mutex.c 30.5 KB
Newer Older
I
Ingo Molnar 已提交
1
/*
2
 * kernel/locking/mutex.c
I
Ingo Molnar 已提交
3 4 5 6 7 8 9 10 11 12
 *
 * Mutexes: blocking mutual exclusion locks
 *
 * Started by Ingo Molnar:
 *
 *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
 * David Howells for suggestions and improvements.
 *
13 14 15 16 17
 *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
 *    from the -rt tree, where it was originally implemented for rtmutexes
 *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
 *    and Sven Dietrich.
 *
18
 * Also see Documentation/locking/mutex-design.txt.
I
Ingo Molnar 已提交
19 20
 */
#include <linux/mutex.h>
21
#include <linux/ww_mutex.h>
I
Ingo Molnar 已提交
22
#include <linux/sched.h>
23
#include <linux/sched/rt.h>
24
#include <linux/export.h>
I
Ingo Molnar 已提交
25 26
#include <linux/spinlock.h>
#include <linux/interrupt.h>
27
#include <linux/debug_locks.h>
28
#include <linux/osq_lock.h>
I
Ingo Molnar 已提交
29 30 31 32 33 34 35

#ifdef CONFIG_DEBUG_MUTEXES
# include "mutex-debug.h"
#else
# include "mutex.h"
#endif

36 37
void
__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
I
Ingo Molnar 已提交
38
{
39
	atomic_long_set(&lock->owner, 0);
I
Ingo Molnar 已提交
40 41
	spin_lock_init(&lock->wait_lock);
	INIT_LIST_HEAD(&lock->wait_list);
42
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
43
	osq_lock_init(&lock->osq);
44
#endif
I
Ingo Molnar 已提交
45

46
	debug_mutex_init(lock, name, key);
I
Ingo Molnar 已提交
47 48 49
}
EXPORT_SYMBOL(__mutex_init);

50 51 52
/*
 * @owner: contains: 'struct task_struct *' to the current lock owner,
 * NULL means not owned. Since task_struct pointers are aligned at
53
 * at least L1_CACHE_BYTES, we have low bits to store extra state.
54 55
 *
 * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
56
 * Bit1 indicates unlock needs to hand the lock to the top-waiter
57
 * Bit2 indicates handoff has been done and we're waiting for pickup.
58 59
 */
#define MUTEX_FLAG_WAITERS	0x01
60
#define MUTEX_FLAG_HANDOFF	0x02
61
#define MUTEX_FLAG_PICKUP	0x04
62

63
#define MUTEX_FLAGS		0x07
64 65 66 67 68 69 70 71 72 73 74 75

static inline struct task_struct *__owner_task(unsigned long owner)
{
	return (struct task_struct *)(owner & ~MUTEX_FLAGS);
}

static inline unsigned long __owner_flags(unsigned long owner)
{
	return owner & MUTEX_FLAGS;
}

/*
76
 * Trylock variant that retuns the owning task on failure.
77
 */
78
static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock)
79 80 81 82 83
{
	unsigned long owner, curr = (unsigned long)current;

	owner = atomic_long_read(&lock->owner);
	for (;;) { /* must loop, can race against a flag */
84
		unsigned long old, flags = __owner_flags(owner);
85 86 87 88 89 90 91 92
		unsigned long task = owner & ~MUTEX_FLAGS;

		if (task) {
			if (likely(task != curr))
				break;

			if (likely(!(flags & MUTEX_FLAG_PICKUP)))
				break;
93

94 95 96 97 98
			flags &= ~MUTEX_FLAG_PICKUP;
		} else {
#ifdef CONFIG_DEBUG_MUTEXES
			DEBUG_LOCKS_WARN_ON(flags & MUTEX_FLAG_PICKUP);
#endif
99 100 101 102 103 104 105
		}

		/*
		 * We set the HANDOFF bit, we must make sure it doesn't live
		 * past the point where we acquire it. This would be possible
		 * if we (accidentally) set the bit on an unlocked mutex.
		 */
106
		flags &= ~MUTEX_FLAG_HANDOFF;
107

108
		old = atomic_long_cmpxchg_acquire(&lock->owner, owner, curr | flags);
109
		if (old == owner)
110
			return NULL;
111 112 113

		owner = old;
	}
114 115 116 117 118 119 120 121 122 123

	return __owner_task(owner);
}

/*
 * Actual trylock that will work on any unlocked state.
 */
static inline bool __mutex_trylock(struct mutex *lock)
{
	return !__mutex_trylock_or_owner(lock);
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
}

#ifndef CONFIG_DEBUG_LOCK_ALLOC
/*
 * Lockdep annotations are contained to the slow paths for simplicity.
 * There is nothing that would stop spreading the lockdep annotations outwards
 * except more code.
 */

/*
 * Optimistic trylock that only works in the uncontended case. Make sure to
 * follow with a __mutex_trylock() before failing.
 */
static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
{
	unsigned long curr = (unsigned long)current;

	if (!atomic_long_cmpxchg_acquire(&lock->owner, 0UL, curr))
		return true;

	return false;
}

static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
{
	unsigned long curr = (unsigned long)current;

	if (atomic_long_cmpxchg_release(&lock->owner, curr, 0UL) == curr)
		return true;

	return false;
}
#endif

static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
{
	atomic_long_or(flag, &lock->owner);
}

static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
{
	atomic_long_andnot(flag, &lock->owner);
}

168 169 170 171 172 173 174
static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
{
	return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
}

/*
 * Give up ownership to a specific task, when @task = NULL, this is equivalent
175 176 177
 * to a regular unlock. Sets PICKUP on a handoff, clears HANDOF, preserves
 * WAITERS. Provides RELEASE semantics like a regular unlock, the
 * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff.
178 179 180 181 182 183 184 185 186 187
 */
static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
{
	unsigned long owner = atomic_long_read(&lock->owner);

	for (;;) {
		unsigned long old, new;

#ifdef CONFIG_DEBUG_MUTEXES
		DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
188
		DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
189 190 191 192
#endif

		new = (owner & MUTEX_FLAG_WAITERS);
		new |= (unsigned long)task;
193 194
		if (task)
			new |= MUTEX_FLAG_PICKUP;
195 196 197 198 199 200 201 202 203

		old = atomic_long_cmpxchg_release(&lock->owner, owner, new);
		if (old == owner)
			break;

		owner = old;
	}
}

P
Peter Zijlstra 已提交
204
#ifndef CONFIG_DEBUG_LOCK_ALLOC
I
Ingo Molnar 已提交
205 206 207 208 209 210
/*
 * We split the mutex lock/unlock logic into separate fastpath and
 * slowpath functions, to reduce the register pressure on the fastpath.
 * We also put the fastpath first in the kernel image, to make sure the
 * branch is predicted by the CPU as default-untaken.
 */
211
static void __sched __mutex_lock_slowpath(struct mutex *lock);
I
Ingo Molnar 已提交
212

213
/**
I
Ingo Molnar 已提交
214 215 216 217 218 219 220 221 222
 * mutex_lock - acquire the mutex
 * @lock: the mutex to be acquired
 *
 * Lock the mutex exclusively for this task. If the mutex is not
 * available right now, it will sleep until it can get it.
 *
 * The mutex must later on be released by the same task that
 * acquired it. Recursive locking is not allowed. The task
 * may not exit without first unlocking the mutex. Also, kernel
223
 * memory where the mutex resides must not be freed with
I
Ingo Molnar 已提交
224 225 226 227 228 229 230 231 232 233
 * the mutex still locked. The mutex must first be initialized
 * (or statically defined) before it can be locked. memset()-ing
 * the mutex to 0 is not allowed.
 *
 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
 *   checks that will enforce the restrictions and will also do
 *   deadlock debugging. )
 *
 * This function is similar to (but not equivalent to) down().
 */
234
void __sched mutex_lock(struct mutex *lock)
I
Ingo Molnar 已提交
235
{
236
	might_sleep();
I
Ingo Molnar 已提交
237

238 239 240
	if (!__mutex_trylock_fast(lock))
		__mutex_lock_slowpath(lock);
}
I
Ingo Molnar 已提交
241
EXPORT_SYMBOL(mutex_lock);
P
Peter Zijlstra 已提交
242
#endif
I
Ingo Molnar 已提交
243

P
Peter Zijlstra 已提交
244 245
static __always_inline void
ww_mutex_lock_acquired(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx)
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
{
#ifdef CONFIG_DEBUG_MUTEXES
	/*
	 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
	 * but released with a normal mutex_unlock in this call.
	 *
	 * This should never happen, always use ww_mutex_unlock.
	 */
	DEBUG_LOCKS_WARN_ON(ww->ctx);

	/*
	 * Not quite done after calling ww_acquire_done() ?
	 */
	DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);

	if (ww_ctx->contending_lock) {
		/*
		 * After -EDEADLK you tried to
		 * acquire a different ww_mutex? Bad!
		 */
		DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);

		/*
		 * You called ww_mutex_lock after receiving -EDEADLK,
		 * but 'forgot' to unlock everything else first?
		 */
		DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
		ww_ctx->contending_lock = NULL;
	}

	/*
	 * Naughty, using a different class will lead to undefined behavior!
	 */
	DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
#endif
	ww_ctx->acquired++;
}

284 285 286 287 288 289 290
static inline bool __sched
__ww_ctx_stamp_after(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b)
{
	return a->stamp - b->stamp <= LONG_MAX &&
	       (a->stamp != b->stamp || a > b);
}

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
/*
 * Wake up any waiters that may have to back off when the lock is held by the
 * given context.
 *
 * Due to the invariants on the wait list, this can only affect the first
 * waiter with a context.
 *
 * The current task must not be on the wait list.
 */
static void __sched
__ww_mutex_wakeup_for_backoff(struct mutex *lock, struct ww_acquire_ctx *ww_ctx)
{
	struct mutex_waiter *cur;

	lockdep_assert_held(&lock->wait_lock);

	list_for_each_entry(cur, &lock->wait_list, list) {
		if (!cur->ww_ctx)
			continue;

		if (cur->ww_ctx->acquired > 0 &&
		    __ww_ctx_stamp_after(cur->ww_ctx, ww_ctx)) {
			debug_mutex_wake_waiter(lock, cur);
			wake_up_process(cur->task);
		}

		break;
	}
}

321
/*
322
 * After acquiring lock with fastpath or when we lost out in contested
323 324 325
 * slowpath, set ctx and wake up any waiters so they can recheck.
 */
static __always_inline void
P
Peter Zijlstra 已提交
326
ww_mutex_set_context_fastpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
{
	unsigned long flags;

	ww_mutex_lock_acquired(lock, ctx);

	lock->ctx = ctx;

	/*
	 * The lock->ctx update should be visible on all cores before
	 * the atomic read is done, otherwise contended waiters might be
	 * missed. The contended waiters will either see ww_ctx == NULL
	 * and keep spinning, or it will acquire wait_lock, add itself
	 * to waiter list and sleep.
	 */
	smp_mb(); /* ^^^ */

	/*
	 * Check if lock is contended, if not there is nobody to wake up
	 */
346
	if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS)))
347 348 349 350 351 352 353
		return;

	/*
	 * Uh oh, we raced in fastpath, wake up everyone in this case,
	 * so they can see the new lock->ctx.
	 */
	spin_lock_mutex(&lock->base.wait_lock, flags);
354
	__ww_mutex_wakeup_for_backoff(&lock->base, ctx);
355 356 357
	spin_unlock_mutex(&lock->base.wait_lock, flags);
}

358
/*
359 360 361 362
 * After acquiring lock in the slowpath set ctx.
 *
 * Unlike for the fast path, the caller ensures that waiters are woken up where
 * necessary.
363 364 365 366
 *
 * Callers must hold the mutex wait_lock.
 */
static __always_inline void
P
Peter Zijlstra 已提交
367
ww_mutex_set_context_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
368 369 370 371
{
	ww_mutex_lock_acquired(lock, ctx);
	lock->ctx = ctx;
}
372

373
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416

static inline
bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
			    struct mutex_waiter *waiter)
{
	struct ww_mutex *ww;

	ww = container_of(lock, struct ww_mutex, base);

	/*
	 * If ww->ctx is set the contents are undefined, only
	 * by acquiring wait_lock there is a guarantee that
	 * they are not invalid when reading.
	 *
	 * As such, when deadlock detection needs to be
	 * performed the optimistic spinning cannot be done.
	 *
	 * Check this in every inner iteration because we may
	 * be racing against another thread's ww_mutex_lock.
	 */
	if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx))
		return false;

	/*
	 * If we aren't on the wait list yet, cancel the spin
	 * if there are waiters. We want  to avoid stealing the
	 * lock from a waiter with an earlier stamp, since the
	 * other thread may already own a lock that we also
	 * need.
	 */
	if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS))
		return false;

	/*
	 * Similarly, stop spinning if we are no longer the
	 * first waiter.
	 */
	if (waiter && !__mutex_waiter_is_first(lock, waiter))
		return false;

	return true;
}

417
/*
418 419 420 421
 * Look out! "owner" is an entirely speculative pointer access and not
 * reliable.
 *
 * "noinline" so that this function shows up on perf profiles.
422 423
 */
static noinline
424
bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner,
425
			 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter)
426
{
427
	bool ret = true;
428

429
	rcu_read_lock();
430
	while (__mutex_owner(lock) == owner) {
431 432
		/*
		 * Ensure we emit the owner->on_cpu, dereference _after_
433 434
		 * checking lock->owner still matches owner. If that fails,
		 * owner might point to freed memory. If it still matches,
435 436 437 438
		 * the rcu_read_lock() ensures the memory stays valid.
		 */
		barrier();

439 440 441 442 443
		/*
		 * Use vcpu_is_preempted to detect lock holder preemption issue.
		 */
		if (!owner->on_cpu || need_resched() ||
				vcpu_is_preempted(task_cpu(owner))) {
444 445 446
			ret = false;
			break;
		}
447

448 449 450
		if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) {
			ret = false;
			break;
451 452
		}

453
		cpu_relax();
454 455 456
	}
	rcu_read_unlock();

457
	return ret;
458
}
459 460 461 462 463 464

/*
 * Initial check for entering the mutex spinning loop
 */
static inline int mutex_can_spin_on_owner(struct mutex *lock)
{
465
	struct task_struct *owner;
466 467
	int retval = 1;

468 469 470
	if (need_resched())
		return 0;

471
	rcu_read_lock();
472
	owner = __mutex_owner(lock);
473 474 475 476 477

	/*
	 * As lock holder preemption issue, we both skip spinning if task is not
	 * on cpu or its cpu is preempted
	 */
478
	if (owner)
479
		retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
480
	rcu_read_unlock();
481

482
	/*
483 484 485
	 * If lock->owner is not set, the mutex has been released. Return true
	 * such that we'll trylock in the spin path, which is a faster option
	 * than the blocking slow path.
486 487 488
	 */
	return retval;
}
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504

/*
 * Optimistic spinning.
 *
 * We try to spin for acquisition when we find that the lock owner
 * is currently running on a (different) CPU and while we don't
 * need to reschedule. The rationale is that if the lock owner is
 * running, it is likely to release the lock soon.
 *
 * The mutex spinners are queued up using MCS lock so that only one
 * spinner can compete for the mutex. However, if mutex spinning isn't
 * going to happen, there is no point in going through the lock/unlock
 * overhead.
 *
 * Returns true when the lock was taken, otherwise false, indicating
 * that we need to jump to the slowpath and sleep.
505 506 507 508 509
 *
 * The waiter flag is set to true if the spinner is a waiter in the wait
 * queue. The waiter-spinner will spin on the lock directly and concurrently
 * with the spinner at the head of the OSQ, if present, until the owner is
 * changed to itself.
510
 */
P
Peter Zijlstra 已提交
511 512
static __always_inline bool
mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
513
		      const bool use_ww_ctx, struct mutex_waiter *waiter)
514
{
515 516 517 518 519 520 521 522 523 524
	if (!waiter) {
		/*
		 * The purpose of the mutex_can_spin_on_owner() function is
		 * to eliminate the overhead of osq_lock() and osq_unlock()
		 * in case spinning isn't possible. As a waiter-spinner
		 * is not going to take OSQ lock anyway, there is no need
		 * to call mutex_can_spin_on_owner().
		 */
		if (!mutex_can_spin_on_owner(lock))
			goto fail;
525

526 527 528 529 530 531 532 533
		/*
		 * In order to avoid a stampede of mutex spinners trying to
		 * acquire the mutex all at once, the spinners need to take a
		 * MCS (queued) lock first before spinning on the owner field.
		 */
		if (!osq_lock(&lock->osq))
			goto fail;
	}
534

535
	for (;;) {
536 537
		struct task_struct *owner;

538 539 540 541 542
		/* Try to acquire the mutex... */
		owner = __mutex_trylock_or_owner(lock);
		if (!owner)
			break;

543
		/*
544
		 * There's an owner, wait for it to either
545 546
		 * release the lock or go to sleep.
		 */
547
		if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter))
548
			goto fail_unlock;
549

550 551 552 553 554 555
		/*
		 * The cpu_relax() call is a compiler barrier which forces
		 * everything in this loop to be re-loaded. We don't need
		 * memory barriers as we'll eventually observe the right
		 * values at the cost of a few extra spins.
		 */
556
		cpu_relax();
557 558
	}

559 560 561 562 563 564 565 566 567 568 569
	if (!waiter)
		osq_unlock(&lock->osq);

	return true;


fail_unlock:
	if (!waiter)
		osq_unlock(&lock->osq);

fail:
570 571 572 573 574
	/*
	 * If we fell out of the spin path because of need_resched(),
	 * reschedule now, before we try-lock the mutex. This avoids getting
	 * scheduled out right after we obtained the mutex.
	 */
575 576 577 578 579 580
	if (need_resched()) {
		/*
		 * We _should_ have TASK_RUNNING here, but just in case
		 * we do not, make it so, otherwise we might get stuck.
		 */
		__set_current_state(TASK_RUNNING);
581
		schedule_preempt_disabled();
582
	}
583 584 585 586

	return false;
}
#else
P
Peter Zijlstra 已提交
587 588
static __always_inline bool
mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
589
		      const bool use_ww_ctx, struct mutex_waiter *waiter)
590 591 592
{
	return false;
}
593 594
#endif

595
static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
I
Ingo Molnar 已提交
596

597
/**
I
Ingo Molnar 已提交
598 599 600 601 602 603 604 605 606 607
 * mutex_unlock - release the mutex
 * @lock: the mutex to be released
 *
 * Unlock a mutex that has been locked by this task previously.
 *
 * This function must not be used in interrupt context. Unlocking
 * of a not locked mutex is not allowed.
 *
 * This function is similar to (but not equivalent to) up().
 */
608
void __sched mutex_unlock(struct mutex *lock)
I
Ingo Molnar 已提交
609
{
610 611 612
#ifndef CONFIG_DEBUG_LOCK_ALLOC
	if (__mutex_unlock_fast(lock))
		return;
613
#endif
614
	__mutex_unlock_slowpath(lock, _RET_IP_);
I
Ingo Molnar 已提交
615 616 617
}
EXPORT_SYMBOL(mutex_unlock);

618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
/**
 * ww_mutex_unlock - release the w/w mutex
 * @lock: the mutex to be released
 *
 * Unlock a mutex that has been locked by this task previously with any of the
 * ww_mutex_lock* functions (with or without an acquire context). It is
 * forbidden to release the locks after releasing the acquire context.
 *
 * This function must not be used in interrupt context. Unlocking
 * of a unlocked mutex is not allowed.
 */
void __sched ww_mutex_unlock(struct ww_mutex *lock)
{
	/*
	 * The unlocking fastpath is the 0->1 transition from 'locked'
	 * into 'unlocked' state:
	 */
	if (lock->ctx) {
#ifdef CONFIG_DEBUG_MUTEXES
		DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
#endif
		if (lock->ctx->acquired > 0)
			lock->ctx->acquired--;
		lock->ctx = NULL;
	}

644
	mutex_unlock(&lock->base);
645 646 647 648
}
EXPORT_SYMBOL(ww_mutex_unlock);

static inline int __sched
649 650
__ww_mutex_lock_check_stamp(struct mutex *lock, struct mutex_waiter *waiter,
			    struct ww_acquire_ctx *ctx)
651 652
{
	struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
653
	struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
654
	struct mutex_waiter *cur;
655

656 657
	if (hold_ctx && __ww_ctx_stamp_after(ctx, hold_ctx))
		goto deadlock;
658

659 660 661 662 663 664 665 666
	/*
	 * If there is a waiter in front of us that has a context, then its
	 * stamp is earlier than ours and we must back off.
	 */
	cur = waiter;
	list_for_each_entry_continue_reverse(cur, &lock->wait_list, list) {
		if (cur->ww_ctx)
			goto deadlock;
667 668 669
	}

	return 0;
670 671 672 673 674 675 676

deadlock:
#ifdef CONFIG_DEBUG_MUTEXES
	DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
	ctx->contending_lock = ww;
#endif
	return -EDEADLK;
677 678
}

679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
static inline int __sched
__ww_mutex_add_waiter(struct mutex_waiter *waiter,
		      struct mutex *lock,
		      struct ww_acquire_ctx *ww_ctx)
{
	struct mutex_waiter *cur;
	struct list_head *pos;

	if (!ww_ctx) {
		list_add_tail(&waiter->list, &lock->wait_list);
		return 0;
	}

	/*
	 * Add the waiter before the first waiter with a higher stamp.
	 * Waiters without a context are skipped to avoid starving
	 * them.
	 */
	pos = &lock->wait_list;
	list_for_each_entry_reverse(cur, &lock->wait_list, list) {
		if (!cur->ww_ctx)
			continue;

		if (__ww_ctx_stamp_after(ww_ctx, cur->ww_ctx)) {
			/* Back off immediately if necessary. */
			if (ww_ctx->acquired > 0) {
#ifdef CONFIG_DEBUG_MUTEXES
				struct ww_mutex *ww;

				ww = container_of(lock, struct ww_mutex, base);
				DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock);
				ww_ctx->contending_lock = ww;
#endif
				return -EDEADLK;
			}

			break;
		}

		pos = &cur->list;
719 720 721 722 723 724 725 726 727

		/*
		 * Wake up the waiter so that it gets a chance to back
		 * off.
		 */
		if (cur->ww_ctx->acquired > 0) {
			debug_mutex_wake_waiter(lock, cur);
			wake_up_process(cur->task);
		}
728 729 730 731 732 733
	}

	list_add_tail(&waiter->list, pos);
	return 0;
}

I
Ingo Molnar 已提交
734 735 736
/*
 * Lock a mutex (possibly interruptible), slowpath:
 */
737
static __always_inline int __sched
P
Peter Zijlstra 已提交
738
__mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
739
		    struct lockdep_map *nest_lock, unsigned long ip,
740
		    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
I
Ingo Molnar 已提交
741 742
{
	struct mutex_waiter waiter;
743
	unsigned long flags;
744
	bool first = false;
745
	struct ww_mutex *ww;
746
	int ret;
I
Ingo Molnar 已提交
747

P
Peter Zijlstra 已提交
748
	might_sleep();
749

P
Peter Zijlstra 已提交
750
	ww = container_of(lock, struct ww_mutex, base);
751
	if (use_ww_ctx && ww_ctx) {
752 753 754 755
		if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
			return -EALREADY;
	}

P
Peter Zijlstra 已提交
756
	preempt_disable();
757
	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
758

759
	if (__mutex_trylock(lock) ||
760
	    mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, NULL)) {
761
		/* got the lock, yay! */
762
		lock_acquired(&lock->dep_map, ip);
763
		if (use_ww_ctx && ww_ctx)
764
			ww_mutex_set_context_fastpath(ww, ww_ctx);
765 766
		preempt_enable();
		return 0;
767
	}
768

769
	spin_lock_mutex(&lock->wait_lock, flags);
770
	/*
771
	 * After waiting to acquire the wait_lock, try again.
772
	 */
773 774 775 776
	if (__mutex_trylock(lock)) {
		if (use_ww_ctx && ww_ctx)
			__ww_mutex_wakeup_for_backoff(lock, ww_ctx);

777
		goto skip_wait;
778
	}
779

780
	debug_mutex_lock_common(lock, &waiter);
781
	debug_mutex_add_waiter(lock, &waiter, current);
I
Ingo Molnar 已提交
782

783 784 785 786 787 788 789 790 791 792 793 794 795 796
	lock_contended(&lock->dep_map, ip);

	if (!use_ww_ctx) {
		/* add waiting tasks to the end of the waitqueue (FIFO): */
		list_add_tail(&waiter.list, &lock->wait_list);
	} else {
		/* Add in stamp order, waking up waiters that must back off. */
		ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx);
		if (ret)
			goto err_early_backoff;

		waiter.ww_ctx = ww_ctx;
	}

797
	waiter.task = current;
I
Ingo Molnar 已提交
798

799
	if (__mutex_waiter_is_first(lock, &waiter))
800 801
		__mutex_set_flag(lock, MUTEX_FLAG_WAITERS);

802
	set_current_state(state);
I
Ingo Molnar 已提交
803
	for (;;) {
804 805 806 807 808 809
		/*
		 * Once we hold wait_lock, we're serialized against
		 * mutex_unlock() handing the lock off to us, do a trylock
		 * before testing the error conditions to make sure we pick up
		 * the handoff.
		 */
810
		if (__mutex_trylock(lock))
811
			goto acquired;
I
Ingo Molnar 已提交
812 813

		/*
814 815 816
		 * Check for signals and wound conditions while holding
		 * wait_lock. This ensures the lock cancellation is ordered
		 * against mutex_unlock() and wake-ups do not go missing.
I
Ingo Molnar 已提交
817
		 */
818
		if (unlikely(signal_pending_state(state, current))) {
819 820 821
			ret = -EINTR;
			goto err;
		}
I
Ingo Molnar 已提交
822

823
		if (use_ww_ctx && ww_ctx && ww_ctx->acquired > 0) {
824
			ret = __ww_mutex_lock_check_stamp(lock, &waiter, ww_ctx);
825 826
			if (ret)
				goto err;
I
Ingo Molnar 已提交
827
		}
828

829
		spin_unlock_mutex(&lock->wait_lock, flags);
830
		schedule_preempt_disabled();
831

832 833 834 835 836 837 838 839
		/*
		 * ww_mutex needs to always recheck its position since its waiter
		 * list is not FIFO ordered.
		 */
		if ((use_ww_ctx && ww_ctx) || !first) {
			first = __mutex_waiter_is_first(lock, &waiter);
			if (first)
				__mutex_set_flag(lock, MUTEX_FLAG_HANDOFF);
840
		}
841

842
		set_current_state(state);
843 844 845 846 847
		/*
		 * Here we order against unlock; we must either see it change
		 * state back to RUNNING and fall through the next schedule(),
		 * or we must see its unlock and acquire.
		 */
848
		if (__mutex_trylock(lock) ||
849
		    (first && mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, &waiter)))
850 851 852
			break;

		spin_lock_mutex(&lock->wait_lock, flags);
I
Ingo Molnar 已提交
853
	}
854 855
	spin_lock_mutex(&lock->wait_lock, flags);
acquired:
856
	__set_current_state(TASK_RUNNING);
857

858
	mutex_remove_waiter(lock, &waiter, current);
859
	if (likely(list_empty(&lock->wait_list)))
860
		__mutex_clear_flag(lock, MUTEX_FLAGS);
861

862
	debug_mutex_free_waiter(&waiter);
I
Ingo Molnar 已提交
863

864 865
skip_wait:
	/* got the lock - cleanup and rejoice! */
P
Peter Zijlstra 已提交
866
	lock_acquired(&lock->dep_map, ip);
I
Ingo Molnar 已提交
867

868
	if (use_ww_ctx && ww_ctx)
869
		ww_mutex_set_context_slowpath(ww, ww_ctx);
870

871
	spin_unlock_mutex(&lock->wait_lock, flags);
P
Peter Zijlstra 已提交
872
	preempt_enable();
I
Ingo Molnar 已提交
873
	return 0;
874 875

err:
876
	__set_current_state(TASK_RUNNING);
877
	mutex_remove_waiter(lock, &waiter, current);
878
err_early_backoff:
879 880 881 882 883
	spin_unlock_mutex(&lock->wait_lock, flags);
	debug_mutex_free_waiter(&waiter);
	mutex_release(&lock->dep_map, 1, ip);
	preempt_enable();
	return ret;
I
Ingo Molnar 已提交
884 885
}

P
Peter Zijlstra 已提交
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
static int __sched
__mutex_lock(struct mutex *lock, long state, unsigned int subclass,
	     struct lockdep_map *nest_lock, unsigned long ip)
{
	return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false);
}

static int __sched
__ww_mutex_lock(struct mutex *lock, long state, unsigned int subclass,
		struct lockdep_map *nest_lock, unsigned long ip,
		struct ww_acquire_ctx *ww_ctx)
{
	return __mutex_lock_common(lock, state, subclass, nest_lock, ip, ww_ctx, true);
}

901 902 903 904
#ifdef CONFIG_DEBUG_LOCK_ALLOC
void __sched
mutex_lock_nested(struct mutex *lock, unsigned int subclass)
{
P
Peter Zijlstra 已提交
905
	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
906 907 908
}

EXPORT_SYMBOL_GPL(mutex_lock_nested);
909

910 911 912
void __sched
_mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
{
P
Peter Zijlstra 已提交
913
	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_);
914 915 916
}
EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);

L
Liam R. Howlett 已提交
917 918 919
int __sched
mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
{
P
Peter Zijlstra 已提交
920
	return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
L
Liam R. Howlett 已提交
921 922 923
}
EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);

924 925 926
int __sched
mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
{
P
Peter Zijlstra 已提交
927
	return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
928 929
}
EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
930

931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
static inline int
ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
	unsigned tmp;

	if (ctx->deadlock_inject_countdown-- == 0) {
		tmp = ctx->deadlock_inject_interval;
		if (tmp > UINT_MAX/4)
			tmp = UINT_MAX;
		else
			tmp = tmp*2 + tmp + tmp/2;

		ctx->deadlock_inject_interval = tmp;
		ctx->deadlock_inject_countdown = tmp;
		ctx->contending_lock = lock;

		ww_mutex_unlock(lock);

		return -EDEADLK;
	}
#endif

	return 0;
}
956 957

int __sched
958
ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
959
{
960 961
	int ret;

962
	might_sleep();
P
Peter Zijlstra 已提交
963 964 965
	ret =  __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE,
			       0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
			       ctx);
966
	if (!ret && ctx && ctx->acquired > 1)
967 968 969
		return ww_mutex_deadlock_injection(lock, ctx);

	return ret;
970
}
971
EXPORT_SYMBOL_GPL(ww_mutex_lock);
972 973

int __sched
974
ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
975
{
976 977
	int ret;

978
	might_sleep();
P
Peter Zijlstra 已提交
979 980 981
	ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE,
			      0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
			      ctx);
982

983
	if (!ret && ctx && ctx->acquired > 1)
984 985 986
		return ww_mutex_deadlock_injection(lock, ctx);

	return ret;
987
}
988
EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible);
989

990 991
#endif

I
Ingo Molnar 已提交
992 993 994
/*
 * Release the lock, slowpath:
 */
995
static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
I
Ingo Molnar 已提交
996
{
997
	struct task_struct *next = NULL;
998
	unsigned long owner, flags;
999
	DEFINE_WAKE_Q(wake_q);
I
Ingo Molnar 已提交
1000

1001 1002
	mutex_release(&lock->dep_map, 1, ip);

I
Ingo Molnar 已提交
1003
	/*
1004 1005 1006 1007 1008
	 * Release the lock before (potentially) taking the spinlock such that
	 * other contenders can get on with things ASAP.
	 *
	 * Except when HANDOFF, in that case we must not clear the owner field,
	 * but instead set it to the top waiter.
I
Ingo Molnar 已提交
1009
	 */
1010 1011 1012 1013 1014 1015
	owner = atomic_long_read(&lock->owner);
	for (;;) {
		unsigned long old;

#ifdef CONFIG_DEBUG_MUTEXES
		DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
1016
		DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
#endif

		if (owner & MUTEX_FLAG_HANDOFF)
			break;

		old = atomic_long_cmpxchg_release(&lock->owner, owner,
						  __owner_flags(owner));
		if (old == owner) {
			if (owner & MUTEX_FLAG_WAITERS)
				break;

			return;
		}

		owner = old;
	}
I
Ingo Molnar 已提交
1033

1034 1035
	spin_lock_mutex(&lock->wait_lock, flags);
	debug_mutex_unlock(lock);
I
Ingo Molnar 已提交
1036 1037 1038
	if (!list_empty(&lock->wait_list)) {
		/* get the first entry from the wait-list: */
		struct mutex_waiter *waiter =
1039 1040 1041 1042
			list_first_entry(&lock->wait_list,
					 struct mutex_waiter, list);

		next = waiter->task;
I
Ingo Molnar 已提交
1043 1044

		debug_mutex_wake_waiter(lock, waiter);
1045
		wake_q_add(&wake_q, next);
I
Ingo Molnar 已提交
1046 1047
	}

1048 1049 1050
	if (owner & MUTEX_FLAG_HANDOFF)
		__mutex_handoff(lock, next);

1051
	spin_unlock_mutex(&lock->wait_lock, flags);
1052

1053
	wake_up_q(&wake_q);
I
Ingo Molnar 已提交
1054 1055
}

P
Peter Zijlstra 已提交
1056
#ifndef CONFIG_DEBUG_LOCK_ALLOC
I
Ingo Molnar 已提交
1057 1058 1059 1060
/*
 * Here come the less common (and hence less performance-critical) APIs:
 * mutex_lock_interruptible() and mutex_trylock().
 */
1061
static noinline int __sched
1062
__mutex_lock_killable_slowpath(struct mutex *lock);
L
Liam R. Howlett 已提交
1063

1064
static noinline int __sched
1065
__mutex_lock_interruptible_slowpath(struct mutex *lock);
I
Ingo Molnar 已提交
1066

1067 1068
/**
 * mutex_lock_interruptible - acquire the mutex, interruptible
I
Ingo Molnar 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077
 * @lock: the mutex to be acquired
 *
 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
 * been acquired or sleep until the mutex becomes available. If a
 * signal arrives while waiting for the lock then this function
 * returns -EINTR.
 *
 * This function is similar to (but not equivalent to) down_interruptible().
 */
1078
int __sched mutex_lock_interruptible(struct mutex *lock)
I
Ingo Molnar 已提交
1079
{
1080
	might_sleep();
1081 1082

	if (__mutex_trylock_fast(lock))
1083
		return 0;
1084 1085

	return __mutex_lock_interruptible_slowpath(lock);
I
Ingo Molnar 已提交
1086 1087 1088 1089
}

EXPORT_SYMBOL(mutex_lock_interruptible);

1090
int __sched mutex_lock_killable(struct mutex *lock)
L
Liam R. Howlett 已提交
1091 1092
{
	might_sleep();
1093 1094

	if (__mutex_trylock_fast(lock))
1095
		return 0;
1096 1097

	return __mutex_lock_killable_slowpath(lock);
L
Liam R. Howlett 已提交
1098 1099 1100
}
EXPORT_SYMBOL(mutex_lock_killable);

1101 1102
static noinline void __sched
__mutex_lock_slowpath(struct mutex *lock)
P
Peter Zijlstra 已提交
1103
{
P
Peter Zijlstra 已提交
1104
	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
P
Peter Zijlstra 已提交
1105 1106
}

1107
static noinline int __sched
1108
__mutex_lock_killable_slowpath(struct mutex *lock)
L
Liam R. Howlett 已提交
1109
{
P
Peter Zijlstra 已提交
1110
	return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
L
Liam R. Howlett 已提交
1111 1112
}

1113
static noinline int __sched
1114
__mutex_lock_interruptible_slowpath(struct mutex *lock)
I
Ingo Molnar 已提交
1115
{
P
Peter Zijlstra 已提交
1116
	return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
1117 1118 1119 1120 1121
}

static noinline int __sched
__ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
P
Peter Zijlstra 已提交
1122 1123
	return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, NULL,
			       _RET_IP_, ctx);
I
Ingo Molnar 已提交
1124
}
1125 1126 1127 1128 1129

static noinline int __sched
__ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
					    struct ww_acquire_ctx *ctx)
{
P
Peter Zijlstra 已提交
1130 1131
	return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, NULL,
			       _RET_IP_, ctx);
1132 1133
}

P
Peter Zijlstra 已提交
1134
#endif
I
Ingo Molnar 已提交
1135

1136 1137
/**
 * mutex_trylock - try to acquire the mutex, without waiting
I
Ingo Molnar 已提交
1138 1139 1140 1141 1142 1143
 * @lock: the mutex to be acquired
 *
 * Try to acquire the mutex atomically. Returns 1 if the mutex
 * has been acquired successfully, and 0 on contention.
 *
 * NOTE: this function follows the spin_trylock() convention, so
1144
 * it is negated from the down_trylock() return values! Be careful
I
Ingo Molnar 已提交
1145 1146 1147 1148 1149
 * about this when converting semaphore users to mutexes.
 *
 * This function must not be used in interrupt context. The
 * mutex must be released by the same task that acquired it.
 */
1150
int __sched mutex_trylock(struct mutex *lock)
I
Ingo Molnar 已提交
1151
{
1152
	bool locked = __mutex_trylock(lock);
1153

1154 1155
	if (locked)
		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1156

1157
	return locked;
I
Ingo Molnar 已提交
1158 1159
}
EXPORT_SYMBOL(mutex_trylock);
1160

1161 1162
#ifndef CONFIG_DEBUG_LOCK_ALLOC
int __sched
1163
ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1164 1165 1166
{
	might_sleep();

1167
	if (__mutex_trylock_fast(&lock->base)) {
1168 1169
		if (ctx)
			ww_mutex_set_context_fastpath(lock, ctx);
1170 1171 1172 1173
		return 0;
	}

	return __ww_mutex_lock_slowpath(lock, ctx);
1174
}
1175
EXPORT_SYMBOL(ww_mutex_lock);
1176 1177

int __sched
1178
ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1179 1180 1181
{
	might_sleep();

1182
	if (__mutex_trylock_fast(&lock->base)) {
1183 1184
		if (ctx)
			ww_mutex_set_context_fastpath(lock, ctx);
1185 1186 1187 1188
		return 0;
	}

	return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
1189
}
1190
EXPORT_SYMBOL(ww_mutex_lock_interruptible);
1191 1192 1193

#endif

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
/**
 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
 * @cnt: the atomic which we are to dec
 * @lock: the mutex to return holding if we dec to 0
 *
 * return true and hold lock if we dec to 0, return false otherwise
 */
int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
{
	/* dec if we can't possibly hit 0 */
	if (atomic_add_unless(cnt, -1, 1))
		return 0;
	/* we might hit 0, so take the lock */
	mutex_lock(lock);
	if (!atomic_dec_and_test(cnt)) {
		/* when we actually did the dec, we didn't hit 0 */
		mutex_unlock(lock);
		return 0;
	}
	/* we hit 0, and we hold the lock */
	return 1;
}
EXPORT_SYMBOL(atomic_dec_and_mutex_lock);