slab.c 116.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
105
#include	<linux/kmemtrace.h>
L
Linus Torvalds 已提交
106
#include	<linux/rcupdate.h>
107
#include	<linux/string.h>
108
#include	<linux/uaccess.h>
109
#include	<linux/nodemask.h>
110
#include	<linux/kmemleak.h>
111
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
112
#include	<linux/mutex.h>
113
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
114
#include	<linux/rtmutex.h>
115
#include	<linux/reciprocal_div.h>
116
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
117
#include	<linux/kmemcheck.h>
L
Linus Torvalds 已提交
118 119 120 121 122 123

#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
124
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
145
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
146 147 148 149 150 151 152

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
153 154 155
 * alignment larger than the alignment of a 64-bit integer.
 * ARCH_KMALLOC_MINALIGN allows that.
 * Note that increasing this value may disable some debug features.
L
Linus Torvalds 已提交
156
 */
157
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
L
Linus Torvalds 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
177
# define CREATE_MASK	(SLAB_RED_ZONE | \
L
Linus Torvalds 已提交
178
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
179
			 SLAB_CACHE_DMA | \
180
			 SLAB_STORE_USER | \
L
Linus Torvalds 已提交
181
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
182
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
P
Pekka Enberg 已提交
183
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
L
Linus Torvalds 已提交
184
#else
185
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
186
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
187
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
188
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
P
Pekka Enberg 已提交
189
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
L
Linus Torvalds 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

211
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
212 213
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
214 215
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
216 217 218 219 220 221 222 223 224

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
225 226 227 228 229 230
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
250
	struct rcu_head head;
251
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
252
	void *addr;
L
Linus Torvalds 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
272
	spinlock_t lock;
273
	void *entry[];	/*
A
Andrew Morton 已提交
274 275 276 277
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
L
Linus Torvalds 已提交
278 279
};

A
Andrew Morton 已提交
280 281 282
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
283 284 285 286
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
287
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
288 289 290
};

/*
291
 * The slab lists for all objects.
L
Linus Torvalds 已提交
292 293
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
294 295 296 297 298
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
299
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
300 301 302
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
303 304
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
305 306
};

307 308 309
/*
 * Need this for bootstrapping a per node allocator.
 */
310
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
311 312
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
313 314
#define	SIZE_AC MAX_NUMNODES
#define	SIZE_L3 (2 * MAX_NUMNODES)
315

316 317 318 319
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
320
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
321
static void cache_reap(struct work_struct *unused);
322

323
/*
A
Andrew Morton 已提交
324 325
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
326
 */
327
static __always_inline int index_of(const size_t size)
328
{
329 330
	extern void __bad_size(void);

331 332 333 334 335 336 337 338
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
339
#include <linux/kmalloc_sizes.h>
340
#undef CACHE
341
		__bad_size();
342
	} else
343
		__bad_size();
344 345 346
	return 0;
}

347 348
static int slab_early_init = 1;

349 350
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
351

P
Pekka Enberg 已提交
352
static void kmem_list3_init(struct kmem_list3 *parent)
353 354 355 356 357 358
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
359
	parent->colour_next = 0;
360 361 362 363 364
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
365 366 367 368
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
369 370
	} while (0)

A
Andrew Morton 已提交
371 372
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
373 374 375 376
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
377 378 379 380 381

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
382 383 384
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
385
 *
A
Adrian Bunk 已提交
386
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
387 388 389 390 391 392 393 394 395 396
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
397
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
398 399 400 401 402
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
403 404
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
405
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
406
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
407 408 409 410 411
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
412 413 414 415 416 417 418 419 420
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
421
#define	STATS_ADD_REAPED(x,y)	do { } while (0)
L
Linus Torvalds 已提交
422 423 424
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
425
#define	STATS_INC_NODEFREES(x)	do { } while (0)
426
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
427
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
428 429 430 431 432 433 434 435
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
436 437
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
438
 * 0		: objp
439
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
440 441
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
442
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
443
 * 		redzone word.
444 445
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
A
Andrew Morton 已提交
446 447
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
448
 */
449
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
450
{
451
	return cachep->obj_offset;
L
Linus Torvalds 已提交
452 453
}

454
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
455
{
456
	return cachep->obj_size;
L
Linus Torvalds 已提交
457 458
}

459
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
460 461
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
462 463
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
464 465
}

466
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
467 468 469
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
470 471
		return (unsigned long long *)(objp + cachep->buffer_size -
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
472
					      REDZONE_ALIGN);
473 474
	return (unsigned long long *) (objp + cachep->buffer_size -
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
475 476
}

477
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
478 479
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
480
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
481 482 483 484
}

#else

485 486
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
487 488
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
489 490 491 492
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

E
Eduard - Gabriel Munteanu 已提交
493 494 495 496 497 498 499 500
#ifdef CONFIG_KMEMTRACE
size_t slab_buffer_size(struct kmem_cache *cachep)
{
	return cachep->buffer_size;
}
EXPORT_SYMBOL(slab_buffer_size);
#endif

L
Linus Torvalds 已提交
501 502 503 504 505 506 507
/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

A
Andrew Morton 已提交
508 509 510 511
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
L
Linus Torvalds 已提交
512
 */
513 514 515 516 517 518 519
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
520
	page = compound_head(page);
521
	BUG_ON(!PageSlab(page));
522 523 524 525 526 527 528 529 530 531
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
532
	BUG_ON(!PageSlab(page));
533 534
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
535

536 537
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
538
	struct page *page = virt_to_head_page(obj);
539 540 541 542 543
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
544
	struct page *page = virt_to_head_page(obj);
545 546 547
	return page_get_slab(page);
}

548 549 550 551 552 553
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

554 555 556 557 558 559 560 561
/*
 * We want to avoid an expensive divide : (offset / cache->buffer_size)
 *   Using the fact that buffer_size is a constant for a particular cache,
 *   we can replace (offset / cache->buffer_size) by
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
562
{
563 564
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
565 566
}

A
Andrew Morton 已提交
567 568 569
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
587
	{NULL,}
L
Linus Torvalds 已提交
588 589 590 591
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
592
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
593
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
594
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
595 596

/* internal cache of cache description objs */
597
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
598 599 600
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
601
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
602
	.name = "kmem_cache",
L
Linus Torvalds 已提交
603 604
};

605 606
#define BAD_ALIEN_MAGIC 0x01020304ul

607 608 609 610 611 612 613 614
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
615 616 617 618
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
619
 */
620 621 622 623
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

static inline void init_lock_keys(void)
624 625 626

{
	int q;
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
	struct cache_sizes *s = malloc_sizes;

	while (s->cs_size != ULONG_MAX) {
		for_each_node(q) {
			struct array_cache **alc;
			int r;
			struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
			if (!l3 || OFF_SLAB(s->cs_cachep))
				continue;
			lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
			alc = l3->alien;
			/*
			 * FIXME: This check for BAD_ALIEN_MAGIC
			 * should go away when common slab code is taught to
			 * work even without alien caches.
			 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
			 * for alloc_alien_cache,
			 */
			if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
				continue;
			for_each_node(r) {
				if (alc[r])
					lockdep_set_class(&alc[r]->lock,
					     &on_slab_alc_key);
			}
		}
		s++;
654 655 656
	}
}
#else
657
static inline void init_lock_keys(void)
658 659 660 661
{
}
#endif

662
/*
663
 * Guard access to the cache-chain.
664
 */
I
Ingo Molnar 已提交
665
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
666 667 668 669 670 671 672 673
static struct list_head cache_chain;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
674 675
	PARTIAL_AC,
	PARTIAL_L3,
676
	EARLY,
L
Linus Torvalds 已提交
677 678 679
	FULL
} g_cpucache_up;

680 681 682 683 684
/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
685
	return g_cpucache_up >= EARLY;
686 687
}

688
static DEFINE_PER_CPU(struct delayed_work, reap_work);
L
Linus Torvalds 已提交
689

690
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
691 692 693 694
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
695 696
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
697 698 699 700 701
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
702 703 704
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
705
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
706
#endif
707 708 709
	if (!size)
		return ZERO_SIZE_PTR;

L
Linus Torvalds 已提交
710 711 712 713
	while (size > csizep->cs_size)
		csizep++;

	/*
714
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
715 716 717
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
718
#ifdef CONFIG_ZONE_DMA
L
Linus Torvalds 已提交
719 720
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
721
#endif
L
Linus Torvalds 已提交
722 723 724
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
725
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
726 727 728 729
{
	return __find_general_cachep(size, gfpflags);
}

730
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
731
{
732 733
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
734

A
Andrew Morton 已提交
735 736 737
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
738 739 740 741 742 743 744
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
745

746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
794 795
}

796
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
797

A
Andrew Morton 已提交
798 799
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
800 801
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
802
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
803 804 805
	dump_stack();
}

806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
static DEFINE_PER_CPU(unsigned long, reap_node);

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
837
		node = first_node(node_online_map);
838

839
	per_cpu(reap_node, cpu) = node;
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
}

static void next_reap_node(void)
{
	int node = __get_cpu_var(reap_node);

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
	__get_cpu_var(reap_node) = node;
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
857 858 859 860 861 862 863
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
864
static void __cpuinit start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
865
{
866
	struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
L
Linus Torvalds 已提交
867 868 869 870 871 872

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
873
	if (keventd_up() && reap_work->work.func == NULL) {
874
		init_reap_node(cpu);
875
		INIT_DELAYED_WORK(reap_work, cache_reap);
876 877
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
878 879 880
	}
}

881
static struct array_cache *alloc_arraycache(int node, int entries,
882
					    int batchcount, gfp_t gfp)
L
Linus Torvalds 已提交
883
{
P
Pekka Enberg 已提交
884
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
885 886
	struct array_cache *nc = NULL;

887
	nc = kmalloc_node(memsize, gfp, node);
888 889 890 891 892 893 894 895
	/*
	 * The array_cache structures contain pointers to free object.
	 * However, when such objects are allocated or transfered to another
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
L
Linus Torvalds 已提交
896 897 898 899 900
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
901
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
902 903 904 905
	}
	return nc;
}

906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
	int nr = min(min(from->avail, max), to->limit - to->avail);

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	to->touched = 1;
	return nr;
}

930 931 932 933 934
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

935
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

955
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
956 957 958 959 960 961 962
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

963
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
964
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
965

966
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
967 968
{
	struct array_cache **ac_ptr;
969
	int memsize = sizeof(void *) * nr_node_ids;
970 971 972 973
	int i;

	if (limit > 1)
		limit = 12;
974
	ac_ptr = kmalloc_node(memsize, gfp, node);
975 976 977 978 979 980
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
981
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
982
			if (!ac_ptr[i]) {
983
				for (i--; i >= 0; i--)
984 985 986 987 988 989 990 991 992
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
993
static void free_alien_cache(struct array_cache **ac_ptr)
994 995 996 997 998 999
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1000
	    kfree(ac_ptr[i]);
1001 1002 1003
	kfree(ac_ptr);
}

1004
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1005
				struct array_cache *ac, int node)
1006 1007 1008 1009 1010
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1011 1012 1013 1014 1015
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1016 1017
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1018

1019
		free_block(cachep, ac->entry, ac->avail, node);
1020 1021 1022 1023 1024
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1025 1026 1027 1028 1029 1030 1031 1032 1033
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
	int node = __get_cpu_var(reap_node);

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1034 1035

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1036 1037 1038 1039 1040 1041
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1042 1043
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1044
{
P
Pekka Enberg 已提交
1045
	int i = 0;
1046 1047 1048 1049
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1050
		ac = alien[i];
1051 1052 1053 1054 1055 1056 1057
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1058

1059
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1060 1061 1062 1063 1064
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1065 1066 1067
	int node;

	node = numa_node_id();
1068 1069 1070 1071 1072

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1073
	if (likely(slabp->nodeid == node))
1074 1075
		return 0;

P
Pekka Enberg 已提交
1076
	l3 = cachep->nodelists[node];
1077 1078 1079
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1080
		spin_lock(&alien->lock);
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1094 1095
#endif

1096 1097 1098 1099 1100
static void __cpuinit cpuup_canceled(long cpu)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
1101
	const struct cpumask *mask = cpumask_of_node(node);
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122

	list_for_each_entry(cachep, &cache_chain, next) {
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
		l3 = cachep->nodelists[node];

		if (!l3)
			goto free_array_cache;

		spin_lock_irq(&l3->list_lock);

		/* Free limit for this kmem_list3 */
		l3->free_limit -= cachep->batchcount;
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1123
		if (!cpus_empty(*mask)) {
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
			spin_unlock_irq(&l3->list_lock);
			goto free_array_cache;
		}

		shared = l3->shared;
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
			l3->shared = NULL;
		}

		alien = l3->alien;
		l3->alien = NULL;

		spin_unlock_irq(&l3->list_lock);

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
	list_for_each_entry(cachep, &cache_chain, next) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;
		drain_freelist(cachep, l3, l3->free_objects);
	}
}

static int __cpuinit cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1162
{
1163
	struct kmem_cache *cachep;
1164 1165
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
1166
	const int memsize = sizeof(struct kmem_list3);
L
Linus Torvalds 已提交
1167

1168 1169 1170 1171 1172 1173 1174 1175
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
	 * kmem_list3 and not this cpu's kmem_list3
	 */

	list_for_each_entry(cachep, &cache_chain, next) {
A
Andrew Morton 已提交
1176
		/*
1177 1178 1179
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
1180
		 */
1181 1182 1183 1184 1185 1186 1187
		if (!cachep->nodelists[node]) {
			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!l3)
				goto bad;
			kmem_list3_init(l3);
			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1188

A
Andrew Morton 已提交
1189
			/*
1190 1191 1192
			 * The l3s don't come and go as CPUs come and
			 * go.  cache_chain_mutex is sufficient
			 * protection here.
1193
			 */
1194
			cachep->nodelists[node] = l3;
1195 1196
		}

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
		spin_lock_irq(&cachep->nodelists[node]->list_lock);
		cachep->nodelists[node]->free_limit =
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
	}

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
	list_for_each_entry(cachep, &cache_chain, next) {
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
1214
					cachep->batchcount, GFP_KERNEL);
1215 1216 1217 1218 1219
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1220
				0xbaadf00d, GFP_KERNEL);
1221 1222
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1223
				goto bad;
1224
			}
1225 1226
		}
		if (use_alien_caches) {
1227
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1228 1229 1230
			if (!alien) {
				kfree(shared);
				kfree(nc);
1231
				goto bad;
1232
			}
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
		}
		cachep->array[cpu] = nc;
		l3 = cachep->nodelists[node];
		BUG_ON(!l3);

		spin_lock_irq(&l3->list_lock);
		if (!l3->shared) {
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
			l3->shared = shared;
			shared = NULL;
		}
1247
#ifdef CONFIG_NUMA
1248 1249 1250
		if (!l3->alien) {
			l3->alien = alien;
			alien = NULL;
L
Linus Torvalds 已提交
1251
		}
1252 1253 1254 1255 1256 1257 1258
#endif
		spin_unlock_irq(&l3->list_lock);
		kfree(shared);
		free_alien_cache(alien);
	}
	return 0;
bad:
1259
	cpuup_canceled(cpu);
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
	return -ENOMEM;
}

static int __cpuinit cpuup_callback(struct notifier_block *nfb,
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1272
		mutex_lock(&cache_chain_mutex);
1273
		err = cpuup_prepare(cpu);
1274
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1275 1276
		break;
	case CPU_ONLINE:
1277
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1278 1279 1280
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1281
  	case CPU_DOWN_PREPARE:
1282
  	case CPU_DOWN_PREPARE_FROZEN:
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
		/*
		 * Shutdown cache reaper. Note that the cache_chain_mutex is
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
		cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
		/* Now the cache_reaper is guaranteed to be not running. */
		per_cpu(reap_work, cpu).work.func = NULL;
  		break;
  	case CPU_DOWN_FAILED:
1294
  	case CPU_DOWN_FAILED_FROZEN:
1295 1296
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1297
	case CPU_DEAD:
1298
	case CPU_DEAD_FROZEN:
1299 1300 1301 1302 1303 1304 1305 1306
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1307
		/* fall through */
1308
#endif
L
Linus Torvalds 已提交
1309
	case CPU_UP_CANCELED:
1310
	case CPU_UP_CANCELED_FROZEN:
1311
		mutex_lock(&cache_chain_mutex);
1312
		cpuup_canceled(cpu);
I
Ingo Molnar 已提交
1313
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1314 1315
		break;
	}
1316
	return err ? NOTIFY_BAD : NOTIFY_OK;
L
Linus Torvalds 已提交
1317 1318
}

1319 1320 1321
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1322

1323 1324 1325
/*
 * swap the static kmem_list3 with kmalloced memory
 */
A
Andrew Morton 已提交
1326 1327
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
			int nodeid)
1328 1329 1330
{
	struct kmem_list3 *ptr;

1331
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1332 1333 1334
	BUG_ON(!ptr);

	memcpy(ptr, list, sizeof(struct kmem_list3));
1335 1336 1337 1338 1339
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1340 1341 1342 1343
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
}

1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
static void __init set_up_list3s(struct kmem_cache *cachep, int index)
{
	int node;

	for_each_online_node(node) {
		cachep->nodelists[node] = &initkmem_list3[index + node];
		cachep->nodelists[node]->next_reap = jiffies +
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
	}
}

A
Andrew Morton 已提交
1360 1361 1362
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1363 1364 1365 1366 1367 1368
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1369
	int i;
1370
	int order;
P
Pekka Enberg 已提交
1371
	int node;
1372

1373
	if (num_possible_nodes() == 1)
1374 1375
		use_alien_caches = 0;

1376 1377 1378 1379 1380
	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
1381
	set_up_list3s(&cache_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1382 1383 1384 1385 1386

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
1387
	if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
L
Linus Torvalds 已提交
1388 1389 1390 1391
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1392 1393 1394
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1395 1396 1397
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1398
	 * 2) Create the first kmalloc cache.
1399
	 *    The struct kmem_cache for the new cache is allocated normally.
1400 1401 1402
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1403 1404
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1405 1406 1407
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1408 1409
	 */

P
Pekka Enberg 已提交
1410 1411
	node = numa_node_id();

L
Linus Torvalds 已提交
1412 1413 1414 1415 1416
	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1417
	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
L
Linus Torvalds 已提交
1418

E
Eric Dumazet 已提交
1419 1420 1421 1422 1423 1424 1425 1426 1427
	/*
	 * struct kmem_cache size depends on nr_node_ids, which
	 * can be less than MAX_NUMNODES.
	 */
	cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
				 nr_node_ids * sizeof(struct kmem_list3 *);
#if DEBUG
	cache_cache.obj_size = cache_cache.buffer_size;
#endif
A
Andrew Morton 已提交
1428 1429
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
					cache_line_size());
1430 1431
	cache_cache.reciprocal_buffer_size =
		reciprocal_value(cache_cache.buffer_size);
L
Linus Torvalds 已提交
1432

1433 1434 1435 1436 1437 1438
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1439
	BUG_ON(!cache_cache.num);
1440
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1441 1442 1443
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1444 1445 1446 1447 1448

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1449 1450 1451 1452
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1453 1454 1455
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1456 1457 1458
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1459
					NULL);
1460

A
Andrew Morton 已提交
1461
	if (INDEX_AC != INDEX_L3) {
1462
		sizes[INDEX_L3].cs_cachep =
A
Andrew Morton 已提交
1463 1464 1465 1466
			kmem_cache_create(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1467
				NULL);
A
Andrew Morton 已提交
1468
	}
1469

1470 1471
	slab_early_init = 0;

L
Linus Torvalds 已提交
1472
	while (sizes->cs_size != ULONG_MAX) {
1473 1474
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1475 1476 1477
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1478 1479
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1480
		if (!sizes->cs_cachep) {
1481
			sizes->cs_cachep = kmem_cache_create(names->name,
A
Andrew Morton 已提交
1482 1483 1484
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1485
					NULL);
A
Andrew Morton 已提交
1486
		}
1487 1488 1489
#ifdef CONFIG_ZONE_DMA
		sizes->cs_dmacachep = kmem_cache_create(
					names->name_dma,
A
Andrew Morton 已提交
1490 1491 1492 1493
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
1494
					NULL);
1495
#endif
L
Linus Torvalds 已提交
1496 1497 1498 1499 1500
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1501
		struct array_cache *ptr;
1502

1503
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1504

1505 1506
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1507
		       sizeof(struct arraycache_init));
1508 1509 1510 1511 1512
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

L
Linus Torvalds 已提交
1513
		cache_cache.array[smp_processor_id()] = ptr;
1514

1515
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1516

1517
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1518
		       != &initarray_generic.cache);
1519
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1520
		       sizeof(struct arraycache_init));
1521 1522 1523 1524 1525
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1526
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1527
		    ptr;
L
Linus Torvalds 已提交
1528
	}
1529 1530
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1531 1532
		int nid;

1533
		for_each_online_node(nid) {
1534
			init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1535

1536
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1537
				  &initkmem_list3[SIZE_AC + nid], nid);
1538 1539 1540

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1541
					  &initkmem_list3[SIZE_L3 + nid], nid);
1542 1543 1544
			}
		}
	}
L
Linus Torvalds 已提交
1545

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
	g_cpucache_up = EARLY;
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

	/* 6) resize the head arrays to their final sizes */
	mutex_lock(&cache_chain_mutex);
	list_for_each_entry(cachep, &cache_chain, next)
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
	mutex_unlock(&cache_chain_mutex);
1559

L
Linus Torvalds 已提交
1560 1561 1562
	/* Done! */
	g_cpucache_up = FULL;

P
Pekka Enberg 已提交
1563 1564 1565
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();

A
Andrew Morton 已提交
1566 1567 1568
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1569 1570 1571
	 */
	register_cpu_notifier(&cpucache_notifier);

A
Andrew Morton 已提交
1572 1573 1574
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1575 1576 1577 1578 1579 1580 1581
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1582 1583
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1584
	 */
1585
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1586
		start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
	return 0;
}
__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1598
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1599 1600
{
	struct page *page;
1601
	int nr_pages;
L
Linus Torvalds 已提交
1602 1603
	int i;

1604
#ifndef CONFIG_MMU
1605 1606 1607
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1608
	 */
1609
	flags |= __GFP_COMP;
1610
#endif
1611

1612
	flags |= cachep->gfpflags;
1613 1614
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1615

L
Linus Torvalds 已提交
1616
	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
L
Linus Torvalds 已提交
1617 1618 1619
	if (!page)
		return NULL;

1620
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1621
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1622 1623 1624 1625 1626
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1627 1628
	for (i = 0; i < nr_pages; i++)
		__SetPageSlab(page + i);
P
Pekka Enberg 已提交
1629

1630 1631 1632 1633 1634 1635 1636 1637
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1638

1639
	return page_address(page);
L
Linus Torvalds 已提交
1640 1641 1642 1643 1644
}

/*
 * Interface to system's page release.
 */
1645
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1646
{
P
Pekka Enberg 已提交
1647
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1648 1649 1650
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1651
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1652

1653 1654 1655 1656 1657 1658
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1659
	while (i--) {
N
Nick Piggin 已提交
1660 1661
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1662 1663 1664 1665 1666 1667 1668 1669 1670
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1671
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1672
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1673 1674 1675 1676 1677 1678 1679 1680 1681

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1682
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1683
			    unsigned long caller)
L
Linus Torvalds 已提交
1684
{
1685
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1686

1687
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1688

P
Pekka Enberg 已提交
1689
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1690 1691
		return;

P
Pekka Enberg 已提交
1692 1693 1694 1695
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1696 1697 1698 1699 1700 1701 1702
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1703
				*addr++ = svalue;
L
Linus Torvalds 已提交
1704 1705 1706 1707 1708 1709 1710
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1711
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1712 1713 1714
}
#endif

1715
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1716
{
1717 1718
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1719 1720

	memset(addr, val, size);
P
Pekka Enberg 已提交
1721
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1722 1723 1724 1725 1726
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1727 1728 1729
	unsigned char error = 0;
	int bad_count = 0;

L
Linus Torvalds 已提交
1730
	printk(KERN_ERR "%03x:", offset);
D
Dave Jones 已提交
1731 1732 1733 1734 1735
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
P
Pekka Enberg 已提交
1736
		printk(" %02x", (unsigned char)data[offset + i]);
D
Dave Jones 已提交
1737
	}
L
Linus Torvalds 已提交
1738
	printk("\n");
D
Dave Jones 已提交
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1753 1754 1755 1756 1757
}
#endif

#if DEBUG

1758
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1759 1760 1761 1762 1763
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1764
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1765 1766
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1767 1768 1769 1770
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
1771
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1772
		print_symbol("(%s)",
A
Andrew Morton 已提交
1773
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1774 1775
		printk("\n");
	}
1776 1777
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1778
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1779 1780
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1781 1782
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1783 1784 1785 1786
		dump_line(realobj, i, limit);
	}
}

1787
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1788 1789 1790 1791 1792
{
	char *realobj;
	int size, i;
	int lines = 0;

1793 1794
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1795

P
Pekka Enberg 已提交
1796
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1797
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1798
		if (i == size - 1)
L
Linus Torvalds 已提交
1799 1800 1801 1802 1803 1804
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1805
				printk(KERN_ERR
1806 1807
					"Slab corruption: %s start=%p, len=%d\n",
					cachep->name, realobj, size);
L
Linus Torvalds 已提交
1808 1809 1810
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1811
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1812
			limit = 16;
P
Pekka Enberg 已提交
1813 1814
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1827
		struct slab *slabp = virt_to_slab(objp);
1828
		unsigned int objnr;
L
Linus Torvalds 已提交
1829

1830
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1831
		if (objnr) {
1832
			objp = index_to_obj(cachep, slabp, objnr - 1);
1833
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1834
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1835
			       realobj, size);
L
Linus Torvalds 已提交
1836 1837
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1838
		if (objnr + 1 < cachep->num) {
1839
			objp = index_to_obj(cachep, slabp, objnr + 1);
1840
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1841
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1842
			       realobj, size);
L
Linus Torvalds 已提交
1843 1844 1845 1846 1847 1848
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1849
#if DEBUG
R
Rabin Vincent 已提交
1850
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1851 1852 1853
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1854
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1855 1856 1857

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
1858 1859
			if (cachep->buffer_size % PAGE_SIZE == 0 &&
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1860
				kernel_map_pages(virt_to_page(objp),
A
Andrew Morton 已提交
1861
					cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1862 1863 1864 1865 1866 1867 1868 1869 1870
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1871
					   "was overwritten");
L
Linus Torvalds 已提交
1872 1873
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1874
					   "was overwritten");
L
Linus Torvalds 已提交
1875 1876
		}
	}
1877
}
L
Linus Torvalds 已提交
1878
#else
R
Rabin Vincent 已提交
1879
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1880 1881
{
}
L
Linus Torvalds 已提交
1882 1883
#endif

1884 1885 1886 1887 1888
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
1889
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1890 1891
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1892
 */
1893
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1894 1895 1896
{
	void *addr = slabp->s_mem - slabp->colouroff;

R
Rabin Vincent 已提交
1897
	slab_destroy_debugcheck(cachep, slabp);
L
Linus Torvalds 已提交
1898 1899 1900
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1901
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1902 1903 1904 1905 1906
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
1907 1908
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
1909 1910 1911
	}
}

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	kmem_cache_free(&cache_cache, cachep);
}


1933
/**
1934 1935 1936 1937 1938 1939 1940
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1941 1942 1943 1944 1945
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1946
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
1947
			size_t size, size_t align, unsigned long flags)
1948
{
1949
	unsigned long offslab_limit;
1950
	size_t left_over = 0;
1951
	int gfporder;
1952

1953
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1954 1955 1956
		unsigned int num;
		size_t remainder;

1957
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1958 1959
		if (!num)
			continue;
1960

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
1973

1974
		/* Found something acceptable - save it away */
1975
		cachep->num = num;
1976
		cachep->gfporder = gfporder;
1977 1978
		left_over = remainder;

1979 1980 1981 1982 1983 1984 1985 1986
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1987 1988 1989 1990
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
1991
		if (gfporder >= slab_break_gfp_order)
1992 1993
			break;

1994 1995 1996
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
1997
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1998 1999 2000 2001 2002
			break;
	}
	return left_over;
}

2003
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2004
{
2005
	if (g_cpucache_up == FULL)
2006
		return enable_cpucache(cachep, gfp);
2007

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		cachep->array[smp_processor_id()] =
2028
			kmalloc(sizeof(struct arraycache_init), gfp);
2029 2030 2031 2032 2033 2034

		if (g_cpucache_up == PARTIAL_AC) {
			set_up_list3s(cachep, SIZE_L3);
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
2035
			for_each_online_node(node) {
2036 2037
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
2038
						gfp, node);
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
	cachep->nodelists[numa_node_id()]->next_reap =
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2054
	return 0;
2055 2056
}

L
Linus Torvalds 已提交
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2067
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2068 2069
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
2070
 * the module calling this has to destroy the cache before getting unloaded.
2071 2072
 * Note that kmem_cache_name() is not guaranteed to return the same pointer,
 * therefore applications must manage it themselves.
A
Andrew Morton 已提交
2073
 *
L
Linus Torvalds 已提交
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2086
struct kmem_cache *
L
Linus Torvalds 已提交
2087
kmem_cache_create (const char *name, size_t size, size_t align,
2088
	unsigned long flags, void (*ctor)(void *))
L
Linus Torvalds 已提交
2089 2090
{
	size_t left_over, slab_size, ralign;
2091
	struct kmem_cache *cachep = NULL, *pc;
2092
	gfp_t gfp;
L
Linus Torvalds 已提交
2093 2094 2095 2096

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
A
Andrew Morton 已提交
2097
	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2098
	    size > KMALLOC_MAX_SIZE) {
2099
		printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
A
Andrew Morton 已提交
2100
				name);
P
Pekka Enberg 已提交
2101 2102
		BUG();
	}
L
Linus Torvalds 已提交
2103

2104
	/*
2105
	 * We use cache_chain_mutex to ensure a consistent view of
R
Rusty Russell 已提交
2106
	 * cpu_online_mask as well.  Please see cpuup_callback
2107
	 */
2108 2109 2110 2111
	if (slab_is_available()) {
		get_online_cpus();
		mutex_lock(&cache_chain_mutex);
	}
2112

2113
	list_for_each_entry(pc, &cache_chain, next) {
2114 2115 2116 2117 2118 2119 2120 2121
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
2122
		res = probe_kernel_address(pc->name, tmp);
2123
		if (res) {
2124 2125
			printk(KERN_ERR
			       "SLAB: cache with size %d has lost its name\n",
2126
			       pc->buffer_size);
2127 2128 2129
			continue;
		}

P
Pekka Enberg 已提交
2130
		if (!strcmp(pc->name, name)) {
2131 2132
			printk(KERN_ERR
			       "kmem_cache_create: duplicate cache %s\n", name);
2133 2134 2135 2136 2137
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
2138 2139 2140 2141 2142 2143 2144 2145 2146
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2147 2148
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2149
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2150 2151 2152 2153 2154 2155 2156
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	/*
A
Andrew Morton 已提交
2157 2158
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2159
	 */
2160
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2161

A
Andrew Morton 已提交
2162 2163
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2164 2165 2166
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2167 2168 2169
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2170 2171
	}

A
Andrew Morton 已提交
2172 2173
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2174 2175
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2176 2177 2178 2179
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2180 2181
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2182
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2183 2184 2185 2186
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2187 2188

	/*
D
David Woodhouse 已提交
2189 2190 2191
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2192
	 */
D
David Woodhouse 已提交
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2203

2204
	/* 2) arch mandated alignment */
L
Linus Torvalds 已提交
2205 2206 2207
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
	}
2208
	/* 3) caller mandated alignment */
L
Linus Torvalds 已提交
2209 2210 2211
	if (ralign < align) {
		ralign = align;
	}
2212
	/* disable debug if necessary */
2213
	if (ralign > __alignof__(unsigned long long))
2214
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2215
	/*
2216
	 * 4) Store it.
L
Linus Torvalds 已提交
2217 2218 2219
	 */
	align = ralign;

2220 2221 2222 2223 2224
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

L
Linus Torvalds 已提交
2225
	/* Get cache's description obj. */
2226
	cachep = kmem_cache_zalloc(&cache_cache, gfp);
L
Linus Torvalds 已提交
2227
	if (!cachep)
2228
		goto oops;
L
Linus Torvalds 已提交
2229 2230

#if DEBUG
2231
	cachep->obj_size = size;
L
Linus Torvalds 已提交
2232

2233 2234 2235 2236
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2237 2238
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2239 2240
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2241 2242
	}
	if (flags & SLAB_STORE_USER) {
2243
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2244 2245
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2246
		 */
D
David Woodhouse 已提交
2247 2248 2249 2250
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2251 2252
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2253
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2254 2255
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
2256 2257 2258 2259 2260
		size = PAGE_SIZE;
	}
#endif
#endif

2261 2262 2263
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
2264 2265
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2266
	 */
2267 2268
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
	    !(flags & SLAB_NOLEAKTRACE))
L
Linus Torvalds 已提交
2269 2270 2271 2272 2273 2274 2275 2276
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2277
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2278 2279

	if (!cachep->num) {
2280 2281
		printk(KERN_ERR
		       "kmem_cache_create: couldn't create cache %s.\n", name);
L
Linus Torvalds 已提交
2282 2283
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
2284
		goto oops;
L
Linus Torvalds 已提交
2285
	}
P
Pekka Enberg 已提交
2286 2287
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2300 2301
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2302 2303 2304 2305 2306 2307 2308 2309 2310

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
L
Linus Torvalds 已提交
2311 2312 2313 2314 2315 2316
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2317
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2318 2319 2320
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
2321
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
L
Linus Torvalds 已提交
2322
		cachep->gfpflags |= GFP_DMA;
2323
	cachep->buffer_size = size;
2324
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2325

2326
	if (flags & CFLGS_OFF_SLAB) {
2327
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2328 2329 2330 2331 2332 2333 2334
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
2335
		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2336
	}
L
Linus Torvalds 已提交
2337 2338 2339
	cachep->ctor = ctor;
	cachep->name = name;

2340
	if (setup_cpu_cache(cachep, gfp)) {
2341 2342 2343 2344
		__kmem_cache_destroy(cachep);
		cachep = NULL;
		goto oops;
	}
L
Linus Torvalds 已提交
2345 2346 2347

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
A
Andrew Morton 已提交
2348
oops:
L
Linus Torvalds 已提交
2349 2350
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
2351
		      name);
2352 2353 2354 2355
	if (slab_is_available()) {
		mutex_unlock(&cache_chain_mutex);
		put_online_cpus();
	}
L
Linus Torvalds 已提交
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2371
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2372 2373 2374
{
#ifdef CONFIG_SMP
	check_irq_off();
2375
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
2376 2377
#endif
}
2378

2379
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2380 2381 2382 2383 2384 2385 2386
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2387 2388 2389 2390
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2391
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2392 2393
#endif

2394 2395 2396 2397
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2398 2399
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2400
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2401
	struct array_cache *ac;
2402
	int node = numa_node_id();
L
Linus Torvalds 已提交
2403 2404

	check_irq_off();
2405
	ac = cpu_cache_get(cachep);
2406 2407 2408
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2409 2410 2411
	ac->avail = 0;
}

2412
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2413
{
2414 2415 2416
	struct kmem_list3 *l3;
	int node;

2417
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2418
	check_irq_on();
P
Pekka Enberg 已提交
2419
	for_each_online_node(node) {
2420
		l3 = cachep->nodelists[node];
2421 2422 2423 2424 2425 2426 2427
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2428
			drain_array(cachep, l3, l3->shared, 1, node);
2429
	}
L
Linus Torvalds 已提交
2430 2431
}

2432 2433 2434 2435 2436 2437 2438 2439
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2440
{
2441 2442
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2443 2444
	struct slab *slabp;

2445 2446
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2447

2448
		spin_lock_irq(&l3->list_lock);
2449
		p = l3->slabs_free.prev;
2450 2451 2452 2453
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2454

2455
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2456
#if DEBUG
2457
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2458 2459
#endif
		list_del(&slabp->list);
2460 2461 2462 2463 2464
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2465
		spin_unlock_irq(&l3->list_lock);
2466 2467
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2468
	}
2469 2470
out:
	return nr_freed;
L
Linus Torvalds 已提交
2471 2472
}

2473
/* Called with cache_chain_mutex held to protect against cpu hotplug */
2474
static int __cache_shrink(struct kmem_cache *cachep)
2475 2476 2477 2478 2479 2480 2481 2482 2483
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2484 2485 2486 2487 2488 2489 2490
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2491 2492 2493 2494
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2495 2496 2497 2498 2499 2500 2501
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2502
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2503
{
2504
	int ret;
2505
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2506

2507
	get_online_cpus();
2508 2509 2510
	mutex_lock(&cache_chain_mutex);
	ret = __cache_shrink(cachep);
	mutex_unlock(&cache_chain_mutex);
2511
	put_online_cpus();
2512
	return ret;
L
Linus Torvalds 已提交
2513 2514 2515 2516 2517 2518 2519
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2520
 * Remove a &struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
2532
void kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2533
{
2534
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2535 2536

	/* Find the cache in the chain of caches. */
2537
	get_online_cpus();
I
Ingo Molnar 已提交
2538
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2539 2540 2541 2542 2543 2544
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
P
Pekka Enberg 已提交
2545
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2546
		mutex_unlock(&cache_chain_mutex);
2547
		put_online_cpus();
2548
		return;
L
Linus Torvalds 已提交
2549 2550 2551
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2552
		rcu_barrier();
L
Linus Torvalds 已提交
2553

2554
	__kmem_cache_destroy(cachep);
2555
	mutex_unlock(&cache_chain_mutex);
2556
	put_online_cpus();
L
Linus Torvalds 已提交
2557 2558 2559
}
EXPORT_SYMBOL(kmem_cache_destroy);

2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2571
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2572 2573
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2574 2575
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2576

L
Linus Torvalds 已提交
2577 2578
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2579
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2580
					      local_flags, nodeid);
2581 2582 2583 2584 2585 2586
		/*
		 * If the first object in the slab is leaked (it's allocated
		 * but no one has a reference to it), we want to make sure
		 * kmemleak does not treat the ->s_mem pointer as a reference
		 * to the object. Otherwise we will not report the leak.
		 */
2587 2588
		kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
				   local_flags);
L
Linus Torvalds 已提交
2589 2590 2591
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2592
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2593 2594 2595 2596
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2597
	slabp->s_mem = objp + colour_off;
2598
	slabp->nodeid = nodeid;
2599
	slabp->free = 0;
L
Linus Torvalds 已提交
2600 2601 2602 2603 2604
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2605
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2606 2607
}

2608
static void cache_init_objs(struct kmem_cache *cachep,
C
Christoph Lameter 已提交
2609
			    struct slab *slabp)
L
Linus Torvalds 已提交
2610 2611 2612 2613
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2614
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2627 2628 2629
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2630 2631
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2632
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2633 2634 2635 2636

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2637
					   " end of an object");
L
Linus Torvalds 已提交
2638 2639
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2640
					   " start of an object");
L
Linus Torvalds 已提交
2641
		}
A
Andrew Morton 已提交
2642 2643
		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2644
			kernel_map_pages(virt_to_page(objp),
2645
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2646 2647
#else
		if (cachep->ctor)
2648
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2649
#endif
P
Pekka Enberg 已提交
2650
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2651
	}
P
Pekka Enberg 已提交
2652
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2653 2654
}

2655
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2656
{
2657 2658 2659 2660 2661 2662
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
			BUG_ON(!(cachep->gfpflags & GFP_DMA));
		else
			BUG_ON(cachep->gfpflags & GFP_DMA);
	}
L
Linus Torvalds 已提交
2663 2664
}

A
Andrew Morton 已提交
2665 2666
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2667
{
2668
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2682 2683
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2684
{
2685
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2686 2687 2688 2689 2690

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2691
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2692
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2693
				"'%s', objp %p\n", cachep->name, objp);
2694 2695 2696 2697 2698 2699 2700 2701
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2702 2703 2704 2705 2706 2707 2708
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2709
{
2710
	int nr_pages;
L
Linus Torvalds 已提交
2711 2712
	struct page *page;

2713
	page = virt_to_page(addr);
2714

2715
	nr_pages = 1;
2716
	if (likely(!PageCompound(page)))
2717 2718
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2719
	do {
2720 2721
		page_set_cache(page, cache);
		page_set_slab(page, slab);
L
Linus Torvalds 已提交
2722
		page++;
2723
	} while (--nr_pages);
L
Linus Torvalds 已提交
2724 2725 2726 2727 2728 2729
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2730 2731
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2732
{
P
Pekka Enberg 已提交
2733 2734 2735
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
2736
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2737

A
Andrew Morton 已提交
2738 2739 2740
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2741
	 */
C
Christoph Lameter 已提交
2742 2743
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2744

2745
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2746
	check_irq_off();
2747 2748
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2749 2750

	/* Get colour for the slab, and cal the next value. */
2751 2752 2753 2754 2755
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2756

2757
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2770 2771 2772
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2773
	 */
2774
	if (!objp)
2775
		objp = kmem_getpages(cachep, local_flags, nodeid);
A
Andrew Morton 已提交
2776
	if (!objp)
L
Linus Torvalds 已提交
2777 2778 2779
		goto failed;

	/* Get slab management. */
2780
	slabp = alloc_slabmgmt(cachep, objp, offset,
C
Christoph Lameter 已提交
2781
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
A
Andrew Morton 已提交
2782
	if (!slabp)
L
Linus Torvalds 已提交
2783 2784
		goto opps1;

2785
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2786

C
Christoph Lameter 已提交
2787
	cache_init_objs(cachep, slabp);
L
Linus Torvalds 已提交
2788 2789 2790 2791

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2792
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2793 2794

	/* Make slab active. */
2795
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2796
	STATS_INC_GROWN(cachep);
2797 2798
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2799
	return 1;
A
Andrew Morton 已提交
2800
opps1:
L
Linus Torvalds 已提交
2801
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2802
failed:
L
Linus Torvalds 已提交
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2819 2820
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2821 2822 2823
	}
}

2824 2825
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2826
	unsigned long long redzone1, redzone2;
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2842
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2843 2844 2845
			obj, redzone1, redzone2);
}

2846
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2847
				   void *caller)
L
Linus Torvalds 已提交
2848 2849 2850 2851 2852
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2853 2854
	BUG_ON(virt_to_cache(objp) != cachep);

2855
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2856
	kfree_debugcheck(objp);
2857
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2858

2859
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2860 2861

	if (cachep->flags & SLAB_RED_ZONE) {
2862
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2863 2864 2865 2866 2867 2868
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2869
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2870 2871

	BUG_ON(objnr >= cachep->num);
2872
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2873

2874 2875 2876
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2877 2878
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
2879
		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2880
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2881
			kernel_map_pages(virt_to_page(objp),
2882
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2893
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2894 2895 2896
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2897

L
Linus Torvalds 已提交
2898 2899 2900 2901 2902 2903 2904
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
2905 2906 2907 2908
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse);
P
Pekka Enberg 已提交
2909
		for (i = 0;
2910
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
2911
		     i++) {
A
Andrew Morton 已提交
2912
			if (i % 16 == 0)
L
Linus Torvalds 已提交
2913
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2914
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2926
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2927 2928 2929 2930
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;
P
Pekka Enberg 已提交
2931 2932
	int node;

2933
retry:
L
Linus Torvalds 已提交
2934
	check_irq_off();
2935
	node = numa_node_id();
2936
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2937 2938
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2939 2940 2941 2942
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2943 2944 2945
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
P
Pekka Enberg 已提交
2946
	l3 = cachep->nodelists[node];
2947 2948 2949

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2950

2951 2952 2953 2954
	/* See if we can refill from the shared array */
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
		goto alloc_done;

L
Linus Torvalds 已提交
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
2970 2971 2972 2973 2974 2975

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
2976
		BUG_ON(slabp->inuse >= cachep->num);
2977

L
Linus Torvalds 已提交
2978 2979 2980 2981 2982
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2983
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
P
Pekka Enberg 已提交
2984
							    node);
L
Linus Torvalds 已提交
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
2996
must_grow:
L
Linus Torvalds 已提交
2997
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
2998
alloc_done:
2999
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3000 3001 3002

	if (unlikely(!ac->avail)) {
		int x;
3003
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3004

A
Andrew Morton 已提交
3005
		/* cache_grow can reenable interrupts, then ac could change. */
3006
		ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
3007
		if (!x && ac->avail == 0)	/* no objects in sight? abort */
L
Linus Torvalds 已提交
3008 3009
			return NULL;

A
Andrew Morton 已提交
3010
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3011 3012 3013
			goto retry;
	}
	ac->touched = 1;
3014
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3015 3016
}

A
Andrew Morton 已提交
3017 3018
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3019 3020 3021 3022 3023 3024 3025 3026
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3027 3028
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
3029
{
P
Pekka Enberg 已提交
3030
	if (!objp)
L
Linus Torvalds 已提交
3031
		return objp;
P
Pekka Enberg 已提交
3032
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3033
#ifdef CONFIG_DEBUG_PAGEALLOC
3034
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3035
			kernel_map_pages(virt_to_page(objp),
3036
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3048 3049 3050 3051
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3052
			printk(KERN_ERR
3053
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3054 3055
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3056 3057 3058 3059
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3060 3061 3062 3063 3064
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

3065
		slabp = page_get_slab(virt_to_head_page(objp));
3066 3067 3068 3069
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3070
	objp += obj_offset(cachep);
3071
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3072
		cachep->ctor(objp);
3073 3074 3075 3076 3077 3078
#if ARCH_SLAB_MINALIGN
	if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
		       objp, ARCH_SLAB_MINALIGN);
	}
#endif
L
Linus Torvalds 已提交
3079 3080 3081 3082 3083 3084
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Akinobu Mita 已提交
3085
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3086 3087
{
	if (cachep == &cache_cache)
A
Akinobu Mita 已提交
3088
		return false;
3089

A
Akinobu Mita 已提交
3090
	return should_failslab(obj_size(cachep), flags);
3091 3092
}

3093
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3094
{
P
Pekka Enberg 已提交
3095
	void *objp;
L
Linus Torvalds 已提交
3096 3097
	struct array_cache *ac;

3098
	check_irq_off();
3099

3100
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3101 3102 3103
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
3104
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3105 3106 3107 3108
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
	}
3109 3110 3111 3112 3113 3114
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
	kmemleak_erase(&ac->entry[ac->avail]);
3115 3116 3117
	return objp;
}

3118
#ifdef CONFIG_NUMA
3119
/*
3120
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3121 3122 3123 3124 3125 3126 3127 3128
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3129
	if (in_interrupt() || (flags & __GFP_THISNODE))
3130 3131 3132 3133 3134 3135 3136
		return NULL;
	nid_alloc = nid_here = numa_node_id();
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
		nid_alloc = cpuset_mem_spread_node();
	else if (current->mempolicy)
		nid_alloc = slab_node(current->mempolicy);
	if (nid_alloc != nid_here)
3137
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3138 3139 3140
	return NULL;
}

3141 3142
/*
 * Fallback function if there was no memory available and no objects on a
3143 3144 3145 3146 3147
 * certain node and fall back is permitted. First we scan all the
 * available nodelists for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3148
 */
3149
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3150
{
3151 3152
	struct zonelist *zonelist;
	gfp_t local_flags;
3153
	struct zoneref *z;
3154 3155
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3156
	void *obj = NULL;
3157
	int nid;
3158 3159 3160 3161

	if (flags & __GFP_THISNODE)
		return NULL;

3162
	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
C
Christoph Lameter 已提交
3163
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3164

3165 3166 3167 3168 3169
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3170 3171
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3172

3173
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3174
			cache->nodelists[nid] &&
3175
			cache->nodelists[nid]->free_objects) {
3176 3177
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3178 3179 3180
				if (obj)
					break;
		}
3181 3182
	}

3183
	if (!obj) {
3184 3185 3186 3187 3188 3189
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3190 3191 3192
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3193
		obj = kmem_getpages(cache, local_flags, numa_node_id());
3194 3195
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3212
				/* cache_grow already freed obj */
3213 3214 3215
				obj = NULL;
			}
		}
3216
	}
3217 3218 3219
	return obj;
}

3220 3221
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3222
 */
3223
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3224
				int nodeid)
3225 3226
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3227 3228 3229 3230 3231 3232 3233 3234
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3235
retry:
3236
	check_irq_off();
P
Pekka Enberg 已提交
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3256
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3257 3258 3259 3260 3261
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3262
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3263
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3264
	else
P
Pekka Enberg 已提交
3265
		list_add(&slabp->list, &l3->slabs_partial);
3266

P
Pekka Enberg 已提交
3267 3268
	spin_unlock(&l3->list_lock);
	goto done;
3269

A
Andrew Morton 已提交
3270
must_grow:
P
Pekka Enberg 已提交
3271
	spin_unlock(&l3->list_lock);
3272
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3273 3274
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3275

3276
	return fallback_alloc(cachep, flags);
3277

A
Andrew Morton 已提交
3278
done:
P
Pekka Enberg 已提交
3279
	return obj;
3280
}
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 * @caller: return address of caller, used for debug information
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
static __always_inline void *
__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
		   void *caller)
{
	unsigned long save_flags;
	void *ptr;

3301
	flags &= gfp_allowed_mask;
3302

3303 3304
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3305
	if (slab_should_failslab(cachep, flags))
3306 3307
		return NULL;

3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

	if (unlikely(nodeid == -1))
		nodeid = numa_node_id();

	if (unlikely(!cachep->nodelists[nodeid])) {
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

	if (nodeid == numa_node_id()) {
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3336 3337
	kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
				 flags);
3338

P
Pekka Enberg 已提交
3339 3340 3341
	if (likely(ptr))
		kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));

3342 3343 3344
	if (unlikely((flags & __GFP_ZERO) && ptr))
		memset(ptr, 0, obj_size(cachep));

3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
 	if (!objp)
 		objp = ____cache_alloc_node(cache, flags, numa_node_id());

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
{
	unsigned long save_flags;
	void *objp;

3386
	flags &= gfp_allowed_mask;
3387

3388 3389
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3390
	if (slab_should_failslab(cachep, flags))
3391 3392
		return NULL;

3393 3394 3395 3396 3397
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3398 3399
	kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
				 flags);
3400 3401
	prefetchw(objp);

P
Pekka Enberg 已提交
3402 3403 3404
	if (likely(objp))
		kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));

3405 3406 3407
	if (unlikely((flags & __GFP_ZERO) && objp))
		memset(objp, 0, obj_size(cachep));

3408 3409
	return objp;
}
3410 3411 3412 3413

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3414
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3415
		       int node)
L
Linus Torvalds 已提交
3416 3417
{
	int i;
3418
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3419 3420 3421 3422 3423

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

3424
		slabp = virt_to_slab(objp);
3425
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3426
		list_del(&slabp->list);
3427
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3428
		check_slabp(cachep, slabp);
3429
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3430
		STATS_DEC_ACTIVE(cachep);
3431
		l3->free_objects++;
L
Linus Torvalds 已提交
3432 3433 3434 3435
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3436 3437
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3438 3439 3440 3441 3442 3443
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3444 3445
				slab_destroy(cachep, slabp);
			} else {
3446
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3447 3448 3449 3450 3451 3452
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3453
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3454 3455 3456 3457
		}
	}
}

3458
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3459 3460
{
	int batchcount;
3461
	struct kmem_list3 *l3;
3462
	int node = numa_node_id();
L
Linus Torvalds 已提交
3463 3464 3465 3466 3467 3468

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3469
	l3 = cachep->nodelists[node];
3470
	spin_lock(&l3->list_lock);
3471 3472
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3473
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3474 3475 3476
		if (max) {
			if (batchcount > max)
				batchcount = max;
3477
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3478
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3479 3480 3481 3482 3483
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3484
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3485
free_done:
L
Linus Torvalds 已提交
3486 3487 3488 3489 3490
#if STATS
	{
		int i = 0;
		struct list_head *p;

3491 3492
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3504
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3505
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3506
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3507 3508 3509
}

/*
A
Andrew Morton 已提交
3510 3511
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3512
 */
3513
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3514
{
3515
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3516 3517

	check_irq_off();
3518
	kmemleak_free_recursive(objp, cachep->flags);
L
Linus Torvalds 已提交
3519 3520
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

P
Pekka Enberg 已提交
3521 3522
	kmemcheck_slab_free(cachep, objp, obj_size(cachep));

3523 3524 3525 3526 3527 3528 3529
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3530
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3531 3532
		return;

L
Linus Torvalds 已提交
3533 3534
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
3535
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3536 3537 3538 3539
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
3540
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3552
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3553
{
E
Eduard - Gabriel Munteanu 已提交
3554 3555
	void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));

3556 3557
	trace_kmem_cache_alloc(_RET_IP_, ret,
			       obj_size(cachep), cachep->buffer_size, flags);
E
Eduard - Gabriel Munteanu 已提交
3558 3559

	return ret;
L
Linus Torvalds 已提交
3560 3561 3562
}
EXPORT_SYMBOL(kmem_cache_alloc);

E
Eduard - Gabriel Munteanu 已提交
3563 3564 3565 3566 3567 3568 3569 3570
#ifdef CONFIG_KMEMTRACE
void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
{
	return __cache_alloc(cachep, flags, __builtin_return_address(0));
}
EXPORT_SYMBOL(kmem_cache_alloc_notrace);
#endif

L
Linus Torvalds 已提交
3571
/**
3572
 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
L
Linus Torvalds 已提交
3573 3574 3575
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
3576
 * This verifies that the untrusted pointer looks sane;
L
Linus Torvalds 已提交
3577 3578 3579 3580 3581 3582 3583
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
3584
int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
L
Linus Torvalds 已提交
3585
{
P
Pekka Enberg 已提交
3586
	unsigned long addr = (unsigned long)ptr;
L
Linus Torvalds 已提交
3587
	unsigned long min_addr = PAGE_OFFSET;
P
Pekka Enberg 已提交
3588
	unsigned long align_mask = BYTES_PER_WORD - 1;
3589
	unsigned long size = cachep->buffer_size;
L
Linus Torvalds 已提交
3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604
	struct page *page;

	if (unlikely(addr < min_addr))
		goto out;
	if (unlikely(addr > (unsigned long)high_memory - size))
		goto out;
	if (unlikely(addr & align_mask))
		goto out;
	if (unlikely(!kern_addr_valid(addr)))
		goto out;
	if (unlikely(!kern_addr_valid(addr + size - 1)))
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
3605
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
3606 3607
		goto out;
	return 1;
A
Andrew Morton 已提交
3608
out:
L
Linus Torvalds 已提交
3609 3610 3611 3612
	return 0;
}

#ifdef CONFIG_NUMA
3613 3614
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
E
Eduard - Gabriel Munteanu 已提交
3615 3616 3617
	void *ret = __cache_alloc_node(cachep, flags, nodeid,
				       __builtin_return_address(0));

3618 3619 3620
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
				    obj_size(cachep), cachep->buffer_size,
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3621 3622

	return ret;
3623
}
L
Linus Torvalds 已提交
3624 3625
EXPORT_SYMBOL(kmem_cache_alloc_node);

E
Eduard - Gabriel Munteanu 已提交
3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
#ifdef CONFIG_KMEMTRACE
void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
				    gfp_t flags,
				    int nodeid)
{
	return __cache_alloc_node(cachep, flags, nodeid,
				  __builtin_return_address(0));
}
EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
#endif

3637 3638
static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3639
{
3640
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3641
	void *ret;
3642 3643

	cachep = kmem_find_general_cachep(size, flags);
3644 3645
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
E
Eduard - Gabriel Munteanu 已提交
3646 3647
	ret = kmem_cache_alloc_node_notrace(cachep, flags, node);

3648 3649
	trace_kmalloc_node((unsigned long) caller, ret,
			   size, cachep->buffer_size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3650 3651

	return ret;
3652
}
3653

E
Eduard - Gabriel Munteanu 已提交
3654
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
3655 3656 3657 3658 3659
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node,
			__builtin_return_address(0));
}
3660
EXPORT_SYMBOL(__kmalloc_node);
3661 3662

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3663
		int node, unsigned long caller)
3664
{
3665
	return __do_kmalloc_node(size, flags, node, (void *)caller);
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node, NULL);
}
EXPORT_SYMBOL(__kmalloc_node);
#endif /* CONFIG_DEBUG_SLAB */
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3676 3677

/**
3678
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3679
 * @size: how many bytes of memory are required.
3680
 * @flags: the type of memory to allocate (see kmalloc).
3681
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3682
 */
3683 3684
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3685
{
3686
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3687
	void *ret;
L
Linus Torvalds 已提交
3688

3689 3690 3691 3692 3693 3694
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3695 3696
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
E
Eduard - Gabriel Munteanu 已提交
3697 3698
	ret = __cache_alloc(cachep, flags, caller);

3699 3700
	trace_kmalloc((unsigned long) caller, ret,
		      size, cachep->buffer_size, flags);
E
Eduard - Gabriel Munteanu 已提交
3701 3702

	return ret;
3703 3704 3705
}


E
Eduard - Gabriel Munteanu 已提交
3706
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
3707 3708
void *__kmalloc(size_t size, gfp_t flags)
{
3709
	return __do_kmalloc(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3710 3711 3712
}
EXPORT_SYMBOL(__kmalloc);

3713
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3714
{
3715
	return __do_kmalloc(size, flags, (void *)caller);
3716 3717
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3718 3719 3720 3721 3722 3723 3724

#else
void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
}
EXPORT_SYMBOL(__kmalloc);
3725 3726
#endif

L
Linus Torvalds 已提交
3727 3728 3729 3730 3731 3732 3733 3734
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3735
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3736 3737 3738 3739
{
	unsigned long flags;

	local_irq_save(flags);
3740
	debug_check_no_locks_freed(objp, obj_size(cachep));
3741 3742
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(objp, obj_size(cachep));
3743
	__cache_free(cachep, objp);
L
Linus Torvalds 已提交
3744
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3745

3746
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3747 3748 3749 3750 3751 3752 3753
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3754 3755
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3756 3757 3758 3759 3760
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3761
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3762 3763
	unsigned long flags;

3764 3765
	trace_kfree(_RET_IP_, objp);

3766
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3767 3768 3769
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3770
	c = virt_to_cache(objp);
3771
	debug_check_no_locks_freed(objp, obj_size(c));
3772
	debug_check_no_obj_freed(objp, obj_size(c));
3773
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3774 3775 3776 3777
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3778
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3779
{
3780
	return obj_size(cachep);
L
Linus Torvalds 已提交
3781 3782 3783
}
EXPORT_SYMBOL(kmem_cache_size);

3784
const char *kmem_cache_name(struct kmem_cache *cachep)
3785 3786 3787 3788 3789
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3790
/*
S
Simon Arlott 已提交
3791
 * This initializes kmem_list3 or resizes various caches for all nodes.
3792
 */
3793
static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3794 3795 3796
{
	int node;
	struct kmem_list3 *l3;
3797
	struct array_cache *new_shared;
3798
	struct array_cache **new_alien = NULL;
3799

3800
	for_each_online_node(node) {
3801

3802
                if (use_alien_caches) {
3803
                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3804 3805 3806
                        if (!new_alien)
                                goto fail;
                }
3807

3808 3809 3810
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3811
				cachep->shared*cachep->batchcount,
3812
					0xbaadf00d, gfp);
3813 3814 3815 3816
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3817
		}
3818

A
Andrew Morton 已提交
3819 3820
		l3 = cachep->nodelists[node];
		if (l3) {
3821 3822
			struct array_cache *shared = l3->shared;

3823 3824
			spin_lock_irq(&l3->list_lock);

3825
			if (shared)
3826 3827
				free_block(cachep, shared->entry,
						shared->avail, node);
3828

3829 3830
			l3->shared = new_shared;
			if (!l3->alien) {
3831 3832 3833
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3834
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3835
					cachep->batchcount + cachep->num;
3836
			spin_unlock_irq(&l3->list_lock);
3837
			kfree(shared);
3838 3839 3840
			free_alien_cache(new_alien);
			continue;
		}
3841
		l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3842 3843 3844
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3845
			goto fail;
3846
		}
3847 3848 3849

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3850
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3851
		l3->shared = new_shared;
3852
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3853
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3854
					cachep->batchcount + cachep->num;
3855 3856
		cachep->nodelists[node] = l3;
	}
3857
	return 0;
3858

A
Andrew Morton 已提交
3859
fail:
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
	if (!cachep->next.next) {
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
3875
	return -ENOMEM;
3876 3877
}

L
Linus Torvalds 已提交
3878
struct ccupdate_struct {
3879
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3880 3881 3882 3883 3884
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3885
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3886 3887 3888
	struct array_cache *old;

	check_irq_off();
3889
	old = cpu_cache_get(new->cachep);
3890

L
Linus Torvalds 已提交
3891 3892 3893 3894
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3895
/* Always called with the cache_chain_mutex held */
A
Andrew Morton 已提交
3896
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3897
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3898
{
3899
	struct ccupdate_struct *new;
3900
	int i;
L
Linus Torvalds 已提交
3901

3902
	new = kzalloc(sizeof(*new), gfp);
3903 3904 3905
	if (!new)
		return -ENOMEM;

3906
	for_each_online_cpu(i) {
3907
		new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3908
						batchcount, gfp);
3909
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3910
			for (i--; i >= 0; i--)
3911 3912
				kfree(new->new[i]);
			kfree(new);
3913
			return -ENOMEM;
L
Linus Torvalds 已提交
3914 3915
		}
	}
3916
	new->cachep = cachep;
L
Linus Torvalds 已提交
3917

3918
	on_each_cpu(do_ccupdate_local, (void *)new, 1);
3919

L
Linus Torvalds 已提交
3920 3921 3922
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3923
	cachep->shared = shared;
L
Linus Torvalds 已提交
3924

3925
	for_each_online_cpu(i) {
3926
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
3927 3928
		if (!ccold)
			continue;
3929
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3930
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3931
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
3932 3933
		kfree(ccold);
	}
3934
	kfree(new);
3935
	return alloc_kmemlist(cachep, gfp);
L
Linus Torvalds 已提交
3936 3937
}

3938
/* Called with cache_chain_mutex held always */
3939
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3940 3941 3942 3943
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
3944 3945
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3946 3947
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3948
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3949 3950 3951 3952
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3953
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
3954
		limit = 1;
3955
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
3956
		limit = 8;
3957
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
3958
		limit = 24;
3959
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
3960 3961 3962 3963
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3964 3965
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3966 3967 3968 3969 3970 3971 3972 3973
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
3974
	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
3975 3976 3977
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
3978 3979 3980
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3981 3982 3983 3984
	 */
	if (limit > 32)
		limit = 32;
#endif
3985
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
L
Linus Torvalds 已提交
3986 3987
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3988
		       cachep->name, -err);
3989
	return err;
L
Linus Torvalds 已提交
3990 3991
}

3992 3993
/*
 * Drain an array if it contains any elements taking the l3 lock only if
3994 3995
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
3996 3997 3998
 */
void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
3999 4000 4001
{
	int tofree;

4002 4003
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4004 4005
	if (ac->touched && !force) {
		ac->touched = 0;
4006
	} else {
4007
		spin_lock_irq(&l3->list_lock);
4008 4009 4010 4011 4012 4013 4014 4015 4016
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4017
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4018 4019 4020 4021 4022
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4023
 * @w: work descriptor
L
Linus Torvalds 已提交
4024 4025 4026 4027 4028 4029
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4030 4031
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4032
 */
4033
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4034
{
4035
	struct kmem_cache *searchp;
4036
	struct kmem_list3 *l3;
4037
	int node = numa_node_id();
4038
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4039

4040
	if (!mutex_trylock(&cache_chain_mutex))
L
Linus Torvalds 已提交
4041
		/* Give up. Setup the next iteration. */
4042
		goto out;
L
Linus Torvalds 已提交
4043

4044
	list_for_each_entry(searchp, &cache_chain, next) {
L
Linus Torvalds 已提交
4045 4046
		check_irq_on();

4047 4048 4049 4050 4051
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4052
		l3 = searchp->nodelists[node];
4053

4054
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
4055

4056
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4057

4058 4059 4060 4061
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4062
		if (time_after(l3->next_reap, jiffies))
4063
			goto next;
L
Linus Torvalds 已提交
4064

4065
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4066

4067
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
4068

4069
		if (l3->free_touched)
4070
			l3->free_touched = 0;
4071 4072
		else {
			int freed;
L
Linus Torvalds 已提交
4073

4074 4075 4076 4077
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4078
next:
L
Linus Torvalds 已提交
4079 4080 4081
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
4082
	mutex_unlock(&cache_chain_mutex);
4083
	next_reap_node();
4084
out:
A
Andrew Morton 已提交
4085
	/* Set up the next iteration */
4086
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4087 4088
}

4089
#ifdef CONFIG_SLABINFO
L
Linus Torvalds 已提交
4090

4091
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
4092
{
4093 4094 4095 4096
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
4097
#if STATS
4098
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
4099
#else
4100
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
4101
#endif
4102 4103 4104 4105
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
4106
#if STATS
4107
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4108
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4109
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
4110
#endif
4111 4112 4113 4114 4115 4116 4117
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

I
Ingo Molnar 已提交
4118
	mutex_lock(&cache_chain_mutex);
4119 4120
	if (!n)
		print_slabinfo_header(m);
4121 4122

	return seq_list_start(&cache_chain, *pos);
L
Linus Torvalds 已提交
4123 4124 4125 4126
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
4127
	return seq_list_next(p, &cache_chain, pos);
L
Linus Torvalds 已提交
4128 4129 4130 4131
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
4132
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4133 4134 4135 4136
}

static int s_show(struct seq_file *m, void *p)
{
4137
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
P
Pekka Enberg 已提交
4138 4139 4140 4141 4142
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4143
	const char *name;
L
Linus Torvalds 已提交
4144
	char *error = NULL;
4145 4146
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
4147 4148 4149

	active_objs = 0;
	num_slabs = 0;
4150 4151 4152 4153 4154
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

4155 4156
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4157

4158
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4159 4160 4161 4162 4163
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4164
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4165 4166 4167 4168 4169 4170 4171
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4172
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4173 4174 4175 4176 4177
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4178 4179
		if (l3->shared)
			shared_avail += l3->shared->avail;
4180

4181
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4182
	}
P
Pekka Enberg 已提交
4183 4184
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4185
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4186 4187
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4188
	name = cachep->name;
L
Linus Torvalds 已提交
4189 4190 4191 4192
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4193
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
4194
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
4195
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
4196
		   cachep->limit, cachep->batchcount, cachep->shared);
4197
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4198
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
4199
#if STATS
P
Pekka Enberg 已提交
4200
	{			/* list3 stats */
L
Linus Torvalds 已提交
4201 4202 4203 4204 4205 4206 4207
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4208
		unsigned long node_frees = cachep->node_frees;
4209
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4210

4211
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4212
				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
A
Andrew Morton 已提交
4213
				reaped, errors, max_freeable, node_allocs,
4214
				node_frees, overflows);
L
Linus Torvalds 已提交
4215 4216 4217 4218 4219 4220 4221 4222 4223
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4224
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

4245
static const struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
4246 4247 4248 4249
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
4250 4251 4252 4253 4254 4255 4256 4257 4258 4259
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
4260 4261
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4262
{
P
Pekka Enberg 已提交
4263
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4264
	int limit, batchcount, shared, res;
4265
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4266

L
Linus Torvalds 已提交
4267 4268 4269 4270
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4271
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4272 4273 4274 4275 4276 4277 4278 4279 4280 4281

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
4282
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4283
	res = -EINVAL;
4284
	list_for_each_entry(cachep, &cache_chain, next) {
L
Linus Torvalds 已提交
4285
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4286 4287
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4288
				res = 0;
L
Linus Torvalds 已提交
4289
			} else {
4290
				res = do_tune_cpucache(cachep, limit,
4291 4292
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4293 4294 4295 4296
			}
			break;
		}
	}
I
Ingo Molnar 已提交
4297
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4298 4299 4300 4301
	if (res >= 0)
		res = count;
	return res;
}
4302

4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315
static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write		= slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

4316 4317 4318 4319 4320
#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
	mutex_lock(&cache_chain_mutex);
4321
	return seq_list_start(&cache_chain, *pos);
4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4372
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4373

4374
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4375
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4376
		if (modname[0])
4377 4378 4379 4380 4381 4382 4383 4384 4385
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4386
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4411
		list_for_each_entry(slabp, &l3->slabs_full, list)
4412
			handle_slab(n, cachep, slabp);
4413
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
		mutex_unlock(&cache_chain_mutex);
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
			mutex_lock(&cache_chain_mutex);
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
		mutex_lock(&cache_chain_mutex);
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4440

4441 4442 4443
	return 0;
}

4444
static const struct seq_operations slabstats_op = {
4445 4446 4447 4448 4449
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477

static int slabstats_open(struct inode *inode, struct file *file)
{
	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
	int ret = -ENOMEM;
	if (n) {
		ret = seq_open(file, &slabstats_op);
		if (!ret) {
			struct seq_file *m = file->private_data;
			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
			m->private = n;
			n = NULL;
		}
		kfree(n);
	}
	return ret;
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
4478
	proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4479 4480
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4481
#endif
4482 4483 4484
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4485 4486
#endif

4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4499
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4500
{
4501 4502
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4503
		return 0;
L
Linus Torvalds 已提交
4504

4505
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
4506
}
K
Kirill A. Shutemov 已提交
4507
EXPORT_SYMBOL(ksize);