mutex.c 27.0 KB
Newer Older
I
Ingo Molnar 已提交
1
/*
2
 * kernel/locking/mutex.c
I
Ingo Molnar 已提交
3 4 5 6 7 8 9 10 11 12
 *
 * Mutexes: blocking mutual exclusion locks
 *
 * Started by Ingo Molnar:
 *
 *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
 * David Howells for suggestions and improvements.
 *
13 14 15 16 17
 *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
 *    from the -rt tree, where it was originally implemented for rtmutexes
 *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
 *    and Sven Dietrich.
 *
18
 * Also see Documentation/locking/mutex-design.txt.
I
Ingo Molnar 已提交
19 20
 */
#include <linux/mutex.h>
21
#include <linux/ww_mutex.h>
I
Ingo Molnar 已提交
22
#include <linux/sched.h>
23
#include <linux/sched/rt.h>
24
#include <linux/export.h>
I
Ingo Molnar 已提交
25 26
#include <linux/spinlock.h>
#include <linux/interrupt.h>
27
#include <linux/debug_locks.h>
28
#include <linux/osq_lock.h>
I
Ingo Molnar 已提交
29 30 31 32 33 34 35

#ifdef CONFIG_DEBUG_MUTEXES
# include "mutex-debug.h"
#else
# include "mutex.h"
#endif

36 37
void
__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
I
Ingo Molnar 已提交
38
{
39
	atomic_long_set(&lock->owner, 0);
I
Ingo Molnar 已提交
40 41
	spin_lock_init(&lock->wait_lock);
	INIT_LIST_HEAD(&lock->wait_list);
42
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
43
	osq_lock_init(&lock->osq);
44
#endif
I
Ingo Molnar 已提交
45

46
	debug_mutex_init(lock, name, key);
I
Ingo Molnar 已提交
47 48 49
}
EXPORT_SYMBOL(__mutex_init);

50 51 52
/*
 * @owner: contains: 'struct task_struct *' to the current lock owner,
 * NULL means not owned. Since task_struct pointers are aligned at
53
 * at least L1_CACHE_BYTES, we have low bits to store extra state.
54 55
 *
 * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
56
 * Bit1 indicates unlock needs to hand the lock to the top-waiter
57
 * Bit2 indicates handoff has been done and we're waiting for pickup.
58 59
 */
#define MUTEX_FLAG_WAITERS	0x01
60
#define MUTEX_FLAG_HANDOFF	0x02
61
#define MUTEX_FLAG_PICKUP	0x04
62

63
#define MUTEX_FLAGS		0x07
64 65 66 67 68 69 70 71 72 73 74 75

static inline struct task_struct *__owner_task(unsigned long owner)
{
	return (struct task_struct *)(owner & ~MUTEX_FLAGS);
}

static inline unsigned long __owner_flags(unsigned long owner)
{
	return owner & MUTEX_FLAGS;
}

/*
76
 * Trylock variant that retuns the owning task on failure.
77
 */
78
static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock)
79 80 81 82 83
{
	unsigned long owner, curr = (unsigned long)current;

	owner = atomic_long_read(&lock->owner);
	for (;;) { /* must loop, can race against a flag */
84
		unsigned long old, flags = __owner_flags(owner);
85 86 87 88 89 90 91 92
		unsigned long task = owner & ~MUTEX_FLAGS;

		if (task) {
			if (likely(task != curr))
				break;

			if (likely(!(flags & MUTEX_FLAG_PICKUP)))
				break;
93

94 95 96 97 98
			flags &= ~MUTEX_FLAG_PICKUP;
		} else {
#ifdef CONFIG_DEBUG_MUTEXES
			DEBUG_LOCKS_WARN_ON(flags & MUTEX_FLAG_PICKUP);
#endif
99 100 101 102 103 104 105
		}

		/*
		 * We set the HANDOFF bit, we must make sure it doesn't live
		 * past the point where we acquire it. This would be possible
		 * if we (accidentally) set the bit on an unlocked mutex.
		 */
106
		flags &= ~MUTEX_FLAG_HANDOFF;
107

108
		old = atomic_long_cmpxchg_acquire(&lock->owner, owner, curr | flags);
109
		if (old == owner)
110
			return NULL;
111 112 113

		owner = old;
	}
114 115 116 117 118 119 120 121 122 123

	return __owner_task(owner);
}

/*
 * Actual trylock that will work on any unlocked state.
 */
static inline bool __mutex_trylock(struct mutex *lock)
{
	return !__mutex_trylock_or_owner(lock);
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
}

#ifndef CONFIG_DEBUG_LOCK_ALLOC
/*
 * Lockdep annotations are contained to the slow paths for simplicity.
 * There is nothing that would stop spreading the lockdep annotations outwards
 * except more code.
 */

/*
 * Optimistic trylock that only works in the uncontended case. Make sure to
 * follow with a __mutex_trylock() before failing.
 */
static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
{
	unsigned long curr = (unsigned long)current;

	if (!atomic_long_cmpxchg_acquire(&lock->owner, 0UL, curr))
		return true;

	return false;
}

static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
{
	unsigned long curr = (unsigned long)current;

	if (atomic_long_cmpxchg_release(&lock->owner, curr, 0UL) == curr)
		return true;

	return false;
}
#endif

static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
{
	atomic_long_or(flag, &lock->owner);
}

static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
{
	atomic_long_andnot(flag, &lock->owner);
}

168 169 170 171 172 173 174
static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
{
	return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
}

/*
 * Give up ownership to a specific task, when @task = NULL, this is equivalent
175 176 177
 * to a regular unlock. Sets PICKUP on a handoff, clears HANDOF, preserves
 * WAITERS. Provides RELEASE semantics like a regular unlock, the
 * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff.
178 179 180 181 182 183 184 185 186 187
 */
static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
{
	unsigned long owner = atomic_long_read(&lock->owner);

	for (;;) {
		unsigned long old, new;

#ifdef CONFIG_DEBUG_MUTEXES
		DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
188
		DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
189 190 191 192
#endif

		new = (owner & MUTEX_FLAG_WAITERS);
		new |= (unsigned long)task;
193 194
		if (task)
			new |= MUTEX_FLAG_PICKUP;
195 196 197 198 199 200 201 202 203

		old = atomic_long_cmpxchg_release(&lock->owner, owner, new);
		if (old == owner)
			break;

		owner = old;
	}
}

P
Peter Zijlstra 已提交
204
#ifndef CONFIG_DEBUG_LOCK_ALLOC
I
Ingo Molnar 已提交
205 206 207 208 209 210
/*
 * We split the mutex lock/unlock logic into separate fastpath and
 * slowpath functions, to reduce the register pressure on the fastpath.
 * We also put the fastpath first in the kernel image, to make sure the
 * branch is predicted by the CPU as default-untaken.
 */
211
static void __sched __mutex_lock_slowpath(struct mutex *lock);
I
Ingo Molnar 已提交
212

213
/**
I
Ingo Molnar 已提交
214 215 216 217 218 219 220 221 222
 * mutex_lock - acquire the mutex
 * @lock: the mutex to be acquired
 *
 * Lock the mutex exclusively for this task. If the mutex is not
 * available right now, it will sleep until it can get it.
 *
 * The mutex must later on be released by the same task that
 * acquired it. Recursive locking is not allowed. The task
 * may not exit without first unlocking the mutex. Also, kernel
223
 * memory where the mutex resides must not be freed with
I
Ingo Molnar 已提交
224 225 226 227 228 229 230 231 232 233
 * the mutex still locked. The mutex must first be initialized
 * (or statically defined) before it can be locked. memset()-ing
 * the mutex to 0 is not allowed.
 *
 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
 *   checks that will enforce the restrictions and will also do
 *   deadlock debugging. )
 *
 * This function is similar to (but not equivalent to) down().
 */
234
void __sched mutex_lock(struct mutex *lock)
I
Ingo Molnar 已提交
235
{
236
	might_sleep();
I
Ingo Molnar 已提交
237

238 239 240
	if (!__mutex_trylock_fast(lock))
		__mutex_lock_slowpath(lock);
}
I
Ingo Molnar 已提交
241
EXPORT_SYMBOL(mutex_lock);
P
Peter Zijlstra 已提交
242
#endif
I
Ingo Molnar 已提交
243

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
						   struct ww_acquire_ctx *ww_ctx)
{
#ifdef CONFIG_DEBUG_MUTEXES
	/*
	 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
	 * but released with a normal mutex_unlock in this call.
	 *
	 * This should never happen, always use ww_mutex_unlock.
	 */
	DEBUG_LOCKS_WARN_ON(ww->ctx);

	/*
	 * Not quite done after calling ww_acquire_done() ?
	 */
	DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);

	if (ww_ctx->contending_lock) {
		/*
		 * After -EDEADLK you tried to
		 * acquire a different ww_mutex? Bad!
		 */
		DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);

		/*
		 * You called ww_mutex_lock after receiving -EDEADLK,
		 * but 'forgot' to unlock everything else first?
		 */
		DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
		ww_ctx->contending_lock = NULL;
	}

	/*
	 * Naughty, using a different class will lead to undefined behavior!
	 */
	DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
#endif
	ww_ctx->acquired++;
}

284 285 286 287 288 289 290
static inline bool __sched
__ww_ctx_stamp_after(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b)
{
	return a->stamp - b->stamp <= LONG_MAX &&
	       (a->stamp != b->stamp || a > b);
}

291
/*
292
 * After acquiring lock with fastpath or when we lost out in contested
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
 * slowpath, set ctx and wake up any waiters so they can recheck.
 */
static __always_inline void
ww_mutex_set_context_fastpath(struct ww_mutex *lock,
			       struct ww_acquire_ctx *ctx)
{
	unsigned long flags;
	struct mutex_waiter *cur;

	ww_mutex_lock_acquired(lock, ctx);

	lock->ctx = ctx;

	/*
	 * The lock->ctx update should be visible on all cores before
	 * the atomic read is done, otherwise contended waiters might be
	 * missed. The contended waiters will either see ww_ctx == NULL
	 * and keep spinning, or it will acquire wait_lock, add itself
	 * to waiter list and sleep.
	 */
	smp_mb(); /* ^^^ */

	/*
	 * Check if lock is contended, if not there is nobody to wake up
	 */
318
	if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS)))
319 320 321 322 323 324 325 326 327 328 329 330 331 332
		return;

	/*
	 * Uh oh, we raced in fastpath, wake up everyone in this case,
	 * so they can see the new lock->ctx.
	 */
	spin_lock_mutex(&lock->base.wait_lock, flags);
	list_for_each_entry(cur, &lock->base.wait_list, list) {
		debug_mutex_wake_waiter(&lock->base, cur);
		wake_up_process(cur->task);
	}
	spin_unlock_mutex(&lock->base.wait_lock, flags);
}

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
/*
 * After acquiring lock in the slowpath set ctx and wake up any
 * waiters so they can recheck.
 *
 * Callers must hold the mutex wait_lock.
 */
static __always_inline void
ww_mutex_set_context_slowpath(struct ww_mutex *lock,
			      struct ww_acquire_ctx *ctx)
{
	struct mutex_waiter *cur;

	ww_mutex_lock_acquired(lock, ctx);
	lock->ctx = ctx;

	/*
	 * Give any possible sleeping processes the chance to wake up,
	 * so they can recheck if they have to back off.
	 */
	list_for_each_entry(cur, &lock->base.wait_list, list) {
		debug_mutex_wake_waiter(&lock->base, cur);
		wake_up_process(cur->task);
	}
}
357

358 359 360 361 362 363
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
static noinline
364
bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
365
{
366
	bool ret = true;
367

368
	rcu_read_lock();
369
	while (__mutex_owner(lock) == owner) {
370 371
		/*
		 * Ensure we emit the owner->on_cpu, dereference _after_
372 373
		 * checking lock->owner still matches owner. If that fails,
		 * owner might point to freed memory. If it still matches,
374 375 376 377
		 * the rcu_read_lock() ensures the memory stays valid.
		 */
		barrier();

378 379 380 381 382
		/*
		 * Use vcpu_is_preempted to detect lock holder preemption issue.
		 */
		if (!owner->on_cpu || need_resched() ||
				vcpu_is_preempted(task_cpu(owner))) {
383 384 385
			ret = false;
			break;
		}
386

387
		cpu_relax();
388 389 390
	}
	rcu_read_unlock();

391
	return ret;
392
}
393 394 395 396 397 398

/*
 * Initial check for entering the mutex spinning loop
 */
static inline int mutex_can_spin_on_owner(struct mutex *lock)
{
399
	struct task_struct *owner;
400 401
	int retval = 1;

402 403 404
	if (need_resched())
		return 0;

405
	rcu_read_lock();
406
	owner = __mutex_owner(lock);
407 408 409 410 411

	/*
	 * As lock holder preemption issue, we both skip spinning if task is not
	 * on cpu or its cpu is preempted
	 */
412
	if (owner)
413
		retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
414
	rcu_read_unlock();
415

416
	/*
417 418 419
	 * If lock->owner is not set, the mutex has been released. Return true
	 * such that we'll trylock in the spin path, which is a faster option
	 * than the blocking slow path.
420 421 422
	 */
	return retval;
}
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438

/*
 * Optimistic spinning.
 *
 * We try to spin for acquisition when we find that the lock owner
 * is currently running on a (different) CPU and while we don't
 * need to reschedule. The rationale is that if the lock owner is
 * running, it is likely to release the lock soon.
 *
 * The mutex spinners are queued up using MCS lock so that only one
 * spinner can compete for the mutex. However, if mutex spinning isn't
 * going to happen, there is no point in going through the lock/unlock
 * overhead.
 *
 * Returns true when the lock was taken, otherwise false, indicating
 * that we need to jump to the slowpath and sleep.
439 440 441 442 443
 *
 * The waiter flag is set to true if the spinner is a waiter in the wait
 * queue. The waiter-spinner will spin on the lock directly and concurrently
 * with the spinner at the head of the OSQ, if present, until the owner is
 * changed to itself.
444 445
 */
static bool mutex_optimistic_spin(struct mutex *lock,
446 447
				  struct ww_acquire_ctx *ww_ctx,
				  const bool use_ww_ctx, const bool waiter)
448
{
449 450 451 452 453 454 455 456 457 458
	if (!waiter) {
		/*
		 * The purpose of the mutex_can_spin_on_owner() function is
		 * to eliminate the overhead of osq_lock() and osq_unlock()
		 * in case spinning isn't possible. As a waiter-spinner
		 * is not going to take OSQ lock anyway, there is no need
		 * to call mutex_can_spin_on_owner().
		 */
		if (!mutex_can_spin_on_owner(lock))
			goto fail;
459

460 461 462 463 464 465 466 467
		/*
		 * In order to avoid a stampede of mutex spinners trying to
		 * acquire the mutex all at once, the spinners need to take a
		 * MCS (queued) lock first before spinning on the owner field.
		 */
		if (!osq_lock(&lock->osq))
			goto fail;
	}
468

469
	for (;;) {
470 471 472 473 474 475 476 477 478 479 480 481 482 483
		struct task_struct *owner;

		if (use_ww_ctx && ww_ctx->acquired > 0) {
			struct ww_mutex *ww;

			ww = container_of(lock, struct ww_mutex, base);
			/*
			 * If ww->ctx is set the contents are undefined, only
			 * by acquiring wait_lock there is a guarantee that
			 * they are not invalid when reading.
			 *
			 * As such, when deadlock detection needs to be
			 * performed the optimistic spinning cannot be done.
			 */
484
			if (READ_ONCE(ww->ctx))
485
				goto fail_unlock;
486 487
		}

488 489 490 491 492
		/* Try to acquire the mutex... */
		owner = __mutex_trylock_or_owner(lock);
		if (!owner)
			break;

493
		/*
494
		 * There's an owner, wait for it to either
495 496
		 * release the lock or go to sleep.
		 */
497 498
		if (!mutex_spin_on_owner(lock, owner))
			goto fail_unlock;
499

500 501 502 503 504 505
		/*
		 * The cpu_relax() call is a compiler barrier which forces
		 * everything in this loop to be re-loaded. We don't need
		 * memory barriers as we'll eventually observe the right
		 * values at the cost of a few extra spins.
		 */
506
		cpu_relax();
507 508
	}

509 510 511 512 513 514 515 516 517 518 519
	if (!waiter)
		osq_unlock(&lock->osq);

	return true;


fail_unlock:
	if (!waiter)
		osq_unlock(&lock->osq);

fail:
520 521 522 523 524
	/*
	 * If we fell out of the spin path because of need_resched(),
	 * reschedule now, before we try-lock the mutex. This avoids getting
	 * scheduled out right after we obtained the mutex.
	 */
525 526 527 528 529 530
	if (need_resched()) {
		/*
		 * We _should_ have TASK_RUNNING here, but just in case
		 * we do not, make it so, otherwise we might get stuck.
		 */
		__set_current_state(TASK_RUNNING);
531
		schedule_preempt_disabled();
532
	}
533 534 535 536 537

	return false;
}
#else
static bool mutex_optimistic_spin(struct mutex *lock,
538 539
				  struct ww_acquire_ctx *ww_ctx,
				  const bool use_ww_ctx, const bool waiter)
540 541 542
{
	return false;
}
543 544
#endif

545
static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
I
Ingo Molnar 已提交
546

547
/**
I
Ingo Molnar 已提交
548 549 550 551 552 553 554 555 556 557
 * mutex_unlock - release the mutex
 * @lock: the mutex to be released
 *
 * Unlock a mutex that has been locked by this task previously.
 *
 * This function must not be used in interrupt context. Unlocking
 * of a not locked mutex is not allowed.
 *
 * This function is similar to (but not equivalent to) up().
 */
558
void __sched mutex_unlock(struct mutex *lock)
I
Ingo Molnar 已提交
559
{
560 561 562
#ifndef CONFIG_DEBUG_LOCK_ALLOC
	if (__mutex_unlock_fast(lock))
		return;
563
#endif
564
	__mutex_unlock_slowpath(lock, _RET_IP_);
I
Ingo Molnar 已提交
565 566 567
}
EXPORT_SYMBOL(mutex_unlock);

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
/**
 * ww_mutex_unlock - release the w/w mutex
 * @lock: the mutex to be released
 *
 * Unlock a mutex that has been locked by this task previously with any of the
 * ww_mutex_lock* functions (with or without an acquire context). It is
 * forbidden to release the locks after releasing the acquire context.
 *
 * This function must not be used in interrupt context. Unlocking
 * of a unlocked mutex is not allowed.
 */
void __sched ww_mutex_unlock(struct ww_mutex *lock)
{
	/*
	 * The unlocking fastpath is the 0->1 transition from 'locked'
	 * into 'unlocked' state:
	 */
	if (lock->ctx) {
#ifdef CONFIG_DEBUG_MUTEXES
		DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
#endif
		if (lock->ctx->acquired > 0)
			lock->ctx->acquired--;
		lock->ctx = NULL;
	}

594
	mutex_unlock(&lock->base);
595 596 597 598
}
EXPORT_SYMBOL(ww_mutex_unlock);

static inline int __sched
599
__ww_mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
600 601
{
	struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
602
	struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
603 604 605 606

	if (!hold_ctx)
		return 0;

607
	if (__ww_ctx_stamp_after(ctx, hold_ctx)) {
608 609 610 611 612 613 614 615 616 617
#ifdef CONFIG_DEBUG_MUTEXES
		DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
		ctx->contending_lock = ww;
#endif
		return -EDEADLK;
	}

	return 0;
}

I
Ingo Molnar 已提交
618 619 620
/*
 * Lock a mutex (possibly interruptible), slowpath:
 */
621
static __always_inline int __sched
P
Peter Zijlstra 已提交
622
__mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
623
		    struct lockdep_map *nest_lock, unsigned long ip,
624
		    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
I
Ingo Molnar 已提交
625 626
{
	struct mutex_waiter waiter;
627
	unsigned long flags;
628
	bool first = false;
629
	struct ww_mutex *ww;
630
	int ret;
I
Ingo Molnar 已提交
631

632
	if (use_ww_ctx) {
633
		ww = container_of(lock, struct ww_mutex, base);
634 635 636 637
		if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
			return -EALREADY;
	}

P
Peter Zijlstra 已提交
638
	preempt_disable();
639
	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
640

641
	if (__mutex_trylock(lock) ||
642
	    mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, false)) {
643
		/* got the lock, yay! */
644
		lock_acquired(&lock->dep_map, ip);
645
		if (use_ww_ctx)
646
			ww_mutex_set_context_fastpath(ww, ww_ctx);
647 648
		preempt_enable();
		return 0;
649
	}
650

651
	spin_lock_mutex(&lock->wait_lock, flags);
652
	/*
653
	 * After waiting to acquire the wait_lock, try again.
654
	 */
655
	if (__mutex_trylock(lock))
656 657
		goto skip_wait;

658
	debug_mutex_lock_common(lock, &waiter);
659
	debug_mutex_add_waiter(lock, &waiter, current);
I
Ingo Molnar 已提交
660 661 662

	/* add waiting tasks to the end of the waitqueue (FIFO): */
	list_add_tail(&waiter.list, &lock->wait_list);
663
	waiter.task = current;
I
Ingo Molnar 已提交
664

665
	if (__mutex_waiter_is_first(lock, &waiter))
666 667
		__mutex_set_flag(lock, MUTEX_FLAG_WAITERS);

P
Peter Zijlstra 已提交
668
	lock_contended(&lock->dep_map, ip);
669

670
	set_current_state(state);
I
Ingo Molnar 已提交
671
	for (;;) {
672 673 674 675 676 677
		/*
		 * Once we hold wait_lock, we're serialized against
		 * mutex_unlock() handing the lock off to us, do a trylock
		 * before testing the error conditions to make sure we pick up
		 * the handoff.
		 */
678
		if (__mutex_trylock(lock))
679
			goto acquired;
I
Ingo Molnar 已提交
680 681

		/*
682 683 684
		 * Check for signals and wound conditions while holding
		 * wait_lock. This ensures the lock cancellation is ordered
		 * against mutex_unlock() and wake-ups do not go missing.
I
Ingo Molnar 已提交
685
		 */
686
		if (unlikely(signal_pending_state(state, current))) {
687 688 689
			ret = -EINTR;
			goto err;
		}
I
Ingo Molnar 已提交
690

691
		if (use_ww_ctx && ww_ctx->acquired > 0) {
692
			ret = __ww_mutex_lock_check_stamp(lock, ww_ctx);
693 694
			if (ret)
				goto err;
I
Ingo Molnar 已提交
695
		}
696

697
		spin_unlock_mutex(&lock->wait_lock, flags);
698
		schedule_preempt_disabled();
699 700 701 702 703

		if (!first && __mutex_waiter_is_first(lock, &waiter)) {
			first = true;
			__mutex_set_flag(lock, MUTEX_FLAG_HANDOFF);
		}
704

705
		set_current_state(state);
706 707 708 709 710
		/*
		 * Here we order against unlock; we must either see it change
		 * state back to RUNNING and fall through the next schedule(),
		 * or we must see its unlock and acquire.
		 */
711 712
		if (__mutex_trylock(lock) ||
		    (first && mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, true)))
713 714 715
			break;

		spin_lock_mutex(&lock->wait_lock, flags);
I
Ingo Molnar 已提交
716
	}
717 718
	spin_lock_mutex(&lock->wait_lock, flags);
acquired:
719
	__set_current_state(TASK_RUNNING);
720

721
	mutex_remove_waiter(lock, &waiter, current);
722
	if (likely(list_empty(&lock->wait_list)))
723
		__mutex_clear_flag(lock, MUTEX_FLAGS);
724

725
	debug_mutex_free_waiter(&waiter);
I
Ingo Molnar 已提交
726

727 728
skip_wait:
	/* got the lock - cleanup and rejoice! */
P
Peter Zijlstra 已提交
729
	lock_acquired(&lock->dep_map, ip);
I
Ingo Molnar 已提交
730

731
	if (use_ww_ctx)
732
		ww_mutex_set_context_slowpath(ww, ww_ctx);
733

734
	spin_unlock_mutex(&lock->wait_lock, flags);
P
Peter Zijlstra 已提交
735
	preempt_enable();
I
Ingo Molnar 已提交
736
	return 0;
737 738

err:
739
	__set_current_state(TASK_RUNNING);
740
	mutex_remove_waiter(lock, &waiter, current);
741 742 743 744 745
	spin_unlock_mutex(&lock->wait_lock, flags);
	debug_mutex_free_waiter(&waiter);
	mutex_release(&lock->dep_map, 1, ip);
	preempt_enable();
	return ret;
I
Ingo Molnar 已提交
746 747
}

748 749 750 751 752
#ifdef CONFIG_DEBUG_LOCK_ALLOC
void __sched
mutex_lock_nested(struct mutex *lock, unsigned int subclass)
{
	might_sleep();
753
	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
754
			    subclass, NULL, _RET_IP_, NULL, 0);
755 756 757
}

EXPORT_SYMBOL_GPL(mutex_lock_nested);
758

759 760 761 762
void __sched
_mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
{
	might_sleep();
763
	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
764
			    0, nest, _RET_IP_, NULL, 0);
765 766 767
}
EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);

L
Liam R. Howlett 已提交
768 769 770 771
int __sched
mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
{
	might_sleep();
772
	return __mutex_lock_common(lock, TASK_KILLABLE,
773
				   subclass, NULL, _RET_IP_, NULL, 0);
L
Liam R. Howlett 已提交
774 775 776
}
EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);

777 778 779 780
int __sched
mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
{
	might_sleep();
781
	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
782
				   subclass, NULL, _RET_IP_, NULL, 0);
783 784
}
EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
785

786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
static inline int
ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
	unsigned tmp;

	if (ctx->deadlock_inject_countdown-- == 0) {
		tmp = ctx->deadlock_inject_interval;
		if (tmp > UINT_MAX/4)
			tmp = UINT_MAX;
		else
			tmp = tmp*2 + tmp + tmp/2;

		ctx->deadlock_inject_interval = tmp;
		ctx->deadlock_inject_countdown = tmp;
		ctx->contending_lock = lock;

		ww_mutex_unlock(lock);

		return -EDEADLK;
	}
#endif

	return 0;
}
811 812 813 814

int __sched
__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
815 816
	int ret;

817
	might_sleep();
818
	ret =  __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
819
				   0, &ctx->dep_map, _RET_IP_, ctx, 1);
820
	if (!ret && ctx->acquired > 1)
821 822 823
		return ww_mutex_deadlock_injection(lock, ctx);

	return ret;
824 825 826 827 828 829
}
EXPORT_SYMBOL_GPL(__ww_mutex_lock);

int __sched
__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
830 831
	int ret;

832
	might_sleep();
833
	ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
834
				  0, &ctx->dep_map, _RET_IP_, ctx, 1);
835

836
	if (!ret && ctx->acquired > 1)
837 838 839
		return ww_mutex_deadlock_injection(lock, ctx);

	return ret;
840 841 842
}
EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);

843 844
#endif

I
Ingo Molnar 已提交
845 846 847
/*
 * Release the lock, slowpath:
 */
848
static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
I
Ingo Molnar 已提交
849
{
850
	struct task_struct *next = NULL;
851
	unsigned long owner, flags;
852
	DEFINE_WAKE_Q(wake_q);
I
Ingo Molnar 已提交
853

854 855
	mutex_release(&lock->dep_map, 1, ip);

I
Ingo Molnar 已提交
856
	/*
857 858 859 860 861
	 * Release the lock before (potentially) taking the spinlock such that
	 * other contenders can get on with things ASAP.
	 *
	 * Except when HANDOFF, in that case we must not clear the owner field,
	 * but instead set it to the top waiter.
I
Ingo Molnar 已提交
862
	 */
863 864 865 866 867 868
	owner = atomic_long_read(&lock->owner);
	for (;;) {
		unsigned long old;

#ifdef CONFIG_DEBUG_MUTEXES
		DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
869
		DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
#endif

		if (owner & MUTEX_FLAG_HANDOFF)
			break;

		old = atomic_long_cmpxchg_release(&lock->owner, owner,
						  __owner_flags(owner));
		if (old == owner) {
			if (owner & MUTEX_FLAG_WAITERS)
				break;

			return;
		}

		owner = old;
	}
I
Ingo Molnar 已提交
886

887 888
	spin_lock_mutex(&lock->wait_lock, flags);
	debug_mutex_unlock(lock);
I
Ingo Molnar 已提交
889 890 891
	if (!list_empty(&lock->wait_list)) {
		/* get the first entry from the wait-list: */
		struct mutex_waiter *waiter =
892 893 894 895
			list_first_entry(&lock->wait_list,
					 struct mutex_waiter, list);

		next = waiter->task;
I
Ingo Molnar 已提交
896 897

		debug_mutex_wake_waiter(lock, waiter);
898
		wake_q_add(&wake_q, next);
I
Ingo Molnar 已提交
899 900
	}

901 902 903
	if (owner & MUTEX_FLAG_HANDOFF)
		__mutex_handoff(lock, next);

904
	spin_unlock_mutex(&lock->wait_lock, flags);
905

906
	wake_up_q(&wake_q);
I
Ingo Molnar 已提交
907 908
}

P
Peter Zijlstra 已提交
909
#ifndef CONFIG_DEBUG_LOCK_ALLOC
I
Ingo Molnar 已提交
910 911 912 913
/*
 * Here come the less common (and hence less performance-critical) APIs:
 * mutex_lock_interruptible() and mutex_trylock().
 */
914
static noinline int __sched
915
__mutex_lock_killable_slowpath(struct mutex *lock);
L
Liam R. Howlett 已提交
916

917
static noinline int __sched
918
__mutex_lock_interruptible_slowpath(struct mutex *lock);
I
Ingo Molnar 已提交
919

920 921
/**
 * mutex_lock_interruptible - acquire the mutex, interruptible
I
Ingo Molnar 已提交
922 923 924 925 926 927 928 929 930
 * @lock: the mutex to be acquired
 *
 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
 * been acquired or sleep until the mutex becomes available. If a
 * signal arrives while waiting for the lock then this function
 * returns -EINTR.
 *
 * This function is similar to (but not equivalent to) down_interruptible().
 */
931
int __sched mutex_lock_interruptible(struct mutex *lock)
I
Ingo Molnar 已提交
932
{
933
	might_sleep();
934 935

	if (__mutex_trylock_fast(lock))
936
		return 0;
937 938

	return __mutex_lock_interruptible_slowpath(lock);
I
Ingo Molnar 已提交
939 940 941 942
}

EXPORT_SYMBOL(mutex_lock_interruptible);

943
int __sched mutex_lock_killable(struct mutex *lock)
L
Liam R. Howlett 已提交
944 945
{
	might_sleep();
946 947

	if (__mutex_trylock_fast(lock))
948
		return 0;
949 950

	return __mutex_lock_killable_slowpath(lock);
L
Liam R. Howlett 已提交
951 952 953
}
EXPORT_SYMBOL(mutex_lock_killable);

954 955
static noinline void __sched
__mutex_lock_slowpath(struct mutex *lock)
P
Peter Zijlstra 已提交
956
{
957
	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
958
			    NULL, _RET_IP_, NULL, 0);
P
Peter Zijlstra 已提交
959 960
}

961
static noinline int __sched
962
__mutex_lock_killable_slowpath(struct mutex *lock)
L
Liam R. Howlett 已提交
963
{
964
	return __mutex_lock_common(lock, TASK_KILLABLE, 0,
965
				   NULL, _RET_IP_, NULL, 0);
L
Liam R. Howlett 已提交
966 967
}

968
static noinline int __sched
969
__mutex_lock_interruptible_slowpath(struct mutex *lock)
I
Ingo Molnar 已提交
970
{
971
	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
972
				   NULL, _RET_IP_, NULL, 0);
973 974 975 976 977 978
}

static noinline int __sched
__ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
	return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
979
				   NULL, _RET_IP_, ctx, 1);
I
Ingo Molnar 已提交
980
}
981 982 983 984 985 986

static noinline int __sched
__ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
					    struct ww_acquire_ctx *ctx)
{
	return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
987
				   NULL, _RET_IP_, ctx, 1);
988 989
}

P
Peter Zijlstra 已提交
990
#endif
I
Ingo Molnar 已提交
991

992 993
/**
 * mutex_trylock - try to acquire the mutex, without waiting
I
Ingo Molnar 已提交
994 995 996 997 998 999
 * @lock: the mutex to be acquired
 *
 * Try to acquire the mutex atomically. Returns 1 if the mutex
 * has been acquired successfully, and 0 on contention.
 *
 * NOTE: this function follows the spin_trylock() convention, so
1000
 * it is negated from the down_trylock() return values! Be careful
I
Ingo Molnar 已提交
1001 1002 1003 1004 1005
 * about this when converting semaphore users to mutexes.
 *
 * This function must not be used in interrupt context. The
 * mutex must be released by the same task that acquired it.
 */
1006
int __sched mutex_trylock(struct mutex *lock)
I
Ingo Molnar 已提交
1007
{
1008
	bool locked = __mutex_trylock(lock);
1009

1010 1011
	if (locked)
		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1012

1013
	return locked;
I
Ingo Molnar 已提交
1014 1015
}
EXPORT_SYMBOL(mutex_trylock);
1016

1017 1018 1019 1020 1021 1022
#ifndef CONFIG_DEBUG_LOCK_ALLOC
int __sched
__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
	might_sleep();

1023
	if (__mutex_trylock_fast(&lock->base)) {
1024
		ww_mutex_set_context_fastpath(lock, ctx);
1025 1026 1027 1028
		return 0;
	}

	return __ww_mutex_lock_slowpath(lock, ctx);
1029 1030 1031 1032 1033 1034 1035 1036
}
EXPORT_SYMBOL(__ww_mutex_lock);

int __sched
__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
	might_sleep();

1037
	if (__mutex_trylock_fast(&lock->base)) {
1038
		ww_mutex_set_context_fastpath(lock, ctx);
1039 1040 1041 1042
		return 0;
	}

	return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
1043 1044 1045 1046 1047
}
EXPORT_SYMBOL(__ww_mutex_lock_interruptible);

#endif

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
/**
 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
 * @cnt: the atomic which we are to dec
 * @lock: the mutex to return holding if we dec to 0
 *
 * return true and hold lock if we dec to 0, return false otherwise
 */
int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
{
	/* dec if we can't possibly hit 0 */
	if (atomic_add_unless(cnt, -1, 1))
		return 0;
	/* we might hit 0, so take the lock */
	mutex_lock(lock);
	if (!atomic_dec_and_test(cnt)) {
		/* when we actually did the dec, we didn't hit 0 */
		mutex_unlock(lock);
		return 0;
	}
	/* we hit 0, and we hold the lock */
	return 1;
}
EXPORT_SYMBOL(atomic_dec_and_mutex_lock);