mutex.c 25.1 KB
Newer Older
I
Ingo Molnar 已提交
1
/*
2
 * kernel/locking/mutex.c
I
Ingo Molnar 已提交
3 4 5 6 7 8 9 10 11 12
 *
 * Mutexes: blocking mutual exclusion locks
 *
 * Started by Ingo Molnar:
 *
 *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
 * David Howells for suggestions and improvements.
 *
13 14 15 16 17
 *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
 *    from the -rt tree, where it was originally implemented for rtmutexes
 *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
 *    and Sven Dietrich.
 *
I
Ingo Molnar 已提交
18 19 20
 * Also see Documentation/mutex-design.txt.
 */
#include <linux/mutex.h>
21
#include <linux/ww_mutex.h>
I
Ingo Molnar 已提交
22
#include <linux/sched.h>
23
#include <linux/sched/rt.h>
24
#include <linux/export.h>
I
Ingo Molnar 已提交
25 26
#include <linux/spinlock.h>
#include <linux/interrupt.h>
27
#include <linux/debug_locks.h>
28
#include "mcs_spinlock.h"
I
Ingo Molnar 已提交
29 30 31 32 33 34 35 36

/*
 * In the DEBUG case we are using the "NULL fastpath" for mutexes,
 * which forces all calls into the slowpath:
 */
#ifdef CONFIG_DEBUG_MUTEXES
# include "mutex-debug.h"
# include <asm-generic/mutex-null.h>
P
Peter Zijlstra 已提交
37 38 39 40 41 42 43
/*
 * Must be 0 for the debug case so we do not do the unlock outside of the
 * wait_lock region. debug_mutex_unlock() will do the actual unlock in this
 * case.
 */
# undef __mutex_slowpath_needs_to_unlock
# define  __mutex_slowpath_needs_to_unlock()	0
I
Ingo Molnar 已提交
44 45 46 47 48
#else
# include "mutex.h"
# include <asm/mutex.h>
#endif

49 50
void
__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
I
Ingo Molnar 已提交
51 52 53 54
{
	atomic_set(&lock->count, 1);
	spin_lock_init(&lock->wait_lock);
	INIT_LIST_HEAD(&lock->wait_list);
55
	mutex_clear_owner(lock);
56
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
57
	osq_lock_init(&lock->osq);
58
#endif
I
Ingo Molnar 已提交
59

60
	debug_mutex_init(lock, name, key);
I
Ingo Molnar 已提交
61 62 63 64
}

EXPORT_SYMBOL(__mutex_init);

P
Peter Zijlstra 已提交
65
#ifndef CONFIG_DEBUG_LOCK_ALLOC
I
Ingo Molnar 已提交
66 67 68 69 70 71
/*
 * We split the mutex lock/unlock logic into separate fastpath and
 * slowpath functions, to reduce the register pressure on the fastpath.
 * We also put the fastpath first in the kernel image, to make sure the
 * branch is predicted by the CPU as default-untaken.
 */
A
Andi Kleen 已提交
72
__visible void __sched __mutex_lock_slowpath(atomic_t *lock_count);
I
Ingo Molnar 已提交
73

74
/**
I
Ingo Molnar 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
 * mutex_lock - acquire the mutex
 * @lock: the mutex to be acquired
 *
 * Lock the mutex exclusively for this task. If the mutex is not
 * available right now, it will sleep until it can get it.
 *
 * The mutex must later on be released by the same task that
 * acquired it. Recursive locking is not allowed. The task
 * may not exit without first unlocking the mutex. Also, kernel
 * memory where the mutex resides mutex must not be freed with
 * the mutex still locked. The mutex must first be initialized
 * (or statically defined) before it can be locked. memset()-ing
 * the mutex to 0 is not allowed.
 *
 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
 *   checks that will enforce the restrictions and will also do
 *   deadlock debugging. )
 *
 * This function is similar to (but not equivalent to) down().
 */
95
void __sched mutex_lock(struct mutex *lock)
I
Ingo Molnar 已提交
96
{
97
	might_sleep();
I
Ingo Molnar 已提交
98 99 100 101 102
	/*
	 * The locking fastpath is the 1->0 transition from
	 * 'unlocked' into 'locked' state.
	 */
	__mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
103
	mutex_set_owner(lock);
I
Ingo Molnar 已提交
104 105 106
}

EXPORT_SYMBOL(mutex_lock);
P
Peter Zijlstra 已提交
107
#endif
I
Ingo Molnar 已提交
108

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
						   struct ww_acquire_ctx *ww_ctx)
{
#ifdef CONFIG_DEBUG_MUTEXES
	/*
	 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
	 * but released with a normal mutex_unlock in this call.
	 *
	 * This should never happen, always use ww_mutex_unlock.
	 */
	DEBUG_LOCKS_WARN_ON(ww->ctx);

	/*
	 * Not quite done after calling ww_acquire_done() ?
	 */
	DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);

	if (ww_ctx->contending_lock) {
		/*
		 * After -EDEADLK you tried to
		 * acquire a different ww_mutex? Bad!
		 */
		DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);

		/*
		 * You called ww_mutex_lock after receiving -EDEADLK,
		 * but 'forgot' to unlock everything else first?
		 */
		DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
		ww_ctx->contending_lock = NULL;
	}

	/*
	 * Naughty, using a different class will lead to undefined behavior!
	 */
	DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
#endif
	ww_ctx->acquired++;
}

/*
 * after acquiring lock with fastpath or when we lost out in contested
 * slowpath, set ctx and wake up any waiters so they can recheck.
 *
 * This function is never called when CONFIG_DEBUG_LOCK_ALLOC is set,
 * as the fastpath and opportunistic spinning are disabled in that case.
 */
static __always_inline void
ww_mutex_set_context_fastpath(struct ww_mutex *lock,
			       struct ww_acquire_ctx *ctx)
{
	unsigned long flags;
	struct mutex_waiter *cur;

	ww_mutex_lock_acquired(lock, ctx);

	lock->ctx = ctx;

	/*
	 * The lock->ctx update should be visible on all cores before
	 * the atomic read is done, otherwise contended waiters might be
	 * missed. The contended waiters will either see ww_ctx == NULL
	 * and keep spinning, or it will acquire wait_lock, add itself
	 * to waiter list and sleep.
	 */
	smp_mb(); /* ^^^ */

	/*
	 * Check if lock is contended, if not there is nobody to wake up
	 */
	if (likely(atomic_read(&lock->base.count) == 0))
		return;

	/*
	 * Uh oh, we raced in fastpath, wake up everyone in this case,
	 * so they can see the new lock->ctx.
	 */
	spin_lock_mutex(&lock->base.wait_lock, flags);
	list_for_each_entry(cur, &lock->base.wait_list, list) {
		debug_mutex_wake_waiter(&lock->base, cur);
		wake_up_process(cur->task);
	}
	spin_unlock_mutex(&lock->base.wait_lock, flags);
}


195
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
196 197 198 199 200 201 202
/*
 * In order to avoid a stampede of mutex spinners from acquiring the mutex
 * more or less simultaneously, the spinners need to acquire a MCS lock
 * first before spinning on the owner field.
 *
 */

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
/*
 * Mutex spinning code migrated from kernel/sched/core.c
 */

static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
{
	if (lock->owner != owner)
		return false;

	/*
	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
	 * lock->owner still matches owner, if that fails, owner might
	 * point to free()d memory, if it still matches, the rcu_read_lock()
	 * ensures the memory stays valid.
	 */
	barrier();

	return owner->on_cpu;
}

/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
static noinline
int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
{
	rcu_read_lock();
	while (owner_running(lock, owner)) {
		if (need_resched())
			break;

235
		cpu_relax_lowlatency();
236 237 238 239 240 241 242 243 244 245
	}
	rcu_read_unlock();

	/*
	 * We break out the loop above on need_resched() and when the
	 * owner changed, which is a sign for heavy contention. Return
	 * success only when lock->owner is NULL.
	 */
	return lock->owner == NULL;
}
246 247 248 249 250 251

/*
 * Initial check for entering the mutex spinning loop
 */
static inline int mutex_can_spin_on_owner(struct mutex *lock)
{
252
	struct task_struct *owner;
253 254
	int retval = 1;

255 256 257
	if (need_resched())
		return 0;

258
	rcu_read_lock();
259 260 261
	owner = ACCESS_ONCE(lock->owner);
	if (owner)
		retval = owner->on_cpu;
262 263 264 265 266 267 268
	rcu_read_unlock();
	/*
	 * if lock->owner is not set, the mutex owner may have just acquired
	 * it and not set the owner yet or the mutex has been released.
	 */
	return retval;
}
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391

/*
 * Atomically try to take the lock when it is available
 */
static inline bool mutex_try_to_acquire(struct mutex *lock)
{
	return !mutex_is_locked(lock) &&
		(atomic_cmpxchg(&lock->count, 1, 0) == 1);
}

/*
 * Optimistic spinning.
 *
 * We try to spin for acquisition when we find that the lock owner
 * is currently running on a (different) CPU and while we don't
 * need to reschedule. The rationale is that if the lock owner is
 * running, it is likely to release the lock soon.
 *
 * Since this needs the lock owner, and this mutex implementation
 * doesn't track the owner atomically in the lock field, we need to
 * track it non-atomically.
 *
 * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
 * to serialize everything.
 *
 * The mutex spinners are queued up using MCS lock so that only one
 * spinner can compete for the mutex. However, if mutex spinning isn't
 * going to happen, there is no point in going through the lock/unlock
 * overhead.
 *
 * Returns true when the lock was taken, otherwise false, indicating
 * that we need to jump to the slowpath and sleep.
 */
static bool mutex_optimistic_spin(struct mutex *lock,
				  struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
{
	struct task_struct *task = current;

	if (!mutex_can_spin_on_owner(lock))
		goto done;

	if (!osq_lock(&lock->osq))
		goto done;

	while (true) {
		struct task_struct *owner;

		if (use_ww_ctx && ww_ctx->acquired > 0) {
			struct ww_mutex *ww;

			ww = container_of(lock, struct ww_mutex, base);
			/*
			 * If ww->ctx is set the contents are undefined, only
			 * by acquiring wait_lock there is a guarantee that
			 * they are not invalid when reading.
			 *
			 * As such, when deadlock detection needs to be
			 * performed the optimistic spinning cannot be done.
			 */
			if (ACCESS_ONCE(ww->ctx))
				break;
		}

		/*
		 * If there's an owner, wait for it to either
		 * release the lock or go to sleep.
		 */
		owner = ACCESS_ONCE(lock->owner);
		if (owner && !mutex_spin_on_owner(lock, owner))
			break;

		/* Try to acquire the mutex if it is unlocked. */
		if (mutex_try_to_acquire(lock)) {
			lock_acquired(&lock->dep_map, ip);

			if (use_ww_ctx) {
				struct ww_mutex *ww;
				ww = container_of(lock, struct ww_mutex, base);

				ww_mutex_set_context_fastpath(ww, ww_ctx);
			}

			mutex_set_owner(lock);
			osq_unlock(&lock->osq);
			return true;
		}

		/*
		 * When there's no owner, we might have preempted between the
		 * owner acquiring the lock and setting the owner field. If
		 * we're an RT task that will live-lock because we won't let
		 * the owner complete.
		 */
		if (!owner && (need_resched() || rt_task(task)))
			break;

		/*
		 * The cpu_relax() call is a compiler barrier which forces
		 * everything in this loop to be re-loaded. We don't need
		 * memory barriers as we'll eventually observe the right
		 * values at the cost of a few extra spins.
		 */
		cpu_relax_lowlatency();
	}

	osq_unlock(&lock->osq);
done:
	/*
	 * If we fell out of the spin path because of need_resched(),
	 * reschedule now, before we try-lock the mutex. This avoids getting
	 * scheduled out right after we obtained the mutex.
	 */
	if (need_resched())
		schedule_preempt_disabled();

	return false;
}
#else
static bool mutex_optimistic_spin(struct mutex *lock,
				  struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
{
	return false;
}
392 393
#endif

A
Andi Kleen 已提交
394 395
__visible __used noinline
void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
I
Ingo Molnar 已提交
396

397
/**
I
Ingo Molnar 已提交
398 399 400 401 402 403 404 405 406 407
 * mutex_unlock - release the mutex
 * @lock: the mutex to be released
 *
 * Unlock a mutex that has been locked by this task previously.
 *
 * This function must not be used in interrupt context. Unlocking
 * of a not locked mutex is not allowed.
 *
 * This function is similar to (but not equivalent to) up().
 */
408
void __sched mutex_unlock(struct mutex *lock)
I
Ingo Molnar 已提交
409 410 411 412 413
{
	/*
	 * The unlocking fastpath is the 0->1 transition from 'locked'
	 * into 'unlocked' state:
	 */
414 415 416 417 418 419 420 421
#ifndef CONFIG_DEBUG_MUTEXES
	/*
	 * When debugging is enabled we must not clear the owner before time,
	 * the slow path will always be taken, and that clears the owner field
	 * after verifying that it was indeed current.
	 */
	mutex_clear_owner(lock);
#endif
I
Ingo Molnar 已提交
422 423 424 425 426
	__mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
}

EXPORT_SYMBOL(mutex_unlock);

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
/**
 * ww_mutex_unlock - release the w/w mutex
 * @lock: the mutex to be released
 *
 * Unlock a mutex that has been locked by this task previously with any of the
 * ww_mutex_lock* functions (with or without an acquire context). It is
 * forbidden to release the locks after releasing the acquire context.
 *
 * This function must not be used in interrupt context. Unlocking
 * of a unlocked mutex is not allowed.
 */
void __sched ww_mutex_unlock(struct ww_mutex *lock)
{
	/*
	 * The unlocking fastpath is the 0->1 transition from 'locked'
	 * into 'unlocked' state:
	 */
	if (lock->ctx) {
#ifdef CONFIG_DEBUG_MUTEXES
		DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
#endif
		if (lock->ctx->acquired > 0)
			lock->ctx->acquired--;
		lock->ctx = NULL;
	}

#ifndef CONFIG_DEBUG_MUTEXES
	/*
	 * When debugging is enabled we must not clear the owner before time,
	 * the slow path will always be taken, and that clears the owner field
	 * after verifying that it was indeed current.
	 */
	mutex_clear_owner(&lock->base);
#endif
	__mutex_fastpath_unlock(&lock->base.count, __mutex_unlock_slowpath);
}
EXPORT_SYMBOL(ww_mutex_unlock);

static inline int __sched
__mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
{
	struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
	struct ww_acquire_ctx *hold_ctx = ACCESS_ONCE(ww->ctx);

	if (!hold_ctx)
		return 0;

	if (unlikely(ctx == hold_ctx))
		return -EALREADY;

	if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
	    (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
#ifdef CONFIG_DEBUG_MUTEXES
		DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
		ctx->contending_lock = ww;
#endif
		return -EDEADLK;
	}

	return 0;
}

I
Ingo Molnar 已提交
489 490 491
/*
 * Lock a mutex (possibly interruptible), slowpath:
 */
492
static __always_inline int __sched
P
Peter Zijlstra 已提交
493
__mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
494
		    struct lockdep_map *nest_lock, unsigned long ip,
495
		    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
I
Ingo Molnar 已提交
496 497 498
{
	struct task_struct *task = current;
	struct mutex_waiter waiter;
499
	unsigned long flags;
500
	int ret;
I
Ingo Molnar 已提交
501

P
Peter Zijlstra 已提交
502
	preempt_disable();
503
	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
504

505 506 507 508
	if (mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx)) {
		/* got the lock, yay! */
		preempt_enable();
		return 0;
509
	}
510

511
	spin_lock_mutex(&lock->wait_lock, flags);
I
Ingo Molnar 已提交
512

513 514
	/*
	 * Once more, try to acquire the lock. Only try-lock the mutex if
515
	 * it is unlocked to reduce unnecessary xchg() operations.
516
	 */
517
	if (!mutex_is_locked(lock) && (atomic_xchg(&lock->count, 0) == 1))
518 519
		goto skip_wait;

520
	debug_mutex_lock_common(lock, &waiter);
R
Roman Zippel 已提交
521
	debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
I
Ingo Molnar 已提交
522 523 524 525 526

	/* add waiting tasks to the end of the waitqueue (FIFO): */
	list_add_tail(&waiter.list, &lock->wait_list);
	waiter.task = task;

P
Peter Zijlstra 已提交
527
	lock_contended(&lock->dep_map, ip);
528

I
Ingo Molnar 已提交
529 530 531 532 533 534 535 536
	for (;;) {
		/*
		 * Lets try to take the lock again - this is needed even if
		 * we get here for the first time (shortly after failing to
		 * acquire the lock), to make sure that we get a wakeup once
		 * it's unlocked. Later on, if we sleep, this is the
		 * operation that gives us the lock. We xchg it to -1, so
		 * that when we release the lock, we properly wake up the
537 538
		 * other waiters. We only attempt the xchg if the count is
		 * non-negative in order to avoid unnecessary xchg operations:
I
Ingo Molnar 已提交
539
		 */
540
		if (atomic_read(&lock->count) >= 0 &&
541
		    (atomic_xchg(&lock->count, -1) == 1))
I
Ingo Molnar 已提交
542 543 544 545 546 547
			break;

		/*
		 * got a signal? (This code gets eliminated in the
		 * TASK_UNINTERRUPTIBLE case.)
		 */
548
		if (unlikely(signal_pending_state(state, task))) {
549 550 551
			ret = -EINTR;
			goto err;
		}
I
Ingo Molnar 已提交
552

553
		if (use_ww_ctx && ww_ctx->acquired > 0) {
554 555 556
			ret = __mutex_lock_check_stamp(lock, ww_ctx);
			if (ret)
				goto err;
I
Ingo Molnar 已提交
557
		}
558

I
Ingo Molnar 已提交
559 560
		__set_task_state(task, state);

L
Lucas De Marchi 已提交
561
		/* didn't get the lock, go to sleep: */
562
		spin_unlock_mutex(&lock->wait_lock, flags);
563
		schedule_preempt_disabled();
564
		spin_lock_mutex(&lock->wait_lock, flags);
I
Ingo Molnar 已提交
565
	}
566 567 568 569 570
	mutex_remove_waiter(lock, &waiter, current_thread_info());
	/* set it to 0 if there are no waiters left: */
	if (likely(list_empty(&lock->wait_list)))
		atomic_set(&lock->count, 0);
	debug_mutex_free_waiter(&waiter);
I
Ingo Molnar 已提交
571

572 573
skip_wait:
	/* got the lock - cleanup and rejoice! */
P
Peter Zijlstra 已提交
574
	lock_acquired(&lock->dep_map, ip);
575
	mutex_set_owner(lock);
I
Ingo Molnar 已提交
576

577
	if (use_ww_ctx) {
578
		struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
		struct mutex_waiter *cur;

		/*
		 * This branch gets optimized out for the common case,
		 * and is only important for ww_mutex_lock.
		 */
		ww_mutex_lock_acquired(ww, ww_ctx);
		ww->ctx = ww_ctx;

		/*
		 * Give any possible sleeping processes the chance to wake up,
		 * so they can recheck if they have to back off.
		 */
		list_for_each_entry(cur, &lock->wait_list, list) {
			debug_mutex_wake_waiter(lock, cur);
			wake_up_process(cur->task);
		}
	}

598
	spin_unlock_mutex(&lock->wait_lock, flags);
P
Peter Zijlstra 已提交
599
	preempt_enable();
I
Ingo Molnar 已提交
600
	return 0;
601 602 603 604 605 606 607 608

err:
	mutex_remove_waiter(lock, &waiter, task_thread_info(task));
	spin_unlock_mutex(&lock->wait_lock, flags);
	debug_mutex_free_waiter(&waiter);
	mutex_release(&lock->dep_map, 1, ip);
	preempt_enable();
	return ret;
I
Ingo Molnar 已提交
609 610
}

611 612 613 614 615
#ifdef CONFIG_DEBUG_LOCK_ALLOC
void __sched
mutex_lock_nested(struct mutex *lock, unsigned int subclass)
{
	might_sleep();
616
	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
617
			    subclass, NULL, _RET_IP_, NULL, 0);
618 619 620
}

EXPORT_SYMBOL_GPL(mutex_lock_nested);
621

622 623 624 625
void __sched
_mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
{
	might_sleep();
626
	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
627
			    0, nest, _RET_IP_, NULL, 0);
628 629 630 631
}

EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);

L
Liam R. Howlett 已提交
632 633 634 635
int __sched
mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
{
	might_sleep();
636
	return __mutex_lock_common(lock, TASK_KILLABLE,
637
				   subclass, NULL, _RET_IP_, NULL, 0);
L
Liam R. Howlett 已提交
638 639 640
}
EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);

641 642 643 644
int __sched
mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
{
	might_sleep();
645
	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
646
				   subclass, NULL, _RET_IP_, NULL, 0);
647 648 649
}

EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
650

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
static inline int
ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
	unsigned tmp;

	if (ctx->deadlock_inject_countdown-- == 0) {
		tmp = ctx->deadlock_inject_interval;
		if (tmp > UINT_MAX/4)
			tmp = UINT_MAX;
		else
			tmp = tmp*2 + tmp + tmp/2;

		ctx->deadlock_inject_interval = tmp;
		ctx->deadlock_inject_countdown = tmp;
		ctx->contending_lock = lock;

		ww_mutex_unlock(lock);

		return -EDEADLK;
	}
#endif

	return 0;
}
676 677 678 679

int __sched
__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
680 681
	int ret;

682
	might_sleep();
683
	ret =  __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
684
				   0, &ctx->dep_map, _RET_IP_, ctx, 1);
685
	if (!ret && ctx->acquired > 1)
686 687 688
		return ww_mutex_deadlock_injection(lock, ctx);

	return ret;
689 690 691 692 693 694
}
EXPORT_SYMBOL_GPL(__ww_mutex_lock);

int __sched
__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
695 696
	int ret;

697
	might_sleep();
698
	ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
699
				  0, &ctx->dep_map, _RET_IP_, ctx, 1);
700

701
	if (!ret && ctx->acquired > 1)
702 703 704
		return ww_mutex_deadlock_injection(lock, ctx);

	return ret;
705 706 707
}
EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);

708 709
#endif

I
Ingo Molnar 已提交
710 711 712
/*
 * Release the lock, slowpath:
 */
713
static inline void
714
__mutex_unlock_common_slowpath(struct mutex *lock, int nested)
I
Ingo Molnar 已提交
715
{
716
	unsigned long flags;
I
Ingo Molnar 已提交
717 718

	/*
719 720 721 722 723 724 725 726
	 * As a performance measurement, release the lock before doing other
	 * wakeup related duties to follow. This allows other tasks to acquire
	 * the lock sooner, while still handling cleanups in past unlock calls.
	 * This can be done as we do not enforce strict equivalence between the
	 * mutex counter and wait_list.
	 *
	 *
	 * Some architectures leave the lock unlocked in the fastpath failure
I
Ingo Molnar 已提交
727
	 * case, others need to leave it locked. In the later case we have to
728
	 * unlock it here - as the lock counter is currently 0 or negative.
I
Ingo Molnar 已提交
729 730 731 732
	 */
	if (__mutex_slowpath_needs_to_unlock())
		atomic_set(&lock->count, 1);

733 734 735 736
	spin_lock_mutex(&lock->wait_lock, flags);
	mutex_release(&lock->dep_map, nested, _RET_IP_);
	debug_mutex_unlock(lock);

I
Ingo Molnar 已提交
737 738 739 740 741 742 743 744 745 746 747
	if (!list_empty(&lock->wait_list)) {
		/* get the first entry from the wait-list: */
		struct mutex_waiter *waiter =
				list_entry(lock->wait_list.next,
					   struct mutex_waiter, list);

		debug_mutex_wake_waiter(lock, waiter);

		wake_up_process(waiter->task);
	}

748
	spin_unlock_mutex(&lock->wait_lock, flags);
I
Ingo Molnar 已提交
749 750
}

751 752 753
/*
 * Release the lock, slowpath:
 */
A
Andi Kleen 已提交
754
__visible void
755 756
__mutex_unlock_slowpath(atomic_t *lock_count)
{
757 758 759
	struct mutex *lock = container_of(lock_count, struct mutex, count);

	__mutex_unlock_common_slowpath(lock, 1);
760 761
}

P
Peter Zijlstra 已提交
762
#ifndef CONFIG_DEBUG_LOCK_ALLOC
I
Ingo Molnar 已提交
763 764 765 766
/*
 * Here come the less common (and hence less performance-critical) APIs:
 * mutex_lock_interruptible() and mutex_trylock().
 */
767
static noinline int __sched
768
__mutex_lock_killable_slowpath(struct mutex *lock);
L
Liam R. Howlett 已提交
769

770
static noinline int __sched
771
__mutex_lock_interruptible_slowpath(struct mutex *lock);
I
Ingo Molnar 已提交
772

773 774
/**
 * mutex_lock_interruptible - acquire the mutex, interruptible
I
Ingo Molnar 已提交
775 776 777 778 779 780 781 782 783
 * @lock: the mutex to be acquired
 *
 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
 * been acquired or sleep until the mutex becomes available. If a
 * signal arrives while waiting for the lock then this function
 * returns -EINTR.
 *
 * This function is similar to (but not equivalent to) down_interruptible().
 */
784
int __sched mutex_lock_interruptible(struct mutex *lock)
I
Ingo Molnar 已提交
785
{
786 787
	int ret;

788
	might_sleep();
789 790
	ret =  __mutex_fastpath_lock_retval(&lock->count);
	if (likely(!ret)) {
791
		mutex_set_owner(lock);
792 793 794
		return 0;
	} else
		return __mutex_lock_interruptible_slowpath(lock);
I
Ingo Molnar 已提交
795 796 797 798
}

EXPORT_SYMBOL(mutex_lock_interruptible);

799
int __sched mutex_lock_killable(struct mutex *lock)
L
Liam R. Howlett 已提交
800
{
801 802
	int ret;

L
Liam R. Howlett 已提交
803
	might_sleep();
804 805
	ret = __mutex_fastpath_lock_retval(&lock->count);
	if (likely(!ret)) {
806
		mutex_set_owner(lock);
807 808 809
		return 0;
	} else
		return __mutex_lock_killable_slowpath(lock);
L
Liam R. Howlett 已提交
810 811 812
}
EXPORT_SYMBOL(mutex_lock_killable);

A
Andi Kleen 已提交
813
__visible void __sched
P
Peter Zijlstra 已提交
814 815 816 817
__mutex_lock_slowpath(atomic_t *lock_count)
{
	struct mutex *lock = container_of(lock_count, struct mutex, count);

818
	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
819
			    NULL, _RET_IP_, NULL, 0);
P
Peter Zijlstra 已提交
820 821
}

822
static noinline int __sched
823
__mutex_lock_killable_slowpath(struct mutex *lock)
L
Liam R. Howlett 已提交
824
{
825
	return __mutex_lock_common(lock, TASK_KILLABLE, 0,
826
				   NULL, _RET_IP_, NULL, 0);
L
Liam R. Howlett 已提交
827 828
}

829
static noinline int __sched
830
__mutex_lock_interruptible_slowpath(struct mutex *lock)
I
Ingo Molnar 已提交
831
{
832
	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
833
				   NULL, _RET_IP_, NULL, 0);
834 835 836 837 838 839
}

static noinline int __sched
__ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
	return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
840
				   NULL, _RET_IP_, ctx, 1);
I
Ingo Molnar 已提交
841
}
842 843 844 845 846 847

static noinline int __sched
__ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
					    struct ww_acquire_ctx *ctx)
{
	return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
848
				   NULL, _RET_IP_, ctx, 1);
849 850
}

P
Peter Zijlstra 已提交
851
#endif
I
Ingo Molnar 已提交
852 853 854 855 856 857 858 859

/*
 * Spinlock based trylock, we take the spinlock and check whether we
 * can get the lock:
 */
static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
{
	struct mutex *lock = container_of(lock_count, struct mutex, count);
860
	unsigned long flags;
I
Ingo Molnar 已提交
861 862
	int prev;

863 864 865 866
	/* No need to trylock if the mutex is locked. */
	if (mutex_is_locked(lock))
		return 0;

867
	spin_lock_mutex(&lock->wait_lock, flags);
I
Ingo Molnar 已提交
868 869

	prev = atomic_xchg(&lock->count, -1);
870
	if (likely(prev == 1)) {
871
		mutex_set_owner(lock);
872 873
		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
	}
874

I
Ingo Molnar 已提交
875 876 877 878
	/* Set it back to 0 if there are no waiters: */
	if (likely(list_empty(&lock->wait_list)))
		atomic_set(&lock->count, 0);

879
	spin_unlock_mutex(&lock->wait_lock, flags);
I
Ingo Molnar 已提交
880 881 882 883

	return prev == 1;
}

884 885
/**
 * mutex_trylock - try to acquire the mutex, without waiting
I
Ingo Molnar 已提交
886 887 888 889 890 891
 * @lock: the mutex to be acquired
 *
 * Try to acquire the mutex atomically. Returns 1 if the mutex
 * has been acquired successfully, and 0 on contention.
 *
 * NOTE: this function follows the spin_trylock() convention, so
892
 * it is negated from the down_trylock() return values! Be careful
I
Ingo Molnar 已提交
893 894 895 896 897
 * about this when converting semaphore users to mutexes.
 *
 * This function must not be used in interrupt context. The
 * mutex must be released by the same task that acquired it.
 */
898
int __sched mutex_trylock(struct mutex *lock)
I
Ingo Molnar 已提交
899
{
900 901 902 903 904 905 906
	int ret;

	ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
	if (ret)
		mutex_set_owner(lock);

	return ret;
I
Ingo Molnar 已提交
907 908
}
EXPORT_SYMBOL(mutex_trylock);
909

910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
#ifndef CONFIG_DEBUG_LOCK_ALLOC
int __sched
__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
	int ret;

	might_sleep();

	ret = __mutex_fastpath_lock_retval(&lock->base.count);

	if (likely(!ret)) {
		ww_mutex_set_context_fastpath(lock, ctx);
		mutex_set_owner(&lock->base);
	} else
		ret = __ww_mutex_lock_slowpath(lock, ctx);
	return ret;
}
EXPORT_SYMBOL(__ww_mutex_lock);

int __sched
__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
	int ret;

	might_sleep();

	ret = __mutex_fastpath_lock_retval(&lock->base.count);

	if (likely(!ret)) {
		ww_mutex_set_context_fastpath(lock, ctx);
		mutex_set_owner(&lock->base);
	} else
		ret = __ww_mutex_lock_interruptible_slowpath(lock, ctx);
	return ret;
}
EXPORT_SYMBOL(__ww_mutex_lock_interruptible);

#endif

949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
/**
 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
 * @cnt: the atomic which we are to dec
 * @lock: the mutex to return holding if we dec to 0
 *
 * return true and hold lock if we dec to 0, return false otherwise
 */
int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
{
	/* dec if we can't possibly hit 0 */
	if (atomic_add_unless(cnt, -1, 1))
		return 0;
	/* we might hit 0, so take the lock */
	mutex_lock(lock);
	if (!atomic_dec_and_test(cnt)) {
		/* when we actually did the dec, we didn't hit 0 */
		mutex_unlock(lock);
		return 0;
	}
	/* we hit 0, and we hold the lock */
	return 1;
}
EXPORT_SYMBOL(atomic_dec_and_mutex_lock);