdes txdes[TX_QUEUE_ENTRIES];
};

struct ftgmac100 {
55
	/* Registers */
56 57 58 59 60 61
	struct resource *res;
	void __iomem *base;

	struct ftgmac100_descs *descs;
	dma_addr_t descs_dma_addr;

62
	/* Rx ring */
63
	struct sk_buff *rx_skbs[RX_QUEUE_ENTRIES];
64
	unsigned int rx_pointer;
65 66 67
	u32 rxdes0_edorr_mask;

	/* Tx ring */
68 69 70
	unsigned int tx_clean_pointer;
	unsigned int tx_pointer;
	unsigned int tx_pending;
71
	u32 txdes0_edotr_mask;
72 73
	spinlock_t tx_lock;

74 75 76 77
	/* Scratch page to use when rx skb alloc fails */
	void *rx_scratch;
	dma_addr_t rx_scratch_dma;

78
	/* Component structures */
79 80
	struct net_device *netdev;
	struct device *dev;
G
Gavin Shan 已提交
81
	struct ncsi_dev *ndev;
82
	struct napi_struct napi;
83
	struct work_struct reset_task;
84
	struct mii_bus *mii_bus;
85 86

	/* Link management */
87 88
	int cur_speed;
	int cur_duplex;
G
Gavin Shan 已提交
89
	bool use_ncsi;
90

91
	/* Misc */
92
	bool need_mac_restart;
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
};

static void ftgmac100_set_rx_ring_base(struct ftgmac100 *priv, dma_addr_t addr)
{
	iowrite32(addr, priv->base + FTGMAC100_OFFSET_RXR_BADR);
}

static void ftgmac100_set_rx_buffer_size(struct ftgmac100 *priv,
		unsigned int size)
{
	size = FTGMAC100_RBSR_SIZE(size);
	iowrite32(size, priv->base + FTGMAC100_OFFSET_RBSR);
}

static void ftgmac100_set_normal_prio_tx_ring_base(struct ftgmac100 *priv,
						   dma_addr_t addr)
{
	iowrite32(addr, priv->base + FTGMAC100_OFFSET_NPTXR_BADR);
}

static void ftgmac100_txdma_normal_prio_start_polling(struct ftgmac100 *priv)
{
	iowrite32(1, priv->base + FTGMAC100_OFFSET_NPTXPD);
}

118
static int ftgmac100_reset_mac(struct ftgmac100 *priv, u32 maccr)
119 120 121 122 123
{
	struct net_device *netdev = priv->netdev;
	int i;

	/* NOTE: reset clears all registers */
124 125 126 127
	iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
	iowrite32(maccr | FTGMAC100_MACCR_SW_RST,
		  priv->base + FTGMAC100_OFFSET_MACCR);
	for (i = 0; i < 50; i++) {
128 129 130 131 132 133
		unsigned int maccr;

		maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
		if (!(maccr & FTGMAC100_MACCR_SW_RST))
			return 0;

134
		udelay(1);
135 136
	}

137
	netdev_err(netdev, "Hardware reset failed\n");
138 139 140
	return -EIO;
}

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
static int ftgmac100_reset_and_config_mac(struct ftgmac100 *priv)
{
	u32 maccr = 0;

	switch (priv->cur_speed) {
	case SPEED_10:
	case 0: /* no link */
		break;

	case SPEED_100:
		maccr |= FTGMAC100_MACCR_FAST_MODE;
		break;

	case SPEED_1000:
		maccr |= FTGMAC100_MACCR_GIGA_MODE;
		break;
	default:
		netdev_err(priv->netdev, "Unknown speed %d !\n",
			   priv->cur_speed);
		break;
	}

	/* (Re)initialize the queue pointers */
	priv->rx_pointer = 0;
	priv->tx_clean_pointer = 0;
	priv->tx_pointer = 0;
	priv->tx_pending = 0;

	/* The doc says reset twice with 10us interval */
	if (ftgmac100_reset_mac(priv, maccr))
		return -EIO;
	usleep_range(10, 1000);
	return ftgmac100_reset_mac(priv, maccr);
}

176 177 178 179 180 181 182 183 184
static void ftgmac100_set_mac(struct ftgmac100 *priv, const unsigned char *mac)
{
	unsigned int maddr = mac[0] << 8 | mac[1];
	unsigned int laddr = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];

	iowrite32(maddr, priv->base + FTGMAC100_OFFSET_MAC_MADR);
	iowrite32(laddr, priv->base + FTGMAC100_OFFSET_MAC_LADR);
}

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
static void ftgmac100_setup_mac(struct ftgmac100 *priv)
{
	u8 mac[ETH_ALEN];
	unsigned int m;
	unsigned int l;
	void *addr;

	addr = device_get_mac_address(priv->dev, mac, ETH_ALEN);
	if (addr) {
		ether_addr_copy(priv->netdev->dev_addr, mac);
		dev_info(priv->dev, "Read MAC address %pM from device tree\n",
			 mac);
		return;
	}

	m = ioread32(priv->base + FTGMAC100_OFFSET_MAC_MADR);
	l = ioread32(priv->base + FTGMAC100_OFFSET_MAC_LADR);

	mac[0] = (m >> 8) & 0xff;
	mac[1] = m & 0xff;
	mac[2] = (l >> 24) & 0xff;
	mac[3] = (l >> 16) & 0xff;
	mac[4] = (l >> 8) & 0xff;
	mac[5] = l & 0xff;

	if (is_valid_ether_addr(mac)) {
		ether_addr_copy(priv->netdev->dev_addr, mac);
		dev_info(priv->dev, "Read MAC address %pM from chip\n", mac);
	} else {
		eth_hw_addr_random(priv->netdev);
		dev_info(priv->dev, "Generated random MAC address %pM\n",
			 priv->netdev->dev_addr);
	}
}

static int ftgmac100_set_mac_addr(struct net_device *dev, void *p)
{
	int ret;

	ret = eth_prepare_mac_addr_change(dev, p);
	if (ret < 0)
		return ret;

	eth_commit_mac_addr_change(dev, p);
	ftgmac100_set_mac(netdev_priv(dev), dev->dev_addr);

	return 0;
}

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
static void ftgmac100_init_hw(struct ftgmac100 *priv)
{
	/* setup ring buffer base registers */
	ftgmac100_set_rx_ring_base(priv,
				   priv->descs_dma_addr +
				   offsetof(struct ftgmac100_descs, rxdes));
	ftgmac100_set_normal_prio_tx_ring_base(priv,
					       priv->descs_dma_addr +
					       offsetof(struct ftgmac100_descs, txdes));

	ftgmac100_set_rx_buffer_size(priv, RX_BUF_SIZE);

	iowrite32(FTGMAC100_APTC_RXPOLL_CNT(1), priv->base + FTGMAC100_OFFSET_APTC);

	ftgmac100_set_mac(priv, priv->netdev->dev_addr);
}

251
static void ftgmac100_start_hw(struct ftgmac100 *priv)
252
{
253
	u32 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
254

255 256
	/* Keep the original GMAC and FAST bits */
	maccr &= (FTGMAC100_MACCR_FAST_MODE | FTGMAC100_MACCR_GIGA_MODE);
257

258 259 260 261 262 263 264 265 266
	/* Add all the main enable bits */
	maccr |= FTGMAC100_MACCR_TXDMA_EN	|
		 FTGMAC100_MACCR_RXDMA_EN	|
		 FTGMAC100_MACCR_TXMAC_EN	|
		 FTGMAC100_MACCR_RXMAC_EN	|
		 FTGMAC100_MACCR_CRC_APD	|
		 FTGMAC100_MACCR_PHY_LINK_LEVEL	|
		 FTGMAC100_MACCR_RX_RUNT	|
		 FTGMAC100_MACCR_RX_BROADPKT;
267

268
	/* Add other bits as needed */
269 270 271
	if (priv->cur_duplex == DUPLEX_FULL)
		maccr |= FTGMAC100_MACCR_FULLDUP;

272
	/* Hit the HW */
273 274 275 276 277 278 279 280
	iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
}

static void ftgmac100_stop_hw(struct ftgmac100 *priv)
{
	iowrite32(0, priv->base + FTGMAC100_OFFSET_MACCR);
}

281 282
static int ftgmac100_alloc_rx_buf(struct ftgmac100 *priv, unsigned int entry,
				  struct ftgmac100_rxdes *rxdes, gfp_t gfp)
283 284
{
	struct net_device *netdev = priv->netdev;
285
	struct sk_buff *skb;
286
	dma_addr_t map;
287
	int err;
288

289 290
	skb = netdev_alloc_skb_ip_align(netdev, RX_BUF_SIZE);
	if (unlikely(!skb)) {
291
		if (net_ratelimit())
292
			netdev_warn(netdev, "failed to allocate rx skb\n");
293 294
		err = -ENOMEM;
		map = priv->rx_scratch_dma;
295 296 297 298 299 300 301 302 303 304 305
	} else {
		map = dma_map_single(priv->dev, skb->data, RX_BUF_SIZE,
				     DMA_FROM_DEVICE);
		if (unlikely(dma_mapping_error(priv->dev, map))) {
			if (net_ratelimit())
				netdev_err(netdev, "failed to map rx page\n");
			dev_kfree_skb_any(skb);
			map = priv->rx_scratch_dma;
			skb = NULL;
			err = -ENOMEM;
		}
306 307
	}

308 309
	/* Store skb */
	priv->rx_skbs[entry] = skb;
310

311
	/* Store DMA address into RX desc */
312
	rxdes->rxdes3 = cpu_to_le32(map);
313 314 315 316

	/* Ensure the above is ordered vs clearing the OWN bit */
	dma_wmb();

317 318 319 320 321
	/* Clean status (which resets own bit) */
	if (entry == (RX_QUEUE_ENTRIES - 1))
		rxdes->rxdes0 = cpu_to_le32(priv->rxdes0_edorr_mask);
	else
		rxdes->rxdes0 = 0;
322

323 324 325
	return 0;
}

326 327 328 329 330
static int ftgmac100_next_rx_pointer(int pointer)
{
	return (pointer + 1) & (RX_QUEUE_ENTRIES - 1);
}

331
static void ftgmac100_rx_packet_error(struct ftgmac100 *priv, u32 status)
332 333 334
{
	struct net_device *netdev = priv->netdev;

335
	if (status & FTGMAC100_RXDES0_RX_ERR)
336 337
		netdev->stats.rx_errors++;

338
	if (status & FTGMAC100_RXDES0_CRC_ERR)
339 340
		netdev->stats.rx_crc_errors++;

341 342 343
	if (status & (FTGMAC100_RXDES0_FTL |
		      FTGMAC100_RXDES0_RUNT |
		      FTGMAC100_RXDES0_RX_ODD_NB))
344 345 346 347 348 349 350 351
		netdev->stats.rx_length_errors++;
}

static bool ftgmac100_rx_packet(struct ftgmac100 *priv, int *processed)
{
	struct net_device *netdev = priv->netdev;
	struct ftgmac100_rxdes *rxdes;
	struct sk_buff *skb;
352
	unsigned int pointer, size;
353
	u32 status, csum_vlan;
354
	dma_addr_t map;
355

356 357 358 359
	/* Grab next RX descriptor */
	pointer = priv->rx_pointer;
	rxdes = &priv->descs->rxdes[pointer];

360 361 362
	/* Grab descriptor status */
	status = le32_to_cpu(rxdes->rxdes0);

363
	/* Do we have a packet ? */
364
	if (!(status & FTGMAC100_RXDES0_RXPKT_RDY))
365 366
		return false;

367 368 369
	/* Order subsequent reads with the test for the ready bit */
	dma_rmb();

370
	/* We don't cope with fragmented RX packets */
371 372
	if (unlikely(!(status & FTGMAC100_RXDES0_FRS) ||
		     !(status & FTGMAC100_RXDES0_LRS)))
373 374
		goto drop;

375 376 377 378
	/* Grab received size and csum vlan field in the descriptor */
	size = status & FTGMAC100_RXDES0_VDBC;
	csum_vlan = le32_to_cpu(rxdes->rxdes1);

379
	/* Any error (other than csum offload) flagged ? */
380
	if (unlikely(status & RXDES0_ANY_ERROR)) {
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
		/* Correct for incorrect flagging of runt packets
		 * with vlan tags... Just accept a runt packet that
		 * has been flagged as vlan and whose size is at
		 * least 60 bytes.
		 */
		if ((status & FTGMAC100_RXDES0_RUNT) &&
		    (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL) &&
		    (size >= 60))
			status &= ~FTGMAC100_RXDES0_RUNT;

		/* Any error still in there ? */
		if (status & RXDES0_ANY_ERROR) {
			ftgmac100_rx_packet_error(priv, status);
			goto drop;
		}
396 397
	}

398
	/* If the packet had no skb (failed to allocate earlier)
399 400
	 * then try to allocate one and skip
	 */
401 402 403
	skb = priv->rx_skbs[pointer];
	if (!unlikely(skb)) {
		ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
404
		goto drop;
405 406
	}

407
	if (unlikely(status & FTGMAC100_RXDES0_MULTICAST))
408 409
		netdev->stats.multicast++;

410 411 412 413 414
	/* If the HW found checksum errors, bounce it to software.
	 *
	 * If we didn't, we need to see if the packet was recognized
	 * by HW as one of the supported checksummed protocols before
	 * we accept the HW test results.
415
	 */
416
	if (netdev->features & NETIF_F_RXCSUM) {
417 418 419
		u32 err_bits = FTGMAC100_RXDES1_TCP_CHKSUM_ERR |
			FTGMAC100_RXDES1_UDP_CHKSUM_ERR |
			FTGMAC100_RXDES1_IP_CHKSUM_ERR;
420
		if ((csum_vlan & err_bits) ||
421
		    !(csum_vlan & FTGMAC100_RXDES1_PROT_MASK))
422 423 424 425
			skb->ip_summed = CHECKSUM_NONE;
		else
			skb->ip_summed = CHECKSUM_UNNECESSARY;
	}
426

427
	/* Transfer received size to skb */
428
	skb_put(skb, size);
429

430
	/* Tear down DMA mapping, do necessary cache management */
431 432
	map = le32_to_cpu(rxdes->rxdes3);

433 434 435 436 437 438 439 440 441
#if defined(CONFIG_ARM) && !defined(CONFIG_ARM_DMA_USE_IOMMU)
	/* When we don't have an iommu, we can save cycles by not
	 * invalidating the cache for the part of the packet that
	 * wasn't received.
	 */
	dma_unmap_single(priv->dev, map, size, DMA_FROM_DEVICE);
#else
	dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
#endif
442 443


444 445
	/* Resplenish rx ring */
	ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
446
	priv->rx_pointer = ftgmac100_next_rx_pointer(pointer);
447 448 449 450

	skb->protocol = eth_type_trans(skb, netdev);

	netdev->stats.rx_packets++;
451
	netdev->stats.rx_bytes += size;
452 453

	/* push packet to protocol stack */
454 455 456 457
	if (skb->ip_summed == CHECKSUM_NONE)
		netif_receive_skb(skb);
	else
		napi_gro_receive(&priv->napi, skb);
458 459 460

	(*processed)++;
	return true;
461 462 463

 drop:
	/* Clean rxdes0 (which resets own bit) */
464
	rxdes->rxdes0 = cpu_to_le32(status & priv->rxdes0_edorr_mask);
465 466 467
	priv->rx_pointer = ftgmac100_next_rx_pointer(pointer);
	netdev->stats.rx_dropped++;
	return true;
468 469
}

470 471
static void ftgmac100_txdes_reset(const struct ftgmac100 *priv,
				  struct ftgmac100_txdes *txdes)
472 473
{
	/* clear all except end of ring bit */
474
	txdes->txdes0 &= cpu_to_le32(priv->txdes0_edotr_mask);
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
	txdes->txdes1 = 0;
	txdes->txdes2 = 0;
	txdes->txdes3 = 0;
}

static bool ftgmac100_txdes_owned_by_dma(struct ftgmac100_txdes *txdes)
{
	return txdes->txdes0 & cpu_to_le32(FTGMAC100_TXDES0_TXDMA_OWN);
}

static void ftgmac100_txdes_set_dma_own(struct ftgmac100_txdes *txdes)
{
	/*
	 * Make sure dma own bit will not be set before any other
	 * descriptor fields.
	 */
	wmb();
	txdes->txdes0 |= cpu_to_le32(FTGMAC100_TXDES0_TXDMA_OWN);
}

495 496
static void ftgmac100_txdes_set_end_of_ring(const struct ftgmac100 *priv,
					    struct ftgmac100_txdes *txdes)
497
{
498
	txdes->txdes0 |= cpu_to_le32(priv->txdes0_edotr_mask);
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
}

static void ftgmac100_txdes_set_first_segment(struct ftgmac100_txdes *txdes)
{
	txdes->txdes0 |= cpu_to_le32(FTGMAC100_TXDES0_FTS);
}

static void ftgmac100_txdes_set_last_segment(struct ftgmac100_txdes *txdes)
{
	txdes->txdes0 |= cpu_to_le32(FTGMAC100_TXDES0_LTS);
}

static void ftgmac100_txdes_set_buffer_size(struct ftgmac100_txdes *txdes,
					    unsigned int len)
{
	txdes->txdes0 |= cpu_to_le32(FTGMAC100_TXDES0_TXBUF_SIZE(len));
}

static void ftgmac100_txdes_set_txint(struct ftgmac100_txdes *txdes)
{
	txdes->txdes1 |= cpu_to_le32(FTGMAC100_TXDES1_TXIC);
}

static void ftgmac100_txdes_set_tcpcs(struct ftgmac100_txdes *txdes)
{
	txdes->txdes1 |= cpu_to_le32(FTGMAC100_TXDES1_TCP_CHKSUM);
}

static void ftgmac100_txdes_set_udpcs(struct ftgmac100_txdes *txdes)
{
	txdes->txdes1 |= cpu_to_le32(FTGMAC100_TXDES1_UDP_CHKSUM);
}

static void ftgmac100_txdes_set_ipcs(struct ftgmac100_txdes *txdes)
{
	txdes->txdes1 |= cpu_to_le32(FTGMAC100_TXDES1_IP_CHKSUM);
}

static void ftgmac100_txdes_set_dma_addr(struct ftgmac100_txdes *txdes,
					 dma_addr_t addr)
{
	txdes->txdes3 = cpu_to_le32(addr);
}

static dma_addr_t ftgmac100_txdes_get_dma_addr(struct ftgmac100_txdes *txdes)
{
	return le32_to_cpu(txdes->txdes3);
}

/*
 * txdes2 is not used by hardware. We use it to keep track of socket buffer.
 * Since hardware does not touch it, we can skip cpu_to_le32()/le32_to_cpu().
 */
static void ftgmac100_txdes_set_skb(struct ftgmac100_txdes *txdes,
				    struct sk_buff *skb)
{
	txdes->txdes2 = (unsigned int)skb;
}

static struct sk_buff *ftgmac100_txdes_get_skb(struct ftgmac100_txdes *txdes)
{
	return (struct sk_buff *)txdes->txdes2;
}

static int ftgmac100_next_tx_pointer(int pointer)
{
	return (pointer + 1) & (TX_QUEUE_ENTRIES - 1);
}

static void ftgmac100_tx_pointer_advance(struct ftgmac100 *priv)
{
	priv->tx_pointer = ftgmac100_next_tx_pointer(priv->tx_pointer);
}

static void ftgmac100_tx_clean_pointer_advance(struct ftgmac100 *priv)
{
	priv->tx_clean_pointer = ftgmac100_next_tx_pointer(priv->tx_clean_pointer);
}

static struct ftgmac100_txdes *ftgmac100_current_txdes(struct ftgmac100 *priv)
{
	return &priv->descs->txdes[priv->tx_pointer];
}

static struct ftgmac100_txdes *
ftgmac100_current_clean_txdes(struct ftgmac100 *priv)
{
	return &priv->descs->txdes[priv->tx_clean_pointer];
}

static bool ftgmac100_tx_complete_packet(struct ftgmac100 *priv)
{
	struct net_device *netdev = priv->netdev;
	struct ftgmac100_txdes *txdes;
	struct sk_buff *skb;
	dma_addr_t map;

	if (priv->tx_pending == 0)
		return false;

	txdes = ftgmac100_current_clean_txdes(priv);

	if (ftgmac100_txdes_owned_by_dma(txdes))
		return false;

	skb = ftgmac100_txdes_get_skb(txdes);
	map = ftgmac100_txdes_get_dma_addr(txdes);

	netdev->stats.tx_packets++;
	netdev->stats.tx_bytes += skb->len;

	dma_unmap_single(priv->dev, map, skb_headlen(skb), DMA_TO_DEVICE);

	dev_kfree_skb(skb);

614
	ftgmac100_txdes_reset(priv, txdes);
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631

	ftgmac100_tx_clean_pointer_advance(priv);

	spin_lock(&priv->tx_lock);
	priv->tx_pending--;
	spin_unlock(&priv->tx_lock);
	netif_wake_queue(netdev);

	return true;
}

static void ftgmac100_tx_complete(struct ftgmac100 *priv)
{
	while (ftgmac100_tx_complete_packet(priv))
		;
}

632 633
static int ftgmac100_hard_start_xmit(struct sk_buff *skb,
				     struct net_device *netdev)
634
{
635 636 637 638
	struct ftgmac100 *priv = netdev_priv(netdev);
	struct ftgmac100_txdes *txdes;
	dma_addr_t map;

639 640 641 642 643 644 645
	/* The HW doesn't pad small frames */
	if (eth_skb_pad(skb)) {
		netdev->stats.tx_dropped++;
		return NETDEV_TX_OK;
	}

	/* Reject oversize packets */
646 647 648
	if (unlikely(skb->len > MAX_PKT_SIZE)) {
		if (net_ratelimit())
			netdev_dbg(netdev, "tx packet too big\n");
649
		goto drop;
650 651 652 653 654 655 656
	}

	map = dma_map_single(priv->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
	if (unlikely(dma_mapping_error(priv->dev, map))) {
		/* drop packet */
		if (net_ratelimit())
			netdev_err(netdev, "map socket buffer failed\n");
657
		goto drop;
658
	}
659 660 661 662 663 664 665

	txdes = ftgmac100_current_txdes(priv);
	ftgmac100_tx_pointer_advance(priv);

	/* setup TX descriptor */
	ftgmac100_txdes_set_skb(txdes, skb);
	ftgmac100_txdes_set_dma_addr(txdes, map);
666
	ftgmac100_txdes_set_buffer_size(txdes, skb->len);
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695

	ftgmac100_txdes_set_first_segment(txdes);
	ftgmac100_txdes_set_last_segment(txdes);
	ftgmac100_txdes_set_txint(txdes);
	if (skb->ip_summed == CHECKSUM_PARTIAL) {
		__be16 protocol = skb->protocol;

		if (protocol == cpu_to_be16(ETH_P_IP)) {
			u8 ip_proto = ip_hdr(skb)->protocol;

			ftgmac100_txdes_set_ipcs(txdes);
			if (ip_proto == IPPROTO_TCP)
				ftgmac100_txdes_set_tcpcs(txdes);
			else if (ip_proto == IPPROTO_UDP)
				ftgmac100_txdes_set_udpcs(txdes);
		}
	}

	spin_lock(&priv->tx_lock);
	priv->tx_pending++;
	if (priv->tx_pending == TX_QUEUE_ENTRIES)
		netif_stop_queue(netdev);

	/* start transmit */
	ftgmac100_txdes_set_dma_own(txdes);
	spin_unlock(&priv->tx_lock);

	ftgmac100_txdma_normal_prio_start_polling(priv);

696 697 698 699 700 701 702
	return NETDEV_TX_OK;

 drop:
	/* Drop the packet */
	dev_kfree_skb_any(skb);
	netdev->stats.tx_dropped++;

703 704 705 706 707 708 709
	return NETDEV_TX_OK;
}

static void ftgmac100_free_buffers(struct ftgmac100 *priv)
{
	int i;

710
	/* Free all RX buffers */
711 712
	for (i = 0; i < RX_QUEUE_ENTRIES; i++) {
		struct ftgmac100_rxdes *rxdes = &priv->descs->rxdes[i];
713
		struct sk_buff *skb = priv->rx_skbs[i];
714
		dma_addr_t map = le32_to_cpu(rxdes->rxdes3);
715

716
		if (!skb)
717 718
			continue;

719 720 721
		priv->rx_skbs[i] = NULL;
		dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
		dev_kfree_skb_any(skb);
722 723
	}

724
	/* Free all TX buffers */
725 726 727 728 729 730 731 732 733
	for (i = 0; i < TX_QUEUE_ENTRIES; i++) {
		struct ftgmac100_txdes *txdes = &priv->descs->txdes[i];
		struct sk_buff *skb = ftgmac100_txdes_get_skb(txdes);
		dma_addr_t map = ftgmac100_txdes_get_dma_addr(txdes);

		if (!skb)
			continue;

		dma_unmap_single(priv->dev, map, skb_headlen(skb), DMA_TO_DEVICE);
734
		kfree_skb(skb);
735 736 737
	}
}

738
static void ftgmac100_free_rings(struct ftgmac100 *priv)
739
{
740 741 742 743
	/* Free descriptors */
	if (priv->descs)
		dma_free_coherent(priv->dev, sizeof(struct ftgmac100_descs),
				  priv->descs, priv->descs_dma_addr);
744 745 746 747 748

	/* Free scratch packet buffer */
	if (priv->rx_scratch)
		dma_free_coherent(priv->dev, RX_BUF_SIZE,
				  priv->rx_scratch, priv->rx_scratch_dma);
749
}
750

751 752 753
static int ftgmac100_alloc_rings(struct ftgmac100 *priv)
{
	/* Allocate descriptors */
754 755 756
	priv->descs = dma_zalloc_coherent(priv->dev,
					  sizeof(struct ftgmac100_descs),
					  &priv->descs_dma_addr, GFP_KERNEL);
757 758 759
	if (!priv->descs)
		return -ENOMEM;

760 761 762 763 764 765 766 767
	/* Allocate scratch packet buffer */
	priv->rx_scratch = dma_alloc_coherent(priv->dev,
					      RX_BUF_SIZE,
					      &priv->rx_scratch_dma,
					      GFP_KERNEL);
	if (!priv->rx_scratch)
		return -ENOMEM;

768 769 770 771 772
	return 0;
}

static void ftgmac100_init_rings(struct ftgmac100 *priv)
{
773
	struct ftgmac100_rxdes *rxdes;
774 775 776
	int i;

	/* Initialize RX ring */
777
	for (i = 0; i < RX_QUEUE_ENTRIES; i++) {
778
		rxdes = &priv->descs->rxdes[i];
779
		rxdes->rxdes0 = 0;
780
		rxdes->rxdes3 = cpu_to_le32(priv->rx_scratch_dma);
781
	}
782 783
	/* Mark the end of the ring */
	rxdes->rxdes0 |= cpu_to_le32(priv->rxdes0_edorr_mask);
784 785 786 787 788 789 790 791 792 793

	/* Initialize TX ring */
	for (i = 0; i < TX_QUEUE_ENTRIES; i++)
		priv->descs->txdes[i].txdes0 = 0;
	ftgmac100_txdes_set_end_of_ring(priv, &priv->descs->txdes[i -1]);
}

static int ftgmac100_alloc_rx_buffers(struct ftgmac100 *priv)
{
	int i;
794 795 796 797

	for (i = 0; i < RX_QUEUE_ENTRIES; i++) {
		struct ftgmac100_rxdes *rxdes = &priv->descs->rxdes[i];

798
		if (ftgmac100_alloc_rx_buf(priv, i, rxdes, GFP_KERNEL))
799
			return -ENOMEM;
800 801 802 803 804 805 806
	}
	return 0;
}

static void ftgmac100_adjust_link(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);
807
	struct phy_device *phydev = netdev->phydev;
808
	int new_speed;
809

810 811 812 813 814 815 816 817
	/* We store "no link" as speed 0 */
	if (!phydev->link)
		new_speed = 0;
	else
		new_speed = phydev->speed;

	if (phydev->speed == priv->cur_speed &&
	    phydev->duplex == priv->cur_duplex)
818 819
		return;

820 821 822 823 824 825 826 827 828 829 830 831
	/* Print status if we have a link or we had one and just lost it,
	 * don't print otherwise.
	 */
	if (new_speed || priv->cur_speed)
		phy_print_status(phydev);

	priv->cur_speed = new_speed;
	priv->cur_duplex = phydev->duplex;

	/* Link is down, do nothing else */
	if (!new_speed)
		return;
832

833
	/* Disable all interrupts */
834 835
	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);

836 837
	/* Reset the adapter asynchronously */
	schedule_work(&priv->reset_task);
838 839 840 841 842
}

static int ftgmac100_mii_probe(struct ftgmac100 *priv)
{
	struct net_device *netdev = priv->netdev;
843
	struct phy_device *phydev;
844

845
	phydev = phy_find_first(priv->mii_bus);
846 847 848 849 850
	if (!phydev) {
		netdev_info(netdev, "%s: no PHY found\n", netdev->name);
		return -ENODEV;
	}

A
Andrew Lunn 已提交
851
	phydev = phy_connect(netdev, phydev_name(phydev),
852
			     &ftgmac100_adjust_link, PHY_INTERFACE_MODE_GMII);
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935

	if (IS_ERR(phydev)) {
		netdev_err(netdev, "%s: Could not attach to PHY\n", netdev->name);
		return PTR_ERR(phydev);
	}

	return 0;
}

static int ftgmac100_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
{
	struct net_device *netdev = bus->priv;
	struct ftgmac100 *priv = netdev_priv(netdev);
	unsigned int phycr;
	int i;

	phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);

	/* preserve MDC cycle threshold */
	phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;

	phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
		 FTGMAC100_PHYCR_REGAD(regnum) |
		 FTGMAC100_PHYCR_MIIRD;

	iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);

	for (i = 0; i < 10; i++) {
		phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);

		if ((phycr & FTGMAC100_PHYCR_MIIRD) == 0) {
			int data;

			data = ioread32(priv->base + FTGMAC100_OFFSET_PHYDATA);
			return FTGMAC100_PHYDATA_MIIRDATA(data);
		}

		udelay(100);
	}

	netdev_err(netdev, "mdio read timed out\n");
	return -EIO;
}

static int ftgmac100_mdiobus_write(struct mii_bus *bus, int phy_addr,
				   int regnum, u16 value)
{
	struct net_device *netdev = bus->priv;
	struct ftgmac100 *priv = netdev_priv(netdev);
	unsigned int phycr;
	int data;
	int i;

	phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);

	/* preserve MDC cycle threshold */
	phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;

	phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
		 FTGMAC100_PHYCR_REGAD(regnum) |
		 FTGMAC100_PHYCR_MIIWR;

	data = FTGMAC100_PHYDATA_MIIWDATA(value);

	iowrite32(data, priv->base + FTGMAC100_OFFSET_PHYDATA);
	iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);

	for (i = 0; i < 10; i++) {
		phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);

		if ((phycr & FTGMAC100_PHYCR_MIIWR) == 0)
			return 0;

		udelay(100);
	}

	netdev_err(netdev, "mdio write timed out\n");
	return -EIO;
}

static void ftgmac100_get_drvinfo(struct net_device *netdev,
				  struct ethtool_drvinfo *info)
{
936 937 938
	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
	strlcpy(info->bus_info, dev_name(&netdev->dev), sizeof(info->bus_info));
939 940 941 942 943
}

static const struct ethtool_ops ftgmac100_ethtool_ops = {
	.get_drvinfo		= ftgmac100_get_drvinfo,
	.get_link		= ethtool_op_get_link,
944 945
	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
946 947 948 949 950 951
};

static irqreturn_t ftgmac100_interrupt(int irq, void *dev_id)
{
	struct net_device *netdev = dev_id;
	struct ftgmac100 *priv = netdev_priv(netdev);
952
	unsigned int status, new_mask = FTGMAC100_INT_BAD;
953

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
	/* Fetch and clear interrupt bits, process abnormal ones */
	status = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
	iowrite32(status, priv->base + FTGMAC100_OFFSET_ISR);
	if (unlikely(status & FTGMAC100_INT_BAD)) {

		/* RX buffer unavailable */
		if (status & FTGMAC100_INT_NO_RXBUF)
			netdev->stats.rx_over_errors++;

		/* received packet lost due to RX FIFO full */
		if (status & FTGMAC100_INT_RPKT_LOST)
			netdev->stats.rx_fifo_errors++;

		/* sent packet lost due to excessive TX collision */
		if (status & FTGMAC100_INT_XPKT_LOST)
			netdev->stats.tx_fifo_errors++;

		/* AHB error -> Reset the chip */
		if (status & FTGMAC100_INT_AHB_ERR) {
			if (net_ratelimit())
				netdev_warn(netdev,
					   "AHB bus error ! Resetting chip.\n");
			iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
			schedule_work(&priv->reset_task);
			return IRQ_HANDLED;
		}

		/* We may need to restart the MAC after such errors, delay
		 * this until after we have freed some Rx buffers though
		 */
		priv->need_mac_restart = true;

		/* Disable those errors until we restart */
		new_mask &= ~status;
	}

	/* Only enable "bad" interrupts while NAPI is on */
	iowrite32(new_mask, priv->base + FTGMAC100_OFFSET_IER);

	/* Schedule NAPI bh */
	napi_schedule_irqoff(&priv->napi);
995 996 997 998

	return IRQ_HANDLED;
}

999 1000 1001 1002 1003 1004 1005 1006
static bool ftgmac100_check_rx(struct ftgmac100 *priv)
{
	struct ftgmac100_rxdes *rxdes = &priv->descs->rxdes[priv->rx_pointer];

	/* Do we have a packet ? */
	return !!(rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RXPKT_RDY));
}

1007 1008 1009
static int ftgmac100_poll(struct napi_struct *napi, int budget)
{
	struct ftgmac100 *priv = container_of(napi, struct ftgmac100, napi);
1010
	bool more, completed = true;
1011 1012
	int rx = 0;

1013
	ftgmac100_tx_complete(priv);
1014

1015 1016 1017
	do {
		more = ftgmac100_rx_packet(priv, &rx);
	} while (more && rx < budget);
1018

1019 1020
	if (more && rx == budget)
		completed = false;
1021 1022


1023 1024 1025 1026 1027
	/* The interrupt is telling us to kick the MAC back to life
	 * after an RX overflow
	 */
	if (unlikely(priv->need_mac_restart)) {
		ftgmac100_start_hw(priv);
1028

1029 1030 1031
		/* Re-enable "bad" interrupts */
		iowrite32(FTGMAC100_INT_BAD,
			  priv->base + FTGMAC100_OFFSET_IER);
1032 1033
	}

1034 1035 1036 1037
	/* Keep NAPI going if we have still packets to reclaim */
	if (priv->tx_pending)
		return budget;

1038
	if (completed) {
1039 1040 1041 1042 1043 1044 1045
		/* We are about to re-enable all interrupts. However
		 * the HW has been latching RX/TX packet interrupts while
		 * they were masked. So we clear them first, then we need
		 * to re-check if there's something to process
		 */
		iowrite32(FTGMAC100_INT_RXTX,
			  priv->base + FTGMAC100_OFFSET_ISR);
1046
		if (ftgmac100_check_rx(priv) || priv->tx_pending)
1047 1048 1049
			return budget;

		/* deschedule NAPI */
1050 1051 1052
		napi_complete(napi);

		/* enable all interrupts */
1053
		iowrite32(FTGMAC100_INT_ALL,
1054
			  priv->base + FTGMAC100_OFFSET_IER);
1055 1056 1057 1058 1059
	}

	return rx;
}

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
static int ftgmac100_init_all(struct ftgmac100 *priv, bool ignore_alloc_err)
{
	int err = 0;

	/* Re-init descriptors (adjust queue sizes) */
	ftgmac100_init_rings(priv);

	/* Realloc rx descriptors */
	err = ftgmac100_alloc_rx_buffers(priv);
	if (err && !ignore_alloc_err)
		return err;

	/* Reinit and restart HW */
	ftgmac100_init_hw(priv);
	ftgmac100_start_hw(priv);

	/* Re-enable the device */
	napi_enable(&priv->napi);
	netif_start_queue(priv->netdev);

	/* Enable all interrupts */
1081
	iowrite32(FTGMAC100_INT_ALL, priv->base + FTGMAC100_OFFSET_IER);
1082 1083 1084 1085

	return err;
}

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
static void ftgmac100_reset_task(struct work_struct *work)
{
	struct ftgmac100 *priv = container_of(work, struct ftgmac100,
					      reset_task);
	struct net_device *netdev = priv->netdev;
	int err;

	netdev_dbg(netdev, "Resetting NIC...\n");

	/* Lock the world */
	rtnl_lock();
	if (netdev->phydev)
		mutex_lock(&netdev->phydev->lock);
	if (priv->mii_bus)
		mutex_lock(&priv->mii_bus->mdio_lock);


	/* Check if the interface is still up */
	if (!netif_running(netdev))
		goto bail;

	/* Stop the network stack */
	netif_trans_update(netdev);
	napi_disable(&priv->napi);
	netif_tx_disable(netdev);

	/* Stop and reset the MAC */
	ftgmac100_stop_hw(priv);
1114
	err = ftgmac100_reset_and_config_mac(priv);
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	if (err) {
		/* Not much we can do ... it might come back... */
		netdev_err(netdev, "attempting to continue...\n");
	}

	/* Free all rx and tx buffers */
	ftgmac100_free_buffers(priv);

	/* Setup everything again and restart chip */
	ftgmac100_init_all(priv, true);

	netdev_dbg(netdev, "Reset done !\n");
 bail:
	if (priv->mii_bus)
		mutex_unlock(&priv->mii_bus->mdio_lock);
	if (netdev->phydev)
		mutex_unlock(&netdev->phydev->lock);
	rtnl_unlock();
}

1135 1136 1137 1138 1139
static int ftgmac100_open(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);
	int err;

1140 1141
	/* Allocate ring buffers  */
	err = ftgmac100_alloc_rings(priv);
1142
	if (err) {
1143 1144
		netdev_err(netdev, "Failed to allocate descriptors\n");
		return err;
1145 1146
	}

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
	/* When using NC-SI we force the speed to 100Mbit/s full duplex,
	 *
	 * Otherwise we leave it set to 0 (no link), the link
	 * message from the PHY layer will handle setting it up to
	 * something else if needed.
	 */
	if (priv->use_ncsi) {
		priv->cur_duplex = DUPLEX_FULL;
		priv->cur_speed = SPEED_100;
	} else {
		priv->cur_duplex = 0;
		priv->cur_speed = 0;
	}

1161 1162
	/* Reset the hardware */
	err = ftgmac100_reset_and_config_mac(priv);
1163 1164 1165
	if (err)
		goto err_hw;

1166 1167 1168
	/* Initialize NAPI */
	netif_napi_add(netdev, &priv->napi, ftgmac100_poll, 64);

1169 1170 1171 1172 1173 1174 1175
	/* Grab our interrupt */
	err = request_irq(netdev->irq, ftgmac100_interrupt, 0, netdev->name, netdev);
	if (err) {
		netdev_err(netdev, "failed to request irq %d\n", netdev->irq);
		goto err_irq;
	}

1176 1177 1178 1179 1180 1181
	/* Start things up */
	err = ftgmac100_init_all(priv, false);
	if (err) {
		netdev_err(netdev, "Failed to allocate packet buffers\n");
		goto err_alloc;
	}
G
Gavin Shan 已提交
1182

1183 1184
	if (netdev->phydev) {
		/* If we have a PHY, start polling */
G
Gavin Shan 已提交
1185
		phy_start(netdev->phydev);
1186 1187
	} else if (priv->use_ncsi) {
		/* If using NC-SI, set our carrier on and start the stack */
G
Gavin Shan 已提交
1188
		netif_carrier_on(netdev);
1189

1190
		/* Start the NCSI device */
G
Gavin Shan 已提交
1191 1192 1193 1194 1195
		err = ncsi_start_dev(priv->ndev);
		if (err)
			goto err_ncsi;
	}

1196 1197
	return 0;

1198
 err_ncsi:
G
Gavin Shan 已提交
1199 1200
	napi_disable(&priv->napi);
	netif_stop_queue(netdev);
1201 1202
 err_alloc:
	ftgmac100_free_buffers(priv);
1203
	free_irq(netdev->irq, netdev);
1204
 err_irq:
1205
	netif_napi_del(&priv->napi);
1206
 err_hw:
1207
	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1208
	ftgmac100_free_rings(priv);
1209 1210 1211 1212 1213 1214 1215
	return err;
}

static int ftgmac100_stop(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);

1216 1217 1218 1219 1220 1221 1222 1223
	/* Note about the reset task: We are called with the rtnl lock
	 * held, so we are synchronized against the core of the reset
	 * task. We must not try to synchronously cancel it otherwise
	 * we can deadlock. But since it will test for netif_running()
	 * which has already been cleared by the net core, we don't
	 * anything special to do.
	 */

1224 1225 1226 1227 1228
	/* disable all interrupts */
	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);

	netif_stop_queue(netdev);
	napi_disable(&priv->napi);
1229
	netif_napi_del(&priv->napi);
G
Gavin Shan 已提交
1230 1231
	if (netdev->phydev)
		phy_stop(netdev->phydev);
1232 1233
	else if (priv->use_ncsi)
		ncsi_stop_dev(priv->ndev);
1234 1235

	ftgmac100_stop_hw(priv);
1236
	free_irq(netdev->irq, netdev);
1237
	ftgmac100_free_buffers(priv);
1238
	ftgmac100_free_rings(priv);
1239 1240 1241 1242 1243 1244 1245

	return 0;
}

/* optional */
static int ftgmac100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
G
Gavin Shan 已提交
1246 1247 1248
	if (!netdev->phydev)
		return -ENXIO;

1249
	return phy_mii_ioctl(netdev->phydev, ifr, cmd);
1250 1251
}

1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
static void ftgmac100_tx_timeout(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);

	/* Disable all interrupts */
	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);

	/* Do the reset outside of interrupt context */
	schedule_work(&priv->reset_task);
}

1263 1264 1265 1266
static const struct net_device_ops ftgmac100_netdev_ops = {
	.ndo_open		= ftgmac100_open,
	.ndo_stop		= ftgmac100_stop,
	.ndo_start_xmit		= ftgmac100_hard_start_xmit,
1267
	.ndo_set_mac_address	= ftgmac100_set_mac_addr,
1268 1269
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= ftgmac100_do_ioctl,
1270
	.ndo_tx_timeout		= ftgmac100_tx_timeout,
1271 1272
};

1273 1274 1275 1276 1277
static int ftgmac100_setup_mdio(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);
	struct platform_device *pdev = to_platform_device(priv->dev);
	int i, err = 0;
1278
	u32 reg;
1279 1280 1281 1282 1283 1284

	/* initialize mdio bus */
	priv->mii_bus = mdiobus_alloc();
	if (!priv->mii_bus)
		return -EIO;

1285 1286 1287 1288 1289 1290 1291 1292
	if (of_machine_is_compatible("aspeed,ast2400") ||
	    of_machine_is_compatible("aspeed,ast2500")) {
		/* This driver supports the old MDIO interface */
		reg = ioread32(priv->base + FTGMAC100_OFFSET_REVR);
		reg &= ~FTGMAC100_REVR_NEW_MDIO_INTERFACE;
		iowrite32(reg, priv->base + FTGMAC100_OFFSET_REVR);
	};

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
	priv->mii_bus->name = "ftgmac100_mdio";
	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%d",
		 pdev->name, pdev->id);
	priv->mii_bus->priv = priv->netdev;
	priv->mii_bus->read = ftgmac100_mdiobus_read;
	priv->mii_bus->write = ftgmac100_mdiobus_write;

	for (i = 0; i < PHY_MAX_ADDR; i++)
		priv->mii_bus->irq[i] = PHY_POLL;

	err = mdiobus_register(priv->mii_bus);
	if (err) {
		dev_err(priv->dev, "Cannot register MDIO bus!\n");
		goto err_register_mdiobus;
	}

	err = ftgmac100_mii_probe(priv);
	if (err) {
		dev_err(priv->dev, "MII Probe failed!\n");
		goto err_mii_probe;
	}

	return 0;

err_mii_probe:
	mdiobus_unregister(priv->mii_bus);
err_register_mdiobus:
	mdiobus_free(priv->mii_bus);
	return err;
}

static void ftgmac100_destroy_mdio(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);

	if (!netdev->phydev)
		return;

	phy_disconnect(netdev->phydev);
	mdiobus_unregister(priv->mii_bus);
	mdiobus_free(priv->mii_bus);
}

G
Gavin Shan 已提交
1336 1337 1338 1339 1340 1341 1342 1343 1344
static void ftgmac100_ncsi_handler(struct ncsi_dev *nd)
{
	if (unlikely(nd->state != ncsi_dev_state_functional))
		return;

	netdev_info(nd->dev, "NCSI interface %s\n",
		    nd->link_up ? "up" : "down");
}

1345 1346 1347 1348 1349 1350
static int ftgmac100_probe(struct platform_device *pdev)
{
	struct resource *res;
	int irq;
	struct net_device *netdev;
	struct ftgmac100 *priv;
G
Gavin Shan 已提交
1351
	int err = 0;
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372

	if (!pdev)
		return -ENODEV;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res)
		return -ENXIO;

	irq = platform_get_irq(pdev, 0);
	if (irq < 0)
		return irq;

	/* setup net_device */
	netdev = alloc_etherdev(sizeof(*priv));
	if (!netdev) {
		err = -ENOMEM;
		goto err_alloc_etherdev;
	}

	SET_NETDEV_DEV(netdev, &pdev->dev);

1373
	netdev->ethtool_ops = &ftgmac100_ethtool_ops;
1374
	netdev->netdev_ops = &ftgmac100_netdev_ops;
1375
	netdev->watchdog_timeo = 5 * HZ;
1376 1377 1378 1379 1380 1381 1382

	platform_set_drvdata(pdev, netdev);

	/* setup private data */
	priv = netdev_priv(netdev);
	priv->netdev = netdev;
	priv->dev = &pdev->dev;
1383
	INIT_WORK(&priv->reset_task, ftgmac100_reset_task);
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402

	spin_lock_init(&priv->tx_lock);

	/* map io memory */
	priv->res = request_mem_region(res->start, resource_size(res),
				       dev_name(&pdev->dev));
	if (!priv->res) {
		dev_err(&pdev->dev, "Could not reserve memory region\n");
		err = -ENOMEM;
		goto err_req_mem;
	}

	priv->base = ioremap(res->start, resource_size(res));
	if (!priv->base) {
		dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
		err = -EIO;
		goto err_ioremap;
	}

1403
	netdev->irq = irq;
1404

1405 1406 1407
	/* MAC address from chip or random one */
	ftgmac100_setup_mac(priv);

1408 1409 1410 1411 1412 1413 1414 1415 1416
	if (of_machine_is_compatible("aspeed,ast2400") ||
	    of_machine_is_compatible("aspeed,ast2500")) {
		priv->rxdes0_edorr_mask = BIT(30);
		priv->txdes0_edotr_mask = BIT(30);
	} else {
		priv->rxdes0_edorr_mask = BIT(15);
		priv->txdes0_edotr_mask = BIT(15);
	}

G
Gavin Shan 已提交
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
	if (pdev->dev.of_node &&
	    of_get_property(pdev->dev.of_node, "use-ncsi", NULL)) {
		if (!IS_ENABLED(CONFIG_NET_NCSI)) {
			dev_err(&pdev->dev, "NCSI stack not enabled\n");
			goto err_ncsi_dev;
		}

		dev_info(&pdev->dev, "Using NCSI interface\n");
		priv->use_ncsi = true;
		priv->ndev = ncsi_register_dev(netdev, ftgmac100_ncsi_handler);
		if (!priv->ndev)
			goto err_ncsi_dev;
	} else {
		priv->use_ncsi = false;
		err = ftgmac100_setup_mdio(netdev);
		if (err)
			goto err_setup_mdio;
	}

	/* We have to disable on-chip IP checksum functionality
	 * when NCSI is enabled on the interface. It doesn't work
	 * in that case.
	 */
1440
	netdev->features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM | NETIF_F_GRO;
G
Gavin Shan 已提交
1441 1442 1443 1444
	if (priv->use_ncsi &&
	    of_get_property(pdev->dev.of_node, "no-hw-checksum", NULL))
		netdev->features &= ~NETIF_F_IP_CSUM;

1445 1446 1447 1448 1449 1450 1451 1452

	/* register network device */
	err = register_netdev(netdev);
	if (err) {
		dev_err(&pdev->dev, "Failed to register netdev\n");
		goto err_register_netdev;
	}

1453
	netdev_info(netdev, "irq %d, mapped at %p\n", netdev->irq, priv->base);
1454 1455 1456

	return 0;

G
Gavin Shan 已提交
1457
err_ncsi_dev:
1458
err_register_netdev:
1459 1460
	ftgmac100_destroy_mdio(netdev);
err_setup_mdio:
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
	iounmap(priv->base);
err_ioremap:
	release_resource(priv->res);
err_req_mem:
	netif_napi_del(&priv->napi);
	free_netdev(netdev);
err_alloc_etherdev:
	return err;
}

1471
static int ftgmac100_remove(struct platform_device *pdev)
1472 1473 1474 1475 1476 1477 1478 1479
{
	struct net_device *netdev;
	struct ftgmac100 *priv;

	netdev = platform_get_drvdata(pdev);
	priv = netdev_priv(netdev);

	unregister_netdev(netdev);
1480 1481 1482 1483 1484 1485

	/* There's a small chance the reset task will have been re-queued,
	 * during stop, make sure it's gone before we free the structure.
	 */
	cancel_work_sync(&priv->reset_task);

1486
	ftgmac100_destroy_mdio(netdev);
1487 1488 1489 1490 1491 1492 1493 1494 1495

	iounmap(priv->base);
	release_resource(priv->res);

	netif_napi_del(&priv->napi);
	free_netdev(netdev);
	return 0;
}

1496 1497 1498 1499 1500 1501
static const struct of_device_id ftgmac100_of_match[] = {
	{ .compatible = "faraday,ftgmac100" },
	{ }
};
MODULE_DEVICE_TABLE(of, ftgmac100_of_match);

1502
static struct platform_driver ftgmac100_driver = {
1503
	.probe	= ftgmac100_probe,
1504
	.remove	= ftgmac100_remove,
1505 1506 1507
	.driver	= {
		.name		= DRV_NAME,
		.of_match_table	= ftgmac100_of_match,
1508 1509
	},
};
1510
module_platform_driver(ftgmac100_driver);
1511 1512 1513 1514

MODULE_AUTHOR("Po-Yu Chuang <ratbert@faraday-tech.com>");
MODULE_DESCRIPTION("FTGMAC100 driver");
MODULE_LICENSE("GPL");