mutex.c 27.1 KB
Newer Older
I
Ingo Molnar 已提交
1
/*
2
 * kernel/locking/mutex.c
I
Ingo Molnar 已提交
3 4 5 6 7 8 9 10 11 12
 *
 * Mutexes: blocking mutual exclusion locks
 *
 * Started by Ingo Molnar:
 *
 *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
 * David Howells for suggestions and improvements.
 *
13 14 15 16 17
 *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
 *    from the -rt tree, where it was originally implemented for rtmutexes
 *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
 *    and Sven Dietrich.
 *
18
 * Also see Documentation/locking/mutex-design.txt.
I
Ingo Molnar 已提交
19 20
 */
#include <linux/mutex.h>
21
#include <linux/ww_mutex.h>
I
Ingo Molnar 已提交
22
#include <linux/sched.h>
23
#include <linux/sched/rt.h>
24
#include <linux/export.h>
I
Ingo Molnar 已提交
25 26
#include <linux/spinlock.h>
#include <linux/interrupt.h>
27
#include <linux/debug_locks.h>
28
#include <linux/osq_lock.h>
I
Ingo Molnar 已提交
29 30 31 32 33 34 35

#ifdef CONFIG_DEBUG_MUTEXES
# include "mutex-debug.h"
#else
# include "mutex.h"
#endif

36 37
void
__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
I
Ingo Molnar 已提交
38
{
39
	atomic_long_set(&lock->owner, 0);
I
Ingo Molnar 已提交
40 41
	spin_lock_init(&lock->wait_lock);
	INIT_LIST_HEAD(&lock->wait_list);
42
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
43
	osq_lock_init(&lock->osq);
44
#endif
I
Ingo Molnar 已提交
45

46
	debug_mutex_init(lock, name, key);
I
Ingo Molnar 已提交
47 48 49
}
EXPORT_SYMBOL(__mutex_init);

50 51 52
/*
 * @owner: contains: 'struct task_struct *' to the current lock owner,
 * NULL means not owned. Since task_struct pointers are aligned at
53
 * at least L1_CACHE_BYTES, we have low bits to store extra state.
54 55
 *
 * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
56
 * Bit1 indicates unlock needs to hand the lock to the top-waiter
57
 * Bit2 indicates handoff has been done and we're waiting for pickup.
58 59
 */
#define MUTEX_FLAG_WAITERS	0x01
60
#define MUTEX_FLAG_HANDOFF	0x02
61
#define MUTEX_FLAG_PICKUP	0x04
62

63
#define MUTEX_FLAGS		0x07
64 65 66 67 68 69 70 71 72 73 74 75

static inline struct task_struct *__owner_task(unsigned long owner)
{
	return (struct task_struct *)(owner & ~MUTEX_FLAGS);
}

static inline unsigned long __owner_flags(unsigned long owner)
{
	return owner & MUTEX_FLAGS;
}

/*
76
 * Trylock variant that retuns the owning task on failure.
77
 */
78
static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock)
79 80 81 82 83
{
	unsigned long owner, curr = (unsigned long)current;

	owner = atomic_long_read(&lock->owner);
	for (;;) { /* must loop, can race against a flag */
84
		unsigned long old, flags = __owner_flags(owner);
85 86 87 88 89 90 91 92
		unsigned long task = owner & ~MUTEX_FLAGS;

		if (task) {
			if (likely(task != curr))
				break;

			if (likely(!(flags & MUTEX_FLAG_PICKUP)))
				break;
93

94 95 96 97 98
			flags &= ~MUTEX_FLAG_PICKUP;
		} else {
#ifdef CONFIG_DEBUG_MUTEXES
			DEBUG_LOCKS_WARN_ON(flags & MUTEX_FLAG_PICKUP);
#endif
99 100 101 102 103 104 105
		}

		/*
		 * We set the HANDOFF bit, we must make sure it doesn't live
		 * past the point where we acquire it. This would be possible
		 * if we (accidentally) set the bit on an unlocked mutex.
		 */
106
		flags &= ~MUTEX_FLAG_HANDOFF;
107

108
		old = atomic_long_cmpxchg_acquire(&lock->owner, owner, curr | flags);
109
		if (old == owner)
110
			return NULL;
111 112 113

		owner = old;
	}
114 115 116 117 118 119 120 121 122 123

	return __owner_task(owner);
}

/*
 * Actual trylock that will work on any unlocked state.
 */
static inline bool __mutex_trylock(struct mutex *lock)
{
	return !__mutex_trylock_or_owner(lock);
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
}

#ifndef CONFIG_DEBUG_LOCK_ALLOC
/*
 * Lockdep annotations are contained to the slow paths for simplicity.
 * There is nothing that would stop spreading the lockdep annotations outwards
 * except more code.
 */

/*
 * Optimistic trylock that only works in the uncontended case. Make sure to
 * follow with a __mutex_trylock() before failing.
 */
static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
{
	unsigned long curr = (unsigned long)current;

	if (!atomic_long_cmpxchg_acquire(&lock->owner, 0UL, curr))
		return true;

	return false;
}

static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
{
	unsigned long curr = (unsigned long)current;

	if (atomic_long_cmpxchg_release(&lock->owner, curr, 0UL) == curr)
		return true;

	return false;
}
#endif

static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
{
	atomic_long_or(flag, &lock->owner);
}

static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
{
	atomic_long_andnot(flag, &lock->owner);
}

168 169 170 171 172 173 174
static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
{
	return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
}

/*
 * Give up ownership to a specific task, when @task = NULL, this is equivalent
175 176 177
 * to a regular unlock. Sets PICKUP on a handoff, clears HANDOF, preserves
 * WAITERS. Provides RELEASE semantics like a regular unlock, the
 * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff.
178 179 180 181 182 183 184 185 186 187
 */
static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
{
	unsigned long owner = atomic_long_read(&lock->owner);

	for (;;) {
		unsigned long old, new;

#ifdef CONFIG_DEBUG_MUTEXES
		DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
188
		DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
189 190 191 192
#endif

		new = (owner & MUTEX_FLAG_WAITERS);
		new |= (unsigned long)task;
193 194
		if (task)
			new |= MUTEX_FLAG_PICKUP;
195 196 197 198 199 200 201 202 203

		old = atomic_long_cmpxchg_release(&lock->owner, owner, new);
		if (old == owner)
			break;

		owner = old;
	}
}

P
Peter Zijlstra 已提交
204
#ifndef CONFIG_DEBUG_LOCK_ALLOC
I
Ingo Molnar 已提交
205 206 207 208 209 210
/*
 * We split the mutex lock/unlock logic into separate fastpath and
 * slowpath functions, to reduce the register pressure on the fastpath.
 * We also put the fastpath first in the kernel image, to make sure the
 * branch is predicted by the CPU as default-untaken.
 */
211
static void __sched __mutex_lock_slowpath(struct mutex *lock);
I
Ingo Molnar 已提交
212

213
/**
I
Ingo Molnar 已提交
214 215 216 217 218 219 220 221 222
 * mutex_lock - acquire the mutex
 * @lock: the mutex to be acquired
 *
 * Lock the mutex exclusively for this task. If the mutex is not
 * available right now, it will sleep until it can get it.
 *
 * The mutex must later on be released by the same task that
 * acquired it. Recursive locking is not allowed. The task
 * may not exit without first unlocking the mutex. Also, kernel
223
 * memory where the mutex resides must not be freed with
I
Ingo Molnar 已提交
224 225 226 227 228 229 230 231 232 233
 * the mutex still locked. The mutex must first be initialized
 * (or statically defined) before it can be locked. memset()-ing
 * the mutex to 0 is not allowed.
 *
 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
 *   checks that will enforce the restrictions and will also do
 *   deadlock debugging. )
 *
 * This function is similar to (but not equivalent to) down().
 */
234
void __sched mutex_lock(struct mutex *lock)
I
Ingo Molnar 已提交
235
{
236
	might_sleep();
I
Ingo Molnar 已提交
237

238 239 240
	if (!__mutex_trylock_fast(lock))
		__mutex_lock_slowpath(lock);
}
I
Ingo Molnar 已提交
241
EXPORT_SYMBOL(mutex_lock);
P
Peter Zijlstra 已提交
242
#endif
I
Ingo Molnar 已提交
243

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
						   struct ww_acquire_ctx *ww_ctx)
{
#ifdef CONFIG_DEBUG_MUTEXES
	/*
	 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
	 * but released with a normal mutex_unlock in this call.
	 *
	 * This should never happen, always use ww_mutex_unlock.
	 */
	DEBUG_LOCKS_WARN_ON(ww->ctx);

	/*
	 * Not quite done after calling ww_acquire_done() ?
	 */
	DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);

	if (ww_ctx->contending_lock) {
		/*
		 * After -EDEADLK you tried to
		 * acquire a different ww_mutex? Bad!
		 */
		DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);

		/*
		 * You called ww_mutex_lock after receiving -EDEADLK,
		 * but 'forgot' to unlock everything else first?
		 */
		DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
		ww_ctx->contending_lock = NULL;
	}

	/*
	 * Naughty, using a different class will lead to undefined behavior!
	 */
	DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
#endif
	ww_ctx->acquired++;
}

284 285 286 287 288 289 290
static inline bool __sched
__ww_ctx_stamp_after(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b)
{
	return a->stamp - b->stamp <= LONG_MAX &&
	       (a->stamp != b->stamp || a > b);
}

291
/*
292
 * After acquiring lock with fastpath or when we lost out in contested
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
 * slowpath, set ctx and wake up any waiters so they can recheck.
 */
static __always_inline void
ww_mutex_set_context_fastpath(struct ww_mutex *lock,
			       struct ww_acquire_ctx *ctx)
{
	unsigned long flags;
	struct mutex_waiter *cur;

	ww_mutex_lock_acquired(lock, ctx);

	lock->ctx = ctx;

	/*
	 * The lock->ctx update should be visible on all cores before
	 * the atomic read is done, otherwise contended waiters might be
	 * missed. The contended waiters will either see ww_ctx == NULL
	 * and keep spinning, or it will acquire wait_lock, add itself
	 * to waiter list and sleep.
	 */
	smp_mb(); /* ^^^ */

	/*
	 * Check if lock is contended, if not there is nobody to wake up
	 */
318
	if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS)))
319 320 321 322 323 324 325 326 327 328 329 330 331 332
		return;

	/*
	 * Uh oh, we raced in fastpath, wake up everyone in this case,
	 * so they can see the new lock->ctx.
	 */
	spin_lock_mutex(&lock->base.wait_lock, flags);
	list_for_each_entry(cur, &lock->base.wait_list, list) {
		debug_mutex_wake_waiter(&lock->base, cur);
		wake_up_process(cur->task);
	}
	spin_unlock_mutex(&lock->base.wait_lock, flags);
}

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
/*
 * After acquiring lock in the slowpath set ctx and wake up any
 * waiters so they can recheck.
 *
 * Callers must hold the mutex wait_lock.
 */
static __always_inline void
ww_mutex_set_context_slowpath(struct ww_mutex *lock,
			      struct ww_acquire_ctx *ctx)
{
	struct mutex_waiter *cur;

	ww_mutex_lock_acquired(lock, ctx);
	lock->ctx = ctx;

	/*
	 * Give any possible sleeping processes the chance to wake up,
	 * so they can recheck if they have to back off.
	 */
	list_for_each_entry(cur, &lock->base.wait_list, list) {
		debug_mutex_wake_waiter(&lock->base, cur);
		wake_up_process(cur->task);
	}
}
357

358 359 360 361 362 363
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
static noinline
364
bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
365
{
366
	bool ret = true;
367

368
	rcu_read_lock();
369
	while (__mutex_owner(lock) == owner) {
370 371
		/*
		 * Ensure we emit the owner->on_cpu, dereference _after_
372 373
		 * checking lock->owner still matches owner. If that fails,
		 * owner might point to freed memory. If it still matches,
374 375 376 377
		 * the rcu_read_lock() ensures the memory stays valid.
		 */
		barrier();

378 379 380 381 382
		/*
		 * Use vcpu_is_preempted to detect lock holder preemption issue.
		 */
		if (!owner->on_cpu || need_resched() ||
				vcpu_is_preempted(task_cpu(owner))) {
383 384 385
			ret = false;
			break;
		}
386

387
		cpu_relax();
388 389 390
	}
	rcu_read_unlock();

391
	return ret;
392
}
393 394 395 396 397 398

/*
 * Initial check for entering the mutex spinning loop
 */
static inline int mutex_can_spin_on_owner(struct mutex *lock)
{
399
	struct task_struct *owner;
400 401
	int retval = 1;

402 403 404
	if (need_resched())
		return 0;

405
	rcu_read_lock();
406
	owner = __mutex_owner(lock);
407 408 409 410 411

	/*
	 * As lock holder preemption issue, we both skip spinning if task is not
	 * on cpu or its cpu is preempted
	 */
412
	if (owner)
413
		retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
414
	rcu_read_unlock();
415

416
	/*
417 418 419
	 * If lock->owner is not set, the mutex has been released. Return true
	 * such that we'll trylock in the spin path, which is a faster option
	 * than the blocking slow path.
420 421 422
	 */
	return retval;
}
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438

/*
 * Optimistic spinning.
 *
 * We try to spin for acquisition when we find that the lock owner
 * is currently running on a (different) CPU and while we don't
 * need to reschedule. The rationale is that if the lock owner is
 * running, it is likely to release the lock soon.
 *
 * The mutex spinners are queued up using MCS lock so that only one
 * spinner can compete for the mutex. However, if mutex spinning isn't
 * going to happen, there is no point in going through the lock/unlock
 * overhead.
 *
 * Returns true when the lock was taken, otherwise false, indicating
 * that we need to jump to the slowpath and sleep.
439 440 441 442 443
 *
 * The waiter flag is set to true if the spinner is a waiter in the wait
 * queue. The waiter-spinner will spin on the lock directly and concurrently
 * with the spinner at the head of the OSQ, if present, until the owner is
 * changed to itself.
444 445
 */
static bool mutex_optimistic_spin(struct mutex *lock,
446 447
				  struct ww_acquire_ctx *ww_ctx,
				  const bool use_ww_ctx, const bool waiter)
448
{
449 450 451 452 453 454 455 456 457 458
	if (!waiter) {
		/*
		 * The purpose of the mutex_can_spin_on_owner() function is
		 * to eliminate the overhead of osq_lock() and osq_unlock()
		 * in case spinning isn't possible. As a waiter-spinner
		 * is not going to take OSQ lock anyway, there is no need
		 * to call mutex_can_spin_on_owner().
		 */
		if (!mutex_can_spin_on_owner(lock))
			goto fail;
459

460 461 462 463 464 465 466 467
		/*
		 * In order to avoid a stampede of mutex spinners trying to
		 * acquire the mutex all at once, the spinners need to take a
		 * MCS (queued) lock first before spinning on the owner field.
		 */
		if (!osq_lock(&lock->osq))
			goto fail;
	}
468

469
	for (;;) {
470 471
		struct task_struct *owner;

472
		if (use_ww_ctx && ww_ctx && ww_ctx->acquired > 0) {
473 474 475 476 477 478 479 480 481 482 483
			struct ww_mutex *ww;

			ww = container_of(lock, struct ww_mutex, base);
			/*
			 * If ww->ctx is set the contents are undefined, only
			 * by acquiring wait_lock there is a guarantee that
			 * they are not invalid when reading.
			 *
			 * As such, when deadlock detection needs to be
			 * performed the optimistic spinning cannot be done.
			 */
484
			if (READ_ONCE(ww->ctx))
485
				goto fail_unlock;
486 487
		}

488 489 490 491 492
		/* Try to acquire the mutex... */
		owner = __mutex_trylock_or_owner(lock);
		if (!owner)
			break;

493
		/*
494
		 * There's an owner, wait for it to either
495 496
		 * release the lock or go to sleep.
		 */
497 498
		if (!mutex_spin_on_owner(lock, owner))
			goto fail_unlock;
499

500 501 502 503 504 505
		/*
		 * The cpu_relax() call is a compiler barrier which forces
		 * everything in this loop to be re-loaded. We don't need
		 * memory barriers as we'll eventually observe the right
		 * values at the cost of a few extra spins.
		 */
506
		cpu_relax();
507 508
	}

509 510 511 512 513 514 515 516 517 518 519
	if (!waiter)
		osq_unlock(&lock->osq);

	return true;


fail_unlock:
	if (!waiter)
		osq_unlock(&lock->osq);

fail:
520 521 522 523 524
	/*
	 * If we fell out of the spin path because of need_resched(),
	 * reschedule now, before we try-lock the mutex. This avoids getting
	 * scheduled out right after we obtained the mutex.
	 */
525 526 527 528 529 530
	if (need_resched()) {
		/*
		 * We _should_ have TASK_RUNNING here, but just in case
		 * we do not, make it so, otherwise we might get stuck.
		 */
		__set_current_state(TASK_RUNNING);
531
		schedule_preempt_disabled();
532
	}
533 534 535 536 537

	return false;
}
#else
static bool mutex_optimistic_spin(struct mutex *lock,
538 539
				  struct ww_acquire_ctx *ww_ctx,
				  const bool use_ww_ctx, const bool waiter)
540 541 542
{
	return false;
}
543 544
#endif

545
static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
I
Ingo Molnar 已提交
546

547
/**
I
Ingo Molnar 已提交
548 549 550 551 552 553 554 555 556 557
 * mutex_unlock - release the mutex
 * @lock: the mutex to be released
 *
 * Unlock a mutex that has been locked by this task previously.
 *
 * This function must not be used in interrupt context. Unlocking
 * of a not locked mutex is not allowed.
 *
 * This function is similar to (but not equivalent to) up().
 */
558
void __sched mutex_unlock(struct mutex *lock)
I
Ingo Molnar 已提交
559
{
560 561 562
#ifndef CONFIG_DEBUG_LOCK_ALLOC
	if (__mutex_unlock_fast(lock))
		return;
563
#endif
564
	__mutex_unlock_slowpath(lock, _RET_IP_);
I
Ingo Molnar 已提交
565 566 567
}
EXPORT_SYMBOL(mutex_unlock);

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
/**
 * ww_mutex_unlock - release the w/w mutex
 * @lock: the mutex to be released
 *
 * Unlock a mutex that has been locked by this task previously with any of the
 * ww_mutex_lock* functions (with or without an acquire context). It is
 * forbidden to release the locks after releasing the acquire context.
 *
 * This function must not be used in interrupt context. Unlocking
 * of a unlocked mutex is not allowed.
 */
void __sched ww_mutex_unlock(struct ww_mutex *lock)
{
	/*
	 * The unlocking fastpath is the 0->1 transition from 'locked'
	 * into 'unlocked' state:
	 */
	if (lock->ctx) {
#ifdef CONFIG_DEBUG_MUTEXES
		DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
#endif
		if (lock->ctx->acquired > 0)
			lock->ctx->acquired--;
		lock->ctx = NULL;
	}

594
	mutex_unlock(&lock->base);
595 596 597 598
}
EXPORT_SYMBOL(ww_mutex_unlock);

static inline int __sched
599
__ww_mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
600 601
{
	struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
602
	struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
603 604 605 606

	if (!hold_ctx)
		return 0;

607
	if (__ww_ctx_stamp_after(ctx, hold_ctx)) {
608 609 610 611 612 613 614 615 616 617
#ifdef CONFIG_DEBUG_MUTEXES
		DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
		ctx->contending_lock = ww;
#endif
		return -EDEADLK;
	}

	return 0;
}

I
Ingo Molnar 已提交
618 619 620
/*
 * Lock a mutex (possibly interruptible), slowpath:
 */
621
static __always_inline int __sched
P
Peter Zijlstra 已提交
622
__mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
623
		    struct lockdep_map *nest_lock, unsigned long ip,
624
		    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
I
Ingo Molnar 已提交
625 626
{
	struct mutex_waiter waiter;
627
	unsigned long flags;
628
	bool first = false;
629
	struct ww_mutex *ww;
630
	int ret;
I
Ingo Molnar 已提交
631

632 633 634
	ww = container_of(lock, struct ww_mutex, base);

	if (use_ww_ctx && ww_ctx) {
635 636 637 638
		if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
			return -EALREADY;
	}

P
Peter Zijlstra 已提交
639
	preempt_disable();
640
	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
641

642
	if (__mutex_trylock(lock) ||
643
	    mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, false)) {
644
		/* got the lock, yay! */
645
		lock_acquired(&lock->dep_map, ip);
646
		if (use_ww_ctx && ww_ctx)
647
			ww_mutex_set_context_fastpath(ww, ww_ctx);
648 649
		preempt_enable();
		return 0;
650
	}
651

652
	spin_lock_mutex(&lock->wait_lock, flags);
653
	/*
654
	 * After waiting to acquire the wait_lock, try again.
655
	 */
656
	if (__mutex_trylock(lock))
657 658
		goto skip_wait;

659
	debug_mutex_lock_common(lock, &waiter);
660
	debug_mutex_add_waiter(lock, &waiter, current);
I
Ingo Molnar 已提交
661 662 663

	/* add waiting tasks to the end of the waitqueue (FIFO): */
	list_add_tail(&waiter.list, &lock->wait_list);
664
	waiter.task = current;
I
Ingo Molnar 已提交
665

666
	if (__mutex_waiter_is_first(lock, &waiter))
667 668
		__mutex_set_flag(lock, MUTEX_FLAG_WAITERS);

P
Peter Zijlstra 已提交
669
	lock_contended(&lock->dep_map, ip);
670

671
	set_current_state(state);
I
Ingo Molnar 已提交
672
	for (;;) {
673 674 675 676 677 678
		/*
		 * Once we hold wait_lock, we're serialized against
		 * mutex_unlock() handing the lock off to us, do a trylock
		 * before testing the error conditions to make sure we pick up
		 * the handoff.
		 */
679
		if (__mutex_trylock(lock))
680
			goto acquired;
I
Ingo Molnar 已提交
681 682

		/*
683 684 685
		 * Check for signals and wound conditions while holding
		 * wait_lock. This ensures the lock cancellation is ordered
		 * against mutex_unlock() and wake-ups do not go missing.
I
Ingo Molnar 已提交
686
		 */
687
		if (unlikely(signal_pending_state(state, current))) {
688 689 690
			ret = -EINTR;
			goto err;
		}
I
Ingo Molnar 已提交
691

692
		if (use_ww_ctx && ww_ctx && ww_ctx->acquired > 0) {
693
			ret = __ww_mutex_lock_check_stamp(lock, ww_ctx);
694 695
			if (ret)
				goto err;
I
Ingo Molnar 已提交
696
		}
697

698
		spin_unlock_mutex(&lock->wait_lock, flags);
699
		schedule_preempt_disabled();
700 701 702 703 704

		if (!first && __mutex_waiter_is_first(lock, &waiter)) {
			first = true;
			__mutex_set_flag(lock, MUTEX_FLAG_HANDOFF);
		}
705

706
		set_current_state(state);
707 708 709 710 711
		/*
		 * Here we order against unlock; we must either see it change
		 * state back to RUNNING and fall through the next schedule(),
		 * or we must see its unlock and acquire.
		 */
712 713
		if (__mutex_trylock(lock) ||
		    (first && mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, true)))
714 715 716
			break;

		spin_lock_mutex(&lock->wait_lock, flags);
I
Ingo Molnar 已提交
717
	}
718 719
	spin_lock_mutex(&lock->wait_lock, flags);
acquired:
720
	__set_current_state(TASK_RUNNING);
721

722
	mutex_remove_waiter(lock, &waiter, current);
723
	if (likely(list_empty(&lock->wait_list)))
724
		__mutex_clear_flag(lock, MUTEX_FLAGS);
725

726
	debug_mutex_free_waiter(&waiter);
I
Ingo Molnar 已提交
727

728 729
skip_wait:
	/* got the lock - cleanup and rejoice! */
P
Peter Zijlstra 已提交
730
	lock_acquired(&lock->dep_map, ip);
I
Ingo Molnar 已提交
731

732
	if (use_ww_ctx && ww_ctx)
733
		ww_mutex_set_context_slowpath(ww, ww_ctx);
734

735
	spin_unlock_mutex(&lock->wait_lock, flags);
P
Peter Zijlstra 已提交
736
	preempt_enable();
I
Ingo Molnar 已提交
737
	return 0;
738 739

err:
740
	__set_current_state(TASK_RUNNING);
741
	mutex_remove_waiter(lock, &waiter, current);
742 743 744 745 746
	spin_unlock_mutex(&lock->wait_lock, flags);
	debug_mutex_free_waiter(&waiter);
	mutex_release(&lock->dep_map, 1, ip);
	preempt_enable();
	return ret;
I
Ingo Molnar 已提交
747 748
}

749 750 751 752 753
#ifdef CONFIG_DEBUG_LOCK_ALLOC
void __sched
mutex_lock_nested(struct mutex *lock, unsigned int subclass)
{
	might_sleep();
754
	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
755
			    subclass, NULL, _RET_IP_, NULL, 0);
756 757 758
}

EXPORT_SYMBOL_GPL(mutex_lock_nested);
759

760 761 762 763
void __sched
_mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
{
	might_sleep();
764
	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
765
			    0, nest, _RET_IP_, NULL, 0);
766 767 768
}
EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);

L
Liam R. Howlett 已提交
769 770 771 772
int __sched
mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
{
	might_sleep();
773
	return __mutex_lock_common(lock, TASK_KILLABLE,
774
				   subclass, NULL, _RET_IP_, NULL, 0);
L
Liam R. Howlett 已提交
775 776 777
}
EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);

778 779 780 781
int __sched
mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
{
	might_sleep();
782
	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
783
				   subclass, NULL, _RET_IP_, NULL, 0);
784 785
}
EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
786

787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
static inline int
ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
	unsigned tmp;

	if (ctx->deadlock_inject_countdown-- == 0) {
		tmp = ctx->deadlock_inject_interval;
		if (tmp > UINT_MAX/4)
			tmp = UINT_MAX;
		else
			tmp = tmp*2 + tmp + tmp/2;

		ctx->deadlock_inject_interval = tmp;
		ctx->deadlock_inject_countdown = tmp;
		ctx->contending_lock = lock;

		ww_mutex_unlock(lock);

		return -EDEADLK;
	}
#endif

	return 0;
}
812 813

int __sched
814
ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
815
{
816 817
	int ret;

818
	might_sleep();
819
	ret =  __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
820 821 822
				   0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
				   ctx, 1);
	if (!ret && ctx && ctx->acquired > 1)
823 824 825
		return ww_mutex_deadlock_injection(lock, ctx);

	return ret;
826
}
827
EXPORT_SYMBOL_GPL(ww_mutex_lock);
828 829

int __sched
830
ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
831
{
832 833
	int ret;

834
	might_sleep();
835
	ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
836 837
				  0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
				  ctx, 1);
838

839
	if (!ret && ctx && ctx->acquired > 1)
840 841 842
		return ww_mutex_deadlock_injection(lock, ctx);

	return ret;
843
}
844
EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible);
845

846 847
#endif

I
Ingo Molnar 已提交
848 849 850
/*
 * Release the lock, slowpath:
 */
851
static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
I
Ingo Molnar 已提交
852
{
853
	struct task_struct *next = NULL;
854
	unsigned long owner, flags;
855
	DEFINE_WAKE_Q(wake_q);
I
Ingo Molnar 已提交
856

857 858
	mutex_release(&lock->dep_map, 1, ip);

I
Ingo Molnar 已提交
859
	/*
860 861 862 863 864
	 * Release the lock before (potentially) taking the spinlock such that
	 * other contenders can get on with things ASAP.
	 *
	 * Except when HANDOFF, in that case we must not clear the owner field,
	 * but instead set it to the top waiter.
I
Ingo Molnar 已提交
865
	 */
866 867 868 869 870 871
	owner = atomic_long_read(&lock->owner);
	for (;;) {
		unsigned long old;

#ifdef CONFIG_DEBUG_MUTEXES
		DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
872
		DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
#endif

		if (owner & MUTEX_FLAG_HANDOFF)
			break;

		old = atomic_long_cmpxchg_release(&lock->owner, owner,
						  __owner_flags(owner));
		if (old == owner) {
			if (owner & MUTEX_FLAG_WAITERS)
				break;

			return;
		}

		owner = old;
	}
I
Ingo Molnar 已提交
889

890 891
	spin_lock_mutex(&lock->wait_lock, flags);
	debug_mutex_unlock(lock);
I
Ingo Molnar 已提交
892 893 894
	if (!list_empty(&lock->wait_list)) {
		/* get the first entry from the wait-list: */
		struct mutex_waiter *waiter =
895 896 897 898
			list_first_entry(&lock->wait_list,
					 struct mutex_waiter, list);

		next = waiter->task;
I
Ingo Molnar 已提交
899 900

		debug_mutex_wake_waiter(lock, waiter);
901
		wake_q_add(&wake_q, next);
I
Ingo Molnar 已提交
902 903
	}

904 905 906
	if (owner & MUTEX_FLAG_HANDOFF)
		__mutex_handoff(lock, next);

907
	spin_unlock_mutex(&lock->wait_lock, flags);
908

909
	wake_up_q(&wake_q);
I
Ingo Molnar 已提交
910 911
}

P
Peter Zijlstra 已提交
912
#ifndef CONFIG_DEBUG_LOCK_ALLOC
I
Ingo Molnar 已提交
913 914 915 916
/*
 * Here come the less common (and hence less performance-critical) APIs:
 * mutex_lock_interruptible() and mutex_trylock().
 */
917
static noinline int __sched
918
__mutex_lock_killable_slowpath(struct mutex *lock);
L
Liam R. Howlett 已提交
919

920
static noinline int __sched
921
__mutex_lock_interruptible_slowpath(struct mutex *lock);
I
Ingo Molnar 已提交
922

923 924
/**
 * mutex_lock_interruptible - acquire the mutex, interruptible
I
Ingo Molnar 已提交
925 926 927 928 929 930 931 932 933
 * @lock: the mutex to be acquired
 *
 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
 * been acquired or sleep until the mutex becomes available. If a
 * signal arrives while waiting for the lock then this function
 * returns -EINTR.
 *
 * This function is similar to (but not equivalent to) down_interruptible().
 */
934
int __sched mutex_lock_interruptible(struct mutex *lock)
I
Ingo Molnar 已提交
935
{
936
	might_sleep();
937 938

	if (__mutex_trylock_fast(lock))
939
		return 0;
940 941

	return __mutex_lock_interruptible_slowpath(lock);
I
Ingo Molnar 已提交
942 943 944 945
}

EXPORT_SYMBOL(mutex_lock_interruptible);

946
int __sched mutex_lock_killable(struct mutex *lock)
L
Liam R. Howlett 已提交
947 948
{
	might_sleep();
949 950

	if (__mutex_trylock_fast(lock))
951
		return 0;
952 953

	return __mutex_lock_killable_slowpath(lock);
L
Liam R. Howlett 已提交
954 955 956
}
EXPORT_SYMBOL(mutex_lock_killable);

957 958
static noinline void __sched
__mutex_lock_slowpath(struct mutex *lock)
P
Peter Zijlstra 已提交
959
{
960
	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
961
			    NULL, _RET_IP_, NULL, 0);
P
Peter Zijlstra 已提交
962 963
}

964
static noinline int __sched
965
__mutex_lock_killable_slowpath(struct mutex *lock)
L
Liam R. Howlett 已提交
966
{
967
	return __mutex_lock_common(lock, TASK_KILLABLE, 0,
968
				   NULL, _RET_IP_, NULL, 0);
L
Liam R. Howlett 已提交
969 970
}

971
static noinline int __sched
972
__mutex_lock_interruptible_slowpath(struct mutex *lock)
I
Ingo Molnar 已提交
973
{
974
	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
975
				   NULL, _RET_IP_, NULL, 0);
976 977 978 979 980 981
}

static noinline int __sched
__ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
	return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
982
				   NULL, _RET_IP_, ctx, 1);
I
Ingo Molnar 已提交
983
}
984 985 986 987 988 989

static noinline int __sched
__ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
					    struct ww_acquire_ctx *ctx)
{
	return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
990
				   NULL, _RET_IP_, ctx, 1);
991 992
}

P
Peter Zijlstra 已提交
993
#endif
I
Ingo Molnar 已提交
994

995 996
/**
 * mutex_trylock - try to acquire the mutex, without waiting
I
Ingo Molnar 已提交
997 998 999 1000 1001 1002
 * @lock: the mutex to be acquired
 *
 * Try to acquire the mutex atomically. Returns 1 if the mutex
 * has been acquired successfully, and 0 on contention.
 *
 * NOTE: this function follows the spin_trylock() convention, so
1003
 * it is negated from the down_trylock() return values! Be careful
I
Ingo Molnar 已提交
1004 1005 1006 1007 1008
 * about this when converting semaphore users to mutexes.
 *
 * This function must not be used in interrupt context. The
 * mutex must be released by the same task that acquired it.
 */
1009
int __sched mutex_trylock(struct mutex *lock)
I
Ingo Molnar 已提交
1010
{
1011
	bool locked = __mutex_trylock(lock);
1012

1013 1014
	if (locked)
		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1015

1016
	return locked;
I
Ingo Molnar 已提交
1017 1018
}
EXPORT_SYMBOL(mutex_trylock);
1019

1020 1021
#ifndef CONFIG_DEBUG_LOCK_ALLOC
int __sched
1022
ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1023 1024 1025
{
	might_sleep();

1026
	if (__mutex_trylock_fast(&lock->base)) {
1027 1028
		if (ctx)
			ww_mutex_set_context_fastpath(lock, ctx);
1029 1030 1031 1032
		return 0;
	}

	return __ww_mutex_lock_slowpath(lock, ctx);
1033
}
1034
EXPORT_SYMBOL(ww_mutex_lock);
1035 1036

int __sched
1037
ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1038 1039 1040
{
	might_sleep();

1041
	if (__mutex_trylock_fast(&lock->base)) {
1042 1043
		if (ctx)
			ww_mutex_set_context_fastpath(lock, ctx);
1044 1045 1046 1047
		return 0;
	}

	return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
1048
}
1049
EXPORT_SYMBOL(ww_mutex_lock_interruptible);
1050 1051 1052

#endif

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
/**
 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
 * @cnt: the atomic which we are to dec
 * @lock: the mutex to return holding if we dec to 0
 *
 * return true and hold lock if we dec to 0, return false otherwise
 */
int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
{
	/* dec if we can't possibly hit 0 */
	if (atomic_add_unless(cnt, -1, 1))
		return 0;
	/* we might hit 0, so take the lock */
	mutex_lock(lock);
	if (!atomic_dec_and_test(cnt)) {
		/* when we actually did the dec, we didn't hit 0 */
		mutex_unlock(lock);
		return 0;
	}
	/* we hit 0, and we hold the lock */
	return 1;
}
EXPORT_SYMBOL(atomic_dec_and_mutex_lock);