ftgmac100.c 40.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Faraday FTGMAC100 Gigabit Ethernet
 *
 * (C) Copyright 2009-2011 Faraday Technology
 * Po-Yu Chuang <ratbert@faraday-tech.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt

#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
27
#include <linux/interrupt.h>
28 29 30
#include <linux/io.h>
#include <linux/module.h>
#include <linux/netdevice.h>
31
#include <linux/of.h>
32 33
#include <linux/phy.h>
#include <linux/platform_device.h>
34
#include <linux/property.h>
35
#include <net/ip.h>
G
Gavin Shan 已提交
36
#include <net/ncsi.h>
37 38 39 40 41 42 43 44 45

#include "ftgmac100.h"

#define DRV_NAME	"ftgmac100"
#define DRV_VERSION	"0.7"

#define RX_QUEUE_ENTRIES	256	/* must be power of 2 */
#define TX_QUEUE_ENTRIES	512	/* must be power of 2 */

46 47
#define MAX_PKT_SIZE		1536
#define RX_BUF_SIZE		MAX_PKT_SIZE	/* must be smaller than 0x3fff */
48

49
/* Min number of tx ring entries before stopping queue */
50
#define TX_THRESHOLD		(MAX_SKB_FRAGS + 1)
51

52 53 54 55 56 57
struct ftgmac100_descs {
	struct ftgmac100_rxdes rxdes[RX_QUEUE_ENTRIES];
	struct ftgmac100_txdes txdes[TX_QUEUE_ENTRIES];
};

struct ftgmac100 {
58
	/* Registers */
59 60 61 62 63 64
	struct resource *res;
	void __iomem *base;

	struct ftgmac100_descs *descs;
	dma_addr_t descs_dma_addr;

65
	/* Rx ring */
66
	struct sk_buff *rx_skbs[RX_QUEUE_ENTRIES];
67
	unsigned int rx_pointer;
68 69 70
	u32 rxdes0_edorr_mask;

	/* Tx ring */
71
	struct sk_buff *tx_skbs[TX_QUEUE_ENTRIES];
72 73
	unsigned int tx_clean_pointer;
	unsigned int tx_pointer;
74
	u32 txdes0_edotr_mask;
75

76 77 78 79
	/* Scratch page to use when rx skb alloc fails */
	void *rx_scratch;
	dma_addr_t rx_scratch_dma;

80
	/* Component structures */
81 82
	struct net_device *netdev;
	struct device *dev;
G
Gavin Shan 已提交
83
	struct ncsi_dev *ndev;
84
	struct napi_struct napi;
85
	struct work_struct reset_task;
86
	struct mii_bus *mii_bus;
87 88

	/* Link management */
89 90
	int cur_speed;
	int cur_duplex;
G
Gavin Shan 已提交
91
	bool use_ncsi;
92

93
	/* Misc */
94
	bool need_mac_restart;
95
	bool is_aspeed;
96 97
};

98
static int ftgmac100_reset_mac(struct ftgmac100 *priv, u32 maccr)
99 100 101 102 103
{
	struct net_device *netdev = priv->netdev;
	int i;

	/* NOTE: reset clears all registers */
104 105 106 107
	iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
	iowrite32(maccr | FTGMAC100_MACCR_SW_RST,
		  priv->base + FTGMAC100_OFFSET_MACCR);
	for (i = 0; i < 50; i++) {
108 109 110 111 112 113
		unsigned int maccr;

		maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
		if (!(maccr & FTGMAC100_MACCR_SW_RST))
			return 0;

114
		udelay(1);
115 116
	}

117
	netdev_err(netdev, "Hardware reset failed\n");
118 119 120
	return -EIO;
}

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
static int ftgmac100_reset_and_config_mac(struct ftgmac100 *priv)
{
	u32 maccr = 0;

	switch (priv->cur_speed) {
	case SPEED_10:
	case 0: /* no link */
		break;

	case SPEED_100:
		maccr |= FTGMAC100_MACCR_FAST_MODE;
		break;

	case SPEED_1000:
		maccr |= FTGMAC100_MACCR_GIGA_MODE;
		break;
	default:
		netdev_err(priv->netdev, "Unknown speed %d !\n",
			   priv->cur_speed);
		break;
	}

	/* (Re)initialize the queue pointers */
	priv->rx_pointer = 0;
	priv->tx_clean_pointer = 0;
	priv->tx_pointer = 0;

	/* The doc says reset twice with 10us interval */
	if (ftgmac100_reset_mac(priv, maccr))
		return -EIO;
	usleep_range(10, 1000);
	return ftgmac100_reset_mac(priv, maccr);
}

155
static void ftgmac100_write_mac_addr(struct ftgmac100 *priv, const u8 *mac)
156 157 158 159 160 161 162 163
{
	unsigned int maddr = mac[0] << 8 | mac[1];
	unsigned int laddr = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];

	iowrite32(maddr, priv->base + FTGMAC100_OFFSET_MAC_MADR);
	iowrite32(laddr, priv->base + FTGMAC100_OFFSET_MAC_LADR);
}

164
static void ftgmac100_initial_mac(struct ftgmac100 *priv)
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
{
	u8 mac[ETH_ALEN];
	unsigned int m;
	unsigned int l;
	void *addr;

	addr = device_get_mac_address(priv->dev, mac, ETH_ALEN);
	if (addr) {
		ether_addr_copy(priv->netdev->dev_addr, mac);
		dev_info(priv->dev, "Read MAC address %pM from device tree\n",
			 mac);
		return;
	}

	m = ioread32(priv->base + FTGMAC100_OFFSET_MAC_MADR);
	l = ioread32(priv->base + FTGMAC100_OFFSET_MAC_LADR);

	mac[0] = (m >> 8) & 0xff;
	mac[1] = m & 0xff;
	mac[2] = (l >> 24) & 0xff;
	mac[3] = (l >> 16) & 0xff;
	mac[4] = (l >> 8) & 0xff;
	mac[5] = l & 0xff;

	if (is_valid_ether_addr(mac)) {
		ether_addr_copy(priv->netdev->dev_addr, mac);
		dev_info(priv->dev, "Read MAC address %pM from chip\n", mac);
	} else {
		eth_hw_addr_random(priv->netdev);
		dev_info(priv->dev, "Generated random MAC address %pM\n",
			 priv->netdev->dev_addr);
	}
}

static int ftgmac100_set_mac_addr(struct net_device *dev, void *p)
{
	int ret;

	ret = eth_prepare_mac_addr_change(dev, p);
	if (ret < 0)
		return ret;

	eth_commit_mac_addr_change(dev, p);
208
	ftgmac100_write_mac_addr(netdev_priv(dev), dev->dev_addr);
209 210 211 212

	return 0;
}

213 214
static void ftgmac100_init_hw(struct ftgmac100 *priv)
{
215
	u32 reg, rfifo_sz, tfifo_sz;
216

217 218 219
	/* Clear stale interrupts */
	reg = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
	iowrite32(reg, priv->base + FTGMAC100_OFFSET_ISR);
220

221 222 223 224
	/* Setup RX ring buffer base */
	iowrite32(priv->descs_dma_addr +
		  offsetof(struct ftgmac100_descs, rxdes),
		  priv->base + FTGMAC100_OFFSET_RXR_BADR);
225

226 227 228 229 230 231 232 233 234 235 236 237 238 239
	/* Setup TX ring buffer base */
	iowrite32(priv->descs_dma_addr +
		  offsetof(struct ftgmac100_descs, txdes),
		  priv->base + FTGMAC100_OFFSET_NPTXR_BADR);

	/* Configure RX buffer size */
	iowrite32(FTGMAC100_RBSR_SIZE(RX_BUF_SIZE),
		  priv->base + FTGMAC100_OFFSET_RBSR);

	/* Set RX descriptor autopoll */
	iowrite32(FTGMAC100_APTC_RXPOLL_CNT(1),
		  priv->base + FTGMAC100_OFFSET_APTC);

	/* Write MAC address */
240
	ftgmac100_write_mac_addr(priv, priv->netdev->dev_addr);
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272

	/* Configure descriptor sizes and increase burst sizes according
	 * to values in Aspeed SDK. The FIFO arbitration is enabled and
	 * the thresholds set based on the recommended values in the
	 * AST2400 specification.
	 */
	iowrite32(FTGMAC100_DBLAC_RXDES_SIZE(2) |   /* 2*8 bytes RX descs */
		  FTGMAC100_DBLAC_TXDES_SIZE(2) |   /* 2*8 bytes TX descs */
		  FTGMAC100_DBLAC_RXBURST_SIZE(3) | /* 512 bytes max RX bursts */
		  FTGMAC100_DBLAC_TXBURST_SIZE(3) | /* 512 bytes max TX bursts */
		  FTGMAC100_DBLAC_RX_THR_EN |       /* Enable fifo threshold arb */
		  FTGMAC100_DBLAC_RXFIFO_HTHR(6) |  /* 6/8 of FIFO high threshold */
		  FTGMAC100_DBLAC_RXFIFO_LTHR(2),   /* 2/8 of FIFO low threshold */
		  priv->base + FTGMAC100_OFFSET_DBLAC);

	/* Interrupt mitigation configured for 1 interrupt/packet. HW interrupt
	 * mitigation doesn't seem to provide any benefit with NAPI so leave
	 * it at that.
	 */
	iowrite32(FTGMAC100_ITC_RXINT_THR(1) |
		  FTGMAC100_ITC_TXINT_THR(1),
		  priv->base + FTGMAC100_OFFSET_ITC);

	/* Configure FIFO sizes in the TPAFCR register */
	reg = ioread32(priv->base + FTGMAC100_OFFSET_FEAR);
	rfifo_sz = reg & 0x00000007;
	tfifo_sz = (reg >> 3) & 0x00000007;
	reg = ioread32(priv->base + FTGMAC100_OFFSET_TPAFCR);
	reg &= ~0x3f000000;
	reg |= (tfifo_sz << 27);
	reg |= (rfifo_sz << 24);
	iowrite32(reg, priv->base + FTGMAC100_OFFSET_TPAFCR);
273 274
}

275
static void ftgmac100_start_hw(struct ftgmac100 *priv)
276
{
277
	u32 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
278

279 280
	/* Keep the original GMAC and FAST bits */
	maccr &= (FTGMAC100_MACCR_FAST_MODE | FTGMAC100_MACCR_GIGA_MODE);
281

282 283 284 285 286 287 288 289 290
	/* Add all the main enable bits */
	maccr |= FTGMAC100_MACCR_TXDMA_EN	|
		 FTGMAC100_MACCR_RXDMA_EN	|
		 FTGMAC100_MACCR_TXMAC_EN	|
		 FTGMAC100_MACCR_RXMAC_EN	|
		 FTGMAC100_MACCR_CRC_APD	|
		 FTGMAC100_MACCR_PHY_LINK_LEVEL	|
		 FTGMAC100_MACCR_RX_RUNT	|
		 FTGMAC100_MACCR_RX_BROADPKT;
291

292
	/* Add other bits as needed */
293 294 295
	if (priv->cur_duplex == DUPLEX_FULL)
		maccr |= FTGMAC100_MACCR_FULLDUP;

296
	/* Hit the HW */
297 298 299 300 301 302 303 304
	iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
}

static void ftgmac100_stop_hw(struct ftgmac100 *priv)
{
	iowrite32(0, priv->base + FTGMAC100_OFFSET_MACCR);
}

305 306
static int ftgmac100_alloc_rx_buf(struct ftgmac100 *priv, unsigned int entry,
				  struct ftgmac100_rxdes *rxdes, gfp_t gfp)
307 308
{
	struct net_device *netdev = priv->netdev;
309
	struct sk_buff *skb;
310
	dma_addr_t map;
311
	int err;
312

313 314
	skb = netdev_alloc_skb_ip_align(netdev, RX_BUF_SIZE);
	if (unlikely(!skb)) {
315
		if (net_ratelimit())
316
			netdev_warn(netdev, "failed to allocate rx skb\n");
317 318
		err = -ENOMEM;
		map = priv->rx_scratch_dma;
319 320 321 322 323 324 325 326 327 328 329
	} else {
		map = dma_map_single(priv->dev, skb->data, RX_BUF_SIZE,
				     DMA_FROM_DEVICE);
		if (unlikely(dma_mapping_error(priv->dev, map))) {
			if (net_ratelimit())
				netdev_err(netdev, "failed to map rx page\n");
			dev_kfree_skb_any(skb);
			map = priv->rx_scratch_dma;
			skb = NULL;
			err = -ENOMEM;
		}
330 331
	}

332 333
	/* Store skb */
	priv->rx_skbs[entry] = skb;
334

335
	/* Store DMA address into RX desc */
336
	rxdes->rxdes3 = cpu_to_le32(map);
337 338 339 340

	/* Ensure the above is ordered vs clearing the OWN bit */
	dma_wmb();

341 342 343 344 345
	/* Clean status (which resets own bit) */
	if (entry == (RX_QUEUE_ENTRIES - 1))
		rxdes->rxdes0 = cpu_to_le32(priv->rxdes0_edorr_mask);
	else
		rxdes->rxdes0 = 0;
346

347 348 349
	return 0;
}

350 351 352 353 354
static int ftgmac100_next_rx_pointer(int pointer)
{
	return (pointer + 1) & (RX_QUEUE_ENTRIES - 1);
}

355
static void ftgmac100_rx_packet_error(struct ftgmac100 *priv, u32 status)
356 357 358
{
	struct net_device *netdev = priv->netdev;

359
	if (status & FTGMAC100_RXDES0_RX_ERR)
360 361
		netdev->stats.rx_errors++;

362
	if (status & FTGMAC100_RXDES0_CRC_ERR)
363 364
		netdev->stats.rx_crc_errors++;

365 366 367
	if (status & (FTGMAC100_RXDES0_FTL |
		      FTGMAC100_RXDES0_RUNT |
		      FTGMAC100_RXDES0_RX_ODD_NB))
368 369 370 371 372 373 374 375
		netdev->stats.rx_length_errors++;
}

static bool ftgmac100_rx_packet(struct ftgmac100 *priv, int *processed)
{
	struct net_device *netdev = priv->netdev;
	struct ftgmac100_rxdes *rxdes;
	struct sk_buff *skb;
376
	unsigned int pointer, size;
377
	u32 status, csum_vlan;
378
	dma_addr_t map;
379

380 381 382 383
	/* Grab next RX descriptor */
	pointer = priv->rx_pointer;
	rxdes = &priv->descs->rxdes[pointer];

384 385 386
	/* Grab descriptor status */
	status = le32_to_cpu(rxdes->rxdes0);

387
	/* Do we have a packet ? */
388
	if (!(status & FTGMAC100_RXDES0_RXPKT_RDY))
389 390
		return false;

391 392 393
	/* Order subsequent reads with the test for the ready bit */
	dma_rmb();

394
	/* We don't cope with fragmented RX packets */
395 396
	if (unlikely(!(status & FTGMAC100_RXDES0_FRS) ||
		     !(status & FTGMAC100_RXDES0_LRS)))
397 398
		goto drop;

399 400 401 402
	/* Grab received size and csum vlan field in the descriptor */
	size = status & FTGMAC100_RXDES0_VDBC;
	csum_vlan = le32_to_cpu(rxdes->rxdes1);

403
	/* Any error (other than csum offload) flagged ? */
404
	if (unlikely(status & RXDES0_ANY_ERROR)) {
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
		/* Correct for incorrect flagging of runt packets
		 * with vlan tags... Just accept a runt packet that
		 * has been flagged as vlan and whose size is at
		 * least 60 bytes.
		 */
		if ((status & FTGMAC100_RXDES0_RUNT) &&
		    (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL) &&
		    (size >= 60))
			status &= ~FTGMAC100_RXDES0_RUNT;

		/* Any error still in there ? */
		if (status & RXDES0_ANY_ERROR) {
			ftgmac100_rx_packet_error(priv, status);
			goto drop;
		}
420 421
	}

422
	/* If the packet had no skb (failed to allocate earlier)
423 424
	 * then try to allocate one and skip
	 */
425 426 427
	skb = priv->rx_skbs[pointer];
	if (!unlikely(skb)) {
		ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
428
		goto drop;
429 430
	}

431
	if (unlikely(status & FTGMAC100_RXDES0_MULTICAST))
432 433
		netdev->stats.multicast++;

434 435 436 437 438
	/* If the HW found checksum errors, bounce it to software.
	 *
	 * If we didn't, we need to see if the packet was recognized
	 * by HW as one of the supported checksummed protocols before
	 * we accept the HW test results.
439
	 */
440
	if (netdev->features & NETIF_F_RXCSUM) {
441 442 443
		u32 err_bits = FTGMAC100_RXDES1_TCP_CHKSUM_ERR |
			FTGMAC100_RXDES1_UDP_CHKSUM_ERR |
			FTGMAC100_RXDES1_IP_CHKSUM_ERR;
444
		if ((csum_vlan & err_bits) ||
445
		    !(csum_vlan & FTGMAC100_RXDES1_PROT_MASK))
446 447 448 449
			skb->ip_summed = CHECKSUM_NONE;
		else
			skb->ip_summed = CHECKSUM_UNNECESSARY;
	}
450

451
	/* Transfer received size to skb */
452
	skb_put(skb, size);
453

454
	/* Tear down DMA mapping, do necessary cache management */
455 456
	map = le32_to_cpu(rxdes->rxdes3);

457 458 459 460 461 462 463 464 465
#if defined(CONFIG_ARM) && !defined(CONFIG_ARM_DMA_USE_IOMMU)
	/* When we don't have an iommu, we can save cycles by not
	 * invalidating the cache for the part of the packet that
	 * wasn't received.
	 */
	dma_unmap_single(priv->dev, map, size, DMA_FROM_DEVICE);
#else
	dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
#endif
466 467


468 469
	/* Resplenish rx ring */
	ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
470
	priv->rx_pointer = ftgmac100_next_rx_pointer(pointer);
471 472 473 474

	skb->protocol = eth_type_trans(skb, netdev);

	netdev->stats.rx_packets++;
475
	netdev->stats.rx_bytes += size;
476 477

	/* push packet to protocol stack */
478 479 480 481
	if (skb->ip_summed == CHECKSUM_NONE)
		netif_receive_skb(skb);
	else
		napi_gro_receive(&priv->napi, skb);
482 483 484

	(*processed)++;
	return true;
485 486 487

 drop:
	/* Clean rxdes0 (which resets own bit) */
488
	rxdes->rxdes0 = cpu_to_le32(status & priv->rxdes0_edorr_mask);
489 490 491
	priv->rx_pointer = ftgmac100_next_rx_pointer(pointer);
	netdev->stats.rx_dropped++;
	return true;
492 493
}

494 495
static u32 ftgmac100_base_tx_ctlstat(struct ftgmac100 *priv,
				     unsigned int index)
496
{
497 498 499 500
	if (index == (TX_QUEUE_ENTRIES - 1))
		return priv->txdes0_edotr_mask;
	else
		return 0;
501 502 503 504 505 506 507
}

static int ftgmac100_next_tx_pointer(int pointer)
{
	return (pointer + 1) & (TX_QUEUE_ENTRIES - 1);
}

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
static u32 ftgmac100_tx_buf_avail(struct ftgmac100 *priv)
{
	/* Returns the number of available slots in the TX queue
	 *
	 * This always leaves one free slot so we don't have to
	 * worry about empty vs. full, and this simplifies the
	 * test for ftgmac100_tx_buf_cleanable() below
	 */
	return (priv->tx_clean_pointer - priv->tx_pointer - 1) &
		(TX_QUEUE_ENTRIES - 1);
}

static bool ftgmac100_tx_buf_cleanable(struct ftgmac100 *priv)
{
	return priv->tx_pointer != priv->tx_clean_pointer;
}

525 526 527
static void ftgmac100_free_tx_packet(struct ftgmac100 *priv,
				     unsigned int pointer,
				     struct sk_buff *skb,
528 529
				     struct ftgmac100_txdes *txdes,
				     u32 ctl_stat)
530
{
531 532
	dma_addr_t map = le32_to_cpu(txdes->txdes3);
	size_t len;
533

534 535 536
	if (ctl_stat & FTGMAC100_TXDES0_FTS) {
		len = skb_headlen(skb);
		dma_unmap_single(priv->dev, map, len, DMA_TO_DEVICE);
537
	} else {
538 539
		len = FTGMAC100_TXDES0_TXBUF_SIZE(ctl_stat);
		dma_unmap_page(priv->dev, map, len, DMA_TO_DEVICE);
540
	}
541

542 543
	/* Free SKB on last segment */
	if (ctl_stat & FTGMAC100_TXDES0_LTS)
544
		dev_kfree_skb(skb);
545 546 547
	priv->tx_skbs[pointer] = NULL;
}

548 549 550 551 552
static bool ftgmac100_tx_complete_packet(struct ftgmac100 *priv)
{
	struct net_device *netdev = priv->netdev;
	struct ftgmac100_txdes *txdes;
	struct sk_buff *skb;
553
	unsigned int pointer;
554
	u32 ctl_stat;
555

556 557
	pointer = priv->tx_clean_pointer;
	txdes = &priv->descs->txdes[pointer];
558

559 560
	ctl_stat = le32_to_cpu(txdes->txdes0);
	if (ctl_stat & FTGMAC100_TXDES0_TXDMA_OWN)
561 562
		return false;

563
	skb = priv->tx_skbs[pointer];
564 565
	netdev->stats.tx_packets++;
	netdev->stats.tx_bytes += skb->len;
566 567
	ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
	txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
568

569
	priv->tx_clean_pointer = ftgmac100_next_tx_pointer(pointer);
570 571 572 573 574 575

	return true;
}

static void ftgmac100_tx_complete(struct ftgmac100 *priv)
{
576 577 578 579 580
	struct net_device *netdev = priv->netdev;

	/* Process all completed packets */
	while (ftgmac100_tx_buf_cleanable(priv) &&
	       ftgmac100_tx_complete_packet(priv))
581
		;
582 583 584 585 586 587 588 589 590 591 592 593 594 595

	/* Restart queue if needed */
	smp_mb();
	if (unlikely(netif_queue_stopped(netdev) &&
		     ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)) {
		struct netdev_queue *txq;

		txq = netdev_get_tx_queue(netdev, 0);
		__netif_tx_lock(txq, smp_processor_id());
		if (netif_queue_stopped(netdev) &&
		    ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
			netif_wake_queue(netdev);
		__netif_tx_unlock(txq);
	}
596 597
}

598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
static bool ftgmac100_prep_tx_csum(struct sk_buff *skb, u32 *csum_vlan)
{
	if (skb->protocol == cpu_to_be16(ETH_P_IP)) {
		u8 ip_proto = ip_hdr(skb)->protocol;

		*csum_vlan |= FTGMAC100_TXDES1_IP_CHKSUM;
		switch(ip_proto) {
		case IPPROTO_TCP:
			*csum_vlan |= FTGMAC100_TXDES1_TCP_CHKSUM;
			return true;
		case IPPROTO_UDP:
			*csum_vlan |= FTGMAC100_TXDES1_UDP_CHKSUM;
			return true;
		case IPPROTO_IP:
			return true;
		}
	}
	return skb_checksum_help(skb) == 0;
}

618 619
static int ftgmac100_hard_start_xmit(struct sk_buff *skb,
				     struct net_device *netdev)
620
{
621
	struct ftgmac100 *priv = netdev_priv(netdev);
622 623
	struct ftgmac100_txdes *txdes, *first;
	unsigned int pointer, nfrags, len, i, j;
624
	u32 f_ctl_stat, ctl_stat, csum_vlan;
625 626
	dma_addr_t map;

627 628 629 630 631 632 633
	/* The HW doesn't pad small frames */
	if (eth_skb_pad(skb)) {
		netdev->stats.tx_dropped++;
		return NETDEV_TX_OK;
	}

	/* Reject oversize packets */
634 635 636
	if (unlikely(skb->len > MAX_PKT_SIZE)) {
		if (net_ratelimit())
			netdev_dbg(netdev, "tx packet too big\n");
637
		goto drop;
638 639
	}

640 641 642 643 644 645 646 647 648 649 650
	/* Do we have a limit on #fragments ? I yet have to get a reply
	 * from Aspeed. If there's one I haven't hit it.
	 */
	nfrags = skb_shinfo(skb)->nr_frags;

	/* Get header len */
	len = skb_headlen(skb);

	/* Map the packet head */
	map = dma_map_single(priv->dev, skb->data, len, DMA_TO_DEVICE);
	if (dma_mapping_error(priv->dev, map)) {
651
		if (net_ratelimit())
652
			netdev_err(netdev, "map tx packet head failed\n");
653
		goto drop;
654
	}
655

656 657
	/* Grab the next free tx descriptor */
	pointer = priv->tx_pointer;
658
	txdes = first = &priv->descs->txdes[pointer];
659

660 661 662
	/* Setup it up with the packet head. Don't write the head to the
	 * ring just yet
	 */
663
	priv->tx_skbs[pointer] = skb;
664 665 666 667 668 669 670
	f_ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
	f_ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
	f_ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
	f_ctl_stat |= FTGMAC100_TXDES0_FTS;
	if (nfrags == 0)
		f_ctl_stat |= FTGMAC100_TXDES0_LTS;
	txdes->txdes3 = cpu_to_le32(map);
671 672

	/* Setup HW checksumming */
673
	csum_vlan = 0;
674 675 676
	if (skb->ip_summed == CHECKSUM_PARTIAL &&
	    !ftgmac100_prep_tx_csum(skb, &csum_vlan))
		goto drop;
677
	txdes->txdes1 = cpu_to_le32(csum_vlan);
678

679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
	/* Next descriptor */
	pointer = ftgmac100_next_tx_pointer(pointer);

	/* Add the fragments */
	for (i = 0; i < nfrags; i++) {
		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];

		len = frag->size;

		/* Map it */
		map = skb_frag_dma_map(priv->dev, frag, 0, len,
				       DMA_TO_DEVICE);
		if (dma_mapping_error(priv->dev, map))
			goto dma_err;

		/* Setup descriptor */
		priv->tx_skbs[pointer] = skb;
		txdes = &priv->descs->txdes[pointer];
697 698 699 700 701 702 703 704 705 706
		ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
		ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
		ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
		if (i == (nfrags - 1))
			ctl_stat |= FTGMAC100_TXDES0_LTS;
		txdes->txdes0 = cpu_to_le32(ctl_stat);
		txdes->txdes1 = 0;
		txdes->txdes3 = cpu_to_le32(map);

		/* Next one */
707 708 709
		pointer = ftgmac100_next_tx_pointer(pointer);
	}

710
	/* Order the previous packet and descriptor udpates
711
	 * before setting the OWN bit on the first descriptor.
712 713
	 */
	dma_wmb();
714
	first->txdes0 = cpu_to_le32(f_ctl_stat);
715

716
	/* Update next TX pointer */
717
	priv->tx_pointer = pointer;
718

719 720 721 722 723
	/* If there isn't enough room for all the fragments of a new packet
	 * in the TX ring, stop the queue. The sequence below is race free
	 * vs. a concurrent restart in ftgmac100_poll()
	 */
	if (unlikely(ftgmac100_tx_buf_avail(priv) < TX_THRESHOLD)) {
724
		netif_stop_queue(netdev);
725 726 727 728 729
		/* Order the queue stop with the test below */
		smp_mb();
		if (ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
			netif_wake_queue(netdev);
	}
730

731 732
	/* Poke transmitter to read the updated TX descriptors */
	iowrite32(1, priv->base + FTGMAC100_OFFSET_NPTXPD);
733

734 735
	return NETDEV_TX_OK;

736 737 738 739 740 741
 dma_err:
	if (net_ratelimit())
		netdev_err(netdev, "map tx fragment failed\n");

	/* Free head */
	pointer = priv->tx_pointer;
742 743
	ftgmac100_free_tx_packet(priv, pointer, skb, first, f_ctl_stat);
	first->txdes0 = cpu_to_le32(f_ctl_stat & priv->txdes0_edotr_mask);
744 745 746 747 748

	/* Then all fragments */
	for (j = 0; j < i; j++) {
		pointer = ftgmac100_next_tx_pointer(pointer);
		txdes = &priv->descs->txdes[pointer];
749 750 751
		ctl_stat = le32_to_cpu(txdes->txdes0);
		ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
		txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
752 753 754 755 756 757
	}

	/* This cannot be reached if we successfully mapped the
	 * last fragment, so we know ftgmac100_free_tx_packet()
	 * hasn't freed the skb yet.
	 */
758 759 760 761 762
 drop:
	/* Drop the packet */
	dev_kfree_skb_any(skb);
	netdev->stats.tx_dropped++;

763 764 765 766 767 768 769
	return NETDEV_TX_OK;
}

static void ftgmac100_free_buffers(struct ftgmac100 *priv)
{
	int i;

770
	/* Free all RX buffers */
771 772
	for (i = 0; i < RX_QUEUE_ENTRIES; i++) {
		struct ftgmac100_rxdes *rxdes = &priv->descs->rxdes[i];
773
		struct sk_buff *skb = priv->rx_skbs[i];
774
		dma_addr_t map = le32_to_cpu(rxdes->rxdes3);
775

776
		if (!skb)
777 778
			continue;

779 780 781
		priv->rx_skbs[i] = NULL;
		dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
		dev_kfree_skb_any(skb);
782 783
	}

784
	/* Free all TX buffers */
785 786
	for (i = 0; i < TX_QUEUE_ENTRIES; i++) {
		struct ftgmac100_txdes *txdes = &priv->descs->txdes[i];
787
		struct sk_buff *skb = priv->tx_skbs[i];
788

789 790 791 792
		if (!skb)
			continue;
		ftgmac100_free_tx_packet(priv, i, skb, txdes,
					 le32_to_cpu(txdes->txdes0));
793 794 795
	}
}

796
static void ftgmac100_free_rings(struct ftgmac100 *priv)
797
{
798 799 800 801
	/* Free descriptors */
	if (priv->descs)
		dma_free_coherent(priv->dev, sizeof(struct ftgmac100_descs),
				  priv->descs, priv->descs_dma_addr);
802 803 804 805 806

	/* Free scratch packet buffer */
	if (priv->rx_scratch)
		dma_free_coherent(priv->dev, RX_BUF_SIZE,
				  priv->rx_scratch, priv->rx_scratch_dma);
807
}
808

809 810 811
static int ftgmac100_alloc_rings(struct ftgmac100 *priv)
{
	/* Allocate descriptors */
812 813 814
	priv->descs = dma_zalloc_coherent(priv->dev,
					  sizeof(struct ftgmac100_descs),
					  &priv->descs_dma_addr, GFP_KERNEL);
815 816 817
	if (!priv->descs)
		return -ENOMEM;

818 819 820 821 822 823 824 825
	/* Allocate scratch packet buffer */
	priv->rx_scratch = dma_alloc_coherent(priv->dev,
					      RX_BUF_SIZE,
					      &priv->rx_scratch_dma,
					      GFP_KERNEL);
	if (!priv->rx_scratch)
		return -ENOMEM;

826 827 828 829 830
	return 0;
}

static void ftgmac100_init_rings(struct ftgmac100 *priv)
{
831
	struct ftgmac100_rxdes *rxdes;
832
	struct ftgmac100_txdes *txdes;
833 834 835
	int i;

	/* Initialize RX ring */
836
	for (i = 0; i < RX_QUEUE_ENTRIES; i++) {
837
		rxdes = &priv->descs->rxdes[i];
838
		rxdes->rxdes0 = 0;
839
		rxdes->rxdes3 = cpu_to_le32(priv->rx_scratch_dma);
840
	}
841 842
	/* Mark the end of the ring */
	rxdes->rxdes0 |= cpu_to_le32(priv->rxdes0_edorr_mask);
843 844

	/* Initialize TX ring */
845 846 847 848 849
	for (i = 0; i < TX_QUEUE_ENTRIES; i++) {
		txdes = &priv->descs->txdes[i];
		txdes->txdes0 = 0;
	}
	txdes->txdes0 |= cpu_to_le32(priv->txdes0_edotr_mask);
850 851 852 853 854
}

static int ftgmac100_alloc_rx_buffers(struct ftgmac100 *priv)
{
	int i;
855 856 857 858

	for (i = 0; i < RX_QUEUE_ENTRIES; i++) {
		struct ftgmac100_rxdes *rxdes = &priv->descs->rxdes[i];

859
		if (ftgmac100_alloc_rx_buf(priv, i, rxdes, GFP_KERNEL))
860
			return -ENOMEM;
861 862 863 864 865 866 867
	}
	return 0;
}

static void ftgmac100_adjust_link(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);
868
	struct phy_device *phydev = netdev->phydev;
869
	int new_speed;
870

871 872 873 874 875 876 877 878
	/* We store "no link" as speed 0 */
	if (!phydev->link)
		new_speed = 0;
	else
		new_speed = phydev->speed;

	if (phydev->speed == priv->cur_speed &&
	    phydev->duplex == priv->cur_duplex)
879 880
		return;

881 882 883 884 885 886 887 888 889 890 891 892
	/* Print status if we have a link or we had one and just lost it,
	 * don't print otherwise.
	 */
	if (new_speed || priv->cur_speed)
		phy_print_status(phydev);

	priv->cur_speed = new_speed;
	priv->cur_duplex = phydev->duplex;

	/* Link is down, do nothing else */
	if (!new_speed)
		return;
893

894
	/* Disable all interrupts */
895 896
	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);

897 898
	/* Reset the adapter asynchronously */
	schedule_work(&priv->reset_task);
899 900 901 902 903
}

static int ftgmac100_mii_probe(struct ftgmac100 *priv)
{
	struct net_device *netdev = priv->netdev;
904
	struct phy_device *phydev;
905

906
	phydev = phy_find_first(priv->mii_bus);
907 908 909 910 911
	if (!phydev) {
		netdev_info(netdev, "%s: no PHY found\n", netdev->name);
		return -ENODEV;
	}

A
Andrew Lunn 已提交
912
	phydev = phy_connect(netdev, phydev_name(phydev),
913
			     &ftgmac100_adjust_link, PHY_INTERFACE_MODE_GMII);
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996

	if (IS_ERR(phydev)) {
		netdev_err(netdev, "%s: Could not attach to PHY\n", netdev->name);
		return PTR_ERR(phydev);
	}

	return 0;
}

static int ftgmac100_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
{
	struct net_device *netdev = bus->priv;
	struct ftgmac100 *priv = netdev_priv(netdev);
	unsigned int phycr;
	int i;

	phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);

	/* preserve MDC cycle threshold */
	phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;

	phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
		 FTGMAC100_PHYCR_REGAD(regnum) |
		 FTGMAC100_PHYCR_MIIRD;

	iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);

	for (i = 0; i < 10; i++) {
		phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);

		if ((phycr & FTGMAC100_PHYCR_MIIRD) == 0) {
			int data;

			data = ioread32(priv->base + FTGMAC100_OFFSET_PHYDATA);
			return FTGMAC100_PHYDATA_MIIRDATA(data);
		}

		udelay(100);
	}

	netdev_err(netdev, "mdio read timed out\n");
	return -EIO;
}

static int ftgmac100_mdiobus_write(struct mii_bus *bus, int phy_addr,
				   int regnum, u16 value)
{
	struct net_device *netdev = bus->priv;
	struct ftgmac100 *priv = netdev_priv(netdev);
	unsigned int phycr;
	int data;
	int i;

	phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);

	/* preserve MDC cycle threshold */
	phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;

	phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
		 FTGMAC100_PHYCR_REGAD(regnum) |
		 FTGMAC100_PHYCR_MIIWR;

	data = FTGMAC100_PHYDATA_MIIWDATA(value);

	iowrite32(data, priv->base + FTGMAC100_OFFSET_PHYDATA);
	iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);

	for (i = 0; i < 10; i++) {
		phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);

		if ((phycr & FTGMAC100_PHYCR_MIIWR) == 0)
			return 0;

		udelay(100);
	}

	netdev_err(netdev, "mdio write timed out\n");
	return -EIO;
}

static void ftgmac100_get_drvinfo(struct net_device *netdev,
				  struct ethtool_drvinfo *info)
{
997 998 999
	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
	strlcpy(info->bus_info, dev_name(&netdev->dev), sizeof(info->bus_info));
1000 1001 1002 1003 1004
}

static const struct ethtool_ops ftgmac100_ethtool_ops = {
	.get_drvinfo		= ftgmac100_get_drvinfo,
	.get_link		= ethtool_op_get_link,
1005 1006
	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1007 1008 1009 1010 1011 1012
};

static irqreturn_t ftgmac100_interrupt(int irq, void *dev_id)
{
	struct net_device *netdev = dev_id;
	struct ftgmac100 *priv = netdev_priv(netdev);
1013
	unsigned int status, new_mask = FTGMAC100_INT_BAD;
1014

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
	/* Fetch and clear interrupt bits, process abnormal ones */
	status = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
	iowrite32(status, priv->base + FTGMAC100_OFFSET_ISR);
	if (unlikely(status & FTGMAC100_INT_BAD)) {

		/* RX buffer unavailable */
		if (status & FTGMAC100_INT_NO_RXBUF)
			netdev->stats.rx_over_errors++;

		/* received packet lost due to RX FIFO full */
		if (status & FTGMAC100_INT_RPKT_LOST)
			netdev->stats.rx_fifo_errors++;

		/* sent packet lost due to excessive TX collision */
		if (status & FTGMAC100_INT_XPKT_LOST)
			netdev->stats.tx_fifo_errors++;

		/* AHB error -> Reset the chip */
		if (status & FTGMAC100_INT_AHB_ERR) {
			if (net_ratelimit())
				netdev_warn(netdev,
					   "AHB bus error ! Resetting chip.\n");
			iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
			schedule_work(&priv->reset_task);
			return IRQ_HANDLED;
		}

		/* We may need to restart the MAC after such errors, delay
		 * this until after we have freed some Rx buffers though
		 */
		priv->need_mac_restart = true;

		/* Disable those errors until we restart */
		new_mask &= ~status;
	}

	/* Only enable "bad" interrupts while NAPI is on */
	iowrite32(new_mask, priv->base + FTGMAC100_OFFSET_IER);

	/* Schedule NAPI bh */
	napi_schedule_irqoff(&priv->napi);
1056 1057 1058 1059

	return IRQ_HANDLED;
}

1060 1061 1062 1063 1064 1065 1066 1067
static bool ftgmac100_check_rx(struct ftgmac100 *priv)
{
	struct ftgmac100_rxdes *rxdes = &priv->descs->rxdes[priv->rx_pointer];

	/* Do we have a packet ? */
	return !!(rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RXPKT_RDY));
}

1068 1069 1070
static int ftgmac100_poll(struct napi_struct *napi, int budget)
{
	struct ftgmac100 *priv = container_of(napi, struct ftgmac100, napi);
1071 1072
	int work_done = 0;
	bool more;
1073

1074 1075 1076
	/* Handle TX completions */
	if (ftgmac100_tx_buf_cleanable(priv))
		ftgmac100_tx_complete(priv);
1077

1078
	/* Handle RX packets */
1079
	do {
1080 1081
		more = ftgmac100_rx_packet(priv, &work_done);
	} while (more && work_done < budget);
1082 1083


1084 1085 1086 1087 1088
	/* The interrupt is telling us to kick the MAC back to life
	 * after an RX overflow
	 */
	if (unlikely(priv->need_mac_restart)) {
		ftgmac100_start_hw(priv);
1089

1090 1091 1092
		/* Re-enable "bad" interrupts */
		iowrite32(FTGMAC100_INT_BAD,
			  priv->base + FTGMAC100_OFFSET_IER);
1093 1094
	}

1095 1096 1097 1098 1099
	/* As long as we are waiting for transmit packets to be
	 * completed we keep NAPI going
	 */
	if (ftgmac100_tx_buf_cleanable(priv))
		work_done = budget;
1100

1101
	if (work_done < budget) {
1102 1103 1104 1105 1106 1107 1108
		/* We are about to re-enable all interrupts. However
		 * the HW has been latching RX/TX packet interrupts while
		 * they were masked. So we clear them first, then we need
		 * to re-check if there's something to process
		 */
		iowrite32(FTGMAC100_INT_RXTX,
			  priv->base + FTGMAC100_OFFSET_ISR);
1109 1110
		if (ftgmac100_check_rx(priv) ||
		    ftgmac100_tx_buf_cleanable(priv))
1111 1112 1113
			return budget;

		/* deschedule NAPI */
1114 1115 1116
		napi_complete(napi);

		/* enable all interrupts */
1117
		iowrite32(FTGMAC100_INT_ALL,
1118
			  priv->base + FTGMAC100_OFFSET_IER);
1119 1120
	}

1121
	return work_done;
1122 1123
}

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
static int ftgmac100_init_all(struct ftgmac100 *priv, bool ignore_alloc_err)
{
	int err = 0;

	/* Re-init descriptors (adjust queue sizes) */
	ftgmac100_init_rings(priv);

	/* Realloc rx descriptors */
	err = ftgmac100_alloc_rx_buffers(priv);
	if (err && !ignore_alloc_err)
		return err;

	/* Reinit and restart HW */
	ftgmac100_init_hw(priv);
	ftgmac100_start_hw(priv);

	/* Re-enable the device */
	napi_enable(&priv->napi);
	netif_start_queue(priv->netdev);

	/* Enable all interrupts */
1145
	iowrite32(FTGMAC100_INT_ALL, priv->base + FTGMAC100_OFFSET_IER);
1146 1147 1148 1149

	return err;
}

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
static void ftgmac100_reset_task(struct work_struct *work)
{
	struct ftgmac100 *priv = container_of(work, struct ftgmac100,
					      reset_task);
	struct net_device *netdev = priv->netdev;
	int err;

	netdev_dbg(netdev, "Resetting NIC...\n");

	/* Lock the world */
	rtnl_lock();
	if (netdev->phydev)
		mutex_lock(&netdev->phydev->lock);
	if (priv->mii_bus)
		mutex_lock(&priv->mii_bus->mdio_lock);


	/* Check if the interface is still up */
	if (!netif_running(netdev))
		goto bail;

	/* Stop the network stack */
	netif_trans_update(netdev);
	napi_disable(&priv->napi);
	netif_tx_disable(netdev);

	/* Stop and reset the MAC */
	ftgmac100_stop_hw(priv);
1178
	err = ftgmac100_reset_and_config_mac(priv);
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
	if (err) {
		/* Not much we can do ... it might come back... */
		netdev_err(netdev, "attempting to continue...\n");
	}

	/* Free all rx and tx buffers */
	ftgmac100_free_buffers(priv);

	/* Setup everything again and restart chip */
	ftgmac100_init_all(priv, true);

	netdev_dbg(netdev, "Reset done !\n");
 bail:
	if (priv->mii_bus)
		mutex_unlock(&priv->mii_bus->mdio_lock);
	if (netdev->phydev)
		mutex_unlock(&netdev->phydev->lock);
	rtnl_unlock();
}

1199 1200 1201 1202 1203
static int ftgmac100_open(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);
	int err;

1204 1205
	/* Allocate ring buffers  */
	err = ftgmac100_alloc_rings(priv);
1206
	if (err) {
1207 1208
		netdev_err(netdev, "Failed to allocate descriptors\n");
		return err;
1209 1210
	}

1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
	/* When using NC-SI we force the speed to 100Mbit/s full duplex,
	 *
	 * Otherwise we leave it set to 0 (no link), the link
	 * message from the PHY layer will handle setting it up to
	 * something else if needed.
	 */
	if (priv->use_ncsi) {
		priv->cur_duplex = DUPLEX_FULL;
		priv->cur_speed = SPEED_100;
	} else {
		priv->cur_duplex = 0;
		priv->cur_speed = 0;
	}

1225 1226
	/* Reset the hardware */
	err = ftgmac100_reset_and_config_mac(priv);
1227 1228 1229
	if (err)
		goto err_hw;

1230 1231 1232
	/* Initialize NAPI */
	netif_napi_add(netdev, &priv->napi, ftgmac100_poll, 64);

1233 1234 1235 1236 1237 1238 1239
	/* Grab our interrupt */
	err = request_irq(netdev->irq, ftgmac100_interrupt, 0, netdev->name, netdev);
	if (err) {
		netdev_err(netdev, "failed to request irq %d\n", netdev->irq);
		goto err_irq;
	}

1240 1241 1242 1243 1244 1245
	/* Start things up */
	err = ftgmac100_init_all(priv, false);
	if (err) {
		netdev_err(netdev, "Failed to allocate packet buffers\n");
		goto err_alloc;
	}
G
Gavin Shan 已提交
1246

1247 1248
	if (netdev->phydev) {
		/* If we have a PHY, start polling */
G
Gavin Shan 已提交
1249
		phy_start(netdev->phydev);
1250 1251
	} else if (priv->use_ncsi) {
		/* If using NC-SI, set our carrier on and start the stack */
G
Gavin Shan 已提交
1252
		netif_carrier_on(netdev);
1253

1254
		/* Start the NCSI device */
G
Gavin Shan 已提交
1255 1256 1257 1258 1259
		err = ncsi_start_dev(priv->ndev);
		if (err)
			goto err_ncsi;
	}

1260 1261
	return 0;

1262
 err_ncsi:
G
Gavin Shan 已提交
1263 1264
	napi_disable(&priv->napi);
	netif_stop_queue(netdev);
1265 1266
 err_alloc:
	ftgmac100_free_buffers(priv);
1267
	free_irq(netdev->irq, netdev);
1268
 err_irq:
1269
	netif_napi_del(&priv->napi);
1270
 err_hw:
1271
	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1272
	ftgmac100_free_rings(priv);
1273 1274 1275 1276 1277 1278 1279
	return err;
}

static int ftgmac100_stop(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);

1280 1281 1282 1283 1284 1285 1286 1287
	/* Note about the reset task: We are called with the rtnl lock
	 * held, so we are synchronized against the core of the reset
	 * task. We must not try to synchronously cancel it otherwise
	 * we can deadlock. But since it will test for netif_running()
	 * which has already been cleared by the net core, we don't
	 * anything special to do.
	 */

1288 1289 1290 1291 1292
	/* disable all interrupts */
	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);

	netif_stop_queue(netdev);
	napi_disable(&priv->napi);
1293
	netif_napi_del(&priv->napi);
G
Gavin Shan 已提交
1294 1295
	if (netdev->phydev)
		phy_stop(netdev->phydev);
1296 1297
	else if (priv->use_ncsi)
		ncsi_stop_dev(priv->ndev);
1298 1299

	ftgmac100_stop_hw(priv);
1300
	free_irq(netdev->irq, netdev);
1301
	ftgmac100_free_buffers(priv);
1302
	ftgmac100_free_rings(priv);
1303 1304 1305 1306 1307 1308 1309

	return 0;
}

/* optional */
static int ftgmac100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
G
Gavin Shan 已提交
1310 1311 1312
	if (!netdev->phydev)
		return -ENXIO;

1313
	return phy_mii_ioctl(netdev->phydev, ifr, cmd);
1314 1315
}

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
static void ftgmac100_tx_timeout(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);

	/* Disable all interrupts */
	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);

	/* Do the reset outside of interrupt context */
	schedule_work(&priv->reset_task);
}

1327 1328 1329 1330
static const struct net_device_ops ftgmac100_netdev_ops = {
	.ndo_open		= ftgmac100_open,
	.ndo_stop		= ftgmac100_stop,
	.ndo_start_xmit		= ftgmac100_hard_start_xmit,
1331
	.ndo_set_mac_address	= ftgmac100_set_mac_addr,
1332 1333
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= ftgmac100_do_ioctl,
1334
	.ndo_tx_timeout		= ftgmac100_tx_timeout,
1335 1336
};

1337 1338 1339 1340 1341
static int ftgmac100_setup_mdio(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);
	struct platform_device *pdev = to_platform_device(priv->dev);
	int i, err = 0;
1342
	u32 reg;
1343 1344 1345 1346 1347 1348

	/* initialize mdio bus */
	priv->mii_bus = mdiobus_alloc();
	if (!priv->mii_bus)
		return -EIO;

1349
	if (priv->is_aspeed) {
1350 1351 1352 1353 1354 1355
		/* This driver supports the old MDIO interface */
		reg = ioread32(priv->base + FTGMAC100_OFFSET_REVR);
		reg &= ~FTGMAC100_REVR_NEW_MDIO_INTERFACE;
		iowrite32(reg, priv->base + FTGMAC100_OFFSET_REVR);
	};

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
	priv->mii_bus->name = "ftgmac100_mdio";
	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%d",
		 pdev->name, pdev->id);
	priv->mii_bus->priv = priv->netdev;
	priv->mii_bus->read = ftgmac100_mdiobus_read;
	priv->mii_bus->write = ftgmac100_mdiobus_write;

	for (i = 0; i < PHY_MAX_ADDR; i++)
		priv->mii_bus->irq[i] = PHY_POLL;

	err = mdiobus_register(priv->mii_bus);
	if (err) {
		dev_err(priv->dev, "Cannot register MDIO bus!\n");
		goto err_register_mdiobus;
	}

	err = ftgmac100_mii_probe(priv);
	if (err) {
		dev_err(priv->dev, "MII Probe failed!\n");
		goto err_mii_probe;
	}

	return 0;

err_mii_probe:
	mdiobus_unregister(priv->mii_bus);
err_register_mdiobus:
	mdiobus_free(priv->mii_bus);
	return err;
}

static void ftgmac100_destroy_mdio(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);

	if (!netdev->phydev)
		return;

	phy_disconnect(netdev->phydev);
	mdiobus_unregister(priv->mii_bus);
	mdiobus_free(priv->mii_bus);
}

G
Gavin Shan 已提交
1399 1400 1401 1402 1403 1404 1405 1406 1407
static void ftgmac100_ncsi_handler(struct ncsi_dev *nd)
{
	if (unlikely(nd->state != ncsi_dev_state_functional))
		return;

	netdev_info(nd->dev, "NCSI interface %s\n",
		    nd->link_up ? "up" : "down");
}

1408 1409 1410 1411 1412 1413
static int ftgmac100_probe(struct platform_device *pdev)
{
	struct resource *res;
	int irq;
	struct net_device *netdev;
	struct ftgmac100 *priv;
1414
	struct device_node *np;
G
Gavin Shan 已提交
1415
	int err = 0;
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436

	if (!pdev)
		return -ENODEV;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res)
		return -ENXIO;

	irq = platform_get_irq(pdev, 0);
	if (irq < 0)
		return irq;

	/* setup net_device */
	netdev = alloc_etherdev(sizeof(*priv));
	if (!netdev) {
		err = -ENOMEM;
		goto err_alloc_etherdev;
	}

	SET_NETDEV_DEV(netdev, &pdev->dev);

1437
	netdev->ethtool_ops = &ftgmac100_ethtool_ops;
1438
	netdev->netdev_ops = &ftgmac100_netdev_ops;
1439
	netdev->watchdog_timeo = 5 * HZ;
1440 1441 1442 1443 1444 1445 1446

	platform_set_drvdata(pdev, netdev);

	/* setup private data */
	priv = netdev_priv(netdev);
	priv->netdev = netdev;
	priv->dev = &pdev->dev;
1447
	INIT_WORK(&priv->reset_task, ftgmac100_reset_task);
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464

	/* map io memory */
	priv->res = request_mem_region(res->start, resource_size(res),
				       dev_name(&pdev->dev));
	if (!priv->res) {
		dev_err(&pdev->dev, "Could not reserve memory region\n");
		err = -ENOMEM;
		goto err_req_mem;
	}

	priv->base = ioremap(res->start, resource_size(res));
	if (!priv->base) {
		dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
		err = -EIO;
		goto err_ioremap;
	}

1465
	netdev->irq = irq;
1466

1467
	/* MAC address from chip or random one */
1468
	ftgmac100_initial_mac(priv);
1469

1470 1471 1472
	np = pdev->dev.of_node;
	if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
		   of_device_is_compatible(np, "aspeed,ast2500-mac"))) {
1473 1474
		priv->rxdes0_edorr_mask = BIT(30);
		priv->txdes0_edotr_mask = BIT(30);
1475
		priv->is_aspeed = true;
1476 1477 1478 1479 1480
	} else {
		priv->rxdes0_edorr_mask = BIT(15);
		priv->txdes0_edotr_mask = BIT(15);
	}

1481
	if (np && of_get_property(np, "use-ncsi", NULL)) {
G
Gavin Shan 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
		if (!IS_ENABLED(CONFIG_NET_NCSI)) {
			dev_err(&pdev->dev, "NCSI stack not enabled\n");
			goto err_ncsi_dev;
		}

		dev_info(&pdev->dev, "Using NCSI interface\n");
		priv->use_ncsi = true;
		priv->ndev = ncsi_register_dev(netdev, ftgmac100_ncsi_handler);
		if (!priv->ndev)
			goto err_ncsi_dev;
	} else {
		priv->use_ncsi = false;
		err = ftgmac100_setup_mdio(netdev);
		if (err)
			goto err_setup_mdio;
	}

1499
	/* Base feature set */
1500
	netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM |
1501
		NETIF_F_GRO | NETIF_F_SG;
1502 1503 1504

	/* AST2400  doesn't have working HW checksum generation */
	if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac")))
1505
		netdev->hw_features &= ~NETIF_F_HW_CSUM;
1506
	if (np && of_get_property(np, "no-hw-checksum", NULL))
1507 1508
		netdev->hw_features &= ~(NETIF_F_HW_CSUM | NETIF_F_RXCSUM);
	netdev->features |= netdev->hw_features;
G
Gavin Shan 已提交
1509

1510 1511 1512 1513 1514 1515 1516
	/* register network device */
	err = register_netdev(netdev);
	if (err) {
		dev_err(&pdev->dev, "Failed to register netdev\n");
		goto err_register_netdev;
	}

1517
	netdev_info(netdev, "irq %d, mapped at %p\n", netdev->irq, priv->base);
1518 1519 1520

	return 0;

G
Gavin Shan 已提交
1521
err_ncsi_dev:
1522
err_register_netdev:
1523 1524
	ftgmac100_destroy_mdio(netdev);
err_setup_mdio:
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
	iounmap(priv->base);
err_ioremap:
	release_resource(priv->res);
err_req_mem:
	netif_napi_del(&priv->napi);
	free_netdev(netdev);
err_alloc_etherdev:
	return err;
}

1535
static int ftgmac100_remove(struct platform_device *pdev)
1536 1537 1538 1539 1540 1541 1542 1543
{
	struct net_device *netdev;
	struct ftgmac100 *priv;

	netdev = platform_get_drvdata(pdev);
	priv = netdev_priv(netdev);

	unregister_netdev(netdev);
1544 1545 1546 1547 1548 1549

	/* There's a small chance the reset task will have been re-queued,
	 * during stop, make sure it's gone before we free the structure.
	 */
	cancel_work_sync(&priv->reset_task);

1550
	ftgmac100_destroy_mdio(netdev);
1551 1552 1553 1554 1555 1556 1557 1558 1559

	iounmap(priv->base);
	release_resource(priv->res);

	netif_napi_del(&priv->napi);
	free_netdev(netdev);
	return 0;
}

1560 1561 1562 1563 1564 1565
static const struct of_device_id ftgmac100_of_match[] = {
	{ .compatible = "faraday,ftgmac100" },
	{ }
};
MODULE_DEVICE_TABLE(of, ftgmac100_of_match);

1566
static struct platform_driver ftgmac100_driver = {
1567
	.probe	= ftgmac100_probe,
1568
	.remove	= ftgmac100_remove,
1569 1570 1571
	.driver	= {
		.name		= DRV_NAME,
		.of_match_table	= ftgmac100_of_match,
1572 1573
	},
};
1574
module_platform_driver(ftgmac100_driver);
1575 1576 1577 1578

MODULE_AUTHOR("Po-Yu Chuang <ratbert@faraday-tech.com>");
MODULE_DESCRIPTION("FTGMAC100 driver");
MODULE_LICENSE("GPL");