mutex.c 26.9 KB
Newer Older
I
Ingo Molnar 已提交
1
/*
2
 * kernel/locking/mutex.c
I
Ingo Molnar 已提交
3 4 5 6 7 8 9 10 11 12
 *
 * Mutexes: blocking mutual exclusion locks
 *
 * Started by Ingo Molnar:
 *
 *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
 * David Howells for suggestions and improvements.
 *
13 14 15 16 17
 *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
 *    from the -rt tree, where it was originally implemented for rtmutexes
 *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
 *    and Sven Dietrich.
 *
18
 * Also see Documentation/locking/mutex-design.txt.
I
Ingo Molnar 已提交
19 20
 */
#include <linux/mutex.h>
21
#include <linux/ww_mutex.h>
I
Ingo Molnar 已提交
22
#include <linux/sched.h>
23
#include <linux/sched/rt.h>
24
#include <linux/export.h>
I
Ingo Molnar 已提交
25 26
#include <linux/spinlock.h>
#include <linux/interrupt.h>
27
#include <linux/debug_locks.h>
28
#include <linux/osq_lock.h>
I
Ingo Molnar 已提交
29 30 31 32 33 34 35

#ifdef CONFIG_DEBUG_MUTEXES
# include "mutex-debug.h"
#else
# include "mutex.h"
#endif

36 37
void
__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
I
Ingo Molnar 已提交
38
{
39
	atomic_long_set(&lock->owner, 0);
I
Ingo Molnar 已提交
40 41
	spin_lock_init(&lock->wait_lock);
	INIT_LIST_HEAD(&lock->wait_list);
42
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
43
	osq_lock_init(&lock->osq);
44
#endif
I
Ingo Molnar 已提交
45

46
	debug_mutex_init(lock, name, key);
I
Ingo Molnar 已提交
47 48 49
}
EXPORT_SYMBOL(__mutex_init);

50 51 52
/*
 * @owner: contains: 'struct task_struct *' to the current lock owner,
 * NULL means not owned. Since task_struct pointers are aligned at
53
 * at least L1_CACHE_BYTES, we have low bits to store extra state.
54 55
 *
 * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
56
 * Bit1 indicates unlock needs to hand the lock to the top-waiter
57
 * Bit2 indicates handoff has been done and we're waiting for pickup.
58 59
 */
#define MUTEX_FLAG_WAITERS	0x01
60
#define MUTEX_FLAG_HANDOFF	0x02
61
#define MUTEX_FLAG_PICKUP	0x04
62

63
#define MUTEX_FLAGS		0x07
64 65 66 67 68 69 70 71 72 73 74 75

static inline struct task_struct *__owner_task(unsigned long owner)
{
	return (struct task_struct *)(owner & ~MUTEX_FLAGS);
}

static inline unsigned long __owner_flags(unsigned long owner)
{
	return owner & MUTEX_FLAGS;
}

/*
76
 * Trylock variant that retuns the owning task on failure.
77
 */
78
static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock)
79 80 81 82 83
{
	unsigned long owner, curr = (unsigned long)current;

	owner = atomic_long_read(&lock->owner);
	for (;;) { /* must loop, can race against a flag */
84
		unsigned long old, flags = __owner_flags(owner);
85 86 87 88 89 90 91 92
		unsigned long task = owner & ~MUTEX_FLAGS;

		if (task) {
			if (likely(task != curr))
				break;

			if (likely(!(flags & MUTEX_FLAG_PICKUP)))
				break;
93

94 95 96 97 98
			flags &= ~MUTEX_FLAG_PICKUP;
		} else {
#ifdef CONFIG_DEBUG_MUTEXES
			DEBUG_LOCKS_WARN_ON(flags & MUTEX_FLAG_PICKUP);
#endif
99 100 101 102 103 104 105
		}

		/*
		 * We set the HANDOFF bit, we must make sure it doesn't live
		 * past the point where we acquire it. This would be possible
		 * if we (accidentally) set the bit on an unlocked mutex.
		 */
106
		flags &= ~MUTEX_FLAG_HANDOFF;
107

108
		old = atomic_long_cmpxchg_acquire(&lock->owner, owner, curr | flags);
109
		if (old == owner)
110
			return NULL;
111 112 113

		owner = old;
	}
114 115 116 117 118 119 120 121 122 123

	return __owner_task(owner);
}

/*
 * Actual trylock that will work on any unlocked state.
 */
static inline bool __mutex_trylock(struct mutex *lock)
{
	return !__mutex_trylock_or_owner(lock);
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
}

#ifndef CONFIG_DEBUG_LOCK_ALLOC
/*
 * Lockdep annotations are contained to the slow paths for simplicity.
 * There is nothing that would stop spreading the lockdep annotations outwards
 * except more code.
 */

/*
 * Optimistic trylock that only works in the uncontended case. Make sure to
 * follow with a __mutex_trylock() before failing.
 */
static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
{
	unsigned long curr = (unsigned long)current;

	if (!atomic_long_cmpxchg_acquire(&lock->owner, 0UL, curr))
		return true;

	return false;
}

static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
{
	unsigned long curr = (unsigned long)current;

	if (atomic_long_cmpxchg_release(&lock->owner, curr, 0UL) == curr)
		return true;

	return false;
}
#endif

static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
{
	atomic_long_or(flag, &lock->owner);
}

static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
{
	atomic_long_andnot(flag, &lock->owner);
}

168 169 170 171 172 173 174
static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
{
	return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
}

/*
 * Give up ownership to a specific task, when @task = NULL, this is equivalent
175 176 177
 * to a regular unlock. Sets PICKUP on a handoff, clears HANDOF, preserves
 * WAITERS. Provides RELEASE semantics like a regular unlock, the
 * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff.
178 179 180 181 182 183 184 185 186 187
 */
static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
{
	unsigned long owner = atomic_long_read(&lock->owner);

	for (;;) {
		unsigned long old, new;

#ifdef CONFIG_DEBUG_MUTEXES
		DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
188
		DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
189 190 191 192
#endif

		new = (owner & MUTEX_FLAG_WAITERS);
		new |= (unsigned long)task;
193 194
		if (task)
			new |= MUTEX_FLAG_PICKUP;
195 196 197 198 199 200 201 202 203

		old = atomic_long_cmpxchg_release(&lock->owner, owner, new);
		if (old == owner)
			break;

		owner = old;
	}
}

P
Peter Zijlstra 已提交
204
#ifndef CONFIG_DEBUG_LOCK_ALLOC
I
Ingo Molnar 已提交
205 206 207 208 209 210
/*
 * We split the mutex lock/unlock logic into separate fastpath and
 * slowpath functions, to reduce the register pressure on the fastpath.
 * We also put the fastpath first in the kernel image, to make sure the
 * branch is predicted by the CPU as default-untaken.
 */
211
static void __sched __mutex_lock_slowpath(struct mutex *lock);
I
Ingo Molnar 已提交
212

213
/**
I
Ingo Molnar 已提交
214 215 216 217 218 219 220 221 222
 * mutex_lock - acquire the mutex
 * @lock: the mutex to be acquired
 *
 * Lock the mutex exclusively for this task. If the mutex is not
 * available right now, it will sleep until it can get it.
 *
 * The mutex must later on be released by the same task that
 * acquired it. Recursive locking is not allowed. The task
 * may not exit without first unlocking the mutex. Also, kernel
223
 * memory where the mutex resides must not be freed with
I
Ingo Molnar 已提交
224 225 226 227 228 229 230 231 232 233
 * the mutex still locked. The mutex must first be initialized
 * (or statically defined) before it can be locked. memset()-ing
 * the mutex to 0 is not allowed.
 *
 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
 *   checks that will enforce the restrictions and will also do
 *   deadlock debugging. )
 *
 * This function is similar to (but not equivalent to) down().
 */
234
void __sched mutex_lock(struct mutex *lock)
I
Ingo Molnar 已提交
235
{
236
	might_sleep();
I
Ingo Molnar 已提交
237

238 239 240
	if (!__mutex_trylock_fast(lock))
		__mutex_lock_slowpath(lock);
}
I
Ingo Molnar 已提交
241
EXPORT_SYMBOL(mutex_lock);
P
Peter Zijlstra 已提交
242
#endif
I
Ingo Molnar 已提交
243

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
						   struct ww_acquire_ctx *ww_ctx)
{
#ifdef CONFIG_DEBUG_MUTEXES
	/*
	 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
	 * but released with a normal mutex_unlock in this call.
	 *
	 * This should never happen, always use ww_mutex_unlock.
	 */
	DEBUG_LOCKS_WARN_ON(ww->ctx);

	/*
	 * Not quite done after calling ww_acquire_done() ?
	 */
	DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);

	if (ww_ctx->contending_lock) {
		/*
		 * After -EDEADLK you tried to
		 * acquire a different ww_mutex? Bad!
		 */
		DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);

		/*
		 * You called ww_mutex_lock after receiving -EDEADLK,
		 * but 'forgot' to unlock everything else first?
		 */
		DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
		ww_ctx->contending_lock = NULL;
	}

	/*
	 * Naughty, using a different class will lead to undefined behavior!
	 */
	DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
#endif
	ww_ctx->acquired++;
}

/*
285
 * After acquiring lock with fastpath or when we lost out in contested
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
 * slowpath, set ctx and wake up any waiters so they can recheck.
 */
static __always_inline void
ww_mutex_set_context_fastpath(struct ww_mutex *lock,
			       struct ww_acquire_ctx *ctx)
{
	unsigned long flags;
	struct mutex_waiter *cur;

	ww_mutex_lock_acquired(lock, ctx);

	lock->ctx = ctx;

	/*
	 * The lock->ctx update should be visible on all cores before
	 * the atomic read is done, otherwise contended waiters might be
	 * missed. The contended waiters will either see ww_ctx == NULL
	 * and keep spinning, or it will acquire wait_lock, add itself
	 * to waiter list and sleep.
	 */
	smp_mb(); /* ^^^ */

	/*
	 * Check if lock is contended, if not there is nobody to wake up
	 */
311
	if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS)))
312 313 314 315 316 317 318 319 320 321 322 323 324 325
		return;

	/*
	 * Uh oh, we raced in fastpath, wake up everyone in this case,
	 * so they can see the new lock->ctx.
	 */
	spin_lock_mutex(&lock->base.wait_lock, flags);
	list_for_each_entry(cur, &lock->base.wait_list, list) {
		debug_mutex_wake_waiter(&lock->base, cur);
		wake_up_process(cur->task);
	}
	spin_unlock_mutex(&lock->base.wait_lock, flags);
}

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
/*
 * After acquiring lock in the slowpath set ctx and wake up any
 * waiters so they can recheck.
 *
 * Callers must hold the mutex wait_lock.
 */
static __always_inline void
ww_mutex_set_context_slowpath(struct ww_mutex *lock,
			      struct ww_acquire_ctx *ctx)
{
	struct mutex_waiter *cur;

	ww_mutex_lock_acquired(lock, ctx);
	lock->ctx = ctx;

	/*
	 * Give any possible sleeping processes the chance to wake up,
	 * so they can recheck if they have to back off.
	 */
	list_for_each_entry(cur, &lock->base.wait_list, list) {
		debug_mutex_wake_waiter(&lock->base, cur);
		wake_up_process(cur->task);
	}
}
350

351 352 353 354 355 356
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
static noinline
357
bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
358
{
359
	bool ret = true;
360

361
	rcu_read_lock();
362
	while (__mutex_owner(lock) == owner) {
363 364
		/*
		 * Ensure we emit the owner->on_cpu, dereference _after_
365 366
		 * checking lock->owner still matches owner. If that fails,
		 * owner might point to freed memory. If it still matches,
367 368 369 370
		 * the rcu_read_lock() ensures the memory stays valid.
		 */
		barrier();

371 372 373 374 375
		/*
		 * Use vcpu_is_preempted to detect lock holder preemption issue.
		 */
		if (!owner->on_cpu || need_resched() ||
				vcpu_is_preempted(task_cpu(owner))) {
376 377 378
			ret = false;
			break;
		}
379

380
		cpu_relax();
381 382 383
	}
	rcu_read_unlock();

384
	return ret;
385
}
386 387 388 389 390 391

/*
 * Initial check for entering the mutex spinning loop
 */
static inline int mutex_can_spin_on_owner(struct mutex *lock)
{
392
	struct task_struct *owner;
393 394
	int retval = 1;

395 396 397
	if (need_resched())
		return 0;

398
	rcu_read_lock();
399
	owner = __mutex_owner(lock);
400 401 402 403 404

	/*
	 * As lock holder preemption issue, we both skip spinning if task is not
	 * on cpu or its cpu is preempted
	 */
405
	if (owner)
406
		retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
407
	rcu_read_unlock();
408

409
	/*
410 411 412
	 * If lock->owner is not set, the mutex has been released. Return true
	 * such that we'll trylock in the spin path, which is a faster option
	 * than the blocking slow path.
413 414 415
	 */
	return retval;
}
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431

/*
 * Optimistic spinning.
 *
 * We try to spin for acquisition when we find that the lock owner
 * is currently running on a (different) CPU and while we don't
 * need to reschedule. The rationale is that if the lock owner is
 * running, it is likely to release the lock soon.
 *
 * The mutex spinners are queued up using MCS lock so that only one
 * spinner can compete for the mutex. However, if mutex spinning isn't
 * going to happen, there is no point in going through the lock/unlock
 * overhead.
 *
 * Returns true when the lock was taken, otherwise false, indicating
 * that we need to jump to the slowpath and sleep.
432 433 434 435 436
 *
 * The waiter flag is set to true if the spinner is a waiter in the wait
 * queue. The waiter-spinner will spin on the lock directly and concurrently
 * with the spinner at the head of the OSQ, if present, until the owner is
 * changed to itself.
437 438
 */
static bool mutex_optimistic_spin(struct mutex *lock,
439 440
				  struct ww_acquire_ctx *ww_ctx,
				  const bool use_ww_ctx, const bool waiter)
441
{
442 443 444 445 446 447 448 449 450 451
	if (!waiter) {
		/*
		 * The purpose of the mutex_can_spin_on_owner() function is
		 * to eliminate the overhead of osq_lock() and osq_unlock()
		 * in case spinning isn't possible. As a waiter-spinner
		 * is not going to take OSQ lock anyway, there is no need
		 * to call mutex_can_spin_on_owner().
		 */
		if (!mutex_can_spin_on_owner(lock))
			goto fail;
452

453 454 455 456 457 458 459 460
		/*
		 * In order to avoid a stampede of mutex spinners trying to
		 * acquire the mutex all at once, the spinners need to take a
		 * MCS (queued) lock first before spinning on the owner field.
		 */
		if (!osq_lock(&lock->osq))
			goto fail;
	}
461

462
	for (;;) {
463 464 465 466 467 468 469 470 471 472 473 474 475 476
		struct task_struct *owner;

		if (use_ww_ctx && ww_ctx->acquired > 0) {
			struct ww_mutex *ww;

			ww = container_of(lock, struct ww_mutex, base);
			/*
			 * If ww->ctx is set the contents are undefined, only
			 * by acquiring wait_lock there is a guarantee that
			 * they are not invalid when reading.
			 *
			 * As such, when deadlock detection needs to be
			 * performed the optimistic spinning cannot be done.
			 */
477
			if (READ_ONCE(ww->ctx))
478
				goto fail_unlock;
479 480
		}

481 482 483 484 485
		/* Try to acquire the mutex... */
		owner = __mutex_trylock_or_owner(lock);
		if (!owner)
			break;

486
		/*
487
		 * There's an owner, wait for it to either
488 489
		 * release the lock or go to sleep.
		 */
490 491
		if (!mutex_spin_on_owner(lock, owner))
			goto fail_unlock;
492

493 494 495 496 497 498
		/*
		 * The cpu_relax() call is a compiler barrier which forces
		 * everything in this loop to be re-loaded. We don't need
		 * memory barriers as we'll eventually observe the right
		 * values at the cost of a few extra spins.
		 */
499
		cpu_relax();
500 501
	}

502 503 504 505 506 507 508 509 510 511 512
	if (!waiter)
		osq_unlock(&lock->osq);

	return true;


fail_unlock:
	if (!waiter)
		osq_unlock(&lock->osq);

fail:
513 514 515 516 517
	/*
	 * If we fell out of the spin path because of need_resched(),
	 * reschedule now, before we try-lock the mutex. This avoids getting
	 * scheduled out right after we obtained the mutex.
	 */
518 519 520 521 522 523
	if (need_resched()) {
		/*
		 * We _should_ have TASK_RUNNING here, but just in case
		 * we do not, make it so, otherwise we might get stuck.
		 */
		__set_current_state(TASK_RUNNING);
524
		schedule_preempt_disabled();
525
	}
526 527 528 529 530

	return false;
}
#else
static bool mutex_optimistic_spin(struct mutex *lock,
531 532
				  struct ww_acquire_ctx *ww_ctx,
				  const bool use_ww_ctx, const bool waiter)
533 534 535
{
	return false;
}
536 537
#endif

538
static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
I
Ingo Molnar 已提交
539

540
/**
I
Ingo Molnar 已提交
541 542 543 544 545 546 547 548 549 550
 * mutex_unlock - release the mutex
 * @lock: the mutex to be released
 *
 * Unlock a mutex that has been locked by this task previously.
 *
 * This function must not be used in interrupt context. Unlocking
 * of a not locked mutex is not allowed.
 *
 * This function is similar to (but not equivalent to) up().
 */
551
void __sched mutex_unlock(struct mutex *lock)
I
Ingo Molnar 已提交
552
{
553 554 555
#ifndef CONFIG_DEBUG_LOCK_ALLOC
	if (__mutex_unlock_fast(lock))
		return;
556
#endif
557
	__mutex_unlock_slowpath(lock, _RET_IP_);
I
Ingo Molnar 已提交
558 559 560
}
EXPORT_SYMBOL(mutex_unlock);

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
/**
 * ww_mutex_unlock - release the w/w mutex
 * @lock: the mutex to be released
 *
 * Unlock a mutex that has been locked by this task previously with any of the
 * ww_mutex_lock* functions (with or without an acquire context). It is
 * forbidden to release the locks after releasing the acquire context.
 *
 * This function must not be used in interrupt context. Unlocking
 * of a unlocked mutex is not allowed.
 */
void __sched ww_mutex_unlock(struct ww_mutex *lock)
{
	/*
	 * The unlocking fastpath is the 0->1 transition from 'locked'
	 * into 'unlocked' state:
	 */
	if (lock->ctx) {
#ifdef CONFIG_DEBUG_MUTEXES
		DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
#endif
		if (lock->ctx->acquired > 0)
			lock->ctx->acquired--;
		lock->ctx = NULL;
	}

587
	mutex_unlock(&lock->base);
588 589 590 591
}
EXPORT_SYMBOL(ww_mutex_unlock);

static inline int __sched
592
__ww_mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
593 594
{
	struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
595
	struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611

	if (!hold_ctx)
		return 0;

	if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
	    (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
#ifdef CONFIG_DEBUG_MUTEXES
		DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
		ctx->contending_lock = ww;
#endif
		return -EDEADLK;
	}

	return 0;
}

I
Ingo Molnar 已提交
612 613 614
/*
 * Lock a mutex (possibly interruptible), slowpath:
 */
615
static __always_inline int __sched
P
Peter Zijlstra 已提交
616
__mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
617
		    struct lockdep_map *nest_lock, unsigned long ip,
618
		    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
I
Ingo Molnar 已提交
619 620
{
	struct mutex_waiter waiter;
621
	unsigned long flags;
622
	bool first = false;
623
	struct ww_mutex *ww;
624
	int ret;
I
Ingo Molnar 已提交
625

626
	if (use_ww_ctx) {
627
		ww = container_of(lock, struct ww_mutex, base);
628 629 630 631
		if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
			return -EALREADY;
	}

P
Peter Zijlstra 已提交
632
	preempt_disable();
633
	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
634

635
	if (__mutex_trylock(lock) ||
636
	    mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, false)) {
637
		/* got the lock, yay! */
638
		lock_acquired(&lock->dep_map, ip);
639
		if (use_ww_ctx)
640
			ww_mutex_set_context_fastpath(ww, ww_ctx);
641 642
		preempt_enable();
		return 0;
643
	}
644

645
	spin_lock_mutex(&lock->wait_lock, flags);
646
	/*
647
	 * After waiting to acquire the wait_lock, try again.
648
	 */
649
	if (__mutex_trylock(lock))
650 651
		goto skip_wait;

652
	debug_mutex_lock_common(lock, &waiter);
653
	debug_mutex_add_waiter(lock, &waiter, current);
I
Ingo Molnar 已提交
654 655 656

	/* add waiting tasks to the end of the waitqueue (FIFO): */
	list_add_tail(&waiter.list, &lock->wait_list);
657
	waiter.task = current;
I
Ingo Molnar 已提交
658

659
	if (__mutex_waiter_is_first(lock, &waiter))
660 661
		__mutex_set_flag(lock, MUTEX_FLAG_WAITERS);

P
Peter Zijlstra 已提交
662
	lock_contended(&lock->dep_map, ip);
663

664
	set_current_state(state);
I
Ingo Molnar 已提交
665
	for (;;) {
666 667 668 669 670 671
		/*
		 * Once we hold wait_lock, we're serialized against
		 * mutex_unlock() handing the lock off to us, do a trylock
		 * before testing the error conditions to make sure we pick up
		 * the handoff.
		 */
672
		if (__mutex_trylock(lock))
673
			goto acquired;
I
Ingo Molnar 已提交
674 675

		/*
676 677 678
		 * Check for signals and wound conditions while holding
		 * wait_lock. This ensures the lock cancellation is ordered
		 * against mutex_unlock() and wake-ups do not go missing.
I
Ingo Molnar 已提交
679
		 */
680
		if (unlikely(signal_pending_state(state, current))) {
681 682 683
			ret = -EINTR;
			goto err;
		}
I
Ingo Molnar 已提交
684

685
		if (use_ww_ctx && ww_ctx->acquired > 0) {
686
			ret = __ww_mutex_lock_check_stamp(lock, ww_ctx);
687 688
			if (ret)
				goto err;
I
Ingo Molnar 已提交
689
		}
690

691
		spin_unlock_mutex(&lock->wait_lock, flags);
692
		schedule_preempt_disabled();
693 694 695 696 697

		if (!first && __mutex_waiter_is_first(lock, &waiter)) {
			first = true;
			__mutex_set_flag(lock, MUTEX_FLAG_HANDOFF);
		}
698

699
		set_current_state(state);
700 701 702 703 704
		/*
		 * Here we order against unlock; we must either see it change
		 * state back to RUNNING and fall through the next schedule(),
		 * or we must see its unlock and acquire.
		 */
705 706
		if (__mutex_trylock(lock) ||
		    (first && mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, true)))
707 708 709
			break;

		spin_lock_mutex(&lock->wait_lock, flags);
I
Ingo Molnar 已提交
710
	}
711 712
	spin_lock_mutex(&lock->wait_lock, flags);
acquired:
713
	__set_current_state(TASK_RUNNING);
714

715
	mutex_remove_waiter(lock, &waiter, current);
716
	if (likely(list_empty(&lock->wait_list)))
717
		__mutex_clear_flag(lock, MUTEX_FLAGS);
718

719
	debug_mutex_free_waiter(&waiter);
I
Ingo Molnar 已提交
720

721 722
skip_wait:
	/* got the lock - cleanup and rejoice! */
P
Peter Zijlstra 已提交
723
	lock_acquired(&lock->dep_map, ip);
I
Ingo Molnar 已提交
724

725
	if (use_ww_ctx)
726
		ww_mutex_set_context_slowpath(ww, ww_ctx);
727

728
	spin_unlock_mutex(&lock->wait_lock, flags);
P
Peter Zijlstra 已提交
729
	preempt_enable();
I
Ingo Molnar 已提交
730
	return 0;
731 732

err:
733
	__set_current_state(TASK_RUNNING);
734
	mutex_remove_waiter(lock, &waiter, current);
735 736 737 738 739
	spin_unlock_mutex(&lock->wait_lock, flags);
	debug_mutex_free_waiter(&waiter);
	mutex_release(&lock->dep_map, 1, ip);
	preempt_enable();
	return ret;
I
Ingo Molnar 已提交
740 741
}

742 743 744 745 746
#ifdef CONFIG_DEBUG_LOCK_ALLOC
void __sched
mutex_lock_nested(struct mutex *lock, unsigned int subclass)
{
	might_sleep();
747
	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
748
			    subclass, NULL, _RET_IP_, NULL, 0);
749 750 751
}

EXPORT_SYMBOL_GPL(mutex_lock_nested);
752

753 754 755 756
void __sched
_mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
{
	might_sleep();
757
	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
758
			    0, nest, _RET_IP_, NULL, 0);
759 760 761
}
EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);

L
Liam R. Howlett 已提交
762 763 764 765
int __sched
mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
{
	might_sleep();
766
	return __mutex_lock_common(lock, TASK_KILLABLE,
767
				   subclass, NULL, _RET_IP_, NULL, 0);
L
Liam R. Howlett 已提交
768 769 770
}
EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);

771 772 773 774
int __sched
mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
{
	might_sleep();
775
	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
776
				   subclass, NULL, _RET_IP_, NULL, 0);
777 778
}
EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
779

780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
static inline int
ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
	unsigned tmp;

	if (ctx->deadlock_inject_countdown-- == 0) {
		tmp = ctx->deadlock_inject_interval;
		if (tmp > UINT_MAX/4)
			tmp = UINT_MAX;
		else
			tmp = tmp*2 + tmp + tmp/2;

		ctx->deadlock_inject_interval = tmp;
		ctx->deadlock_inject_countdown = tmp;
		ctx->contending_lock = lock;

		ww_mutex_unlock(lock);

		return -EDEADLK;
	}
#endif

	return 0;
}
805 806 807 808

int __sched
__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
809 810
	int ret;

811
	might_sleep();
812
	ret =  __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
813
				   0, &ctx->dep_map, _RET_IP_, ctx, 1);
814
	if (!ret && ctx->acquired > 1)
815 816 817
		return ww_mutex_deadlock_injection(lock, ctx);

	return ret;
818 819 820 821 822 823
}
EXPORT_SYMBOL_GPL(__ww_mutex_lock);

int __sched
__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
824 825
	int ret;

826
	might_sleep();
827
	ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
828
				  0, &ctx->dep_map, _RET_IP_, ctx, 1);
829

830
	if (!ret && ctx->acquired > 1)
831 832 833
		return ww_mutex_deadlock_injection(lock, ctx);

	return ret;
834 835 836
}
EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);

837 838
#endif

I
Ingo Molnar 已提交
839 840 841
/*
 * Release the lock, slowpath:
 */
842
static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
I
Ingo Molnar 已提交
843
{
844
	struct task_struct *next = NULL;
845
	unsigned long owner, flags;
846
	DEFINE_WAKE_Q(wake_q);
I
Ingo Molnar 已提交
847

848 849
	mutex_release(&lock->dep_map, 1, ip);

I
Ingo Molnar 已提交
850
	/*
851 852 853 854 855
	 * Release the lock before (potentially) taking the spinlock such that
	 * other contenders can get on with things ASAP.
	 *
	 * Except when HANDOFF, in that case we must not clear the owner field,
	 * but instead set it to the top waiter.
I
Ingo Molnar 已提交
856
	 */
857 858 859 860 861 862
	owner = atomic_long_read(&lock->owner);
	for (;;) {
		unsigned long old;

#ifdef CONFIG_DEBUG_MUTEXES
		DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
863
		DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
#endif

		if (owner & MUTEX_FLAG_HANDOFF)
			break;

		old = atomic_long_cmpxchg_release(&lock->owner, owner,
						  __owner_flags(owner));
		if (old == owner) {
			if (owner & MUTEX_FLAG_WAITERS)
				break;

			return;
		}

		owner = old;
	}
I
Ingo Molnar 已提交
880

881 882
	spin_lock_mutex(&lock->wait_lock, flags);
	debug_mutex_unlock(lock);
I
Ingo Molnar 已提交
883 884 885
	if (!list_empty(&lock->wait_list)) {
		/* get the first entry from the wait-list: */
		struct mutex_waiter *waiter =
886 887 888 889
			list_first_entry(&lock->wait_list,
					 struct mutex_waiter, list);

		next = waiter->task;
I
Ingo Molnar 已提交
890 891

		debug_mutex_wake_waiter(lock, waiter);
892
		wake_q_add(&wake_q, next);
I
Ingo Molnar 已提交
893 894
	}

895 896 897
	if (owner & MUTEX_FLAG_HANDOFF)
		__mutex_handoff(lock, next);

898
	spin_unlock_mutex(&lock->wait_lock, flags);
899

900
	wake_up_q(&wake_q);
I
Ingo Molnar 已提交
901 902
}

P
Peter Zijlstra 已提交
903
#ifndef CONFIG_DEBUG_LOCK_ALLOC
I
Ingo Molnar 已提交
904 905 906 907
/*
 * Here come the less common (and hence less performance-critical) APIs:
 * mutex_lock_interruptible() and mutex_trylock().
 */
908
static noinline int __sched
909
__mutex_lock_killable_slowpath(struct mutex *lock);
L
Liam R. Howlett 已提交
910

911
static noinline int __sched
912
__mutex_lock_interruptible_slowpath(struct mutex *lock);
I
Ingo Molnar 已提交
913

914 915
/**
 * mutex_lock_interruptible - acquire the mutex, interruptible
I
Ingo Molnar 已提交
916 917 918 919 920 921 922 923 924
 * @lock: the mutex to be acquired
 *
 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
 * been acquired or sleep until the mutex becomes available. If a
 * signal arrives while waiting for the lock then this function
 * returns -EINTR.
 *
 * This function is similar to (but not equivalent to) down_interruptible().
 */
925
int __sched mutex_lock_interruptible(struct mutex *lock)
I
Ingo Molnar 已提交
926
{
927
	might_sleep();
928 929

	if (__mutex_trylock_fast(lock))
930
		return 0;
931 932

	return __mutex_lock_interruptible_slowpath(lock);
I
Ingo Molnar 已提交
933 934 935 936
}

EXPORT_SYMBOL(mutex_lock_interruptible);

937
int __sched mutex_lock_killable(struct mutex *lock)
L
Liam R. Howlett 已提交
938 939
{
	might_sleep();
940 941

	if (__mutex_trylock_fast(lock))
942
		return 0;
943 944

	return __mutex_lock_killable_slowpath(lock);
L
Liam R. Howlett 已提交
945 946 947
}
EXPORT_SYMBOL(mutex_lock_killable);

948 949
static noinline void __sched
__mutex_lock_slowpath(struct mutex *lock)
P
Peter Zijlstra 已提交
950
{
951
	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
952
			    NULL, _RET_IP_, NULL, 0);
P
Peter Zijlstra 已提交
953 954
}

955
static noinline int __sched
956
__mutex_lock_killable_slowpath(struct mutex *lock)
L
Liam R. Howlett 已提交
957
{
958
	return __mutex_lock_common(lock, TASK_KILLABLE, 0,
959
				   NULL, _RET_IP_, NULL, 0);
L
Liam R. Howlett 已提交
960 961
}

962
static noinline int __sched
963
__mutex_lock_interruptible_slowpath(struct mutex *lock)
I
Ingo Molnar 已提交
964
{
965
	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
966
				   NULL, _RET_IP_, NULL, 0);
967 968 969 970 971 972
}

static noinline int __sched
__ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
	return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
973
				   NULL, _RET_IP_, ctx, 1);
I
Ingo Molnar 已提交
974
}
975 976 977 978 979 980

static noinline int __sched
__ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
					    struct ww_acquire_ctx *ctx)
{
	return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
981
				   NULL, _RET_IP_, ctx, 1);
982 983
}

P
Peter Zijlstra 已提交
984
#endif
I
Ingo Molnar 已提交
985

986 987
/**
 * mutex_trylock - try to acquire the mutex, without waiting
I
Ingo Molnar 已提交
988 989 990 991 992 993
 * @lock: the mutex to be acquired
 *
 * Try to acquire the mutex atomically. Returns 1 if the mutex
 * has been acquired successfully, and 0 on contention.
 *
 * NOTE: this function follows the spin_trylock() convention, so
994
 * it is negated from the down_trylock() return values! Be careful
I
Ingo Molnar 已提交
995 996 997 998 999
 * about this when converting semaphore users to mutexes.
 *
 * This function must not be used in interrupt context. The
 * mutex must be released by the same task that acquired it.
 */
1000
int __sched mutex_trylock(struct mutex *lock)
I
Ingo Molnar 已提交
1001
{
1002
	bool locked = __mutex_trylock(lock);
1003

1004 1005
	if (locked)
		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1006

1007
	return locked;
I
Ingo Molnar 已提交
1008 1009
}
EXPORT_SYMBOL(mutex_trylock);
1010

1011 1012 1013 1014 1015 1016
#ifndef CONFIG_DEBUG_LOCK_ALLOC
int __sched
__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
	might_sleep();

1017
	if (__mutex_trylock_fast(&lock->base)) {
1018
		ww_mutex_set_context_fastpath(lock, ctx);
1019 1020 1021 1022
		return 0;
	}

	return __ww_mutex_lock_slowpath(lock, ctx);
1023 1024 1025 1026 1027 1028 1029 1030
}
EXPORT_SYMBOL(__ww_mutex_lock);

int __sched
__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
	might_sleep();

1031
	if (__mutex_trylock_fast(&lock->base)) {
1032
		ww_mutex_set_context_fastpath(lock, ctx);
1033 1034 1035 1036
		return 0;
	}

	return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
1037 1038 1039 1040 1041
}
EXPORT_SYMBOL(__ww_mutex_lock_interruptible);

#endif

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
/**
 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
 * @cnt: the atomic which we are to dec
 * @lock: the mutex to return holding if we dec to 0
 *
 * return true and hold lock if we dec to 0, return false otherwise
 */
int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
{
	/* dec if we can't possibly hit 0 */
	if (atomic_add_unless(cnt, -1, 1))
		return 0;
	/* we might hit 0, so take the lock */
	mutex_lock(lock);
	if (!atomic_dec_and_test(cnt)) {
		/* when we actually did the dec, we didn't hit 0 */
		mutex_unlock(lock);
		return 0;
	}
	/* we hit 0, and we hold the lock */
	return 1;
}
EXPORT_SYMBOL(atomic_dec_and_mutex_lock);