ftgmac100.c 37.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Faraday FTGMAC100 Gigabit Ethernet
 *
 * (C) Copyright 2009-2011 Faraday Technology
 * Po-Yu Chuang <ratbert@faraday-tech.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt

#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
27
#include <linux/interrupt.h>
28 29 30
#include <linux/io.h>
#include <linux/module.h>
#include <linux/netdevice.h>
31
#include <linux/of.h>
32 33
#include <linux/phy.h>
#include <linux/platform_device.h>
34
#include <linux/property.h>
35
#include <net/ip.h>
G
Gavin Shan 已提交
36
#include <net/ncsi.h>
37 38 39 40 41 42 43 44 45

#include "ftgmac100.h"

#define DRV_NAME	"ftgmac100"
#define DRV_VERSION	"0.7"

#define RX_QUEUE_ENTRIES	256	/* must be power of 2 */
#define TX_QUEUE_ENTRIES	512	/* must be power of 2 */

46 47
#define MAX_PKT_SIZE		1536
#define RX_BUF_SIZE		MAX_PKT_SIZE	/* must be smaller than 0x3fff */
48

49 50 51
/* Min number of tx ring entries before stopping queue */
#define TX_THRESHOLD		(1)

52 53 54 55 56 57
struct ftgmac100_descs {
	struct ftgmac100_rxdes rxdes[RX_QUEUE_ENTRIES];
	struct ftgmac100_txdes txdes[TX_QUEUE_ENTRIES];
};

struct ftgmac100 {
58
	/* Registers */
59 60 61 62 63 64
	struct resource *res;
	void __iomem *base;

	struct ftgmac100_descs *descs;
	dma_addr_t descs_dma_addr;

65
	/* Rx ring */
66
	struct sk_buff *rx_skbs[RX_QUEUE_ENTRIES];
67
	unsigned int rx_pointer;
68 69 70
	u32 rxdes0_edorr_mask;

	/* Tx ring */
71
	struct sk_buff *tx_skbs[TX_QUEUE_ENTRIES];
72 73
	unsigned int tx_clean_pointer;
	unsigned int tx_pointer;
74
	u32 txdes0_edotr_mask;
75

76 77 78 79
	/* Scratch page to use when rx skb alloc fails */
	void *rx_scratch;
	dma_addr_t rx_scratch_dma;

80
	/* Component structures */
81 82
	struct net_device *netdev;
	struct device *dev;
G
Gavin Shan 已提交
83
	struct ncsi_dev *ndev;
84
	struct napi_struct napi;
85
	struct work_struct reset_task;
86
	struct mii_bus *mii_bus;
87 88

	/* Link management */
89 90
	int cur_speed;
	int cur_duplex;
G
Gavin Shan 已提交
91
	bool use_ncsi;
92

93
	/* Misc */
94
	bool need_mac_restart;
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
};

static void ftgmac100_set_rx_ring_base(struct ftgmac100 *priv, dma_addr_t addr)
{
	iowrite32(addr, priv->base + FTGMAC100_OFFSET_RXR_BADR);
}

static void ftgmac100_set_rx_buffer_size(struct ftgmac100 *priv,
		unsigned int size)
{
	size = FTGMAC100_RBSR_SIZE(size);
	iowrite32(size, priv->base + FTGMAC100_OFFSET_RBSR);
}

static void ftgmac100_set_normal_prio_tx_ring_base(struct ftgmac100 *priv,
						   dma_addr_t addr)
{
	iowrite32(addr, priv->base + FTGMAC100_OFFSET_NPTXR_BADR);
}

static void ftgmac100_txdma_normal_prio_start_polling(struct ftgmac100 *priv)
{
	iowrite32(1, priv->base + FTGMAC100_OFFSET_NPTXPD);
}

120
static int ftgmac100_reset_mac(struct ftgmac100 *priv, u32 maccr)
121 122 123 124 125
{
	struct net_device *netdev = priv->netdev;
	int i;

	/* NOTE: reset clears all registers */
126 127 128 129
	iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
	iowrite32(maccr | FTGMAC100_MACCR_SW_RST,
		  priv->base + FTGMAC100_OFFSET_MACCR);
	for (i = 0; i < 50; i++) {
130 131 132 133 134 135
		unsigned int maccr;

		maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
		if (!(maccr & FTGMAC100_MACCR_SW_RST))
			return 0;

136
		udelay(1);
137 138
	}

139
	netdev_err(netdev, "Hardware reset failed\n");
140 141 142
	return -EIO;
}

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
static int ftgmac100_reset_and_config_mac(struct ftgmac100 *priv)
{
	u32 maccr = 0;

	switch (priv->cur_speed) {
	case SPEED_10:
	case 0: /* no link */
		break;

	case SPEED_100:
		maccr |= FTGMAC100_MACCR_FAST_MODE;
		break;

	case SPEED_1000:
		maccr |= FTGMAC100_MACCR_GIGA_MODE;
		break;
	default:
		netdev_err(priv->netdev, "Unknown speed %d !\n",
			   priv->cur_speed);
		break;
	}

	/* (Re)initialize the queue pointers */
	priv->rx_pointer = 0;
	priv->tx_clean_pointer = 0;
	priv->tx_pointer = 0;

	/* The doc says reset twice with 10us interval */
	if (ftgmac100_reset_mac(priv, maccr))
		return -EIO;
	usleep_range(10, 1000);
	return ftgmac100_reset_mac(priv, maccr);
}

177 178 179 180 181 182 183 184 185
static void ftgmac100_set_mac(struct ftgmac100 *priv, const unsigned char *mac)
{
	unsigned int maddr = mac[0] << 8 | mac[1];
	unsigned int laddr = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];

	iowrite32(maddr, priv->base + FTGMAC100_OFFSET_MAC_MADR);
	iowrite32(laddr, priv->base + FTGMAC100_OFFSET_MAC_LADR);
}

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
static void ftgmac100_setup_mac(struct ftgmac100 *priv)
{
	u8 mac[ETH_ALEN];
	unsigned int m;
	unsigned int l;
	void *addr;

	addr = device_get_mac_address(priv->dev, mac, ETH_ALEN);
	if (addr) {
		ether_addr_copy(priv->netdev->dev_addr, mac);
		dev_info(priv->dev, "Read MAC address %pM from device tree\n",
			 mac);
		return;
	}

	m = ioread32(priv->base + FTGMAC100_OFFSET_MAC_MADR);
	l = ioread32(priv->base + FTGMAC100_OFFSET_MAC_LADR);

	mac[0] = (m >> 8) & 0xff;
	mac[1] = m & 0xff;
	mac[2] = (l >> 24) & 0xff;
	mac[3] = (l >> 16) & 0xff;
	mac[4] = (l >> 8) & 0xff;
	mac[5] = l & 0xff;

	if (is_valid_ether_addr(mac)) {
		ether_addr_copy(priv->netdev->dev_addr, mac);
		dev_info(priv->dev, "Read MAC address %pM from chip\n", mac);
	} else {
		eth_hw_addr_random(priv->netdev);
		dev_info(priv->dev, "Generated random MAC address %pM\n",
			 priv->netdev->dev_addr);
	}
}

static int ftgmac100_set_mac_addr(struct net_device *dev, void *p)
{
	int ret;

	ret = eth_prepare_mac_addr_change(dev, p);
	if (ret < 0)
		return ret;

	eth_commit_mac_addr_change(dev, p);
	ftgmac100_set_mac(netdev_priv(dev), dev->dev_addr);

	return 0;
}

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
static void ftgmac100_init_hw(struct ftgmac100 *priv)
{
	/* setup ring buffer base registers */
	ftgmac100_set_rx_ring_base(priv,
				   priv->descs_dma_addr +
				   offsetof(struct ftgmac100_descs, rxdes));
	ftgmac100_set_normal_prio_tx_ring_base(priv,
					       priv->descs_dma_addr +
					       offsetof(struct ftgmac100_descs, txdes));

	ftgmac100_set_rx_buffer_size(priv, RX_BUF_SIZE);

	iowrite32(FTGMAC100_APTC_RXPOLL_CNT(1), priv->base + FTGMAC100_OFFSET_APTC);

	ftgmac100_set_mac(priv, priv->netdev->dev_addr);
}

252
static void ftgmac100_start_hw(struct ftgmac100 *priv)
253
{
254
	u32 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
255

256 257
	/* Keep the original GMAC and FAST bits */
	maccr &= (FTGMAC100_MACCR_FAST_MODE | FTGMAC100_MACCR_GIGA_MODE);
258

259 260 261 262 263 264 265 266 267
	/* Add all the main enable bits */
	maccr |= FTGMAC100_MACCR_TXDMA_EN	|
		 FTGMAC100_MACCR_RXDMA_EN	|
		 FTGMAC100_MACCR_TXMAC_EN	|
		 FTGMAC100_MACCR_RXMAC_EN	|
		 FTGMAC100_MACCR_CRC_APD	|
		 FTGMAC100_MACCR_PHY_LINK_LEVEL	|
		 FTGMAC100_MACCR_RX_RUNT	|
		 FTGMAC100_MACCR_RX_BROADPKT;
268

269
	/* Add other bits as needed */
270 271 272
	if (priv->cur_duplex == DUPLEX_FULL)
		maccr |= FTGMAC100_MACCR_FULLDUP;

273
	/* Hit the HW */
274 275 276 277 278 279 280 281
	iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
}

static void ftgmac100_stop_hw(struct ftgmac100 *priv)
{
	iowrite32(0, priv->base + FTGMAC100_OFFSET_MACCR);
}

282 283
static int ftgmac100_alloc_rx_buf(struct ftgmac100 *priv, unsigned int entry,
				  struct ftgmac100_rxdes *rxdes, gfp_t gfp)
284 285
{
	struct net_device *netdev = priv->netdev;
286
	struct sk_buff *skb;
287
	dma_addr_t map;
288
	int err;
289

290 291
	skb = netdev_alloc_skb_ip_align(netdev, RX_BUF_SIZE);
	if (unlikely(!skb)) {
292
		if (net_ratelimit())
293
			netdev_warn(netdev, "failed to allocate rx skb\n");
294 295
		err = -ENOMEM;
		map = priv->rx_scratch_dma;
296 297 298 299 300 301 302 303 304 305 306
	} else {
		map = dma_map_single(priv->dev, skb->data, RX_BUF_SIZE,
				     DMA_FROM_DEVICE);
		if (unlikely(dma_mapping_error(priv->dev, map))) {
			if (net_ratelimit())
				netdev_err(netdev, "failed to map rx page\n");
			dev_kfree_skb_any(skb);
			map = priv->rx_scratch_dma;
			skb = NULL;
			err = -ENOMEM;
		}
307 308
	}

309 310
	/* Store skb */
	priv->rx_skbs[entry] = skb;
311

312
	/* Store DMA address into RX desc */
313
	rxdes->rxdes3 = cpu_to_le32(map);
314 315 316 317

	/* Ensure the above is ordered vs clearing the OWN bit */
	dma_wmb();

318 319 320 321 322
	/* Clean status (which resets own bit) */
	if (entry == (RX_QUEUE_ENTRIES - 1))
		rxdes->rxdes0 = cpu_to_le32(priv->rxdes0_edorr_mask);
	else
		rxdes->rxdes0 = 0;
323

324 325 326
	return 0;
}

327 328 329 330 331
static int ftgmac100_next_rx_pointer(int pointer)
{
	return (pointer + 1) & (RX_QUEUE_ENTRIES - 1);
}

332
static void ftgmac100_rx_packet_error(struct ftgmac100 *priv, u32 status)
333 334 335
{
	struct net_device *netdev = priv->netdev;

336
	if (status & FTGMAC100_RXDES0_RX_ERR)
337 338
		netdev->stats.rx_errors++;

339
	if (status & FTGMAC100_RXDES0_CRC_ERR)
340 341
		netdev->stats.rx_crc_errors++;

342 343 344
	if (status & (FTGMAC100_RXDES0_FTL |
		      FTGMAC100_RXDES0_RUNT |
		      FTGMAC100_RXDES0_RX_ODD_NB))
345 346 347 348 349 350 351 352
		netdev->stats.rx_length_errors++;
}

static bool ftgmac100_rx_packet(struct ftgmac100 *priv, int *processed)
{
	struct net_device *netdev = priv->netdev;
	struct ftgmac100_rxdes *rxdes;
	struct sk_buff *skb;
353
	unsigned int pointer, size;
354
	u32 status, csum_vlan;
355
	dma_addr_t map;
356

357 358 359 360
	/* Grab next RX descriptor */
	pointer = priv->rx_pointer;
	rxdes = &priv->descs->rxdes[pointer];

361 362 363
	/* Grab descriptor status */
	status = le32_to_cpu(rxdes->rxdes0);

364
	/* Do we have a packet ? */
365
	if (!(status & FTGMAC100_RXDES0_RXPKT_RDY))
366 367
		return false;

368 369 370
	/* Order subsequent reads with the test for the ready bit */
	dma_rmb();

371
	/* We don't cope with fragmented RX packets */
372 373
	if (unlikely(!(status & FTGMAC100_RXDES0_FRS) ||
		     !(status & FTGMAC100_RXDES0_LRS)))
374 375
		goto drop;

376 377 378 379
	/* Grab received size and csum vlan field in the descriptor */
	size = status & FTGMAC100_RXDES0_VDBC;
	csum_vlan = le32_to_cpu(rxdes->rxdes1);

380
	/* Any error (other than csum offload) flagged ? */
381
	if (unlikely(status & RXDES0_ANY_ERROR)) {
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
		/* Correct for incorrect flagging of runt packets
		 * with vlan tags... Just accept a runt packet that
		 * has been flagged as vlan and whose size is at
		 * least 60 bytes.
		 */
		if ((status & FTGMAC100_RXDES0_RUNT) &&
		    (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL) &&
		    (size >= 60))
			status &= ~FTGMAC100_RXDES0_RUNT;

		/* Any error still in there ? */
		if (status & RXDES0_ANY_ERROR) {
			ftgmac100_rx_packet_error(priv, status);
			goto drop;
		}
397 398
	}

399
	/* If the packet had no skb (failed to allocate earlier)
400 401
	 * then try to allocate one and skip
	 */
402 403 404
	skb = priv->rx_skbs[pointer];
	if (!unlikely(skb)) {
		ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
405
		goto drop;
406 407
	}

408
	if (unlikely(status & FTGMAC100_RXDES0_MULTICAST))
409 410
		netdev->stats.multicast++;

411 412 413 414 415
	/* If the HW found checksum errors, bounce it to software.
	 *
	 * If we didn't, we need to see if the packet was recognized
	 * by HW as one of the supported checksummed protocols before
	 * we accept the HW test results.
416
	 */
417
	if (netdev->features & NETIF_F_RXCSUM) {
418 419 420
		u32 err_bits = FTGMAC100_RXDES1_TCP_CHKSUM_ERR |
			FTGMAC100_RXDES1_UDP_CHKSUM_ERR |
			FTGMAC100_RXDES1_IP_CHKSUM_ERR;
421
		if ((csum_vlan & err_bits) ||
422
		    !(csum_vlan & FTGMAC100_RXDES1_PROT_MASK))
423 424 425 426
			skb->ip_summed = CHECKSUM_NONE;
		else
			skb->ip_summed = CHECKSUM_UNNECESSARY;
	}
427

428
	/* Transfer received size to skb */
429
	skb_put(skb, size);
430

431
	/* Tear down DMA mapping, do necessary cache management */
432 433
	map = le32_to_cpu(rxdes->rxdes3);

434 435 436 437 438 439 440 441 442
#if defined(CONFIG_ARM) && !defined(CONFIG_ARM_DMA_USE_IOMMU)
	/* When we don't have an iommu, we can save cycles by not
	 * invalidating the cache for the part of the packet that
	 * wasn't received.
	 */
	dma_unmap_single(priv->dev, map, size, DMA_FROM_DEVICE);
#else
	dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
#endif
443 444


445 446
	/* Resplenish rx ring */
	ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
447
	priv->rx_pointer = ftgmac100_next_rx_pointer(pointer);
448 449 450 451

	skb->protocol = eth_type_trans(skb, netdev);

	netdev->stats.rx_packets++;
452
	netdev->stats.rx_bytes += size;
453 454

	/* push packet to protocol stack */
455 456 457 458
	if (skb->ip_summed == CHECKSUM_NONE)
		netif_receive_skb(skb);
	else
		napi_gro_receive(&priv->napi, skb);
459 460 461

	(*processed)++;
	return true;
462 463 464

 drop:
	/* Clean rxdes0 (which resets own bit) */
465
	rxdes->rxdes0 = cpu_to_le32(status & priv->rxdes0_edorr_mask);
466 467 468
	priv->rx_pointer = ftgmac100_next_rx_pointer(pointer);
	netdev->stats.rx_dropped++;
	return true;
469 470 471 472 473 474 475 476 477 478 479 480
}

static bool ftgmac100_txdes_owned_by_dma(struct ftgmac100_txdes *txdes)
{
	return txdes->txdes0 & cpu_to_le32(FTGMAC100_TXDES0_TXDMA_OWN);
}

static void ftgmac100_txdes_set_dma_own(struct ftgmac100_txdes *txdes)
{
	txdes->txdes0 |= cpu_to_le32(FTGMAC100_TXDES0_TXDMA_OWN);
}

481 482
static void ftgmac100_txdes_set_end_of_ring(const struct ftgmac100 *priv,
					    struct ftgmac100_txdes *txdes)
483
{
484
	txdes->txdes0 |= cpu_to_le32(priv->txdes0_edotr_mask);
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
}

static void ftgmac100_txdes_set_first_segment(struct ftgmac100_txdes *txdes)
{
	txdes->txdes0 |= cpu_to_le32(FTGMAC100_TXDES0_FTS);
}

static void ftgmac100_txdes_set_last_segment(struct ftgmac100_txdes *txdes)
{
	txdes->txdes0 |= cpu_to_le32(FTGMAC100_TXDES0_LTS);
}

static void ftgmac100_txdes_set_buffer_size(struct ftgmac100_txdes *txdes,
					    unsigned int len)
{
	txdes->txdes0 |= cpu_to_le32(FTGMAC100_TXDES0_TXBUF_SIZE(len));
}

static void ftgmac100_txdes_set_txint(struct ftgmac100_txdes *txdes)
{
	txdes->txdes1 |= cpu_to_le32(FTGMAC100_TXDES1_TXIC);
}

static void ftgmac100_txdes_set_tcpcs(struct ftgmac100_txdes *txdes)
{
	txdes->txdes1 |= cpu_to_le32(FTGMAC100_TXDES1_TCP_CHKSUM);
}

static void ftgmac100_txdes_set_udpcs(struct ftgmac100_txdes *txdes)
{
	txdes->txdes1 |= cpu_to_le32(FTGMAC100_TXDES1_UDP_CHKSUM);
}

static void ftgmac100_txdes_set_ipcs(struct ftgmac100_txdes *txdes)
{
	txdes->txdes1 |= cpu_to_le32(FTGMAC100_TXDES1_IP_CHKSUM);
}

static void ftgmac100_txdes_set_dma_addr(struct ftgmac100_txdes *txdes,
					 dma_addr_t addr)
{
	txdes->txdes3 = cpu_to_le32(addr);
}

static dma_addr_t ftgmac100_txdes_get_dma_addr(struct ftgmac100_txdes *txdes)
{
	return le32_to_cpu(txdes->txdes3);
}

static int ftgmac100_next_tx_pointer(int pointer)
{
	return (pointer + 1) & (TX_QUEUE_ENTRIES - 1);
}

539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
static u32 ftgmac100_tx_buf_avail(struct ftgmac100 *priv)
{
	/* Returns the number of available slots in the TX queue
	 *
	 * This always leaves one free slot so we don't have to
	 * worry about empty vs. full, and this simplifies the
	 * test for ftgmac100_tx_buf_cleanable() below
	 */
	return (priv->tx_clean_pointer - priv->tx_pointer - 1) &
		(TX_QUEUE_ENTRIES - 1);
}

static bool ftgmac100_tx_buf_cleanable(struct ftgmac100 *priv)
{
	return priv->tx_pointer != priv->tx_clean_pointer;
}

556 557 558 559 560 561 562 563 564 565 566 567 568 569
static void ftgmac100_free_tx_packet(struct ftgmac100 *priv,
				     unsigned int pointer,
				     struct sk_buff *skb,
				     struct ftgmac100_txdes *txdes)
{
	dma_addr_t map;

	map = ftgmac100_txdes_get_dma_addr(txdes);

	dma_unmap_single(priv->dev, map, skb_headlen(skb), DMA_TO_DEVICE);

	dev_kfree_skb(skb);
	priv->tx_skbs[pointer] = NULL;

570 571 572 573 574 575
	/* Clear txdes0 except end of ring bit, clear txdes1 as we
	 * only "OR" into it, leave 2 and 3 alone as 2 is unused
	 * and 3 will be overwritten entirely
	 */
	txdes->txdes0 &= cpu_to_le32(priv->txdes0_edotr_mask);
	txdes->txdes1 = 0;
576 577
}

578 579 580 581 582
static bool ftgmac100_tx_complete_packet(struct ftgmac100 *priv)
{
	struct net_device *netdev = priv->netdev;
	struct ftgmac100_txdes *txdes;
	struct sk_buff *skb;
583
	unsigned int pointer;
584

585 586
	pointer = priv->tx_clean_pointer;
	txdes = &priv->descs->txdes[pointer];
587 588 589 590

	if (ftgmac100_txdes_owned_by_dma(txdes))
		return false;

591
	skb = priv->tx_skbs[pointer];
592 593
	netdev->stats.tx_packets++;
	netdev->stats.tx_bytes += skb->len;
594
	ftgmac100_free_tx_packet(priv, pointer, skb, txdes);
595

596
	priv->tx_clean_pointer = ftgmac100_next_tx_pointer(pointer);
597 598 599 600 601 602

	return true;
}

static void ftgmac100_tx_complete(struct ftgmac100 *priv)
{
603 604 605 606 607
	struct net_device *netdev = priv->netdev;

	/* Process all completed packets */
	while (ftgmac100_tx_buf_cleanable(priv) &&
	       ftgmac100_tx_complete_packet(priv))
608
		;
609 610 611 612 613 614 615 616 617 618 619 620 621 622

	/* Restart queue if needed */
	smp_mb();
	if (unlikely(netif_queue_stopped(netdev) &&
		     ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)) {
		struct netdev_queue *txq;

		txq = netdev_get_tx_queue(netdev, 0);
		__netif_tx_lock(txq, smp_processor_id());
		if (netif_queue_stopped(netdev) &&
		    ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
			netif_wake_queue(netdev);
		__netif_tx_unlock(txq);
	}
623 624
}

625 626
static int ftgmac100_hard_start_xmit(struct sk_buff *skb,
				     struct net_device *netdev)
627
{
628 629
	struct ftgmac100 *priv = netdev_priv(netdev);
	struct ftgmac100_txdes *txdes;
630
	unsigned int pointer;
631 632
	dma_addr_t map;

633 634 635 636 637 638 639
	/* The HW doesn't pad small frames */
	if (eth_skb_pad(skb)) {
		netdev->stats.tx_dropped++;
		return NETDEV_TX_OK;
	}

	/* Reject oversize packets */
640 641 642
	if (unlikely(skb->len > MAX_PKT_SIZE)) {
		if (net_ratelimit())
			netdev_dbg(netdev, "tx packet too big\n");
643
		goto drop;
644 645 646 647 648 649 650
	}

	map = dma_map_single(priv->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
	if (unlikely(dma_mapping_error(priv->dev, map))) {
		/* drop packet */
		if (net_ratelimit())
			netdev_err(netdev, "map socket buffer failed\n");
651
		goto drop;
652
	}
653

654 655 656
	/* Grab the next free tx descriptor */
	pointer = priv->tx_pointer;
	txdes = &priv->descs->txdes[pointer];
657 658

	/* setup TX descriptor */
659
	priv->tx_skbs[pointer] = skb;
660
	ftgmac100_txdes_set_dma_addr(txdes, map);
661
	ftgmac100_txdes_set_buffer_size(txdes, skb->len);
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679

	ftgmac100_txdes_set_first_segment(txdes);
	ftgmac100_txdes_set_last_segment(txdes);
	ftgmac100_txdes_set_txint(txdes);
	if (skb->ip_summed == CHECKSUM_PARTIAL) {
		__be16 protocol = skb->protocol;

		if (protocol == cpu_to_be16(ETH_P_IP)) {
			u8 ip_proto = ip_hdr(skb)->protocol;

			ftgmac100_txdes_set_ipcs(txdes);
			if (ip_proto == IPPROTO_TCP)
				ftgmac100_txdes_set_tcpcs(txdes);
			else if (ip_proto == IPPROTO_UDP)
				ftgmac100_txdes_set_udpcs(txdes);
		}
	}

680 681 682 683
	/* Order the previous packet and descriptor udpates
	 * before setting the OWN bit.
	 */
	dma_wmb();
684 685
	ftgmac100_txdes_set_dma_own(txdes);

686 687 688
	/* Update next TX pointer */
	priv->tx_pointer = ftgmac100_next_tx_pointer(pointer);

689 690 691 692 693
	/* If there isn't enough room for all the fragments of a new packet
	 * in the TX ring, stop the queue. The sequence below is race free
	 * vs. a concurrent restart in ftgmac100_poll()
	 */
	if (unlikely(ftgmac100_tx_buf_avail(priv) < TX_THRESHOLD)) {
694
		netif_stop_queue(netdev);
695 696 697 698 699
		/* Order the queue stop with the test below */
		smp_mb();
		if (ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
			netif_wake_queue(netdev);
	}
700 701 702

	ftgmac100_txdma_normal_prio_start_polling(priv);

703 704 705 706 707 708 709
	return NETDEV_TX_OK;

 drop:
	/* Drop the packet */
	dev_kfree_skb_any(skb);
	netdev->stats.tx_dropped++;

710 711 712 713 714 715 716
	return NETDEV_TX_OK;
}

static void ftgmac100_free_buffers(struct ftgmac100 *priv)
{
	int i;

717
	/* Free all RX buffers */
718 719
	for (i = 0; i < RX_QUEUE_ENTRIES; i++) {
		struct ftgmac100_rxdes *rxdes = &priv->descs->rxdes[i];
720
		struct sk_buff *skb = priv->rx_skbs[i];
721
		dma_addr_t map = le32_to_cpu(rxdes->rxdes3);
722

723
		if (!skb)
724 725
			continue;

726 727 728
		priv->rx_skbs[i] = NULL;
		dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
		dev_kfree_skb_any(skb);
729 730
	}

731
	/* Free all TX buffers */
732 733
	for (i = 0; i < TX_QUEUE_ENTRIES; i++) {
		struct ftgmac100_txdes *txdes = &priv->descs->txdes[i];
734
		struct sk_buff *skb = priv->tx_skbs[i];
735

736 737
		if (skb)
			ftgmac100_free_tx_packet(priv, i, skb, txdes);
738 739 740
	}
}

741
static void ftgmac100_free_rings(struct ftgmac100 *priv)
742
{
743 744 745 746
	/* Free descriptors */
	if (priv->descs)
		dma_free_coherent(priv->dev, sizeof(struct ftgmac100_descs),
				  priv->descs, priv->descs_dma_addr);
747 748 749 750 751

	/* Free scratch packet buffer */
	if (priv->rx_scratch)
		dma_free_coherent(priv->dev, RX_BUF_SIZE,
				  priv->rx_scratch, priv->rx_scratch_dma);
752
}
753

754 755 756
static int ftgmac100_alloc_rings(struct ftgmac100 *priv)
{
	/* Allocate descriptors */
757 758 759
	priv->descs = dma_zalloc_coherent(priv->dev,
					  sizeof(struct ftgmac100_descs),
					  &priv->descs_dma_addr, GFP_KERNEL);
760 761 762
	if (!priv->descs)
		return -ENOMEM;

763 764 765 766 767 768 769 770
	/* Allocate scratch packet buffer */
	priv->rx_scratch = dma_alloc_coherent(priv->dev,
					      RX_BUF_SIZE,
					      &priv->rx_scratch_dma,
					      GFP_KERNEL);
	if (!priv->rx_scratch)
		return -ENOMEM;

771 772 773 774 775
	return 0;
}

static void ftgmac100_init_rings(struct ftgmac100 *priv)
{
776
	struct ftgmac100_rxdes *rxdes;
777 778 779
	int i;

	/* Initialize RX ring */
780
	for (i = 0; i < RX_QUEUE_ENTRIES; i++) {
781
		rxdes = &priv->descs->rxdes[i];
782
		rxdes->rxdes0 = 0;
783
		rxdes->rxdes3 = cpu_to_le32(priv->rx_scratch_dma);
784
	}
785 786
	/* Mark the end of the ring */
	rxdes->rxdes0 |= cpu_to_le32(priv->rxdes0_edorr_mask);
787 788 789 790 791 792 793 794 795 796

	/* Initialize TX ring */
	for (i = 0; i < TX_QUEUE_ENTRIES; i++)
		priv->descs->txdes[i].txdes0 = 0;
	ftgmac100_txdes_set_end_of_ring(priv, &priv->descs->txdes[i -1]);
}

static int ftgmac100_alloc_rx_buffers(struct ftgmac100 *priv)
{
	int i;
797 798 799 800

	for (i = 0; i < RX_QUEUE_ENTRIES; i++) {
		struct ftgmac100_rxdes *rxdes = &priv->descs->rxdes[i];

801
		if (ftgmac100_alloc_rx_buf(priv, i, rxdes, GFP_KERNEL))
802
			return -ENOMEM;
803 804 805 806 807 808 809
	}
	return 0;
}

static void ftgmac100_adjust_link(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);
810
	struct phy_device *phydev = netdev->phydev;
811
	int new_speed;
812

813 814 815 816 817 818 819 820
	/* We store "no link" as speed 0 */
	if (!phydev->link)
		new_speed = 0;
	else
		new_speed = phydev->speed;

	if (phydev->speed == priv->cur_speed &&
	    phydev->duplex == priv->cur_duplex)
821 822
		return;

823 824 825 826 827 828 829 830 831 832 833 834
	/* Print status if we have a link or we had one and just lost it,
	 * don't print otherwise.
	 */
	if (new_speed || priv->cur_speed)
		phy_print_status(phydev);

	priv->cur_speed = new_speed;
	priv->cur_duplex = phydev->duplex;

	/* Link is down, do nothing else */
	if (!new_speed)
		return;
835

836
	/* Disable all interrupts */
837 838
	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);

839 840
	/* Reset the adapter asynchronously */
	schedule_work(&priv->reset_task);
841 842 843 844 845
}

static int ftgmac100_mii_probe(struct ftgmac100 *priv)
{
	struct net_device *netdev = priv->netdev;
846
	struct phy_device *phydev;
847

848
	phydev = phy_find_first(priv->mii_bus);
849 850 851 852 853
	if (!phydev) {
		netdev_info(netdev, "%s: no PHY found\n", netdev->name);
		return -ENODEV;
	}

A
Andrew Lunn 已提交
854
	phydev = phy_connect(netdev, phydev_name(phydev),
855
			     &ftgmac100_adjust_link, PHY_INTERFACE_MODE_GMII);
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938

	if (IS_ERR(phydev)) {
		netdev_err(netdev, "%s: Could not attach to PHY\n", netdev->name);
		return PTR_ERR(phydev);
	}

	return 0;
}

static int ftgmac100_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
{
	struct net_device *netdev = bus->priv;
	struct ftgmac100 *priv = netdev_priv(netdev);
	unsigned int phycr;
	int i;

	phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);

	/* preserve MDC cycle threshold */
	phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;

	phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
		 FTGMAC100_PHYCR_REGAD(regnum) |
		 FTGMAC100_PHYCR_MIIRD;

	iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);

	for (i = 0; i < 10; i++) {
		phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);

		if ((phycr & FTGMAC100_PHYCR_MIIRD) == 0) {
			int data;

			data = ioread32(priv->base + FTGMAC100_OFFSET_PHYDATA);
			return FTGMAC100_PHYDATA_MIIRDATA(data);
		}

		udelay(100);
	}

	netdev_err(netdev, "mdio read timed out\n");
	return -EIO;
}

static int ftgmac100_mdiobus_write(struct mii_bus *bus, int phy_addr,
				   int regnum, u16 value)
{
	struct net_device *netdev = bus->priv;
	struct ftgmac100 *priv = netdev_priv(netdev);
	unsigned int phycr;
	int data;
	int i;

	phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);

	/* preserve MDC cycle threshold */
	phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;

	phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
		 FTGMAC100_PHYCR_REGAD(regnum) |
		 FTGMAC100_PHYCR_MIIWR;

	data = FTGMAC100_PHYDATA_MIIWDATA(value);

	iowrite32(data, priv->base + FTGMAC100_OFFSET_PHYDATA);
	iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);

	for (i = 0; i < 10; i++) {
		phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);

		if ((phycr & FTGMAC100_PHYCR_MIIWR) == 0)
			return 0;

		udelay(100);
	}

	netdev_err(netdev, "mdio write timed out\n");
	return -EIO;
}

static void ftgmac100_get_drvinfo(struct net_device *netdev,
				  struct ethtool_drvinfo *info)
{
939 940 941
	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
	strlcpy(info->bus_info, dev_name(&netdev->dev), sizeof(info->bus_info));
942 943 944 945 946
}

static const struct ethtool_ops ftgmac100_ethtool_ops = {
	.get_drvinfo		= ftgmac100_get_drvinfo,
	.get_link		= ethtool_op_get_link,
947 948
	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
949 950 951 952 953 954
};

static irqreturn_t ftgmac100_interrupt(int irq, void *dev_id)
{
	struct net_device *netdev = dev_id;
	struct ftgmac100 *priv = netdev_priv(netdev);
955
	unsigned int status, new_mask = FTGMAC100_INT_BAD;
956

957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
	/* Fetch and clear interrupt bits, process abnormal ones */
	status = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
	iowrite32(status, priv->base + FTGMAC100_OFFSET_ISR);
	if (unlikely(status & FTGMAC100_INT_BAD)) {

		/* RX buffer unavailable */
		if (status & FTGMAC100_INT_NO_RXBUF)
			netdev->stats.rx_over_errors++;

		/* received packet lost due to RX FIFO full */
		if (status & FTGMAC100_INT_RPKT_LOST)
			netdev->stats.rx_fifo_errors++;

		/* sent packet lost due to excessive TX collision */
		if (status & FTGMAC100_INT_XPKT_LOST)
			netdev->stats.tx_fifo_errors++;

		/* AHB error -> Reset the chip */
		if (status & FTGMAC100_INT_AHB_ERR) {
			if (net_ratelimit())
				netdev_warn(netdev,
					   "AHB bus error ! Resetting chip.\n");
			iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
			schedule_work(&priv->reset_task);
			return IRQ_HANDLED;
		}

		/* We may need to restart the MAC after such errors, delay
		 * this until after we have freed some Rx buffers though
		 */
		priv->need_mac_restart = true;

		/* Disable those errors until we restart */
		new_mask &= ~status;
	}

	/* Only enable "bad" interrupts while NAPI is on */
	iowrite32(new_mask, priv->base + FTGMAC100_OFFSET_IER);

	/* Schedule NAPI bh */
	napi_schedule_irqoff(&priv->napi);
998 999 1000 1001

	return IRQ_HANDLED;
}

1002 1003 1004 1005 1006 1007 1008 1009
static bool ftgmac100_check_rx(struct ftgmac100 *priv)
{
	struct ftgmac100_rxdes *rxdes = &priv->descs->rxdes[priv->rx_pointer];

	/* Do we have a packet ? */
	return !!(rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RXPKT_RDY));
}

1010 1011 1012
static int ftgmac100_poll(struct napi_struct *napi, int budget)
{
	struct ftgmac100 *priv = container_of(napi, struct ftgmac100, napi);
1013 1014
	int work_done = 0;
	bool more;
1015

1016 1017 1018
	/* Handle TX completions */
	if (ftgmac100_tx_buf_cleanable(priv))
		ftgmac100_tx_complete(priv);
1019

1020
	/* Handle RX packets */
1021
	do {
1022 1023
		more = ftgmac100_rx_packet(priv, &work_done);
	} while (more && work_done < budget);
1024 1025


1026 1027 1028 1029 1030
	/* The interrupt is telling us to kick the MAC back to life
	 * after an RX overflow
	 */
	if (unlikely(priv->need_mac_restart)) {
		ftgmac100_start_hw(priv);
1031

1032 1033 1034
		/* Re-enable "bad" interrupts */
		iowrite32(FTGMAC100_INT_BAD,
			  priv->base + FTGMAC100_OFFSET_IER);
1035 1036
	}

1037 1038 1039 1040 1041
	/* As long as we are waiting for transmit packets to be
	 * completed we keep NAPI going
	 */
	if (ftgmac100_tx_buf_cleanable(priv))
		work_done = budget;
1042

1043
	if (work_done < budget) {
1044 1045 1046 1047 1048 1049 1050
		/* We are about to re-enable all interrupts. However
		 * the HW has been latching RX/TX packet interrupts while
		 * they were masked. So we clear them first, then we need
		 * to re-check if there's something to process
		 */
		iowrite32(FTGMAC100_INT_RXTX,
			  priv->base + FTGMAC100_OFFSET_ISR);
1051 1052
		if (ftgmac100_check_rx(priv) ||
		    ftgmac100_tx_buf_cleanable(priv))
1053 1054 1055
			return budget;

		/* deschedule NAPI */
1056 1057 1058
		napi_complete(napi);

		/* enable all interrupts */
1059
		iowrite32(FTGMAC100_INT_ALL,
1060
			  priv->base + FTGMAC100_OFFSET_IER);
1061 1062
	}

1063
	return work_done;
1064 1065
}

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
static int ftgmac100_init_all(struct ftgmac100 *priv, bool ignore_alloc_err)
{
	int err = 0;

	/* Re-init descriptors (adjust queue sizes) */
	ftgmac100_init_rings(priv);

	/* Realloc rx descriptors */
	err = ftgmac100_alloc_rx_buffers(priv);
	if (err && !ignore_alloc_err)
		return err;

	/* Reinit and restart HW */
	ftgmac100_init_hw(priv);
	ftgmac100_start_hw(priv);

	/* Re-enable the device */
	napi_enable(&priv->napi);
	netif_start_queue(priv->netdev);

	/* Enable all interrupts */
1087
	iowrite32(FTGMAC100_INT_ALL, priv->base + FTGMAC100_OFFSET_IER);
1088 1089 1090 1091

	return err;
}

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
static void ftgmac100_reset_task(struct work_struct *work)
{
	struct ftgmac100 *priv = container_of(work, struct ftgmac100,
					      reset_task);
	struct net_device *netdev = priv->netdev;
	int err;

	netdev_dbg(netdev, "Resetting NIC...\n");

	/* Lock the world */
	rtnl_lock();
	if (netdev->phydev)
		mutex_lock(&netdev->phydev->lock);
	if (priv->mii_bus)
		mutex_lock(&priv->mii_bus->mdio_lock);


	/* Check if the interface is still up */
	if (!netif_running(netdev))
		goto bail;

	/* Stop the network stack */
	netif_trans_update(netdev);
	napi_disable(&priv->napi);
	netif_tx_disable(netdev);

	/* Stop and reset the MAC */
	ftgmac100_stop_hw(priv);
1120
	err = ftgmac100_reset_and_config_mac(priv);
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
	if (err) {
		/* Not much we can do ... it might come back... */
		netdev_err(netdev, "attempting to continue...\n");
	}

	/* Free all rx and tx buffers */
	ftgmac100_free_buffers(priv);

	/* Setup everything again and restart chip */
	ftgmac100_init_all(priv, true);

	netdev_dbg(netdev, "Reset done !\n");
 bail:
	if (priv->mii_bus)
		mutex_unlock(&priv->mii_bus->mdio_lock);
	if (netdev->phydev)
		mutex_unlock(&netdev->phydev->lock);
	rtnl_unlock();
}

1141 1142 1143 1144 1145
static int ftgmac100_open(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);
	int err;

1146 1147
	/* Allocate ring buffers  */
	err = ftgmac100_alloc_rings(priv);
1148
	if (err) {
1149 1150
		netdev_err(netdev, "Failed to allocate descriptors\n");
		return err;
1151 1152
	}

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
	/* When using NC-SI we force the speed to 100Mbit/s full duplex,
	 *
	 * Otherwise we leave it set to 0 (no link), the link
	 * message from the PHY layer will handle setting it up to
	 * something else if needed.
	 */
	if (priv->use_ncsi) {
		priv->cur_duplex = DUPLEX_FULL;
		priv->cur_speed = SPEED_100;
	} else {
		priv->cur_duplex = 0;
		priv->cur_speed = 0;
	}

1167 1168
	/* Reset the hardware */
	err = ftgmac100_reset_and_config_mac(priv);
1169 1170 1171
	if (err)
		goto err_hw;

1172 1173 1174
	/* Initialize NAPI */
	netif_napi_add(netdev, &priv->napi, ftgmac100_poll, 64);

1175 1176 1177 1178 1179 1180 1181
	/* Grab our interrupt */
	err = request_irq(netdev->irq, ftgmac100_interrupt, 0, netdev->name, netdev);
	if (err) {
		netdev_err(netdev, "failed to request irq %d\n", netdev->irq);
		goto err_irq;
	}

1182 1183 1184 1185 1186 1187
	/* Start things up */
	err = ftgmac100_init_all(priv, false);
	if (err) {
		netdev_err(netdev, "Failed to allocate packet buffers\n");
		goto err_alloc;
	}
G
Gavin Shan 已提交
1188

1189 1190
	if (netdev->phydev) {
		/* If we have a PHY, start polling */
G
Gavin Shan 已提交
1191
		phy_start(netdev->phydev);
1192 1193
	} else if (priv->use_ncsi) {
		/* If using NC-SI, set our carrier on and start the stack */
G
Gavin Shan 已提交
1194
		netif_carrier_on(netdev);
1195

1196
		/* Start the NCSI device */
G
Gavin Shan 已提交
1197 1198 1199 1200 1201
		err = ncsi_start_dev(priv->ndev);
		if (err)
			goto err_ncsi;
	}

1202 1203
	return 0;

1204
 err_ncsi:
G
Gavin Shan 已提交
1205 1206
	napi_disable(&priv->napi);
	netif_stop_queue(netdev);
1207 1208
 err_alloc:
	ftgmac100_free_buffers(priv);
1209
	free_irq(netdev->irq, netdev);
1210
 err_irq:
1211
	netif_napi_del(&priv->napi);
1212
 err_hw:
1213
	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1214
	ftgmac100_free_rings(priv);
1215 1216 1217 1218 1219 1220 1221
	return err;
}

static int ftgmac100_stop(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);

1222 1223 1224 1225 1226 1227 1228 1229
	/* Note about the reset task: We are called with the rtnl lock
	 * held, so we are synchronized against the core of the reset
	 * task. We must not try to synchronously cancel it otherwise
	 * we can deadlock. But since it will test for netif_running()
	 * which has already been cleared by the net core, we don't
	 * anything special to do.
	 */

1230 1231 1232 1233 1234
	/* disable all interrupts */
	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);

	netif_stop_queue(netdev);
	napi_disable(&priv->napi);
1235
	netif_napi_del(&priv->napi);
G
Gavin Shan 已提交
1236 1237
	if (netdev->phydev)
		phy_stop(netdev->phydev);
1238 1239
	else if (priv->use_ncsi)
		ncsi_stop_dev(priv->ndev);
1240 1241

	ftgmac100_stop_hw(priv);
1242
	free_irq(netdev->irq, netdev);
1243
	ftgmac100_free_buffers(priv);
1244
	ftgmac100_free_rings(priv);
1245 1246 1247 1248 1249 1250 1251

	return 0;
}

/* optional */
static int ftgmac100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
G
Gavin Shan 已提交
1252 1253 1254
	if (!netdev->phydev)
		return -ENXIO;

1255
	return phy_mii_ioctl(netdev->phydev, ifr, cmd);
1256 1257
}

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
static void ftgmac100_tx_timeout(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);

	/* Disable all interrupts */
	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);

	/* Do the reset outside of interrupt context */
	schedule_work(&priv->reset_task);
}

1269 1270 1271 1272
static const struct net_device_ops ftgmac100_netdev_ops = {
	.ndo_open		= ftgmac100_open,
	.ndo_stop		= ftgmac100_stop,
	.ndo_start_xmit		= ftgmac100_hard_start_xmit,
1273
	.ndo_set_mac_address	= ftgmac100_set_mac_addr,
1274 1275
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= ftgmac100_do_ioctl,
1276
	.ndo_tx_timeout		= ftgmac100_tx_timeout,
1277 1278
};

1279 1280 1281 1282 1283
static int ftgmac100_setup_mdio(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);
	struct platform_device *pdev = to_platform_device(priv->dev);
	int i, err = 0;
1284
	u32 reg;
1285 1286 1287 1288 1289 1290

	/* initialize mdio bus */
	priv->mii_bus = mdiobus_alloc();
	if (!priv->mii_bus)
		return -EIO;

1291 1292 1293 1294 1295 1296 1297 1298
	if (of_machine_is_compatible("aspeed,ast2400") ||
	    of_machine_is_compatible("aspeed,ast2500")) {
		/* This driver supports the old MDIO interface */
		reg = ioread32(priv->base + FTGMAC100_OFFSET_REVR);
		reg &= ~FTGMAC100_REVR_NEW_MDIO_INTERFACE;
		iowrite32(reg, priv->base + FTGMAC100_OFFSET_REVR);
	};

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
	priv->mii_bus->name = "ftgmac100_mdio";
	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%d",
		 pdev->name, pdev->id);
	priv->mii_bus->priv = priv->netdev;
	priv->mii_bus->read = ftgmac100_mdiobus_read;
	priv->mii_bus->write = ftgmac100_mdiobus_write;

	for (i = 0; i < PHY_MAX_ADDR; i++)
		priv->mii_bus->irq[i] = PHY_POLL;

	err = mdiobus_register(priv->mii_bus);
	if (err) {
		dev_err(priv->dev, "Cannot register MDIO bus!\n");
		goto err_register_mdiobus;
	}

	err = ftgmac100_mii_probe(priv);
	if (err) {
		dev_err(priv->dev, "MII Probe failed!\n");
		goto err_mii_probe;
	}

	return 0;

err_mii_probe:
	mdiobus_unregister(priv->mii_bus);
err_register_mdiobus:
	mdiobus_free(priv->mii_bus);
	return err;
}

static void ftgmac100_destroy_mdio(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);

	if (!netdev->phydev)
		return;

	phy_disconnect(netdev->phydev);
	mdiobus_unregister(priv->mii_bus);
	mdiobus_free(priv->mii_bus);
}

G
Gavin Shan 已提交
1342 1343 1344 1345 1346 1347 1348 1349 1350
static void ftgmac100_ncsi_handler(struct ncsi_dev *nd)
{
	if (unlikely(nd->state != ncsi_dev_state_functional))
		return;

	netdev_info(nd->dev, "NCSI interface %s\n",
		    nd->link_up ? "up" : "down");
}

1351 1352 1353 1354 1355 1356
static int ftgmac100_probe(struct platform_device *pdev)
{
	struct resource *res;
	int irq;
	struct net_device *netdev;
	struct ftgmac100 *priv;
G
Gavin Shan 已提交
1357
	int err = 0;
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378

	if (!pdev)
		return -ENODEV;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res)
		return -ENXIO;

	irq = platform_get_irq(pdev, 0);
	if (irq < 0)
		return irq;

	/* setup net_device */
	netdev = alloc_etherdev(sizeof(*priv));
	if (!netdev) {
		err = -ENOMEM;
		goto err_alloc_etherdev;
	}

	SET_NETDEV_DEV(netdev, &pdev->dev);

1379
	netdev->ethtool_ops = &ftgmac100_ethtool_ops;
1380
	netdev->netdev_ops = &ftgmac100_netdev_ops;
1381
	netdev->watchdog_timeo = 5 * HZ;
1382 1383 1384 1385 1386 1387 1388

	platform_set_drvdata(pdev, netdev);

	/* setup private data */
	priv = netdev_priv(netdev);
	priv->netdev = netdev;
	priv->dev = &pdev->dev;
1389
	INIT_WORK(&priv->reset_task, ftgmac100_reset_task);
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406

	/* map io memory */
	priv->res = request_mem_region(res->start, resource_size(res),
				       dev_name(&pdev->dev));
	if (!priv->res) {
		dev_err(&pdev->dev, "Could not reserve memory region\n");
		err = -ENOMEM;
		goto err_req_mem;
	}

	priv->base = ioremap(res->start, resource_size(res));
	if (!priv->base) {
		dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
		err = -EIO;
		goto err_ioremap;
	}

1407
	netdev->irq = irq;
1408

1409 1410 1411
	/* MAC address from chip or random one */
	ftgmac100_setup_mac(priv);

1412 1413 1414 1415 1416 1417 1418 1419 1420
	if (of_machine_is_compatible("aspeed,ast2400") ||
	    of_machine_is_compatible("aspeed,ast2500")) {
		priv->rxdes0_edorr_mask = BIT(30);
		priv->txdes0_edotr_mask = BIT(30);
	} else {
		priv->rxdes0_edorr_mask = BIT(15);
		priv->txdes0_edotr_mask = BIT(15);
	}

G
Gavin Shan 已提交
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
	if (pdev->dev.of_node &&
	    of_get_property(pdev->dev.of_node, "use-ncsi", NULL)) {
		if (!IS_ENABLED(CONFIG_NET_NCSI)) {
			dev_err(&pdev->dev, "NCSI stack not enabled\n");
			goto err_ncsi_dev;
		}

		dev_info(&pdev->dev, "Using NCSI interface\n");
		priv->use_ncsi = true;
		priv->ndev = ncsi_register_dev(netdev, ftgmac100_ncsi_handler);
		if (!priv->ndev)
			goto err_ncsi_dev;
	} else {
		priv->use_ncsi = false;
		err = ftgmac100_setup_mdio(netdev);
		if (err)
			goto err_setup_mdio;
	}

	/* We have to disable on-chip IP checksum functionality
	 * when NCSI is enabled on the interface. It doesn't work
	 * in that case.
	 */
1444
	netdev->features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM | NETIF_F_GRO;
G
Gavin Shan 已提交
1445 1446 1447 1448
	if (priv->use_ncsi &&
	    of_get_property(pdev->dev.of_node, "no-hw-checksum", NULL))
		netdev->features &= ~NETIF_F_IP_CSUM;

1449 1450 1451 1452 1453 1454 1455 1456

	/* register network device */
	err = register_netdev(netdev);
	if (err) {
		dev_err(&pdev->dev, "Failed to register netdev\n");
		goto err_register_netdev;
	}

1457
	netdev_info(netdev, "irq %d, mapped at %p\n", netdev->irq, priv->base);
1458 1459 1460

	return 0;

G
Gavin Shan 已提交
1461
err_ncsi_dev:
1462
err_register_netdev:
1463 1464
	ftgmac100_destroy_mdio(netdev);
err_setup_mdio:
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
	iounmap(priv->base);
err_ioremap:
	release_resource(priv->res);
err_req_mem:
	netif_napi_del(&priv->napi);
	free_netdev(netdev);
err_alloc_etherdev:
	return err;
}

1475
static int ftgmac100_remove(struct platform_device *pdev)
1476 1477 1478 1479 1480 1481 1482 1483
{
	struct net_device *netdev;
	struct ftgmac100 *priv;

	netdev = platform_get_drvdata(pdev);
	priv = netdev_priv(netdev);

	unregister_netdev(netdev);
1484 1485 1486 1487 1488 1489

	/* There's a small chance the reset task will have been re-queued,
	 * during stop, make sure it's gone before we free the structure.
	 */
	cancel_work_sync(&priv->reset_task);

1490
	ftgmac100_destroy_mdio(netdev);
1491 1492 1493 1494 1495 1496 1497 1498 1499

	iounmap(priv->base);
	release_resource(priv->res);

	netif_napi_del(&priv->napi);
	free_netdev(netdev);
	return 0;
}

1500 1501 1502 1503 1504 1505
static const struct of_device_id ftgmac100_of_match[] = {
	{ .compatible = "faraday,ftgmac100" },
	{ }
};
MODULE_DEVICE_TABLE(of, ftgmac100_of_match);

1506
static struct platform_driver ftgmac100_driver = {
1507
	.probe	= ftgmac100_probe,
1508
	.remove	= ftgmac100_remove,
1509 1510 1511
	.driver	= {
		.name		= DRV_NAME,
		.of_match_table	= ftgmac100_of_match,
1512 1513
	},
};
1514
module_platform_driver(ftgmac100_driver);
1515 1516 1517 1518

MODULE_AUTHOR("Po-Yu Chuang <ratbert@faraday-tech.com>");
MODULE_DESCRIPTION("FTGMAC100 driver");
MODULE_LICENSE("GPL");