ftgmac100.c 38.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Faraday FTGMAC100 Gigabit Ethernet
 *
 * (C) Copyright 2009-2011 Faraday Technology
 * Po-Yu Chuang <ratbert@faraday-tech.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt

#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
27
#include <linux/interrupt.h>
28 29 30
#include <linux/io.h>
#include <linux/module.h>
#include <linux/netdevice.h>
31
#include <linux/of.h>
32 33
#include <linux/phy.h>
#include <linux/platform_device.h>
34
#include <linux/property.h>
35
#include <net/ip.h>
G
Gavin Shan 已提交
36
#include <net/ncsi.h>
37 38 39 40 41 42 43 44 45

#include "ftgmac100.h"

#define DRV_NAME	"ftgmac100"
#define DRV_VERSION	"0.7"

#define RX_QUEUE_ENTRIES	256	/* must be power of 2 */
#define TX_QUEUE_ENTRIES	512	/* must be power of 2 */

46 47
#define MAX_PKT_SIZE		1536
#define RX_BUF_SIZE		MAX_PKT_SIZE	/* must be smaller than 0x3fff */
48

49
/* Min number of tx ring entries before stopping queue */
50
#define TX_THRESHOLD		(MAX_SKB_FRAGS + 1)
51

52 53 54 55 56 57
struct ftgmac100_descs {
	struct ftgmac100_rxdes rxdes[RX_QUEUE_ENTRIES];
	struct ftgmac100_txdes txdes[TX_QUEUE_ENTRIES];
};

struct ftgmac100 {
58
	/* Registers */
59 60 61 62 63 64
	struct resource *res;
	void __iomem *base;

	struct ftgmac100_descs *descs;
	dma_addr_t descs_dma_addr;

65
	/* Rx ring */
66
	struct sk_buff *rx_skbs[RX_QUEUE_ENTRIES];
67
	unsigned int rx_pointer;
68 69 70
	u32 rxdes0_edorr_mask;

	/* Tx ring */
71
	struct sk_buff *tx_skbs[TX_QUEUE_ENTRIES];
72 73
	unsigned int tx_clean_pointer;
	unsigned int tx_pointer;
74
	u32 txdes0_edotr_mask;
75

76 77 78 79
	/* Scratch page to use when rx skb alloc fails */
	void *rx_scratch;
	dma_addr_t rx_scratch_dma;

80
	/* Component structures */
81 82
	struct net_device *netdev;
	struct device *dev;
G
Gavin Shan 已提交
83
	struct ncsi_dev *ndev;
84
	struct napi_struct napi;
85
	struct work_struct reset_task;
86
	struct mii_bus *mii_bus;
87 88

	/* Link management */
89 90
	int cur_speed;
	int cur_duplex;
G
Gavin Shan 已提交
91
	bool use_ncsi;
92

93
	/* Misc */
94
	bool need_mac_restart;
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
};

static void ftgmac100_set_rx_ring_base(struct ftgmac100 *priv, dma_addr_t addr)
{
	iowrite32(addr, priv->base + FTGMAC100_OFFSET_RXR_BADR);
}

static void ftgmac100_set_rx_buffer_size(struct ftgmac100 *priv,
		unsigned int size)
{
	size = FTGMAC100_RBSR_SIZE(size);
	iowrite32(size, priv->base + FTGMAC100_OFFSET_RBSR);
}

static void ftgmac100_set_normal_prio_tx_ring_base(struct ftgmac100 *priv,
						   dma_addr_t addr)
{
	iowrite32(addr, priv->base + FTGMAC100_OFFSET_NPTXR_BADR);
}

static void ftgmac100_txdma_normal_prio_start_polling(struct ftgmac100 *priv)
{
	iowrite32(1, priv->base + FTGMAC100_OFFSET_NPTXPD);
}

120
static int ftgmac100_reset_mac(struct ftgmac100 *priv, u32 maccr)
121 122 123 124 125
{
	struct net_device *netdev = priv->netdev;
	int i;

	/* NOTE: reset clears all registers */
126 127 128 129
	iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
	iowrite32(maccr | FTGMAC100_MACCR_SW_RST,
		  priv->base + FTGMAC100_OFFSET_MACCR);
	for (i = 0; i < 50; i++) {
130 131 132 133 134 135
		unsigned int maccr;

		maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
		if (!(maccr & FTGMAC100_MACCR_SW_RST))
			return 0;

136
		udelay(1);
137 138
	}

139
	netdev_err(netdev, "Hardware reset failed\n");
140 141 142
	return -EIO;
}

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
static int ftgmac100_reset_and_config_mac(struct ftgmac100 *priv)
{
	u32 maccr = 0;

	switch (priv->cur_speed) {
	case SPEED_10:
	case 0: /* no link */
		break;

	case SPEED_100:
		maccr |= FTGMAC100_MACCR_FAST_MODE;
		break;

	case SPEED_1000:
		maccr |= FTGMAC100_MACCR_GIGA_MODE;
		break;
	default:
		netdev_err(priv->netdev, "Unknown speed %d !\n",
			   priv->cur_speed);
		break;
	}

	/* (Re)initialize the queue pointers */
	priv->rx_pointer = 0;
	priv->tx_clean_pointer = 0;
	priv->tx_pointer = 0;

	/* The doc says reset twice with 10us interval */
	if (ftgmac100_reset_mac(priv, maccr))
		return -EIO;
	usleep_range(10, 1000);
	return ftgmac100_reset_mac(priv, maccr);
}

177 178 179 180 181 182 183 184 185
static void ftgmac100_set_mac(struct ftgmac100 *priv, const unsigned char *mac)
{
	unsigned int maddr = mac[0] << 8 | mac[1];
	unsigned int laddr = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];

	iowrite32(maddr, priv->base + FTGMAC100_OFFSET_MAC_MADR);
	iowrite32(laddr, priv->base + FTGMAC100_OFFSET_MAC_LADR);
}

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
static void ftgmac100_setup_mac(struct ftgmac100 *priv)
{
	u8 mac[ETH_ALEN];
	unsigned int m;
	unsigned int l;
	void *addr;

	addr = device_get_mac_address(priv->dev, mac, ETH_ALEN);
	if (addr) {
		ether_addr_copy(priv->netdev->dev_addr, mac);
		dev_info(priv->dev, "Read MAC address %pM from device tree\n",
			 mac);
		return;
	}

	m = ioread32(priv->base + FTGMAC100_OFFSET_MAC_MADR);
	l = ioread32(priv->base + FTGMAC100_OFFSET_MAC_LADR);

	mac[0] = (m >> 8) & 0xff;
	mac[1] = m & 0xff;
	mac[2] = (l >> 24) & 0xff;
	mac[3] = (l >> 16) & 0xff;
	mac[4] = (l >> 8) & 0xff;
	mac[5] = l & 0xff;

	if (is_valid_ether_addr(mac)) {
		ether_addr_copy(priv->netdev->dev_addr, mac);
		dev_info(priv->dev, "Read MAC address %pM from chip\n", mac);
	} else {
		eth_hw_addr_random(priv->netdev);
		dev_info(priv->dev, "Generated random MAC address %pM\n",
			 priv->netdev->dev_addr);
	}
}

static int ftgmac100_set_mac_addr(struct net_device *dev, void *p)
{
	int ret;

	ret = eth_prepare_mac_addr_change(dev, p);
	if (ret < 0)
		return ret;

	eth_commit_mac_addr_change(dev, p);
	ftgmac100_set_mac(netdev_priv(dev), dev->dev_addr);

	return 0;
}

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
static void ftgmac100_init_hw(struct ftgmac100 *priv)
{
	/* setup ring buffer base registers */
	ftgmac100_set_rx_ring_base(priv,
				   priv->descs_dma_addr +
				   offsetof(struct ftgmac100_descs, rxdes));
	ftgmac100_set_normal_prio_tx_ring_base(priv,
					       priv->descs_dma_addr +
					       offsetof(struct ftgmac100_descs, txdes));

	ftgmac100_set_rx_buffer_size(priv, RX_BUF_SIZE);

	iowrite32(FTGMAC100_APTC_RXPOLL_CNT(1), priv->base + FTGMAC100_OFFSET_APTC);

	ftgmac100_set_mac(priv, priv->netdev->dev_addr);
}

252
static void ftgmac100_start_hw(struct ftgmac100 *priv)
253
{
254
	u32 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
255

256 257
	/* Keep the original GMAC and FAST bits */
	maccr &= (FTGMAC100_MACCR_FAST_MODE | FTGMAC100_MACCR_GIGA_MODE);
258

259 260 261 262 263 264 265 266 267
	/* Add all the main enable bits */
	maccr |= FTGMAC100_MACCR_TXDMA_EN	|
		 FTGMAC100_MACCR_RXDMA_EN	|
		 FTGMAC100_MACCR_TXMAC_EN	|
		 FTGMAC100_MACCR_RXMAC_EN	|
		 FTGMAC100_MACCR_CRC_APD	|
		 FTGMAC100_MACCR_PHY_LINK_LEVEL	|
		 FTGMAC100_MACCR_RX_RUNT	|
		 FTGMAC100_MACCR_RX_BROADPKT;
268

269
	/* Add other bits as needed */
270 271 272
	if (priv->cur_duplex == DUPLEX_FULL)
		maccr |= FTGMAC100_MACCR_FULLDUP;

273
	/* Hit the HW */
274 275 276 277 278 279 280 281
	iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
}

static void ftgmac100_stop_hw(struct ftgmac100 *priv)
{
	iowrite32(0, priv->base + FTGMAC100_OFFSET_MACCR);
}

282 283
static int ftgmac100_alloc_rx_buf(struct ftgmac100 *priv, unsigned int entry,
				  struct ftgmac100_rxdes *rxdes, gfp_t gfp)
284 285
{
	struct net_device *netdev = priv->netdev;
286
	struct sk_buff *skb;
287
	dma_addr_t map;
288
	int err;
289

290 291
	skb = netdev_alloc_skb_ip_align(netdev, RX_BUF_SIZE);
	if (unlikely(!skb)) {
292
		if (net_ratelimit())
293
			netdev_warn(netdev, "failed to allocate rx skb\n");
294 295
		err = -ENOMEM;
		map = priv->rx_scratch_dma;
296 297 298 299 300 301 302 303 304 305 306
	} else {
		map = dma_map_single(priv->dev, skb->data, RX_BUF_SIZE,
				     DMA_FROM_DEVICE);
		if (unlikely(dma_mapping_error(priv->dev, map))) {
			if (net_ratelimit())
				netdev_err(netdev, "failed to map rx page\n");
			dev_kfree_skb_any(skb);
			map = priv->rx_scratch_dma;
			skb = NULL;
			err = -ENOMEM;
		}
307 308
	}

309 310
	/* Store skb */
	priv->rx_skbs[entry] = skb;
311

312
	/* Store DMA address into RX desc */
313
	rxdes->rxdes3 = cpu_to_le32(map);
314 315 316 317

	/* Ensure the above is ordered vs clearing the OWN bit */
	dma_wmb();

318 319 320 321 322
	/* Clean status (which resets own bit) */
	if (entry == (RX_QUEUE_ENTRIES - 1))
		rxdes->rxdes0 = cpu_to_le32(priv->rxdes0_edorr_mask);
	else
		rxdes->rxdes0 = 0;
323

324 325 326
	return 0;
}

327 328 329 330 331
static int ftgmac100_next_rx_pointer(int pointer)
{
	return (pointer + 1) & (RX_QUEUE_ENTRIES - 1);
}

332
static void ftgmac100_rx_packet_error(struct ftgmac100 *priv, u32 status)
333 334 335
{
	struct net_device *netdev = priv->netdev;

336
	if (status & FTGMAC100_RXDES0_RX_ERR)
337 338
		netdev->stats.rx_errors++;

339
	if (status & FTGMAC100_RXDES0_CRC_ERR)
340 341
		netdev->stats.rx_crc_errors++;

342 343 344
	if (status & (FTGMAC100_RXDES0_FTL |
		      FTGMAC100_RXDES0_RUNT |
		      FTGMAC100_RXDES0_RX_ODD_NB))
345 346 347 348 349 350 351 352
		netdev->stats.rx_length_errors++;
}

static bool ftgmac100_rx_packet(struct ftgmac100 *priv, int *processed)
{
	struct net_device *netdev = priv->netdev;
	struct ftgmac100_rxdes *rxdes;
	struct sk_buff *skb;
353
	unsigned int pointer, size;
354
	u32 status, csum_vlan;
355
	dma_addr_t map;
356

357 358 359 360
	/* Grab next RX descriptor */
	pointer = priv->rx_pointer;
	rxdes = &priv->descs->rxdes[pointer];

361 362 363
	/* Grab descriptor status */
	status = le32_to_cpu(rxdes->rxdes0);

364
	/* Do we have a packet ? */
365
	if (!(status & FTGMAC100_RXDES0_RXPKT_RDY))
366 367
		return false;

368 369 370
	/* Order subsequent reads with the test for the ready bit */
	dma_rmb();

371
	/* We don't cope with fragmented RX packets */
372 373
	if (unlikely(!(status & FTGMAC100_RXDES0_FRS) ||
		     !(status & FTGMAC100_RXDES0_LRS)))
374 375
		goto drop;

376 377 378 379
	/* Grab received size and csum vlan field in the descriptor */
	size = status & FTGMAC100_RXDES0_VDBC;
	csum_vlan = le32_to_cpu(rxdes->rxdes1);

380
	/* Any error (other than csum offload) flagged ? */
381
	if (unlikely(status & RXDES0_ANY_ERROR)) {
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
		/* Correct for incorrect flagging of runt packets
		 * with vlan tags... Just accept a runt packet that
		 * has been flagged as vlan and whose size is at
		 * least 60 bytes.
		 */
		if ((status & FTGMAC100_RXDES0_RUNT) &&
		    (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL) &&
		    (size >= 60))
			status &= ~FTGMAC100_RXDES0_RUNT;

		/* Any error still in there ? */
		if (status & RXDES0_ANY_ERROR) {
			ftgmac100_rx_packet_error(priv, status);
			goto drop;
		}
397 398
	}

399
	/* If the packet had no skb (failed to allocate earlier)
400 401
	 * then try to allocate one and skip
	 */
402 403 404
	skb = priv->rx_skbs[pointer];
	if (!unlikely(skb)) {
		ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
405
		goto drop;
406 407
	}

408
	if (unlikely(status & FTGMAC100_RXDES0_MULTICAST))
409 410
		netdev->stats.multicast++;

411 412 413 414 415
	/* If the HW found checksum errors, bounce it to software.
	 *
	 * If we didn't, we need to see if the packet was recognized
	 * by HW as one of the supported checksummed protocols before
	 * we accept the HW test results.
416
	 */
417
	if (netdev->features & NETIF_F_RXCSUM) {
418 419 420
		u32 err_bits = FTGMAC100_RXDES1_TCP_CHKSUM_ERR |
			FTGMAC100_RXDES1_UDP_CHKSUM_ERR |
			FTGMAC100_RXDES1_IP_CHKSUM_ERR;
421
		if ((csum_vlan & err_bits) ||
422
		    !(csum_vlan & FTGMAC100_RXDES1_PROT_MASK))
423 424 425 426
			skb->ip_summed = CHECKSUM_NONE;
		else
			skb->ip_summed = CHECKSUM_UNNECESSARY;
	}
427

428
	/* Transfer received size to skb */
429
	skb_put(skb, size);
430

431
	/* Tear down DMA mapping, do necessary cache management */
432 433
	map = le32_to_cpu(rxdes->rxdes3);

434 435 436 437 438 439 440 441 442
#if defined(CONFIG_ARM) && !defined(CONFIG_ARM_DMA_USE_IOMMU)
	/* When we don't have an iommu, we can save cycles by not
	 * invalidating the cache for the part of the packet that
	 * wasn't received.
	 */
	dma_unmap_single(priv->dev, map, size, DMA_FROM_DEVICE);
#else
	dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
#endif
443 444


445 446
	/* Resplenish rx ring */
	ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
447
	priv->rx_pointer = ftgmac100_next_rx_pointer(pointer);
448 449 450 451

	skb->protocol = eth_type_trans(skb, netdev);

	netdev->stats.rx_packets++;
452
	netdev->stats.rx_bytes += size;
453 454

	/* push packet to protocol stack */
455 456 457 458
	if (skb->ip_summed == CHECKSUM_NONE)
		netif_receive_skb(skb);
	else
		napi_gro_receive(&priv->napi, skb);
459 460 461

	(*processed)++;
	return true;
462 463 464

 drop:
	/* Clean rxdes0 (which resets own bit) */
465
	rxdes->rxdes0 = cpu_to_le32(status & priv->rxdes0_edorr_mask);
466 467 468
	priv->rx_pointer = ftgmac100_next_rx_pointer(pointer);
	netdev->stats.rx_dropped++;
	return true;
469 470
}

471 472
static u32 ftgmac100_base_tx_ctlstat(struct ftgmac100 *priv,
				     unsigned int index)
473
{
474 475 476 477
	if (index == (TX_QUEUE_ENTRIES - 1))
		return priv->txdes0_edotr_mask;
	else
		return 0;
478 479 480 481 482 483 484
}

static int ftgmac100_next_tx_pointer(int pointer)
{
	return (pointer + 1) & (TX_QUEUE_ENTRIES - 1);
}

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
static u32 ftgmac100_tx_buf_avail(struct ftgmac100 *priv)
{
	/* Returns the number of available slots in the TX queue
	 *
	 * This always leaves one free slot so we don't have to
	 * worry about empty vs. full, and this simplifies the
	 * test for ftgmac100_tx_buf_cleanable() below
	 */
	return (priv->tx_clean_pointer - priv->tx_pointer - 1) &
		(TX_QUEUE_ENTRIES - 1);
}

static bool ftgmac100_tx_buf_cleanable(struct ftgmac100 *priv)
{
	return priv->tx_pointer != priv->tx_clean_pointer;
}

502 503 504
static void ftgmac100_free_tx_packet(struct ftgmac100 *priv,
				     unsigned int pointer,
				     struct sk_buff *skb,
505 506
				     struct ftgmac100_txdes *txdes,
				     u32 ctl_stat)
507
{
508 509
	dma_addr_t map = le32_to_cpu(txdes->txdes3);
	size_t len;
510

511 512 513
	if (ctl_stat & FTGMAC100_TXDES0_FTS) {
		len = skb_headlen(skb);
		dma_unmap_single(priv->dev, map, len, DMA_TO_DEVICE);
514
	} else {
515 516
		len = FTGMAC100_TXDES0_TXBUF_SIZE(ctl_stat);
		dma_unmap_page(priv->dev, map, len, DMA_TO_DEVICE);
517
	}
518

519 520
	/* Free SKB on last segment */
	if (ctl_stat & FTGMAC100_TXDES0_LTS)
521
		dev_kfree_skb(skb);
522 523 524
	priv->tx_skbs[pointer] = NULL;
}

525 526 527 528 529
static bool ftgmac100_tx_complete_packet(struct ftgmac100 *priv)
{
	struct net_device *netdev = priv->netdev;
	struct ftgmac100_txdes *txdes;
	struct sk_buff *skb;
530
	unsigned int pointer;
531
	u32 ctl_stat;
532

533 534
	pointer = priv->tx_clean_pointer;
	txdes = &priv->descs->txdes[pointer];
535

536 537
	ctl_stat = le32_to_cpu(txdes->txdes0);
	if (ctl_stat & FTGMAC100_TXDES0_TXDMA_OWN)
538 539
		return false;

540
	skb = priv->tx_skbs[pointer];
541 542
	netdev->stats.tx_packets++;
	netdev->stats.tx_bytes += skb->len;
543 544
	ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
	txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
545

546
	priv->tx_clean_pointer = ftgmac100_next_tx_pointer(pointer);
547 548 549 550 551 552

	return true;
}

static void ftgmac100_tx_complete(struct ftgmac100 *priv)
{
553 554 555 556 557
	struct net_device *netdev = priv->netdev;

	/* Process all completed packets */
	while (ftgmac100_tx_buf_cleanable(priv) &&
	       ftgmac100_tx_complete_packet(priv))
558
		;
559 560 561 562 563 564 565 566 567 568 569 570 571 572

	/* Restart queue if needed */
	smp_mb();
	if (unlikely(netif_queue_stopped(netdev) &&
		     ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)) {
		struct netdev_queue *txq;

		txq = netdev_get_tx_queue(netdev, 0);
		__netif_tx_lock(txq, smp_processor_id());
		if (netif_queue_stopped(netdev) &&
		    ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
			netif_wake_queue(netdev);
		__netif_tx_unlock(txq);
	}
573 574
}

575 576
static int ftgmac100_hard_start_xmit(struct sk_buff *skb,
				     struct net_device *netdev)
577
{
578
	struct ftgmac100 *priv = netdev_priv(netdev);
579 580
	struct ftgmac100_txdes *txdes, *first;
	unsigned int pointer, nfrags, len, i, j;
581
	u32 f_ctl_stat, ctl_stat, csum_vlan;
582 583
	dma_addr_t map;

584 585 586 587 588 589 590
	/* The HW doesn't pad small frames */
	if (eth_skb_pad(skb)) {
		netdev->stats.tx_dropped++;
		return NETDEV_TX_OK;
	}

	/* Reject oversize packets */
591 592 593
	if (unlikely(skb->len > MAX_PKT_SIZE)) {
		if (net_ratelimit())
			netdev_dbg(netdev, "tx packet too big\n");
594
		goto drop;
595 596
	}

597 598 599 600 601 602 603 604 605 606 607
	/* Do we have a limit on #fragments ? I yet have to get a reply
	 * from Aspeed. If there's one I haven't hit it.
	 */
	nfrags = skb_shinfo(skb)->nr_frags;

	/* Get header len */
	len = skb_headlen(skb);

	/* Map the packet head */
	map = dma_map_single(priv->dev, skb->data, len, DMA_TO_DEVICE);
	if (dma_mapping_error(priv->dev, map)) {
608
		if (net_ratelimit())
609
			netdev_err(netdev, "map tx packet head failed\n");
610
		goto drop;
611
	}
612

613 614
	/* Grab the next free tx descriptor */
	pointer = priv->tx_pointer;
615
	txdes = first = &priv->descs->txdes[pointer];
616

617 618 619
	/* Setup it up with the packet head. Don't write the head to the
	 * ring just yet
	 */
620
	priv->tx_skbs[pointer] = skb;
621 622 623 624 625 626 627
	f_ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
	f_ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
	f_ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
	f_ctl_stat |= FTGMAC100_TXDES0_FTS;
	if (nfrags == 0)
		f_ctl_stat |= FTGMAC100_TXDES0_LTS;
	txdes->txdes3 = cpu_to_le32(map);
628 629

	/* Setup HW checksumming */
630
	csum_vlan = 0;
631 632 633 634 635 636
	if (skb->ip_summed == CHECKSUM_PARTIAL) {
		__be16 protocol = skb->protocol;

		if (protocol == cpu_to_be16(ETH_P_IP)) {
			u8 ip_proto = ip_hdr(skb)->protocol;

637
			csum_vlan |= FTGMAC100_TXDES1_IP_CHKSUM;
638
			if (ip_proto == IPPROTO_TCP)
639
				csum_vlan |= FTGMAC100_TXDES1_TCP_CHKSUM;
640
			else if (ip_proto == IPPROTO_UDP)
641
				csum_vlan |= FTGMAC100_TXDES1_UDP_CHKSUM;
642 643
		}
	}
644
	txdes->txdes1 = cpu_to_le32(csum_vlan);
645

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
	/* Next descriptor */
	pointer = ftgmac100_next_tx_pointer(pointer);

	/* Add the fragments */
	for (i = 0; i < nfrags; i++) {
		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];

		len = frag->size;

		/* Map it */
		map = skb_frag_dma_map(priv->dev, frag, 0, len,
				       DMA_TO_DEVICE);
		if (dma_mapping_error(priv->dev, map))
			goto dma_err;

		/* Setup descriptor */
		priv->tx_skbs[pointer] = skb;
		txdes = &priv->descs->txdes[pointer];
664 665 666 667 668 669 670 671 672 673
		ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
		ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
		ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
		if (i == (nfrags - 1))
			ctl_stat |= FTGMAC100_TXDES0_LTS;
		txdes->txdes0 = cpu_to_le32(ctl_stat);
		txdes->txdes1 = 0;
		txdes->txdes3 = cpu_to_le32(map);

		/* Next one */
674 675 676
		pointer = ftgmac100_next_tx_pointer(pointer);
	}

677
	/* Order the previous packet and descriptor udpates
678
	 * before setting the OWN bit on the first descriptor.
679 680
	 */
	dma_wmb();
681
	first->txdes0 = cpu_to_le32(f_ctl_stat);
682

683
	/* Update next TX pointer */
684
	priv->tx_pointer = pointer;
685

686 687 688 689 690
	/* If there isn't enough room for all the fragments of a new packet
	 * in the TX ring, stop the queue. The sequence below is race free
	 * vs. a concurrent restart in ftgmac100_poll()
	 */
	if (unlikely(ftgmac100_tx_buf_avail(priv) < TX_THRESHOLD)) {
691
		netif_stop_queue(netdev);
692 693 694 695 696
		/* Order the queue stop with the test below */
		smp_mb();
		if (ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
			netif_wake_queue(netdev);
	}
697 698 699

	ftgmac100_txdma_normal_prio_start_polling(priv);

700 701
	return NETDEV_TX_OK;

702 703 704 705 706 707
 dma_err:
	if (net_ratelimit())
		netdev_err(netdev, "map tx fragment failed\n");

	/* Free head */
	pointer = priv->tx_pointer;
708 709
	ftgmac100_free_tx_packet(priv, pointer, skb, first, f_ctl_stat);
	first->txdes0 = cpu_to_le32(f_ctl_stat & priv->txdes0_edotr_mask);
710 711 712 713 714

	/* Then all fragments */
	for (j = 0; j < i; j++) {
		pointer = ftgmac100_next_tx_pointer(pointer);
		txdes = &priv->descs->txdes[pointer];
715 716 717
		ctl_stat = le32_to_cpu(txdes->txdes0);
		ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
		txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
718 719 720 721 722 723
	}

	/* This cannot be reached if we successfully mapped the
	 * last fragment, so we know ftgmac100_free_tx_packet()
	 * hasn't freed the skb yet.
	 */
724 725 726 727 728
 drop:
	/* Drop the packet */
	dev_kfree_skb_any(skb);
	netdev->stats.tx_dropped++;

729 730 731 732 733 734 735
	return NETDEV_TX_OK;
}

static void ftgmac100_free_buffers(struct ftgmac100 *priv)
{
	int i;

736
	/* Free all RX buffers */
737 738
	for (i = 0; i < RX_QUEUE_ENTRIES; i++) {
		struct ftgmac100_rxdes *rxdes = &priv->descs->rxdes[i];
739
		struct sk_buff *skb = priv->rx_skbs[i];
740
		dma_addr_t map = le32_to_cpu(rxdes->rxdes3);
741

742
		if (!skb)
743 744
			continue;

745 746 747
		priv->rx_skbs[i] = NULL;
		dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
		dev_kfree_skb_any(skb);
748 749
	}

750
	/* Free all TX buffers */
751 752
	for (i = 0; i < TX_QUEUE_ENTRIES; i++) {
		struct ftgmac100_txdes *txdes = &priv->descs->txdes[i];
753
		struct sk_buff *skb = priv->tx_skbs[i];
754

755 756 757 758
		if (!skb)
			continue;
		ftgmac100_free_tx_packet(priv, i, skb, txdes,
					 le32_to_cpu(txdes->txdes0));
759 760 761
	}
}

762
static void ftgmac100_free_rings(struct ftgmac100 *priv)
763
{
764 765 766 767
	/* Free descriptors */
	if (priv->descs)
		dma_free_coherent(priv->dev, sizeof(struct ftgmac100_descs),
				  priv->descs, priv->descs_dma_addr);
768 769 770 771 772

	/* Free scratch packet buffer */
	if (priv->rx_scratch)
		dma_free_coherent(priv->dev, RX_BUF_SIZE,
				  priv->rx_scratch, priv->rx_scratch_dma);
773
}
774

775 776 777
static int ftgmac100_alloc_rings(struct ftgmac100 *priv)
{
	/* Allocate descriptors */
778 779 780
	priv->descs = dma_zalloc_coherent(priv->dev,
					  sizeof(struct ftgmac100_descs),
					  &priv->descs_dma_addr, GFP_KERNEL);
781 782 783
	if (!priv->descs)
		return -ENOMEM;

784 785 786 787 788 789 790 791
	/* Allocate scratch packet buffer */
	priv->rx_scratch = dma_alloc_coherent(priv->dev,
					      RX_BUF_SIZE,
					      &priv->rx_scratch_dma,
					      GFP_KERNEL);
	if (!priv->rx_scratch)
		return -ENOMEM;

792 793 794 795 796
	return 0;
}

static void ftgmac100_init_rings(struct ftgmac100 *priv)
{
797
	struct ftgmac100_rxdes *rxdes;
798
	struct ftgmac100_txdes *txdes;
799 800 801
	int i;

	/* Initialize RX ring */
802
	for (i = 0; i < RX_QUEUE_ENTRIES; i++) {
803
		rxdes = &priv->descs->rxdes[i];
804
		rxdes->rxdes0 = 0;
805
		rxdes->rxdes3 = cpu_to_le32(priv->rx_scratch_dma);
806
	}
807 808
	/* Mark the end of the ring */
	rxdes->rxdes0 |= cpu_to_le32(priv->rxdes0_edorr_mask);
809 810

	/* Initialize TX ring */
811 812 813 814 815
	for (i = 0; i < TX_QUEUE_ENTRIES; i++) {
		txdes = &priv->descs->txdes[i];
		txdes->txdes0 = 0;
	}
	txdes->txdes0 |= cpu_to_le32(priv->txdes0_edotr_mask);
816 817 818 819 820
}

static int ftgmac100_alloc_rx_buffers(struct ftgmac100 *priv)
{
	int i;
821 822 823 824

	for (i = 0; i < RX_QUEUE_ENTRIES; i++) {
		struct ftgmac100_rxdes *rxdes = &priv->descs->rxdes[i];

825
		if (ftgmac100_alloc_rx_buf(priv, i, rxdes, GFP_KERNEL))
826
			return -ENOMEM;
827 828 829 830 831 832 833
	}
	return 0;
}

static void ftgmac100_adjust_link(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);
834
	struct phy_device *phydev = netdev->phydev;
835
	int new_speed;
836

837 838 839 840 841 842 843 844
	/* We store "no link" as speed 0 */
	if (!phydev->link)
		new_speed = 0;
	else
		new_speed = phydev->speed;

	if (phydev->speed == priv->cur_speed &&
	    phydev->duplex == priv->cur_duplex)
845 846
		return;

847 848 849 850 851 852 853 854 855 856 857 858
	/* Print status if we have a link or we had one and just lost it,
	 * don't print otherwise.
	 */
	if (new_speed || priv->cur_speed)
		phy_print_status(phydev);

	priv->cur_speed = new_speed;
	priv->cur_duplex = phydev->duplex;

	/* Link is down, do nothing else */
	if (!new_speed)
		return;
859

860
	/* Disable all interrupts */
861 862
	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);

863 864
	/* Reset the adapter asynchronously */
	schedule_work(&priv->reset_task);
865 866 867 868 869
}

static int ftgmac100_mii_probe(struct ftgmac100 *priv)
{
	struct net_device *netdev = priv->netdev;
870
	struct phy_device *phydev;
871

872
	phydev = phy_find_first(priv->mii_bus);
873 874 875 876 877
	if (!phydev) {
		netdev_info(netdev, "%s: no PHY found\n", netdev->name);
		return -ENODEV;
	}

A
Andrew Lunn 已提交
878
	phydev = phy_connect(netdev, phydev_name(phydev),
879
			     &ftgmac100_adjust_link, PHY_INTERFACE_MODE_GMII);
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962

	if (IS_ERR(phydev)) {
		netdev_err(netdev, "%s: Could not attach to PHY\n", netdev->name);
		return PTR_ERR(phydev);
	}

	return 0;
}

static int ftgmac100_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
{
	struct net_device *netdev = bus->priv;
	struct ftgmac100 *priv = netdev_priv(netdev);
	unsigned int phycr;
	int i;

	phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);

	/* preserve MDC cycle threshold */
	phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;

	phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
		 FTGMAC100_PHYCR_REGAD(regnum) |
		 FTGMAC100_PHYCR_MIIRD;

	iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);

	for (i = 0; i < 10; i++) {
		phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);

		if ((phycr & FTGMAC100_PHYCR_MIIRD) == 0) {
			int data;

			data = ioread32(priv->base + FTGMAC100_OFFSET_PHYDATA);
			return FTGMAC100_PHYDATA_MIIRDATA(data);
		}

		udelay(100);
	}

	netdev_err(netdev, "mdio read timed out\n");
	return -EIO;
}

static int ftgmac100_mdiobus_write(struct mii_bus *bus, int phy_addr,
				   int regnum, u16 value)
{
	struct net_device *netdev = bus->priv;
	struct ftgmac100 *priv = netdev_priv(netdev);
	unsigned int phycr;
	int data;
	int i;

	phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);

	/* preserve MDC cycle threshold */
	phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;

	phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
		 FTGMAC100_PHYCR_REGAD(regnum) |
		 FTGMAC100_PHYCR_MIIWR;

	data = FTGMAC100_PHYDATA_MIIWDATA(value);

	iowrite32(data, priv->base + FTGMAC100_OFFSET_PHYDATA);
	iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);

	for (i = 0; i < 10; i++) {
		phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);

		if ((phycr & FTGMAC100_PHYCR_MIIWR) == 0)
			return 0;

		udelay(100);
	}

	netdev_err(netdev, "mdio write timed out\n");
	return -EIO;
}

static void ftgmac100_get_drvinfo(struct net_device *netdev,
				  struct ethtool_drvinfo *info)
{
963 964 965
	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
	strlcpy(info->bus_info, dev_name(&netdev->dev), sizeof(info->bus_info));
966 967 968 969 970
}

static const struct ethtool_ops ftgmac100_ethtool_ops = {
	.get_drvinfo		= ftgmac100_get_drvinfo,
	.get_link		= ethtool_op_get_link,
971 972
	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
973 974 975 976 977 978
};

static irqreturn_t ftgmac100_interrupt(int irq, void *dev_id)
{
	struct net_device *netdev = dev_id;
	struct ftgmac100 *priv = netdev_priv(netdev);
979
	unsigned int status, new_mask = FTGMAC100_INT_BAD;
980

981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
	/* Fetch and clear interrupt bits, process abnormal ones */
	status = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
	iowrite32(status, priv->base + FTGMAC100_OFFSET_ISR);
	if (unlikely(status & FTGMAC100_INT_BAD)) {

		/* RX buffer unavailable */
		if (status & FTGMAC100_INT_NO_RXBUF)
			netdev->stats.rx_over_errors++;

		/* received packet lost due to RX FIFO full */
		if (status & FTGMAC100_INT_RPKT_LOST)
			netdev->stats.rx_fifo_errors++;

		/* sent packet lost due to excessive TX collision */
		if (status & FTGMAC100_INT_XPKT_LOST)
			netdev->stats.tx_fifo_errors++;

		/* AHB error -> Reset the chip */
		if (status & FTGMAC100_INT_AHB_ERR) {
			if (net_ratelimit())
				netdev_warn(netdev,
					   "AHB bus error ! Resetting chip.\n");
			iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
			schedule_work(&priv->reset_task);
			return IRQ_HANDLED;
		}

		/* We may need to restart the MAC after such errors, delay
		 * this until after we have freed some Rx buffers though
		 */
		priv->need_mac_restart = true;

		/* Disable those errors until we restart */
		new_mask &= ~status;
	}

	/* Only enable "bad" interrupts while NAPI is on */
	iowrite32(new_mask, priv->base + FTGMAC100_OFFSET_IER);

	/* Schedule NAPI bh */
	napi_schedule_irqoff(&priv->napi);
1022 1023 1024 1025

	return IRQ_HANDLED;
}

1026 1027 1028 1029 1030 1031 1032 1033
static bool ftgmac100_check_rx(struct ftgmac100 *priv)
{
	struct ftgmac100_rxdes *rxdes = &priv->descs->rxdes[priv->rx_pointer];

	/* Do we have a packet ? */
	return !!(rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RXPKT_RDY));
}

1034 1035 1036
static int ftgmac100_poll(struct napi_struct *napi, int budget)
{
	struct ftgmac100 *priv = container_of(napi, struct ftgmac100, napi);
1037 1038
	int work_done = 0;
	bool more;
1039

1040 1041 1042
	/* Handle TX completions */
	if (ftgmac100_tx_buf_cleanable(priv))
		ftgmac100_tx_complete(priv);
1043

1044
	/* Handle RX packets */
1045
	do {
1046 1047
		more = ftgmac100_rx_packet(priv, &work_done);
	} while (more && work_done < budget);
1048 1049


1050 1051 1052 1053 1054
	/* The interrupt is telling us to kick the MAC back to life
	 * after an RX overflow
	 */
	if (unlikely(priv->need_mac_restart)) {
		ftgmac100_start_hw(priv);
1055

1056 1057 1058
		/* Re-enable "bad" interrupts */
		iowrite32(FTGMAC100_INT_BAD,
			  priv->base + FTGMAC100_OFFSET_IER);
1059 1060
	}

1061 1062 1063 1064 1065
	/* As long as we are waiting for transmit packets to be
	 * completed we keep NAPI going
	 */
	if (ftgmac100_tx_buf_cleanable(priv))
		work_done = budget;
1066

1067
	if (work_done < budget) {
1068 1069 1070 1071 1072 1073 1074
		/* We are about to re-enable all interrupts. However
		 * the HW has been latching RX/TX packet interrupts while
		 * they were masked. So we clear them first, then we need
		 * to re-check if there's something to process
		 */
		iowrite32(FTGMAC100_INT_RXTX,
			  priv->base + FTGMAC100_OFFSET_ISR);
1075 1076
		if (ftgmac100_check_rx(priv) ||
		    ftgmac100_tx_buf_cleanable(priv))
1077 1078 1079
			return budget;

		/* deschedule NAPI */
1080 1081 1082
		napi_complete(napi);

		/* enable all interrupts */
1083
		iowrite32(FTGMAC100_INT_ALL,
1084
			  priv->base + FTGMAC100_OFFSET_IER);
1085 1086
	}

1087
	return work_done;
1088 1089
}

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
static int ftgmac100_init_all(struct ftgmac100 *priv, bool ignore_alloc_err)
{
	int err = 0;

	/* Re-init descriptors (adjust queue sizes) */
	ftgmac100_init_rings(priv);

	/* Realloc rx descriptors */
	err = ftgmac100_alloc_rx_buffers(priv);
	if (err && !ignore_alloc_err)
		return err;

	/* Reinit and restart HW */
	ftgmac100_init_hw(priv);
	ftgmac100_start_hw(priv);

	/* Re-enable the device */
	napi_enable(&priv->napi);
	netif_start_queue(priv->netdev);

	/* Enable all interrupts */
1111
	iowrite32(FTGMAC100_INT_ALL, priv->base + FTGMAC100_OFFSET_IER);
1112 1113 1114 1115

	return err;
}

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
static void ftgmac100_reset_task(struct work_struct *work)
{
	struct ftgmac100 *priv = container_of(work, struct ftgmac100,
					      reset_task);
	struct net_device *netdev = priv->netdev;
	int err;

	netdev_dbg(netdev, "Resetting NIC...\n");

	/* Lock the world */
	rtnl_lock();
	if (netdev->phydev)
		mutex_lock(&netdev->phydev->lock);
	if (priv->mii_bus)
		mutex_lock(&priv->mii_bus->mdio_lock);


	/* Check if the interface is still up */
	if (!netif_running(netdev))
		goto bail;

	/* Stop the network stack */
	netif_trans_update(netdev);
	napi_disable(&priv->napi);
	netif_tx_disable(netdev);

	/* Stop and reset the MAC */
	ftgmac100_stop_hw(priv);
1144
	err = ftgmac100_reset_and_config_mac(priv);
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
	if (err) {
		/* Not much we can do ... it might come back... */
		netdev_err(netdev, "attempting to continue...\n");
	}

	/* Free all rx and tx buffers */
	ftgmac100_free_buffers(priv);

	/* Setup everything again and restart chip */
	ftgmac100_init_all(priv, true);

	netdev_dbg(netdev, "Reset done !\n");
 bail:
	if (priv->mii_bus)
		mutex_unlock(&priv->mii_bus->mdio_lock);
	if (netdev->phydev)
		mutex_unlock(&netdev->phydev->lock);
	rtnl_unlock();
}

1165 1166 1167 1168 1169
static int ftgmac100_open(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);
	int err;

1170 1171
	/* Allocate ring buffers  */
	err = ftgmac100_alloc_rings(priv);
1172
	if (err) {
1173 1174
		netdev_err(netdev, "Failed to allocate descriptors\n");
		return err;
1175 1176
	}

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
	/* When using NC-SI we force the speed to 100Mbit/s full duplex,
	 *
	 * Otherwise we leave it set to 0 (no link), the link
	 * message from the PHY layer will handle setting it up to
	 * something else if needed.
	 */
	if (priv->use_ncsi) {
		priv->cur_duplex = DUPLEX_FULL;
		priv->cur_speed = SPEED_100;
	} else {
		priv->cur_duplex = 0;
		priv->cur_speed = 0;
	}

1191 1192
	/* Reset the hardware */
	err = ftgmac100_reset_and_config_mac(priv);
1193 1194 1195
	if (err)
		goto err_hw;

1196 1197 1198
	/* Initialize NAPI */
	netif_napi_add(netdev, &priv->napi, ftgmac100_poll, 64);

1199 1200 1201 1202 1203 1204 1205
	/* Grab our interrupt */
	err = request_irq(netdev->irq, ftgmac100_interrupt, 0, netdev->name, netdev);
	if (err) {
		netdev_err(netdev, "failed to request irq %d\n", netdev->irq);
		goto err_irq;
	}

1206 1207 1208 1209 1210 1211
	/* Start things up */
	err = ftgmac100_init_all(priv, false);
	if (err) {
		netdev_err(netdev, "Failed to allocate packet buffers\n");
		goto err_alloc;
	}
G
Gavin Shan 已提交
1212

1213 1214
	if (netdev->phydev) {
		/* If we have a PHY, start polling */
G
Gavin Shan 已提交
1215
		phy_start(netdev->phydev);
1216 1217
	} else if (priv->use_ncsi) {
		/* If using NC-SI, set our carrier on and start the stack */
G
Gavin Shan 已提交
1218
		netif_carrier_on(netdev);
1219

1220
		/* Start the NCSI device */
G
Gavin Shan 已提交
1221 1222 1223 1224 1225
		err = ncsi_start_dev(priv->ndev);
		if (err)
			goto err_ncsi;
	}

1226 1227
	return 0;

1228
 err_ncsi:
G
Gavin Shan 已提交
1229 1230
	napi_disable(&priv->napi);
	netif_stop_queue(netdev);
1231 1232
 err_alloc:
	ftgmac100_free_buffers(priv);
1233
	free_irq(netdev->irq, netdev);
1234
 err_irq:
1235
	netif_napi_del(&priv->napi);
1236
 err_hw:
1237
	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1238
	ftgmac100_free_rings(priv);
1239 1240 1241 1242 1243 1244 1245
	return err;
}

static int ftgmac100_stop(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);

1246 1247 1248 1249 1250 1251 1252 1253
	/* Note about the reset task: We are called with the rtnl lock
	 * held, so we are synchronized against the core of the reset
	 * task. We must not try to synchronously cancel it otherwise
	 * we can deadlock. But since it will test for netif_running()
	 * which has already been cleared by the net core, we don't
	 * anything special to do.
	 */

1254 1255 1256 1257 1258
	/* disable all interrupts */
	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);

	netif_stop_queue(netdev);
	napi_disable(&priv->napi);
1259
	netif_napi_del(&priv->napi);
G
Gavin Shan 已提交
1260 1261
	if (netdev->phydev)
		phy_stop(netdev->phydev);
1262 1263
	else if (priv->use_ncsi)
		ncsi_stop_dev(priv->ndev);
1264 1265

	ftgmac100_stop_hw(priv);
1266
	free_irq(netdev->irq, netdev);
1267
	ftgmac100_free_buffers(priv);
1268
	ftgmac100_free_rings(priv);
1269 1270 1271 1272 1273 1274 1275

	return 0;
}

/* optional */
static int ftgmac100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
G
Gavin Shan 已提交
1276 1277 1278
	if (!netdev->phydev)
		return -ENXIO;

1279
	return phy_mii_ioctl(netdev->phydev, ifr, cmd);
1280 1281
}

1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
static void ftgmac100_tx_timeout(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);

	/* Disable all interrupts */
	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);

	/* Do the reset outside of interrupt context */
	schedule_work(&priv->reset_task);
}

1293 1294 1295 1296
static const struct net_device_ops ftgmac100_netdev_ops = {
	.ndo_open		= ftgmac100_open,
	.ndo_stop		= ftgmac100_stop,
	.ndo_start_xmit		= ftgmac100_hard_start_xmit,
1297
	.ndo_set_mac_address	= ftgmac100_set_mac_addr,
1298 1299
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= ftgmac100_do_ioctl,
1300
	.ndo_tx_timeout		= ftgmac100_tx_timeout,
1301 1302
};

1303 1304 1305 1306 1307
static int ftgmac100_setup_mdio(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);
	struct platform_device *pdev = to_platform_device(priv->dev);
	int i, err = 0;
1308
	u32 reg;
1309 1310 1311 1312 1313 1314

	/* initialize mdio bus */
	priv->mii_bus = mdiobus_alloc();
	if (!priv->mii_bus)
		return -EIO;

1315 1316 1317 1318 1319 1320 1321 1322
	if (of_machine_is_compatible("aspeed,ast2400") ||
	    of_machine_is_compatible("aspeed,ast2500")) {
		/* This driver supports the old MDIO interface */
		reg = ioread32(priv->base + FTGMAC100_OFFSET_REVR);
		reg &= ~FTGMAC100_REVR_NEW_MDIO_INTERFACE;
		iowrite32(reg, priv->base + FTGMAC100_OFFSET_REVR);
	};

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
	priv->mii_bus->name = "ftgmac100_mdio";
	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%d",
		 pdev->name, pdev->id);
	priv->mii_bus->priv = priv->netdev;
	priv->mii_bus->read = ftgmac100_mdiobus_read;
	priv->mii_bus->write = ftgmac100_mdiobus_write;

	for (i = 0; i < PHY_MAX_ADDR; i++)
		priv->mii_bus->irq[i] = PHY_POLL;

	err = mdiobus_register(priv->mii_bus);
	if (err) {
		dev_err(priv->dev, "Cannot register MDIO bus!\n");
		goto err_register_mdiobus;
	}

	err = ftgmac100_mii_probe(priv);
	if (err) {
		dev_err(priv->dev, "MII Probe failed!\n");
		goto err_mii_probe;
	}

	return 0;

err_mii_probe:
	mdiobus_unregister(priv->mii_bus);
err_register_mdiobus:
	mdiobus_free(priv->mii_bus);
	return err;
}

static void ftgmac100_destroy_mdio(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);

	if (!netdev->phydev)
		return;

	phy_disconnect(netdev->phydev);
	mdiobus_unregister(priv->mii_bus);
	mdiobus_free(priv->mii_bus);
}

G
Gavin Shan 已提交
1366 1367 1368 1369 1370 1371 1372 1373 1374
static void ftgmac100_ncsi_handler(struct ncsi_dev *nd)
{
	if (unlikely(nd->state != ncsi_dev_state_functional))
		return;

	netdev_info(nd->dev, "NCSI interface %s\n",
		    nd->link_up ? "up" : "down");
}

1375 1376 1377 1378 1379 1380
static int ftgmac100_probe(struct platform_device *pdev)
{
	struct resource *res;
	int irq;
	struct net_device *netdev;
	struct ftgmac100 *priv;
G
Gavin Shan 已提交
1381
	int err = 0;
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402

	if (!pdev)
		return -ENODEV;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res)
		return -ENXIO;

	irq = platform_get_irq(pdev, 0);
	if (irq < 0)
		return irq;

	/* setup net_device */
	netdev = alloc_etherdev(sizeof(*priv));
	if (!netdev) {
		err = -ENOMEM;
		goto err_alloc_etherdev;
	}

	SET_NETDEV_DEV(netdev, &pdev->dev);

1403
	netdev->ethtool_ops = &ftgmac100_ethtool_ops;
1404
	netdev->netdev_ops = &ftgmac100_netdev_ops;
1405
	netdev->watchdog_timeo = 5 * HZ;
1406 1407 1408 1409 1410 1411 1412

	platform_set_drvdata(pdev, netdev);

	/* setup private data */
	priv = netdev_priv(netdev);
	priv->netdev = netdev;
	priv->dev = &pdev->dev;
1413
	INIT_WORK(&priv->reset_task, ftgmac100_reset_task);
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430

	/* map io memory */
	priv->res = request_mem_region(res->start, resource_size(res),
				       dev_name(&pdev->dev));
	if (!priv->res) {
		dev_err(&pdev->dev, "Could not reserve memory region\n");
		err = -ENOMEM;
		goto err_req_mem;
	}

	priv->base = ioremap(res->start, resource_size(res));
	if (!priv->base) {
		dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
		err = -EIO;
		goto err_ioremap;
	}

1431
	netdev->irq = irq;
1432

1433 1434 1435
	/* MAC address from chip or random one */
	ftgmac100_setup_mac(priv);

1436 1437 1438 1439 1440 1441 1442 1443 1444
	if (of_machine_is_compatible("aspeed,ast2400") ||
	    of_machine_is_compatible("aspeed,ast2500")) {
		priv->rxdes0_edorr_mask = BIT(30);
		priv->txdes0_edotr_mask = BIT(30);
	} else {
		priv->rxdes0_edorr_mask = BIT(15);
		priv->txdes0_edotr_mask = BIT(15);
	}

G
Gavin Shan 已提交
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
	if (pdev->dev.of_node &&
	    of_get_property(pdev->dev.of_node, "use-ncsi", NULL)) {
		if (!IS_ENABLED(CONFIG_NET_NCSI)) {
			dev_err(&pdev->dev, "NCSI stack not enabled\n");
			goto err_ncsi_dev;
		}

		dev_info(&pdev->dev, "Using NCSI interface\n");
		priv->use_ncsi = true;
		priv->ndev = ncsi_register_dev(netdev, ftgmac100_ncsi_handler);
		if (!priv->ndev)
			goto err_ncsi_dev;
	} else {
		priv->use_ncsi = false;
		err = ftgmac100_setup_mdio(netdev);
		if (err)
			goto err_setup_mdio;
	}

	/* We have to disable on-chip IP checksum functionality
	 * when NCSI is enabled on the interface. It doesn't work
	 * in that case.
	 */
1468 1469
	netdev->features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM |
		NETIF_F_GRO | NETIF_F_SG;
G
Gavin Shan 已提交
1470 1471 1472 1473
	if (priv->use_ncsi &&
	    of_get_property(pdev->dev.of_node, "no-hw-checksum", NULL))
		netdev->features &= ~NETIF_F_IP_CSUM;

1474 1475 1476 1477 1478 1479 1480
	/* register network device */
	err = register_netdev(netdev);
	if (err) {
		dev_err(&pdev->dev, "Failed to register netdev\n");
		goto err_register_netdev;
	}

1481
	netdev_info(netdev, "irq %d, mapped at %p\n", netdev->irq, priv->base);
1482 1483 1484

	return 0;

G
Gavin Shan 已提交
1485
err_ncsi_dev:
1486
err_register_netdev:
1487 1488
	ftgmac100_destroy_mdio(netdev);
err_setup_mdio:
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
	iounmap(priv->base);
err_ioremap:
	release_resource(priv->res);
err_req_mem:
	netif_napi_del(&priv->napi);
	free_netdev(netdev);
err_alloc_etherdev:
	return err;
}

1499
static int ftgmac100_remove(struct platform_device *pdev)
1500 1501 1502 1503 1504 1505 1506 1507
{
	struct net_device *netdev;
	struct ftgmac100 *priv;

	netdev = platform_get_drvdata(pdev);
	priv = netdev_priv(netdev);

	unregister_netdev(netdev);
1508 1509 1510 1511 1512 1513

	/* There's a small chance the reset task will have been re-queued,
	 * during stop, make sure it's gone before we free the structure.
	 */
	cancel_work_sync(&priv->reset_task);

1514
	ftgmac100_destroy_mdio(netdev);
1515 1516 1517 1518 1519 1520 1521 1522 1523

	iounmap(priv->base);
	release_resource(priv->res);

	netif_napi_del(&priv->napi);
	free_netdev(netdev);
	return 0;
}

1524 1525 1526 1527 1528 1529
static const struct of_device_id ftgmac100_of_match[] = {
	{ .compatible = "faraday,ftgmac100" },
	{ }
};
MODULE_DEVICE_TABLE(of, ftgmac100_of_match);

1530
static struct platform_driver ftgmac100_driver = {
1531
	.probe	= ftgmac100_probe,
1532
	.remove	= ftgmac100_remove,
1533 1534 1535
	.driver	= {
		.name		= DRV_NAME,
		.of_match_table	= ftgmac100_of_match,
1536 1537
	},
};
1538
module_platform_driver(ftgmac100_driver);
1539 1540 1541 1542

MODULE_AUTHOR("Po-Yu Chuang <ratbert@faraday-tech.com>");
MODULE_DESCRIPTION("FTGMAC100 driver");
MODULE_LICENSE("GPL");