intel_pm.c 185.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29 30
#include "i915_drv.h"
#include "intel_drv.h"
31 32
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
33

B
Ben Widawsky 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/**
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

55
static void skl_init_clock_gating(struct drm_device *dev)
56
{
57 58
	struct drm_i915_private *dev_priv = dev->dev_private;

59 60 61
	if (INTEL_REVID(dev) == SKL_REVID_A0) {
		/*
		 * WaDisableSDEUnitClockGating:skl
62
		 * WaSetGAPSunitClckGateDisable:skl
63 64
		 */
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
65
			   GEN8_GAPSUNIT_CLOCK_GATE_DISABLE |
66 67
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
	}
68 69
}

70 71
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
72
	struct drm_i915_private *dev_priv = dev->dev_private;
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
111
	struct drm_i915_private *dev_priv = dev->dev_private;
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

137
	dev_priv->ips.r_t = dev_priv->mem_freq;
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
169
		dev_priv->ips.c_m = 0;
170
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
171
		dev_priv->ips.c_m = 1;
172
	} else {
173
		dev_priv->ips.c_m = 2;
174 175 176
	}
}

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

215
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

239
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
240
{
241 242
	struct drm_device *dev = dev_priv->dev;
	u32 val;
243

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
	if (IS_VALLEYVIEW(dev)) {
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
	} else if (IS_I915GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
	} else {
		return;
	}
263

264 265
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
}

/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
282
static const int pessimal_latency_ns = 5000;
283

284
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

300
static int i830_get_fifo_size(struct drm_device *dev, int plane)
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

317
static int i845_get_fifo_size(struct drm_device *dev, int plane)
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
335 336 337 338 339
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
340 341
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
342 343 344 345 346
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
347 348
};
static const struct intel_watermark_params pineview_cursor_wm = {
349 350 351 352 353
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
354 355
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
356 357 358 359 360
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
361 362
};
static const struct intel_watermark_params g4x_wm_info = {
363 364 365 366 367
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
368 369
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
370 371 372 373 374
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
375 376
};
static const struct intel_watermark_params valleyview_wm_info = {
377 378 379 380 381
	.fifo_size = VALLEYVIEW_FIFO_SIZE,
	.max_wm = VALLEYVIEW_MAX_WM,
	.default_wm = VALLEYVIEW_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
382 383
};
static const struct intel_watermark_params valleyview_cursor_wm_info = {
384 385 386 387 388
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
389 390
};
static const struct intel_watermark_params i965_cursor_wm_info = {
391 392 393 394 395
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
396 397
};
static const struct intel_watermark_params i945_wm_info = {
398 399 400 401 402
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
403 404
};
static const struct intel_watermark_params i915_wm_info = {
405 406 407 408 409
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
410
};
411
static const struct intel_watermark_params i830_a_wm_info = {
412 413 414 415 416
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
417
};
418 419 420 421 422 423 424
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
425
static const struct intel_watermark_params i845_wm_info = {
426 427 428 429 430
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
 * @pixel_size: display pixel size
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
					int fifo_size,
					int pixel_size,
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
480 481 482 483 484 485 486 487 488 489 490

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

491 492 493 494 495 496 497
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

498
	for_each_crtc(dev, crtc) {
499
		if (intel_crtc_active(crtc)) {
500 501 502 503 504 505 506 507 508
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

509
static void pineview_update_wm(struct drm_crtc *unused_crtc)
510
{
511
	struct drm_device *dev = unused_crtc->dev;
512 513 514 515 516 517 518 519 520 521
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
522
		intel_set_memory_cxsr(dev_priv, false);
523 524 525 526 527
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
528
		const struct drm_display_mode *adjusted_mode;
529
		int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
530 531
		int clock;

532
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
533
		clock = adjusted_mode->crtc_clock;
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->display_sr);
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
		reg |= wm << DSPFW_SR_SHIFT;
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->cursor_sr);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->display_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
		reg |= wm & DSPFW_HPLL_SR_MASK;
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->cursor_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

573
		intel_set_memory_cxsr(dev_priv, true);
574
	} else {
575
		intel_set_memory_cxsr(dev_priv, false);
576 577 578 579 580 581 582 583 584 585 586 587 588
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
589
	const struct drm_display_mode *adjusted_mode;
590 591 592 593 594
	int htotal, hdisplay, clock, pixel_size;
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
595
	if (!intel_crtc_active(crtc)) {
596 597 598 599 600
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

601
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
602
	clock = adjusted_mode->crtc_clock;
603
	htotal = adjusted_mode->crtc_htotal;
604
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
605
	pixel_size = crtc->primary->fb->bits_per_pixel / 8;
606 607 608 609 610 611 612 613 614 615 616 617

	/* Use the small buffer method to calculate plane watermark */
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
618
	line_time_us = max(htotal * 1000 / clock, 1);
619
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
620
	entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
675
	const struct drm_display_mode *adjusted_mode;
676 677 678 679 680 681 682 683 684 685 686 687
	int hdisplay, htotal, pixel_size, clock;
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
688
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
689
	clock = adjusted_mode->crtc_clock;
690
	htotal = adjusted_mode->crtc_htotal;
691
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
692
	pixel_size = crtc->primary->fb->bits_per_pixel / 8;
693

694
	line_time_us = max(htotal * 1000 / clock, 1);
695 696 697 698 699 700 701 702 703 704 705
	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = hdisplay * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
706
	entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
707 708 709 710 711 712 713 714
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

715 716 717 718
static bool vlv_compute_drain_latency(struct drm_crtc *crtc,
				      int pixel_size,
				      int *prec_mult,
				      int *drain_latency)
719
{
720
	struct drm_device *dev = crtc->dev;
721
	int entries;
722
	int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
723

724
	if (WARN(clock == 0, "Pixel clock is zero!\n"))
725 726
		return false;

727 728
	if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
		return false;
729

730
	entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
731 732 733 734 735 736
	if (IS_CHERRYVIEW(dev))
		*prec_mult = (entries > 128) ? DRAIN_LATENCY_PRECISION_32 :
					       DRAIN_LATENCY_PRECISION_16;
	else
		*prec_mult = (entries > 128) ? DRAIN_LATENCY_PRECISION_64 :
					       DRAIN_LATENCY_PRECISION_32;
737
	*drain_latency = (64 * (*prec_mult) * 4) / entries;
738

739 740
	if (*drain_latency > DRAIN_LATENCY_MASK)
		*drain_latency = DRAIN_LATENCY_MASK;
741 742 743 744 745 746 747 748 749 750 751 752

	return true;
}

/*
 * Update drain latency registers of memory arbiter
 *
 * Valleyview SoC has a new memory arbiter and needs drain latency registers
 * to be programmed. Each plane has a drain latency multiplier and a drain
 * latency value.
 */

753
static void vlv_update_drain_latency(struct drm_crtc *crtc)
754
{
755 756
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
757 758 759 760 761
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int pixel_size;
	int drain_latency;
	enum pipe pipe = intel_crtc->pipe;
	int plane_prec, prec_mult, plane_dl;
762 763
	const int high_precision = IS_CHERRYVIEW(dev) ?
		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_64;
764

765 766
	plane_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_PLANE_PRECISION_HIGH |
		   DRAIN_LATENCY_MASK | DDL_CURSOR_PRECISION_HIGH |
767 768 769 770 771 772
		   (DRAIN_LATENCY_MASK << DDL_CURSOR_SHIFT));

	if (!intel_crtc_active(crtc)) {
		I915_WRITE(VLV_DDL(pipe), plane_dl);
		return;
	}
773

774 775 776
	/* Primary plane Drain Latency */
	pixel_size = crtc->primary->fb->bits_per_pixel / 8;	/* BPP */
	if (vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
777 778 779
		plane_prec = (prec_mult == high_precision) ?
					   DDL_PLANE_PRECISION_HIGH :
					   DDL_PLANE_PRECISION_LOW;
780
		plane_dl |= plane_prec | drain_latency;
781 782
	}

783 784 785 786
	/* Cursor Drain Latency
	 * BPP is always 4 for cursor
	 */
	pixel_size = 4;
787

788 789 790
	/* Program cursor DL only if it is enabled */
	if (intel_crtc->cursor_base &&
	    vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
791 792 793
		plane_prec = (prec_mult == high_precision) ?
					   DDL_CURSOR_PRECISION_HIGH :
					   DDL_CURSOR_PRECISION_LOW;
794
		plane_dl |= plane_prec | (drain_latency << DDL_CURSOR_SHIFT);
795
	}
796 797

	I915_WRITE(VLV_DDL(pipe), plane_dl);
798 799 800 801
}

#define single_plane_enabled(mask) is_power_of_2(mask)

802
static void valleyview_update_wm(struct drm_crtc *crtc)
803
{
804
	struct drm_device *dev = crtc->dev;
805 806 807 808
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
809
	int ignore_plane_sr, ignore_cursor_sr;
810
	unsigned int enabled = 0;
811
	bool cxsr_enabled;
812

813
	vlv_update_drain_latency(crtc);
814

815
	if (g4x_compute_wm0(dev, PIPE_A,
816 817
			    &valleyview_wm_info, pessimal_latency_ns,
			    &valleyview_cursor_wm_info, pessimal_latency_ns,
818
			    &planea_wm, &cursora_wm))
819
		enabled |= 1 << PIPE_A;
820

821
	if (g4x_compute_wm0(dev, PIPE_B,
822 823
			    &valleyview_wm_info, pessimal_latency_ns,
			    &valleyview_cursor_wm_info, pessimal_latency_ns,
824
			    &planeb_wm, &cursorb_wm))
825
		enabled |= 1 << PIPE_B;
826 827 828 829 830 831

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
832 833 834 835 836
			     &plane_sr, &ignore_cursor_sr) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     2*sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
837
			     &ignore_plane_sr, &cursor_sr)) {
838
		cxsr_enabled = true;
839
	} else {
840
		cxsr_enabled = false;
841
		intel_set_memory_cxsr(dev_priv, false);
842 843
		plane_sr = cursor_sr = 0;
	}
844

845 846
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
847 848 849 850 851 852 853 854
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
855
		   (planea_wm << DSPFW_PLANEA_SHIFT));
856
	I915_WRITE(DSPFW2,
857
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
858 859
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	I915_WRITE(DSPFW3,
860 861
		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
862 863 864

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
865 866
}

867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
static void cherryview_update_wm(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, planec_wm;
	int cursora_wm, cursorb_wm, cursorc_wm;
	int plane_sr, cursor_sr;
	int ignore_plane_sr, ignore_cursor_sr;
	unsigned int enabled = 0;
	bool cxsr_enabled;

	vlv_update_drain_latency(crtc);

	if (g4x_compute_wm0(dev, PIPE_A,
882 883
			    &valleyview_wm_info, pessimal_latency_ns,
			    &valleyview_cursor_wm_info, pessimal_latency_ns,
884 885 886 887
			    &planea_wm, &cursora_wm))
		enabled |= 1 << PIPE_A;

	if (g4x_compute_wm0(dev, PIPE_B,
888 889
			    &valleyview_wm_info, pessimal_latency_ns,
			    &valleyview_cursor_wm_info, pessimal_latency_ns,
890 891 892 893
			    &planeb_wm, &cursorb_wm))
		enabled |= 1 << PIPE_B;

	if (g4x_compute_wm0(dev, PIPE_C,
894 895
			    &valleyview_wm_info, pessimal_latency_ns,
			    &valleyview_cursor_wm_info, pessimal_latency_ns,
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
			    &planec_wm, &cursorc_wm))
		enabled |= 1 << PIPE_C;

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
			     &plane_sr, &ignore_cursor_sr) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     2*sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
			     &ignore_plane_sr, &cursor_sr)) {
		cxsr_enabled = true;
	} else {
		cxsr_enabled = false;
		intel_set_memory_cxsr(dev_priv, false);
		plane_sr = cursor_sr = 0;
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, C: plane=%d, cursor=%d, "
		      "SR: plane=%d, cursor=%d\n",
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      planec_wm, cursorc_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
		   (planea_wm << DSPFW_PLANEA_SHIFT));
	I915_WRITE(DSPFW2,
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	I915_WRITE(DSPFW3,
		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
	I915_WRITE(DSPFW9_CHV,
		   (I915_READ(DSPFW9_CHV) & ~(DSPFW_PLANEC_MASK |
					      DSPFW_CURSORC_MASK)) |
		   (planec_wm << DSPFW_PLANEC_SHIFT) |
		   (cursorc_wm << DSPFW_CURSORC_SHIFT));

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
}

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
static void valleyview_update_sprite_wm(struct drm_plane *plane,
					struct drm_crtc *crtc,
					uint32_t sprite_width,
					uint32_t sprite_height,
					int pixel_size,
					bool enabled, bool scaled)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe = to_intel_plane(plane)->pipe;
	int sprite = to_intel_plane(plane)->plane;
	int drain_latency;
	int plane_prec;
	int sprite_dl;
	int prec_mult;
961 962
	const int high_precision = IS_CHERRYVIEW(dev) ?
		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_64;
963

964
	sprite_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_SPRITE_PRECISION_HIGH(sprite) |
965 966 967 968
		    (DRAIN_LATENCY_MASK << DDL_SPRITE_SHIFT(sprite)));

	if (enabled && vlv_compute_drain_latency(crtc, pixel_size, &prec_mult,
						 &drain_latency)) {
969 970 971
		plane_prec = (prec_mult == high_precision) ?
					   DDL_SPRITE_PRECISION_HIGH(sprite) :
					   DDL_SPRITE_PRECISION_LOW(sprite);
972 973 974 975 976 977 978
		sprite_dl |= plane_prec |
			     (drain_latency << DDL_SPRITE_SHIFT(sprite));
	}

	I915_WRITE(VLV_DDL(pipe), sprite_dl);
}

979
static void g4x_update_wm(struct drm_crtc *crtc)
980
{
981
	struct drm_device *dev = crtc->dev;
982 983 984 985 986
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
987
	bool cxsr_enabled;
988

989
	if (g4x_compute_wm0(dev, PIPE_A,
990 991
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
992
			    &planea_wm, &cursora_wm))
993
		enabled |= 1 << PIPE_A;
994

995
	if (g4x_compute_wm0(dev, PIPE_B,
996 997
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
998
			    &planeb_wm, &cursorb_wm))
999
		enabled |= 1 << PIPE_B;
1000 1001 1002 1003 1004 1005

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1006
			     &plane_sr, &cursor_sr)) {
1007
		cxsr_enabled = true;
1008
	} else {
1009
		cxsr_enabled = false;
1010
		intel_set_memory_cxsr(dev_priv, false);
1011 1012
		plane_sr = cursor_sr = 0;
	}
1013

1014 1015
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1016 1017 1018 1019 1020 1021 1022 1023
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1024
		   (planea_wm << DSPFW_PLANEA_SHIFT));
1025
	I915_WRITE(DSPFW2,
1026
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1027 1028 1029
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1030
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1031
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1032 1033 1034

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1035 1036
}

1037
static void i965_update_wm(struct drm_crtc *unused_crtc)
1038
{
1039
	struct drm_device *dev = unused_crtc->dev;
1040 1041 1042 1043
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1044
	bool cxsr_enabled;
1045 1046 1047 1048 1049 1050

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1051
		const struct drm_display_mode *adjusted_mode =
1052
			&to_intel_crtc(crtc)->config->base.adjusted_mode;
1053
		int clock = adjusted_mode->crtc_clock;
1054
		int htotal = adjusted_mode->crtc_htotal;
1055
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1056
		int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1057 1058 1059
		unsigned long line_time_us;
		int entries;

1060
		line_time_us = max(htotal * 1000 / clock, 1);
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1074
			pixel_size * to_intel_crtc(crtc)->cursor_width;
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1086
		cxsr_enabled = true;
1087
	} else {
1088
		cxsr_enabled = false;
1089
		/* Turn off self refresh if both pipes are enabled */
1090
		intel_set_memory_cxsr(dev_priv, false);
1091 1092 1093 1094 1095 1096 1097
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1098 1099 1100 1101 1102
		   (8 << DSPFW_CURSORB_SHIFT) |
		   (8 << DSPFW_PLANEB_SHIFT) |
		   (8 << DSPFW_PLANEA_SHIFT));
	I915_WRITE(DSPFW2, (8 << DSPFW_CURSORA_SHIFT) |
		   (8 << DSPFW_PLANEC_SHIFT_OLD));
1103 1104
	/* update cursor SR watermark */
	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1105 1106 1107

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1108 1109
}

1110
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1111
{
1112
	struct drm_device *dev = unused_crtc->dev;
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1127
		wm_info = &i830_a_wm_info;
1128 1129 1130

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1131
	if (intel_crtc_active(crtc)) {
1132
		const struct drm_display_mode *adjusted_mode;
1133
		int cpp = crtc->primary->fb->bits_per_pixel / 8;
1134 1135 1136
		if (IS_GEN2(dev))
			cpp = 4;

1137
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1138
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1139
					       wm_info, fifo_size, cpp,
1140
					       pessimal_latency_ns);
1141
		enabled = crtc;
1142
	} else {
1143
		planea_wm = fifo_size - wm_info->guard_size;
1144 1145 1146 1147 1148 1149
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

	if (IS_GEN2(dev))
		wm_info = &i830_bc_wm_info;
1150 1151 1152

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1153
	if (intel_crtc_active(crtc)) {
1154
		const struct drm_display_mode *adjusted_mode;
1155
		int cpp = crtc->primary->fb->bits_per_pixel / 8;
1156 1157 1158
		if (IS_GEN2(dev))
			cpp = 4;

1159
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1160
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1161
					       wm_info, fifo_size, cpp,
1162
					       pessimal_latency_ns);
1163 1164 1165 1166
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1167
	} else {
1168
		planeb_wm = fifo_size - wm_info->guard_size;
1169 1170 1171
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1172 1173 1174

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1175
	if (IS_I915GM(dev) && enabled) {
1176
		struct drm_i915_gem_object *obj;
1177

1178
		obj = intel_fb_obj(enabled->primary->fb);
1179 1180

		/* self-refresh seems busted with untiled */
1181
		if (obj->tiling_mode == I915_TILING_NONE)
1182 1183 1184
			enabled = NULL;
	}

1185 1186 1187 1188 1189 1190
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1191
	intel_set_memory_cxsr(dev_priv, false);
1192 1193 1194 1195 1196

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1197
		const struct drm_display_mode *adjusted_mode =
1198
			&to_intel_crtc(enabled)->config->base.adjusted_mode;
1199
		int clock = adjusted_mode->crtc_clock;
1200
		int htotal = adjusted_mode->crtc_htotal;
1201
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1202
		int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1203 1204 1205
		unsigned long line_time_us;
		int entries;

1206
		line_time_us = max(htotal * 1000 / clock, 1);
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1237 1238
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1239 1240
}

1241
static void i845_update_wm(struct drm_crtc *unused_crtc)
1242
{
1243
	struct drm_device *dev = unused_crtc->dev;
1244 1245
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
1246
	const struct drm_display_mode *adjusted_mode;
1247 1248 1249 1250 1251 1252 1253
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1254
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1255
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1256
				       &i845_wm_info,
1257
				       dev_priv->display.get_fifo_size(dev, 0),
1258
				       4, pessimal_latency_ns);
1259 1260 1261 1262 1263 1264 1265 1266
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1267 1268
static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
				    struct drm_crtc *crtc)
1269 1270
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1271
	uint32_t pixel_rate;
1272

1273
	pixel_rate = intel_crtc->config->base.adjusted_mode.crtc_clock;
1274 1275 1276 1277

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1278
	if (intel_crtc->config->pch_pfit.enabled) {
1279
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1280
		uint32_t pfit_size = intel_crtc->config->pch_pfit.size;
1281

1282 1283
		pipe_w = intel_crtc->config->pipe_src_w;
		pipe_h = intel_crtc->config->pipe_src_h;
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1298
/* latency must be in 0.1us units. */
1299
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1300 1301 1302 1303
			       uint32_t latency)
{
	uint64_t ret;

1304 1305 1306
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1307 1308 1309 1310 1311 1312
	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1313
/* latency must be in 0.1us units. */
1314
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1315 1316 1317 1318 1319
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t ret;

1320 1321 1322
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1323 1324 1325 1326 1327 1328
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1329
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1330 1331 1332 1333 1334
			   uint8_t bytes_per_pixel)
{
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
}

1335 1336 1337 1338 1339 1340 1341 1342
struct skl_pipe_wm_parameters {
	bool active;
	uint32_t pipe_htotal;
	uint32_t pixel_rate; /* in KHz */
	struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
	struct intel_plane_wm_parameters cursor;
};

1343
struct ilk_pipe_wm_parameters {
1344 1345 1346
	bool active;
	uint32_t pipe_htotal;
	uint32_t pixel_rate;
1347 1348 1349
	struct intel_plane_wm_parameters pri;
	struct intel_plane_wm_parameters spr;
	struct intel_plane_wm_parameters cur;
1350 1351
};

1352
struct ilk_wm_maximums {
1353 1354 1355 1356 1357 1358
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1359 1360 1361 1362 1363 1364 1365
/* used in computing the new watermarks state */
struct intel_wm_config {
	unsigned int num_pipes_active;
	bool sprites_enabled;
	bool sprites_scaled;
};

1366 1367 1368 1369
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1370
static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1371 1372
				   uint32_t mem_value,
				   bool is_lp)
1373
{
1374 1375
	uint32_t method1, method2;

1376
	if (!params->active || !params->pri.enabled)
1377 1378
		return 0;

1379
	method1 = ilk_wm_method1(params->pixel_rate,
1380
				 params->pri.bytes_per_pixel,
1381 1382 1383 1384 1385
				 mem_value);

	if (!is_lp)
		return method1;

1386
	method2 = ilk_wm_method2(params->pixel_rate,
1387
				 params->pipe_htotal,
1388 1389
				 params->pri.horiz_pixels,
				 params->pri.bytes_per_pixel,
1390 1391 1392
				 mem_value);

	return min(method1, method2);
1393 1394
}

1395 1396 1397 1398
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1399
static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1400 1401 1402 1403
				   uint32_t mem_value)
{
	uint32_t method1, method2;

1404
	if (!params->active || !params->spr.enabled)
1405 1406
		return 0;

1407
	method1 = ilk_wm_method1(params->pixel_rate,
1408
				 params->spr.bytes_per_pixel,
1409
				 mem_value);
1410
	method2 = ilk_wm_method2(params->pixel_rate,
1411
				 params->pipe_htotal,
1412 1413
				 params->spr.horiz_pixels,
				 params->spr.bytes_per_pixel,
1414 1415 1416 1417
				 mem_value);
	return min(method1, method2);
}

1418 1419 1420 1421
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1422
static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1423 1424
				   uint32_t mem_value)
{
1425
	if (!params->active || !params->cur.enabled)
1426 1427
		return 0;

1428
	return ilk_wm_method2(params->pixel_rate,
1429
			      params->pipe_htotal,
1430 1431
			      params->cur.horiz_pixels,
			      params->cur.bytes_per_pixel,
1432 1433 1434
			      mem_value);
}

1435
/* Only for WM_LP. */
1436
static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1437
				   uint32_t pri_val)
1438
{
1439
	if (!params->active || !params->pri.enabled)
1440 1441
		return 0;

1442
	return ilk_wm_fbc(pri_val,
1443 1444
			  params->pri.horiz_pixels,
			  params->pri.bytes_per_pixel);
1445 1446
}

1447 1448
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1449 1450 1451
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1452 1453 1454 1455 1456
		return 768;
	else
		return 512;
}

1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1491 1492 1493
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1494
				     const struct intel_wm_config *config,
1495 1496 1497 1498 1499 1500
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1501
	if (is_sprite && !config->sprites_enabled)
1502 1503 1504
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1505
	if (level == 0 || config->num_pipes_active > 1) {
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1517
	if (config->sprites_enabled) {
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1529
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1530 1531 1532 1533
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1534 1535
				      int level,
				      const struct intel_wm_config *config)
1536 1537
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1538
	if (level > 0 && config->num_pipes_active > 1)
1539 1540 1541
		return 64;

	/* otherwise just report max that registers can hold */
1542
	return ilk_cursor_wm_reg_max(dev, level);
1543 1544
}

1545
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1546 1547 1548
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1549
				    struct ilk_wm_maximums *max)
1550
{
1551 1552 1553
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1554
	max->fbc = ilk_fbc_wm_reg_max(dev);
1555 1556
}

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

1567
static bool ilk_validate_wm_level(int level,
1568
				  const struct ilk_wm_maximums *max,
1569
				  struct intel_wm_level *result)
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

1608
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1609
				 int level,
1610
				 const struct ilk_pipe_wm_parameters *p,
1611
				 struct intel_wm_level *result)
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

	result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
	result->spr_val = ilk_compute_spr_wm(p, spr_latency);
	result->cur_val = ilk_compute_cur_wm(p, cur_latency);
	result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
	result->enable = true;
}

1631 1632
static uint32_t
hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
1633 1634
{
	struct drm_i915_private *dev_priv = dev->dev_private;
1635
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1636
	struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
1637
	u32 linetime, ips_linetime;
1638

1639 1640
	if (!intel_crtc_active(crtc))
		return 0;
1641

1642 1643 1644
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
1645 1646 1647
	linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
				     mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1648
					 intel_ddi_get_cdclk_freq(dev_priv));
1649

1650 1651
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
1652 1653
}

1654
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
1655 1656 1657
{
	struct drm_i915_private *dev_priv = dev->dev_private;

1658 1659
	if (IS_GEN9(dev)) {
		uint32_t val;
1660
		int ret, i;
1661
		int level, max_level = ilk_wm_max_level(dev);
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

1704
		/*
1705 1706
		 * WaWmMemoryReadLatency:skl
		 *
1707 1708 1709 1710 1711 1712 1713 1714
		 * punit doesn't take into account the read latency so we need
		 * to add 2us to the various latency levels we retrieve from
		 * the punit.
		 *   - W0 is a bit special in that it's the only level that
		 *   can't be disabled if we want to have display working, so
		 *   we always add 2us there.
		 *   - For levels >=1, punit returns 0us latency when they are
		 *   disabled, so we respect that and don't add 2us then
1715 1716 1717 1718 1719
		 *
		 * Additionally, if a level n (n > 1) has a 0us latency, all
		 * levels m (m >= n) need to be disabled. We make sure to
		 * sanitize the values out of the punit to satisfy this
		 * requirement.
1720 1721 1722 1723 1724
		 */
		wm[0] += 2;
		for (level = 1; level <= max_level; level++)
			if (wm[level] != 0)
				wm[level] += 2;
1725 1726 1727
			else {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
1728

1729 1730
				break;
			}
1731
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1732 1733 1734 1735 1736
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
1737 1738 1739 1740
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
1741 1742 1743 1744 1745 1746 1747
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
1748 1749 1750 1751 1752 1753 1754
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
1755 1756 1757
	}
}

1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

1776
int ilk_wm_max_level(const struct drm_device *dev)
1777 1778
{
	/* how many WM levels are we expecting */
1779 1780 1781
	if (IS_GEN9(dev))
		return 7;
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1782
		return 4;
1783
	else if (INTEL_INFO(dev)->gen >= 6)
1784
		return 3;
1785
	else
1786 1787
		return 2;
}
1788

1789 1790
static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
1791
				   const uint16_t wm[8])
1792 1793
{
	int level, max_level = ilk_wm_max_level(dev);
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

1804 1805 1806 1807 1808 1809 1810
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
		if (IS_GEN9(dev))
			latency *= 10;
		else if (level > 0)
1811 1812 1813 1814 1815 1816 1817 1818
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
	int level, max_level = ilk_wm_max_level(dev_priv->dev);

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

1856
static void ilk_setup_wm_latency(struct drm_device *dev)
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
1869 1870 1871 1872

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
1873 1874 1875

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
1876 1877
}

1878 1879 1880 1881 1882 1883 1884 1885
static void skl_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
}

1886
static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
1887
				      struct ilk_pipe_wm_parameters *p)
1888
{
1889 1890 1891 1892
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct drm_plane *plane;
1893

1894 1895
	if (!intel_crtc_active(crtc))
		return;
1896

1897
	p->active = true;
1898
	p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
1899 1900 1901
	p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
	p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
	p->cur.bytes_per_pixel = 4;
1902
	p->pri.horiz_pixels = intel_crtc->config->pipe_src_w;
1903 1904 1905 1906
	p->cur.horiz_pixels = intel_crtc->cursor_width;
	/* TODO: for now, assume primary and cursor planes are always enabled. */
	p->pri.enabled = true;
	p->cur.enabled = true;
1907

1908
	drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
1909 1910
		struct intel_plane *intel_plane = to_intel_plane(plane);

1911
		if (intel_plane->pipe == pipe) {
1912
			p->spr = intel_plane->wm;
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
			break;
		}
	}
}

static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *intel_crtc;

	/* Compute the currently _active_ config */
1924
	for_each_intel_crtc(dev, intel_crtc) {
1925
		const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
1926

1927 1928
		if (!wm->pipe_enabled)
			continue;
1929

1930 1931 1932
		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
1933
	}
1934 1935
}

1936 1937
/* Compute new watermarks for the pipe */
static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
1938
				  const struct ilk_pipe_wm_parameters *params,
1939 1940 1941
				  struct intel_pipe_wm *pipe_wm)
{
	struct drm_device *dev = crtc->dev;
1942
	const struct drm_i915_private *dev_priv = dev->dev_private;
1943 1944 1945 1946 1947 1948 1949
	int level, max_level = ilk_wm_max_level(dev);
	/* LP0 watermark maximums depend on this pipe alone */
	struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = params->spr.enabled,
		.sprites_scaled = params->spr.scaled,
	};
1950
	struct ilk_wm_maximums max;
1951

1952 1953 1954 1955
	pipe_wm->pipe_enabled = params->active;
	pipe_wm->sprites_enabled = params->spr.enabled;
	pipe_wm->sprites_scaled = params->spr.scaled;

1956 1957 1958 1959 1960 1961 1962 1963
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
	if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
		max_level = 1;

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
	if (params->spr.scaled)
		max_level = 0;

1964
	ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
1965

1966
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1967
		pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
1968

1969 1970 1971
	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

1972
	/* At least LP0 must be valid */
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
		return false;

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level wm = {};

		ilk_compute_wm_level(dev_priv, level, params, &wm);

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
		if (!ilk_validate_wm_level(level, &max, &wm))
			break;

		pipe_wm->wm[level] = wm;
	}

	return true;
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
}

/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2006 2007
	ret_wm->enable = true;

2008
	for_each_intel_crtc(dev, intel_crtc) {
2009 2010 2011 2012 2013
		const struct intel_pipe_wm *active = &intel_crtc->wm.active;
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2014

2015 2016 2017 2018 2019
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2020
		if (!wm->enable)
2021
			ret_wm->enable = false;
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2034
			 const struct intel_wm_config *config,
2035
			 const struct ilk_wm_maximums *max,
2036 2037 2038
			 struct intel_pipe_wm *merged)
{
	int level, max_level = ilk_wm_max_level(dev);
2039
	int last_enabled_level = max_level;
2040

2041 2042 2043 2044 2045
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
	    config->num_pipes_active > 1)
		return;

2046 2047
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2048 2049 2050 2051 2052 2053 2054

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2055 2056 2057 2058 2059
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2060 2061 2062 2063 2064 2065

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2066 2067
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2068 2069 2070
			wm->fbc_val = 0;
		}
	}
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2085 2086
}

2087 2088 2089 2090 2091 2092
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2093 2094 2095 2096 2097
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2098
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2099 2100 2101 2102 2103
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2104
static void ilk_compute_wm_results(struct drm_device *dev,
2105
				   const struct intel_pipe_wm *merged,
2106
				   enum intel_ddb_partitioning partitioning,
2107
				   struct ilk_wm_values *results)
2108
{
2109 2110
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2111

2112
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2113
	results->partitioning = partitioning;
2114

2115
	/* LP1+ register values */
2116
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2117
		const struct intel_wm_level *r;
2118

2119
		level = ilk_wm_lp_to_level(wm_lp, merged);
2120

2121
		r = &merged->wm[level];
2122

2123 2124 2125 2126 2127
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2128
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2129 2130 2131
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2132 2133 2134
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2135 2136 2137 2138 2139 2140 2141
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2142 2143 2144 2145
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2146 2147 2148 2149 2150
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2151
	}
2152

2153
	/* LP0 register values */
2154
	for_each_intel_crtc(dev, intel_crtc) {
2155 2156 2157 2158 2159 2160 2161 2162
		enum pipe pipe = intel_crtc->pipe;
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.wm[0];

		if (WARN_ON(!r->enable))
			continue;

		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2163

2164 2165 2166 2167
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2168 2169 2170
	}
}

2171 2172
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2173
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2174 2175
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2176
{
2177 2178
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2179

2180 2181 2182 2183 2184
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2185 2186
	}

2187 2188
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2189 2190 2191
			return r2;
		else
			return r1;
2192
	} else if (level1 > level2) {
2193 2194 2195 2196 2197 2198
		return r1;
	} else {
		return r2;
	}
}

2199 2200 2201 2202 2203 2204 2205 2206
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2207
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2208 2209
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2210 2211 2212 2213 2214
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2215
	for_each_pipe(dev_priv, pipe) {
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2259 2260
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2261
{
2262
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2263
	bool changed = false;
2264

2265 2266 2267
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2268
		changed = true;
2269 2270 2271 2272
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2273
		changed = true;
2274 2275 2276 2277
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2278
		changed = true;
2279
	}
2280

2281 2282 2283 2284
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2285

2286 2287 2288 2289 2290 2291 2292
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2293 2294
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2295 2296
{
	struct drm_device *dev = dev_priv->dev;
2297
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2298 2299 2300
	unsigned int dirty;
	uint32_t val;

2301
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2302 2303 2304 2305 2306
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2307
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2308
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2309
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2310
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2311
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2312 2313
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2314
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2315
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2316
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2317
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2318
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2319 2320
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2321
	if (dirty & WM_DIRTY_DDB) {
2322
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2337 2338
	}

2339
	if (dirty & WM_DIRTY_FBC) {
2340 2341 2342 2343 2344 2345 2346 2347
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2348 2349 2350 2351 2352
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2353 2354 2355 2356 2357
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2358

2359
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2360
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2361
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2362
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2363
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2364
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2365 2366

	dev_priv->wm.hw = *results;
2367 2368
}

2369 2370 2371 2372 2373 2374 2375
static bool ilk_disable_lp_wm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
/*
 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
 * different active planes.
 */

#define SKL_DDB_SIZE		896	/* in blocks */

static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
				   struct drm_crtc *for_crtc,
				   const struct intel_wm_config *config,
				   const struct skl_pipe_wm_parameters *params,
				   struct skl_ddb_entry *alloc /* out */)
{
	struct drm_crtc *crtc;
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;

	if (!params->active) {
		alloc->start = 0;
		alloc->end = 0;
		return;
	}

	ddb_size = SKL_DDB_SIZE;

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

	nth_active_pipe = 0;
	for_each_crtc(dev, crtc) {
		if (!intel_crtc_active(crtc))
			continue;

		if (crtc == for_crtc)
			break;

		nth_active_pipe++;
	}

	pipe_size = ddb_size / config->num_pipes_active;
	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2417
	alloc->end = alloc->start + pipe_size;
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
}

static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
{
	if (config->num_pipes_active == 1)
		return 32;

	return 8;
}

2428 2429 2430 2431
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
2432 2433
	if (entry->end)
		entry->end += 1;
2434 2435
}

2436 2437
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
{
	struct drm_device *dev = dev_priv->dev;
	enum pipe pipe;
	int plane;
	u32 val;

	for_each_pipe(dev_priv, pipe) {
		for_each_plane(pipe, plane) {
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
		skl_ddb_entry_init_from_hw(&ddb->cursor[pipe], val);
	}
}

2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
static unsigned int
skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p)
{
	return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
				 const struct skl_pipe_wm_parameters *params)
{
	unsigned int total_data_rate = 0;
	int plane;

	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
		const struct intel_plane_wm_parameters *p;

		p = &params->plane[plane];
		if (!p->enabled)
			continue;

		total_data_rate += skl_plane_relative_data_rate(p);
	}

	return total_data_rate;
}

static void
skl_allocate_pipe_ddb(struct drm_crtc *crtc,
		      const struct intel_wm_config *config,
		      const struct skl_pipe_wm_parameters *params,
		      struct skl_ddb_allocation *ddb /* out */)
{
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
2496
	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2497 2498 2499 2500
	uint16_t alloc_size, start, cursor_blocks;
	unsigned int total_data_rate;
	int plane;

2501 2502
	skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
	alloc_size = skl_ddb_entry_size(alloc);
2503 2504 2505 2506 2507 2508 2509
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
		memset(&ddb->cursor[pipe], 0, sizeof(ddb->cursor[pipe]));
		return;
	}

	cursor_blocks = skl_cursor_allocation(config);
2510 2511
	ddb->cursor[pipe].start = alloc->end - cursor_blocks;
	ddb->cursor[pipe].end = alloc->end;
2512 2513

	alloc_size -= cursor_blocks;
2514
	alloc->end -= cursor_blocks;
2515 2516 2517 2518 2519 2520 2521 2522 2523

	/*
	 * Each active plane get a portion of the remaining space, in
	 * proportion to the amount of data they need to fetch from memory.
	 *
	 * FIXME: we may not allocate every single block here.
	 */
	total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);

2524
	start = alloc->start;
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
		const struct intel_plane_wm_parameters *p;
		unsigned int data_rate;
		uint16_t plane_blocks;

		p = &params->plane[plane];
		if (!p->enabled)
			continue;

		data_rate = skl_plane_relative_data_rate(p);

		/*
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
		plane_blocks = div_u64((uint64_t)alloc_size * data_rate,
				       total_data_rate);

		ddb->plane[pipe][plane].start = start;
2544
		ddb->plane[pipe][plane].end = start + plane_blocks;
2545 2546 2547 2548 2549 2550

		start += plane_blocks;
	}

}

2551
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
2552 2553
{
	/* TODO: Take into account the scalers once we support them */
2554
	return config->base.adjusted_mode.crtc_clock;
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
}

/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
 * for the read latency) and bytes_per_pixel should always be <= 8, so that
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

	wm_intermediate_val = latency * pixel_rate * bytes_per_pixel;
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t ret, plane_bytes_per_line, wm_intermediate_val;

	if (latency == 0)
		return UINT_MAX;

	plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
				plane_bytes_per_line;

	return ret;
}

static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
				       const struct intel_crtc *intel_crtc)
{
	struct drm_device *dev = intel_crtc->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	enum pipe pipe = intel_crtc->pipe;

	if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
		   sizeof(new_ddb->plane[pipe])))
		return true;

	if (memcmp(&new_ddb->cursor[pipe], &cur_ddb->cursor[pipe],
		    sizeof(new_ddb->cursor[pipe])))
		return true;

	return false;
}

static void skl_compute_wm_global_parameters(struct drm_device *dev,
					     struct intel_wm_config *config)
{
	struct drm_crtc *crtc;
	struct drm_plane *plane;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		config->num_pipes_active += intel_crtc_active(crtc);

	/* FIXME: I don't think we need those two global parameters on SKL */
	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
		struct intel_plane *intel_plane = to_intel_plane(plane);

		config->sprites_enabled |= intel_plane->wm.enabled;
		config->sprites_scaled |= intel_plane->wm.scaled;
	}
}

static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
					   struct skl_pipe_wm_parameters *p)
{
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct drm_plane *plane;
	int i = 1; /* Index for sprite planes start */

	p->active = intel_crtc_active(crtc);
	if (p->active) {
2642 2643
		p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
		p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
2644 2645 2646 2647 2648 2649 2650

		/*
		 * For now, assume primary and cursor planes are always enabled.
		 */
		p->plane[0].enabled = true;
		p->plane[0].bytes_per_pixel =
			crtc->primary->fb->bits_per_pixel / 8;
2651 2652
		p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
		p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662

		p->cursor.enabled = true;
		p->cursor.bytes_per_pixel = 4;
		p->cursor.horiz_pixels = intel_crtc->cursor_width ?
					 intel_crtc->cursor_width : 64;
	}

	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
		struct intel_plane *intel_plane = to_intel_plane(plane);

2663 2664
		if (intel_plane->pipe == pipe &&
			plane->type == DRM_PLANE_TYPE_OVERLAY)
2665 2666 2667 2668 2669
			p->plane[i++] = intel_plane->wm;
	}
}

static bool skl_compute_plane_wm(struct skl_pipe_wm_parameters *p,
2670 2671 2672 2673 2674
				 struct intel_plane_wm_parameters *p_params,
				 uint16_t ddb_allocation,
				 uint32_t mem_value,
				 uint16_t *out_blocks, /* out */
				 uint8_t *out_lines /* out */)
2675
{
2676
	uint32_t method1, method2, plane_bytes_per_line, res_blocks, res_lines;
2677 2678
	uint32_t result_bytes;

2679
	if (mem_value == 0 || !p->active || !p_params->enabled)
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
		return false;

	method1 = skl_wm_method1(p->pixel_rate,
				 p_params->bytes_per_pixel,
				 mem_value);
	method2 = skl_wm_method2(p->pixel_rate,
				 p->pipe_htotal,
				 p_params->horiz_pixels,
				 p_params->bytes_per_pixel,
				 mem_value);

	plane_bytes_per_line = p_params->horiz_pixels *
					p_params->bytes_per_pixel;

	/* For now xtile and linear */
2695
	if (((ddb_allocation * 512) / plane_bytes_per_line) >= 1)
2696 2697 2698 2699
		result_bytes = min(method1, method2);
	else
		result_bytes = method1;

2700 2701 2702 2703 2704 2705 2706 2707
	res_blocks = DIV_ROUND_UP(result_bytes, 512) + 1;
	res_lines = DIV_ROUND_UP(result_bytes, plane_bytes_per_line);

	if (res_blocks > ddb_allocation || res_lines > 31)
		return false;

	*out_blocks = res_blocks;
	*out_lines = res_lines;
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739

	return true;
}

static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
				 struct skl_ddb_allocation *ddb,
				 struct skl_pipe_wm_parameters *p,
				 enum pipe pipe,
				 int level,
				 int num_planes,
				 struct skl_wm_level *result)
{
	uint16_t latency = dev_priv->wm.skl_latency[level];
	uint16_t ddb_blocks;
	int i;

	for (i = 0; i < num_planes; i++) {
		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);

		result->plane_en[i] = skl_compute_plane_wm(p, &p->plane[i],
						ddb_blocks,
						latency,
						&result->plane_res_b[i],
						&result->plane_res_l[i]);
	}

	ddb_blocks = skl_ddb_entry_size(&ddb->cursor[pipe]);
	result->cursor_en = skl_compute_plane_wm(p, &p->cursor, ddb_blocks,
						 latency, &result->cursor_res_b,
						 &result->cursor_res_l);
}

2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
static uint32_t
skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
{
	if (!intel_crtc_active(crtc))
		return 0;

	return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);

}

static void skl_compute_transition_wm(struct drm_crtc *crtc,
				      struct skl_pipe_wm_parameters *params,
2752
				      struct skl_wm_level *trans_wm /* out */)
2753
{
2754 2755 2756
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int i;

2757 2758
	if (!params->active)
		return;
2759 2760 2761 2762 2763

	/* Until we know more, just disable transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		trans_wm->plane_en[i] = false;
	trans_wm->cursor_en = false;
2764 2765
}

2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
static void skl_compute_pipe_wm(struct drm_crtc *crtc,
				struct skl_ddb_allocation *ddb,
				struct skl_pipe_wm_parameters *params,
				struct skl_pipe_wm *pipe_wm)
{
	struct drm_device *dev = crtc->dev;
	const struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int level, max_level = ilk_wm_max_level(dev);

	for (level = 0; level <= max_level; level++) {
		skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
				     level, intel_num_planes(intel_crtc),
				     &pipe_wm->wm[level]);
	}
	pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);

2783
	skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
}

static void skl_compute_wm_results(struct drm_device *dev,
				   struct skl_pipe_wm_parameters *p,
				   struct skl_pipe_wm *p_wm,
				   struct skl_wm_values *r,
				   struct intel_crtc *intel_crtc)
{
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;
2794 2795
	uint32_t temp;
	int i;
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = 0;

			temp |= p_wm->wm[level].plane_res_l[i] <<
					PLANE_WM_LINES_SHIFT;
			temp |= p_wm->wm[level].plane_res_b[i];
			if (p_wm->wm[level].plane_en[i])
				temp |= PLANE_WM_EN;

			r->plane[pipe][i][level] = temp;
		}

		temp = 0;

		temp |= p_wm->wm[level].cursor_res_l << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->wm[level].cursor_res_b;

		if (p_wm->wm[level].cursor_en)
			temp |= PLANE_WM_EN;

		r->cursor[pipe][level] = temp;

	}

2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
	/* transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = 0;
		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->trans_wm.plane_res_b[i];
		if (p_wm->trans_wm.plane_en[i])
			temp |= PLANE_WM_EN;

		r->plane_trans[pipe][i] = temp;
	}

	temp = 0;
	temp |= p_wm->trans_wm.cursor_res_l << PLANE_WM_LINES_SHIFT;
	temp |= p_wm->trans_wm.cursor_res_b;
	if (p_wm->trans_wm.cursor_en)
		temp |= PLANE_WM_EN;

	r->cursor_trans[pipe] = temp;

2841 2842 2843
	r->wm_linetime[pipe] = p_wm->linetime;
}

2844 2845 2846 2847 2848 2849 2850 2851 2852
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
static void skl_write_wm_values(struct drm_i915_private *dev_priv,
				const struct skl_wm_values *new)
{
	struct drm_device *dev = dev_priv->dev;
	struct intel_crtc *crtc;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
		int i, level, max_level = ilk_wm_max_level(dev);
		enum pipe pipe = crtc->pipe;

2863 2864
		if (!new->dirty[pipe])
			continue;
2865

2866
		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
2867

2868 2869 2870 2871 2872 2873
		for (level = 0; level <= max_level; level++) {
			for (i = 0; i < intel_num_planes(crtc); i++)
				I915_WRITE(PLANE_WM(pipe, i, level),
					   new->plane[pipe][i][level]);
			I915_WRITE(CUR_WM(pipe, level),
				   new->cursor[pipe][level]);
2874
		}
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
		for (i = 0; i < intel_num_planes(crtc); i++)
			I915_WRITE(PLANE_WM_TRANS(pipe, i),
				   new->plane_trans[pipe][i]);
		I915_WRITE(CUR_WM_TRANS(pipe), new->cursor_trans[pipe]);

		for (i = 0; i < intel_num_planes(crtc); i++)
			skl_ddb_entry_write(dev_priv,
					    PLANE_BUF_CFG(pipe, i),
					    &new->ddb.plane[pipe][i]);

		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
				    &new->ddb.cursor[pipe]);
2887 2888 2889
	}
}

2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
/*
 * When setting up a new DDB allocation arrangement, we need to correctly
 * sequence the times at which the new allocations for the pipes are taken into
 * account or we'll have pipes fetching from space previously allocated to
 * another pipe.
 *
 * Roughly the sequence looks like:
 *  1. re-allocate the pipe(s) with the allocation being reduced and not
 *     overlapping with a previous light-up pipe (another way to put it is:
 *     pipes with their new allocation strickly included into their old ones).
 *  2. re-allocate the other pipes that get their allocation reduced
 *  3. allocate the pipes having their allocation increased
 *
 * Steps 1. and 2. are here to take care of the following case:
 * - Initially DDB looks like this:
 *     |   B    |   C    |
 * - enable pipe A.
 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
 *   allocation
 *     |  A  |  B  |  C  |
 *
 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
 */

2914 2915
static void
skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
2916 2917 2918 2919
{
	struct drm_device *dev = dev_priv->dev;
	int plane;

2920 2921
	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);

2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
	for_each_plane(pipe, plane) {
		I915_WRITE(PLANE_SURF(pipe, plane),
			   I915_READ(PLANE_SURF(pipe, plane)));
	}
	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
}

static bool
skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
			    const struct skl_ddb_allocation *new,
			    enum pipe pipe)
{
	uint16_t old_size, new_size;

	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
	new_size = skl_ddb_entry_size(&new->pipe[pipe]);

	return old_size != new_size &&
	       new->pipe[pipe].start >= old->pipe[pipe].start &&
	       new->pipe[pipe].end <= old->pipe[pipe].end;
}

static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
				struct skl_wm_values *new_values)
{
	struct drm_device *dev = dev_priv->dev;
	struct skl_ddb_allocation *cur_ddb, *new_ddb;
	bool reallocated[I915_MAX_PIPES] = {false, false, false};
	struct intel_crtc *crtc;
	enum pipe pipe;

	new_ddb = &new_values->ddb;
	cur_ddb = &dev_priv->wm.skl_hw.ddb;

	/*
	 * First pass: flush the pipes with the new allocation contained into
	 * the old space.
	 *
	 * We'll wait for the vblank on those pipes to ensure we can safely
	 * re-allocate the freed space without this pipe fetching from it.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
			continue;

2972
		skl_wm_flush_pipe(dev_priv, pipe, 1);
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
		intel_wait_for_vblank(dev, pipe);

		reallocated[pipe] = true;
	}


	/*
	 * Second pass: flush the pipes that are having their allocation
	 * reduced, but overlapping with a previous allocation.
	 *
	 * Here as well we need to wait for the vblank to make sure the freed
	 * space is not used anymore.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (reallocated[pipe])
			continue;

		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
2997
			skl_wm_flush_pipe(dev_priv, pipe, 2);
2998
			intel_wait_for_vblank(dev, pipe);
2999
			reallocated[pipe] = true;
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
		}
	}

	/*
	 * Third pass: flush the pipes that got more space allocated.
	 *
	 * We don't need to actively wait for the update here, next vblank
	 * will just get more DDB space with the correct WM values.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		/*
		 * At this point, only the pipes more space than before are
		 * left to re-allocate.
		 */
		if (reallocated[pipe])
			continue;

3022
		skl_wm_flush_pipe(dev_priv, pipe, 3);
3023 3024 3025
	}
}

3026 3027 3028 3029 3030 3031 3032 3033 3034
static bool skl_update_pipe_wm(struct drm_crtc *crtc,
			       struct skl_pipe_wm_parameters *params,
			       struct intel_wm_config *config,
			       struct skl_ddb_allocation *ddb, /* out */
			       struct skl_pipe_wm *pipe_wm /* out */)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);

	skl_compute_wm_pipe_parameters(crtc, params);
3035
	skl_allocate_pipe_ddb(crtc, config, params, ddb);
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
	skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);

	if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
		return false;

	intel_crtc->wm.skl_active = *pipe_wm;
	return true;
}

static void skl_update_other_pipe_wm(struct drm_device *dev,
				     struct drm_crtc *crtc,
				     struct intel_wm_config *config,
				     struct skl_wm_values *r)
{
	struct intel_crtc *intel_crtc;
	struct intel_crtc *this_crtc = to_intel_crtc(crtc);

	/*
	 * If the WM update hasn't changed the allocation for this_crtc (the
	 * crtc we are currently computing the new WM values for), other
	 * enabled crtcs will keep the same allocation and we don't need to
	 * recompute anything for them.
	 */
	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
		return;

	/*
	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
	 * other active pipes need new DDB allocation and WM values.
	 */
	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
				base.head) {
		struct skl_pipe_wm_parameters params = {};
		struct skl_pipe_wm pipe_wm = {};
		bool wm_changed;

		if (this_crtc->pipe == intel_crtc->pipe)
			continue;

		if (!intel_crtc->active)
			continue;

		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
						&params, config,
						&r->ddb, &pipe_wm);

		/*
		 * If we end up re-computing the other pipe WM values, it's
		 * because it was really needed, so we expect the WM values to
		 * be different.
		 */
		WARN_ON(!wm_changed);

		skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
		r->dirty[intel_crtc->pipe] = true;
	}
}

static void skl_update_wm(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_pipe_wm_parameters params = {};
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
	struct skl_pipe_wm pipe_wm = {};
	struct intel_wm_config config = {};

	memset(results, 0, sizeof(*results));

	skl_compute_wm_global_parameters(dev, &config);

	if (!skl_update_pipe_wm(crtc, &params, &config,
				&results->ddb, &pipe_wm))
		return;

	skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
	results->dirty[intel_crtc->pipe] = true;

	skl_update_other_pipe_wm(dev, crtc, &config, results);
	skl_write_wm_values(dev_priv, results);
3117
	skl_flush_wm_values(dev_priv, results);
3118 3119 3120

	/* store the new configuration */
	dev_priv->wm.skl_hw = *results;
3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
}

static void
skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
		     uint32_t sprite_width, uint32_t sprite_height,
		     int pixel_size, bool enabled, bool scaled)
{
	struct intel_plane *intel_plane = to_intel_plane(plane);

	intel_plane->wm.enabled = enabled;
	intel_plane->wm.scaled = scaled;
	intel_plane->wm.horiz_pixels = sprite_width;
	intel_plane->wm.vert_pixels = sprite_height;
	intel_plane->wm.bytes_per_pixel = pixel_size;

	skl_update_wm(crtc);
}

3139
static void ilk_update_wm(struct drm_crtc *crtc)
3140
{
3141
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3142
	struct drm_device *dev = crtc->dev;
3143
	struct drm_i915_private *dev_priv = dev->dev_private;
3144 3145 3146
	struct ilk_wm_maximums max;
	struct ilk_pipe_wm_parameters params = {};
	struct ilk_wm_values results = {};
3147
	enum intel_ddb_partitioning partitioning;
3148
	struct intel_pipe_wm pipe_wm = {};
3149
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3150
	struct intel_wm_config config = {};
3151

3152
	ilk_compute_wm_parameters(crtc, &params);
3153 3154 3155 3156 3157

	intel_compute_pipe_wm(crtc, &params, &pipe_wm);

	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
		return;
3158

3159
	intel_crtc->wm.active = pipe_wm;
3160

3161 3162
	ilk_compute_wm_config(dev, &config);

3163
	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3164
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3165 3166

	/* 5/6 split only in single pipe config on IVB+ */
3167 3168
	if (INTEL_INFO(dev)->gen >= 7 &&
	    config.num_pipes_active == 1 && config.sprites_enabled) {
3169
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3170
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3171

3172
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3173
	} else {
3174
		best_lp_wm = &lp_wm_1_2;
3175 3176
	}

3177
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
3178
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3179

3180
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3181

3182
	ilk_write_wm_values(dev_priv, &results);
3183 3184
}

3185 3186 3187 3188 3189
static void
ilk_update_sprite_wm(struct drm_plane *plane,
		     struct drm_crtc *crtc,
		     uint32_t sprite_width, uint32_t sprite_height,
		     int pixel_size, bool enabled, bool scaled)
3190
{
3191
	struct drm_device *dev = plane->dev;
3192
	struct intel_plane *intel_plane = to_intel_plane(plane);
3193

3194 3195 3196
	intel_plane->wm.enabled = enabled;
	intel_plane->wm.scaled = scaled;
	intel_plane->wm.horiz_pixels = sprite_width;
3197
	intel_plane->wm.vert_pixels = sprite_width;
3198
	intel_plane->wm.bytes_per_pixel = pixel_size;
3199

3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
	/*
	 * IVB workaround: must disable low power watermarks for at least
	 * one frame before enabling scaling.  LP watermarks can be re-enabled
	 * when scaling is disabled.
	 *
	 * WaCxSRDisabledForSpriteScaling:ivb
	 */
	if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
		intel_wait_for_vblank(dev, intel_plane->pipe);

3210
	ilk_update_wm(crtc);
3211 3212
}

3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
static void skl_pipe_wm_active_state(uint32_t val,
				     struct skl_pipe_wm *active,
				     bool is_transwm,
				     bool is_cursor,
				     int i,
				     int level)
{
	bool is_enabled = (val & PLANE_WM_EN) != 0;

	if (!is_transwm) {
		if (!is_cursor) {
			active->wm[level].plane_en[i] = is_enabled;
			active->wm[level].plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
			active->wm[level].cursor_en = is_enabled;
			active->wm[level].cursor_res_b =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].cursor_res_l =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	} else {
		if (!is_cursor) {
			active->trans_wm.plane_en[i] = is_enabled;
			active->trans_wm.plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
			active->trans_wm.cursor_en = is_enabled;
			active->trans_wm.cursor_res_b =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.cursor_res_l =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	}
}

static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
	enum pipe pipe = intel_crtc->pipe;
	int level, i, max_level;
	uint32_t temp;

	max_level = ilk_wm_max_level(dev);

	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
			hw->plane[pipe][i][level] =
					I915_READ(PLANE_WM(pipe, i, level));
		hw->cursor[pipe][level] = I915_READ(CUR_WM(pipe, level));
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
	hw->cursor_trans[pipe] = I915_READ(CUR_WM_TRANS(pipe));

	if (!intel_crtc_active(crtc))
		return;

	hw->dirty[pipe] = true;

	active->linetime = hw->wm_linetime[pipe];

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = hw->plane[pipe][i][level];
			skl_pipe_wm_active_state(temp, active, false,
						false, i, level);
		}
		temp = hw->cursor[pipe][level];
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = hw->plane_trans[pipe][i];
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
	}

	temp = hw->cursor_trans[pipe];
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
3311 3312
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3313 3314
	struct drm_crtc *crtc;

3315
	skl_ddb_get_hw_state(dev_priv, ddb);
3316 3317 3318 3319
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		skl_pipe_wm_get_hw_state(crtc);
}

3320 3321 3322 3323
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
3324
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_pipe_wm *active = &intel_crtc->wm.active;
	enum pipe pipe = intel_crtc->pipe;
	static const unsigned int wm0_pipe_reg[] = {
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3335
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3336
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3337

3338 3339 3340
	active->pipe_enabled = intel_crtc_active(crtc);

	if (active->pipe_enabled) {
3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
}

void ilk_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3370
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3371 3372
	struct drm_crtc *crtc;

3373
	for_each_crtc(dev, crtc)
3374 3375 3376 3377 3378 3379 3380
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
3381 3382 3383 3384
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
3385

3386
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3387 3388 3389 3390 3391
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
	else if (IS_IVYBRIDGE(dev))
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3392 3393 3394 3395 3396

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
3429
void intel_update_watermarks(struct drm_crtc *crtc)
3430
{
3431
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3432 3433

	if (dev_priv->display.update_wm)
3434
		dev_priv->display.update_wm(crtc);
3435 3436
}

3437 3438
void intel_update_sprite_watermarks(struct drm_plane *plane,
				    struct drm_crtc *crtc,
3439 3440 3441
				    uint32_t sprite_width,
				    uint32_t sprite_height,
				    int pixel_size,
3442
				    bool enabled, bool scaled)
3443
{
3444
	struct drm_i915_private *dev_priv = plane->dev->dev_private;
3445 3446

	if (dev_priv->display.update_sprite_wm)
3447 3448
		dev_priv->display.update_sprite_wm(plane, crtc,
						   sprite_width, sprite_height,
3449
						   pixel_size, enabled, scaled);
3450 3451
}

3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
static struct drm_i915_gem_object *
intel_alloc_context_page(struct drm_device *dev)
{
	struct drm_i915_gem_object *ctx;
	int ret;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	ctx = i915_gem_alloc_object(dev, 4096);
	if (!ctx) {
		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
		return NULL;
	}

3466
	ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
	if (ret) {
		DRM_ERROR("failed to pin power context: %d\n", ret);
		goto err_unref;
	}

	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
	if (ret) {
		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
		goto err_unpin;
	}

	return ctx;

err_unpin:
B
Ben Widawsky 已提交
3481
	i915_gem_object_ggtt_unpin(ctx);
3482 3483 3484 3485 3486
err_unref:
	drm_gem_object_unreference(&ctx->base);
	return NULL;
}

3487 3488 3489 3490 3491 3492 3493 3494 3495
/**
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

3496 3497 3498 3499 3500
bool ironlake_set_drps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u16 rgvswctl;

3501 3502
	assert_spin_locked(&mchdev_lock);

3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

3520
static void ironlake_enable_drps(struct drm_device *dev)
3521 3522 3523 3524 3525
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 rgvmodectl = I915_READ(MEMMODECTL);
	u8 fmax, fmin, fstart, vstart;

3526 3527
	spin_lock_irq(&mchdev_lock);

3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
		PXVFREQ_PX_SHIFT;

3551 3552
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
3553

3554 3555 3556
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

3573
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3574
		DRM_ERROR("stuck trying to change perf mode\n");
3575
	mdelay(1);
3576 3577 3578

	ironlake_set_drps(dev, fstart);

3579
	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3580
		I915_READ(0x112e0);
3581 3582
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
	dev_priv->ips.last_count2 = I915_READ(0x112f4);
3583
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
3584 3585

	spin_unlock_irq(&mchdev_lock);
3586 3587
}

3588
static void ironlake_disable_drps(struct drm_device *dev)
3589 3590
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3591 3592 3593 3594 3595
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
3596 3597 3598 3599 3600 3601 3602 3603 3604

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
3605
	ironlake_set_drps(dev, dev_priv->ips.fstart);
3606
	mdelay(1);
3607 3608
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
3609
	mdelay(1);
3610

3611
	spin_unlock_irq(&mchdev_lock);
3612 3613
}

3614 3615 3616 3617 3618
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
3619
static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3620
{
3621
	u32 limits;
3622

3623 3624 3625 3626 3627 3628
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
3629 3630 3631
	limits = dev_priv->rps.max_freq_softlimit << 24;
	if (val <= dev_priv->rps.min_freq_softlimit)
		limits |= dev_priv->rps.min_freq_softlimit << 16;
3632 3633 3634 3635

	return limits;
}

3636 3637 3638 3639 3640 3641 3642
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
3643
		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3644 3645 3646 3647
			new_power = BETWEEN;
		break;

	case BETWEEN:
3648
		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3649
			new_power = LOW_POWER;
3650
		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3651 3652 3653 3654
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
3655
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3656 3657 3658 3659
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
3660
	if (val == dev_priv->rps.min_freq_softlimit)
3661
		new_power = LOW_POWER;
3662
	if (val == dev_priv->rps.max_freq_softlimit)
3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
		I915_WRITE(GEN6_RP_UP_EI, 12500);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);

		/* Downclock if less than 85% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
		I915_WRITE(GEN6_RP_UP_EI, 10250);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);

		/* Downclock if less than 75% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
		I915_WRITE(GEN6_RP_UP_EI, 8000);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);

		/* Downclock if less than 60% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;
	}

	dev_priv->rps.power = new_power;
	dev_priv->rps.last_adj = 0;
}

3728 3729 3730 3731 3732 3733 3734 3735 3736
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
		mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
	if (val < dev_priv->rps.max_freq_softlimit)
		mask |= GEN6_PM_RP_UP_THRESHOLD;

3737 3738 3739
	mask |= dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED);
	mask &= dev_priv->pm_rps_events;

3740
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
3741 3742
}

3743 3744 3745
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3746
static void gen6_set_rps(struct drm_device *dev, u8 val)
3747 3748
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3749

3750
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3751 3752
	WARN_ON(val > dev_priv->rps.max_freq_softlimit);
	WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3753

C
Chris Wilson 已提交
3754 3755 3756 3757 3758
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
3759

3760
		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
C
Chris Wilson 已提交
3761 3762 3763 3764 3765 3766 3767
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
3768
	}
3769 3770 3771 3772

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
C
Chris Wilson 已提交
3773
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3774
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3775

3776 3777
	POSTING_READ(GEN6_RPNSWREQ);

3778
	dev_priv->rps.cur_freq = val;
3779
	trace_intel_gpu_freq_change(val * 50);
3780 3781
}

3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802
static void valleyview_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
	WARN_ON(val > dev_priv->rps.max_freq_softlimit);
	WARN_ON(val < dev_priv->rps.min_freq_softlimit);

	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
		      "Odd GPU freq value\n"))
		val &= ~1;

	if (val != dev_priv->rps.cur_freq)
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);

	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813
/* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
 *
 * * If Gfx is Idle, then
 * 1. Mask Turbo interrupts
 * 2. Bring up Gfx clock
 * 3. Change the freq to Rpn and wait till P-Unit updates freq
 * 4. Clear the Force GFX CLK ON bit so that Gfx can down
 * 5. Unmask Turbo interrupts
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
3814 3815
	struct drm_device *dev = dev_priv->dev;

3816 3817
	/* CHV and latest VLV don't need to force the gfx clock */
	if (IS_CHERRYVIEW(dev) || dev->pdev->revision >= 0xd) {
3818 3819 3820 3821
		valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
		return;
	}

3822 3823 3824 3825
	/*
	 * When we are idle.  Drop to min voltage state.
	 */

3826
	if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3827 3828 3829
		return;

	/* Mask turbo interrupt so that they will not come in between */
3830 3831
	I915_WRITE(GEN6_PMINTRMSK,
		   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
3832

3833
	vlv_force_gfx_clock(dev_priv, true);
3834

3835
	dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3836 3837

	vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3838
					dev_priv->rps.min_freq_softlimit);
3839 3840

	if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
3841
				& GENFREQSTATUS) == 0, 100))
3842 3843
		DRM_ERROR("timed out waiting for Punit\n");

3844
	vlv_force_gfx_clock(dev_priv, false);
3845

3846 3847
	I915_WRITE(GEN6_PMINTRMSK,
		   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
3848 3849
}

3850 3851
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
3852 3853
	struct drm_device *dev = dev_priv->dev;

3854
	mutex_lock(&dev_priv->rps.hw_lock);
3855
	if (dev_priv->rps.enabled) {
3856
		if (IS_VALLEYVIEW(dev))
3857
			vlv_set_rps_idle(dev_priv);
3858
		else
3859
			gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3860 3861
		dev_priv->rps.last_adj = 0;
	}
3862 3863 3864 3865 3866 3867
	mutex_unlock(&dev_priv->rps.hw_lock);
}

void gen6_rps_boost(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
3868
	if (dev_priv->rps.enabled) {
3869
		intel_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3870 3871
		dev_priv->rps.last_adj = 0;
	}
3872 3873 3874
	mutex_unlock(&dev_priv->rps.hw_lock);
}

3875
void intel_set_rps(struct drm_device *dev, u8 val)
3876
{
3877 3878 3879 3880
	if (IS_VALLEYVIEW(dev))
		valleyview_set_rps(dev, val);
	else
		gen6_set_rps(dev, val);
3881 3882
}

Z
Zhe Wang 已提交
3883 3884 3885 3886 3887
static void gen9_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
3888
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
3889 3890
}

3891
static void gen6_disable_rps(struct drm_device *dev)
3892 3893 3894 3895
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
3896 3897 3898
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
}

3899 3900 3901 3902 3903 3904 3905
static void cherryview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
}

3906 3907 3908 3909
static void valleyview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

3910 3911
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
3912
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
3913

3914
	I915_WRITE(GEN6_RC_CONTROL, 0);
3915

3916
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
3917 3918
}

B
Ben Widawsky 已提交
3919 3920
static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
{
3921 3922 3923 3924 3925 3926
	if (IS_VALLEYVIEW(dev)) {
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
3927 3928 3929 3930 3931 3932 3933 3934 3935
	if (HAS_RC6p(dev))
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
			      (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
			      (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");

	else
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
B
Ben Widawsky 已提交
3936 3937
}

I
Imre Deak 已提交
3938
static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
3939
{
3940 3941 3942 3943
	/* No RC6 before Ironlake */
	if (INTEL_INFO(dev)->gen < 5)
		return 0;

I
Imre Deak 已提交
3944 3945 3946 3947
	/* RC6 is only on Ironlake mobile not on desktop */
	if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
		return 0;

3948
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
3949 3950 3951
	if (enable_rc6 >= 0) {
		int mask;

3952
		if (HAS_RC6p(dev))
I
Imre Deak 已提交
3953 3954 3955 3956 3957 3958
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
3959 3960
			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
				      enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
3961 3962 3963

		return enable_rc6 & mask;
	}
3964

3965 3966 3967
	/* Disable RC6 on Ironlake */
	if (INTEL_INFO(dev)->gen == 5)
		return 0;
3968

3969
	if (IS_IVYBRIDGE(dev))
B
Ben Widawsky 已提交
3970
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3971 3972

	return INTEL_RC6_ENABLE;
3973 3974
}

I
Imre Deak 已提交
3975 3976 3977 3978 3979
int intel_enable_rc6(const struct drm_device *dev)
{
	return i915.enable_rc6;
}

3980
static void gen6_init_rps_frequencies(struct drm_device *dev)
3981
{
3982 3983 3984 3985 3986 3987
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t rp_state_cap;
	u32 ddcc_status = 0;
	int ret;

	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3988 3989
	/* All of these values are in units of 50MHz */
	dev_priv->rps.cur_freq		= 0;
3990
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
3991
	dev_priv->rps.rp0_freq		= (rp_state_cap >>  0) & 0xff;
3992
	dev_priv->rps.rp1_freq		= (rp_state_cap >>  8) & 0xff;
3993 3994 3995 3996
	dev_priv->rps.min_freq		= (rp_state_cap >> 16) & 0xff;
	/* hw_max = RP0 until we check for overclocking */
	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;

3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
		ret = sandybridge_pcode_read(dev_priv,
					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					&ddcc_status);
		if (0 == ret)
			dev_priv->rps.efficient_freq =
				(ddcc_status >> 8) & 0xff;
	}

4007 4008 4009 4010
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

4011 4012 4013
	if (dev_priv->rps.min_freq_softlimit == 0) {
		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
			dev_priv->rps.min_freq_softlimit =
4014 4015
				/* max(RPe, 450 MHz) */
				max(dev_priv->rps.efficient_freq, (u8) 9);
4016 4017 4018 4019
		else
			dev_priv->rps.min_freq_softlimit =
				dev_priv->rps.min_freq;
	}
4020 4021
}

J
Jesse Barnes 已提交
4022
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
Z
Zhe Wang 已提交
4023
static void gen9_enable_rps(struct drm_device *dev)
J
Jesse Barnes 已提交
4024 4025 4026 4027 4028
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4029 4030
	gen6_init_rps_frequencies(dev);

J
Jesse Barnes 已提交
4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052
	I915_WRITE(GEN6_RPNSWREQ, 0xc800000);
	I915_WRITE(GEN6_RC_VIDEO_FREQ, 0xc800000);

	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 0xf4240);
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, 0x12060000);
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 0xe808);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 0x3bd08);
	I915_WRITE(GEN6_RP_UP_EI, 0x101d0);
	I915_WRITE(GEN6_RP_DOWN_EI, 0x55730);
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
	I915_WRITE(GEN6_PMINTRMSK, 0x6);
	I915_WRITE(GEN6_RP_CONTROL, GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_MODE | GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE | GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	gen6_enable_rps_interrupts(dev);

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void gen9_enable_rc6(struct drm_device *dev)
Z
Zhe Wang 已提交
4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
	uint32_t rc6_mask = 0;
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4064
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */

4078 4079 4080 4081
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
4082 4083 4084 4085 4086 4087 4088 4089 4090
	/* 3a: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
	DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
			"on" : "off");
	I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				   GEN6_RC_CTL_EI_MODE(1) |
				   rc6_mask);

4091 4092 4093
	/* 3b: Enable Coarse Power Gating only when RC6 is enabled */
	I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? 3 : 0);

4094
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4095 4096 4097

}

4098 4099 4100
static void gen8_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4101
	struct intel_engine_cs *ring;
4102
	uint32_t rc6_mask = 0;
4103 4104 4105 4106 4107 4108 4109
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4110
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4111 4112 4113 4114

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

4115 4116
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
4117 4118 4119 4120 4121 4122 4123 4124

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);
4125 4126 4127 4128
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4129 4130 4131 4132

	/* 3: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4133
	intel_print_rc6_info(dev, rc6_mask);
4134 4135 4136 4137 4138 4139 4140 4141
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
4142 4143

	/* 4 Program defaults and thresholds for RPS*/
4144 4145 4146 4147
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4162 4163

	/* 5: Enable RPS */
4164 4165 4166 4167 4168 4169 4170 4171 4172 4173
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

4174 4175
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4176

4177
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4178 4179
}

4180
static void gen6_enable_rps(struct drm_device *dev)
4181
{
4182
	struct drm_i915_private *dev_priv = dev->dev_private;
4183
	struct intel_engine_cs *ring;
4184
	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4185 4186
	u32 gtfifodbg;
	int rc6_mode;
B
Ben Widawsky 已提交
4187
	int i, ret;
4188

4189
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4190

4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

4205
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4206

4207 4208
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
J
Jeff McGee 已提交
4209

4210 4211 4212 4213 4214 4215 4216 4217 4218
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

4219 4220
	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4221 4222 4223

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4224
	if (IS_IVYBRIDGE(dev))
4225 4226 4227
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4228
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4229 4230
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

4231
	/* Check if we are enabling RC6 */
4232 4233 4234 4235
	rc6_mode = intel_enable_rc6(dev_priv->dev);
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

4236 4237 4238 4239
	/* We don't use those on Haswell */
	if (!IS_HASWELL(dev)) {
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4240

4241 4242 4243
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
4244

B
Ben Widawsky 已提交
4245
	intel_print_rc6_info(dev, rc6_mask);
4246 4247 4248 4249 4250 4251

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

4252 4253
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4254 4255
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
4256
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4257
	if (ret)
B
Ben Widawsky 已提交
4258
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4259 4260 4261 4262

	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4263
				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4264
				 (pcu_mbox & 0xff) * 50);
4265
		dev_priv->rps.max_freq = pcu_mbox & 0xff;
4266 4267
	}

4268
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4269
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4270

4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
	if (IS_GEN6(dev) && ret) {
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

4285
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4286 4287
}

4288
static void __gen6_update_ring_freq(struct drm_device *dev)
4289
{
4290
	struct drm_i915_private *dev_priv = dev->dev_private;
4291
	int min_freq = 15;
4292 4293
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
4294
	int scaling_factor = 180;
4295
	struct cpufreq_policy *policy;
4296

4297
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4298

4299 4300 4301 4302 4303 4304 4305 4306 4307
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
4308
		max_ia_freq = tsc_khz;
4309
	}
4310 4311 4312 4313

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

4314
	min_ring_freq = I915_READ(DCLK) & 0xf;
4315 4316
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
4317

4318 4319 4320 4321 4322
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
4323
	for (gpu_freq = dev_priv->rps.max_freq; gpu_freq >= dev_priv->rps.min_freq;
4324
	     gpu_freq--) {
4325
		int diff = dev_priv->rps.max_freq - gpu_freq;
4326 4327
		unsigned int ia_freq = 0, ring_freq = 0;

4328 4329 4330 4331
		if (INTEL_INFO(dev)->gen >= 8) {
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
		} else if (IS_HASWELL(dev)) {
4332
			ring_freq = mult_frac(gpu_freq, 5, 4);
4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
4349

B
Ben Widawsky 已提交
4350 4351
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
4352 4353 4354
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
4355 4356 4357
	}
}

4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369
void gen6_update_ring_freq(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
		return;

	mutex_lock(&dev_priv->rps.hw_lock);
	__gen6_update_ring_freq(dev);
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4370
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
4371
{
4372
	struct drm_device *dev = dev_priv->dev;
4373 4374
	u32 val, rp0;

4375 4376
	if (dev->pdev->revision >= 0x20) {
		val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
4377

4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
		switch (INTEL_INFO(dev)->eu_total) {
		case 8:
				/* (2 * 4) config */
				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
				break;
		case 12:
				/* (2 * 6) config */
				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
				break;
		case 16:
				/* (2 * 8) config */
		default:
				/* Setting (2 * 8) Min RP0 for any other combination */
				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
				break;
		}
		rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
	} else {
		/* For pre-production hardware */
		val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
		rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
		       PUNIT_GPU_STATUS_MAX_FREQ_MASK;
	}
4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

4414 4415
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
4416
	struct drm_device *dev = dev_priv->dev;
4417 4418
	u32 val, rp1;

4419 4420 4421 4422 4423 4424 4425 4426 4427
	if (dev->pdev->revision >= 0x20) {
		val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
		rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
	} else {
		/* For pre-production hardware */
		val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
		rp1 = ((val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
		       PUNIT_GPU_STATUS_MAX_FREQ_MASK);
	}
4428 4429 4430
	return rp1;
}

4431
static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
4432
{
4433
	struct drm_device *dev = dev_priv->dev;
4434 4435
	u32 val, rpn;

4436 4437 4438 4439 4440 4441 4442 4443 4444 4445
	if (dev->pdev->revision >= 0x20) {
		val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
		rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
		       FB_GFX_FREQ_FUSE_MASK);
	} else { /* For pre-production hardware */
		val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
		rpn = ((val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) &
		       PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK);
	}

4446 4447 4448
	return rpn;
}

4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

4460
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
4461 4462 4463
{
	u32 val, rp0;

4464
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

4477
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
4478
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
4479
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
4480 4481 4482 4483 4484
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

4485
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4486
{
4487
	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
4488 4489
}

4490 4491 4492 4493 4494 4495 4496 4497 4498
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

static void cherryview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long pctx_paddr, paddr;
	struct i915_gtt *gtt = &dev_priv->gtt;
	u32 pcbr;
	int pctx_size = 32*1024;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
4520
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
4521 4522 4523 4524 4525 4526
		paddr = (dev_priv->mm.stolen_base +
			 (gtt->stolen_size - pctx_size));

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
4527 4528

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4529 4530
}

4531 4532 4533 4534 4535 4536 4537 4538
static void valleyview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

4539 4540
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

4541 4542 4543 4544 4545 4546 4547 4548
	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
4549
								      I915_GTT_OFFSET_NONE,
4550 4551 4552 4553
								      pctx_size);
		goto out;
	}

4554 4555
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
		return;
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
4574
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4575 4576 4577
	dev_priv->vlv_pctx = pctx;
}

4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588
static void valleyview_cleanup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
	dev_priv->vlv_pctx = NULL;
}

4589 4590 4591
static void valleyview_init_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4592
	u32 val;
4593 4594 4595 4596 4597

	valleyview_setup_pctx(dev);

	mutex_lock(&dev_priv->rps.hw_lock);

4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
4611
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4612

4613 4614 4615
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4616
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4617 4618 4619 4620
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4621
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4622 4623
			 dev_priv->rps.efficient_freq);

4624 4625
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
4626
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4627 4628
			 dev_priv->rps.rp1_freq);

4629 4630
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4631
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643
			 dev_priv->rps.min_freq);

	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
}

4644 4645
static void cherryview_init_gt_powersave(struct drm_device *dev)
{
4646
	struct drm_i915_private *dev_priv = dev->dev_private;
4647
	u32 val;
4648

4649
	cherryview_setup_pctx(dev);
4650 4651 4652

	mutex_lock(&dev_priv->rps.hw_lock);

4653 4654 4655 4656
	mutex_lock(&dev_priv->dpio_lock);
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
	mutex_unlock(&dev_priv->dpio_lock);

4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679
	switch ((val >> 2) & 0x7) {
	case 0:
	case 1:
		dev_priv->rps.cz_freq = 200;
		dev_priv->mem_freq = 1600;
		break;
	case 2:
		dev_priv->rps.cz_freq = 267;
		dev_priv->mem_freq = 1600;
		break;
	case 3:
		dev_priv->rps.cz_freq = 333;
		dev_priv->mem_freq = 2000;
		break;
	case 4:
		dev_priv->rps.cz_freq = 320;
		dev_priv->mem_freq = 1600;
		break;
	case 5:
		dev_priv->rps.cz_freq = 400;
		dev_priv->mem_freq = 1600;
		break;
	}
4680
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4681

4682 4683 4684
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4685
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4686 4687 4688 4689
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4690
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4691 4692
			 dev_priv->rps.efficient_freq);

4693 4694
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
4695
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4696 4697
			 dev_priv->rps.rp1_freq);

4698 4699
	dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4700
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4701 4702
			 dev_priv->rps.min_freq);

4703 4704 4705 4706 4707 4708
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");

4709 4710 4711 4712 4713 4714 4715 4716
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
4717 4718
}

4719 4720 4721 4722 4723
static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
{
	valleyview_cleanup_pctx(dev);
}

4724 4725 4726 4727
static void cherryview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
4728
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4744
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4745

4746 4747 4748
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

4749 4750 4751 4752 4753 4754 4755 4756 4757
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);

4758 4759
	/* TO threshold set to 1750 us ( 0x557 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
						(pcbr >> VLV_PCBR_ADDR_SHIFT))
4773
		rc6_mode = GEN7_RC_CTL_TO_MODE;
4774 4775 4776

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

4777
	/* 4 Program defaults and thresholds for RPS*/
4778
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
4779 4780 4781 4782 4783 4784 4785 4786 4787 4788
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
4789
		   GEN6_RP_MEDIA_IS_GFX |
4790 4791 4792 4793 4794 4795
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

4796 4797 4798
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

4799
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
4800 4801 4802 4803
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4804
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4805 4806 4807
			 dev_priv->rps.cur_freq);

	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4808
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4809 4810 4811 4812
			 dev_priv->rps.efficient_freq);

	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);

4813
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4814 4815
}

4816 4817 4818
static void valleyview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4819
	struct intel_engine_cs *ring;
4820
	u32 gtfifodbg, val, rc6_mode = 0;
4821 4822 4823 4824
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

4825 4826
	valleyview_check_pctx(dev_priv);

4827
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4828 4829
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
4830 4831 4832
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

4833
	/* If VLV, Forcewake all wells, else re-direct to regular path */
4834
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4835

4836 4837 4838
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

4839
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);

4862
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4863 4864

	/* allows RC6 residency counter to work */
4865
	I915_WRITE(VLV_COUNTER_CONTROL,
4866 4867
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
4868 4869
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
4870

4871
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4872
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
4873 4874 4875

	intel_print_rc6_info(dev, rc6_mode);

4876
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4877

4878
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4879

4880 4881 4882
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

4883
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
4884 4885
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

4886
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4887
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4888
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4889
			 dev_priv->rps.cur_freq);
4890

4891
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4892
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4893
			 dev_priv->rps.efficient_freq);
4894

4895
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4896

4897
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4898 4899
}

4900
void ironlake_teardown_rc6(struct drm_device *dev)
4901 4902 4903
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4904
	if (dev_priv->ips.renderctx) {
B
Ben Widawsky 已提交
4905
		i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
4906 4907
		drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
		dev_priv->ips.renderctx = NULL;
4908 4909
	}

4910
	if (dev_priv->ips.pwrctx) {
B
Ben Widawsky 已提交
4911
		i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
4912 4913
		drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
		dev_priv->ips.pwrctx = NULL;
4914 4915 4916
	}
}

4917
static void ironlake_disable_rc6(struct drm_device *dev)
4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (I915_READ(PWRCTXA)) {
		/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
		wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
			 50);

		I915_WRITE(PWRCTXA, 0);
		POSTING_READ(PWRCTXA);

		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
		POSTING_READ(RSTDBYCTL);
	}
}

static int ironlake_setup_rc6(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4939 4940 4941
	if (dev_priv->ips.renderctx == NULL)
		dev_priv->ips.renderctx = intel_alloc_context_page(dev);
	if (!dev_priv->ips.renderctx)
4942 4943
		return -ENOMEM;

4944 4945 4946
	if (dev_priv->ips.pwrctx == NULL)
		dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
	if (!dev_priv->ips.pwrctx) {
4947 4948 4949 4950 4951 4952 4953
		ironlake_teardown_rc6(dev);
		return -ENOMEM;
	}

	return 0;
}

4954
static void ironlake_enable_rc6(struct drm_device *dev)
4955 4956
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4957
	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
4958
	bool was_interruptible;
4959 4960 4961 4962 4963 4964 4965 4966
	int ret;

	/* rc6 disabled by default due to repeated reports of hanging during
	 * boot and resume.
	 */
	if (!intel_enable_rc6(dev))
		return;

4967 4968
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

4969
	ret = ironlake_setup_rc6(dev);
4970
	if (ret)
4971 4972
		return;

4973 4974 4975
	was_interruptible = dev_priv->mm.interruptible;
	dev_priv->mm.interruptible = false;

4976 4977 4978 4979
	/*
	 * GPU can automatically power down the render unit if given a page
	 * to save state.
	 */
4980
	ret = intel_ring_begin(ring, 6);
4981 4982
	if (ret) {
		ironlake_teardown_rc6(dev);
4983
		dev_priv->mm.interruptible = was_interruptible;
4984 4985 4986
		return;
	}

4987 4988
	intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
	intel_ring_emit(ring, MI_SET_CONTEXT);
4989
	intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
4990 4991 4992 4993 4994 4995 4996 4997
			MI_MM_SPACE_GTT |
			MI_SAVE_EXT_STATE_EN |
			MI_RESTORE_EXT_STATE_EN |
			MI_RESTORE_INHIBIT);
	intel_ring_emit(ring, MI_SUSPEND_FLUSH);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_emit(ring, MI_FLUSH);
	intel_ring_advance(ring);
4998 4999 5000 5001 5002 5003

	/*
	 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
	 * does an implicit flush, combined with MI_FLUSH above, it should be
	 * safe to assume that renderctx is valid
	 */
5004 5005
	ret = intel_ring_idle(ring);
	dev_priv->mm.interruptible = was_interruptible;
5006
	if (ret) {
5007
		DRM_ERROR("failed to enable ironlake power savings\n");
5008 5009 5010 5011
		ironlake_teardown_rc6(dev);
		return;
	}

5012
	I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
5013
	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
B
Ben Widawsky 已提交
5014

5015
	intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
5016 5017
}

5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

5047
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5048 5049 5050 5051 5052 5053
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

5054 5055
	assert_spin_locked(&mchdev_lock);

5056
	diff1 = now - dev_priv->ips.last_time1;
5057 5058 5059 5060 5061 5062 5063

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
5064
		return dev_priv->ips.chipset_power;
5065 5066 5067 5068 5069 5070 5071 5072

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
5073 5074
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
5075 5076
		diff += total_count;
	} else {
5077
		diff = total_count - dev_priv->ips.last_count1;
5078 5079 5080
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5081 5082
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
5083 5084 5085 5086 5087 5088 5089 5090 5091 5092
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

5093 5094
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
5095

5096
	dev_priv->ips.chipset_power = ret;
5097 5098 5099 5100

	return ret;
}

5101 5102
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
5103
	struct drm_device *dev = dev_priv->dev;
5104 5105
	unsigned long val;

5106
	if (INTEL_INFO(dev)->gen != 5)
5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5145
{
5146
	struct drm_device *dev = dev_priv->dev;
5147 5148 5149
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

5150
	if (INTEL_INFO(dev)->is_mobile)
5151 5152 5153
		return vm > 0 ? vm : 0;

	return vd;
5154 5155
}

5156
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5157
{
5158
	u64 now, diff, diffms;
5159 5160
	u32 count;

5161
	assert_spin_locked(&mchdev_lock);
5162

5163 5164 5165
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
5166 5167 5168 5169 5170 5171 5172

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

5173 5174
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
5175 5176
		diff += count;
	} else {
5177
		diff = count - dev_priv->ips.last_count2;
5178 5179
	}

5180 5181
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
5182 5183 5184 5185

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
5186
	dev_priv->ips.gfx_power = diff;
5187 5188
}

5189 5190
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
5191 5192 5193
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev)->gen != 5)
5194 5195
		return;

5196
	spin_lock_irq(&mchdev_lock);
5197 5198 5199

	__i915_update_gfx_val(dev_priv);

5200
	spin_unlock_irq(&mchdev_lock);
5201 5202
}

5203
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5204 5205 5206 5207
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

5208 5209
	assert_spin_locked(&mchdev_lock);

5210
	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
5230
	corr2 = (corr * dev_priv->ips.corr);
5231 5232 5233 5234

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

5235
	__i915_update_gfx_val(dev_priv);
5236

5237
	return dev_priv->ips.gfx_power + state2;
5238 5239
}

5240 5241
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
5242
	struct drm_device *dev = dev_priv->dev;
5243 5244
	unsigned long val;

5245
	if (INTEL_INFO(dev)->gen != 5)
5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

5268
	spin_lock_irq(&mchdev_lock);
5269 5270 5271 5272
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5273 5274
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
5275 5276 5277 5278

	ret = chipset_val + graphics_val;

out_unlock:
5279
	spin_unlock_irq(&mchdev_lock);
5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5295
	spin_lock_irq(&mchdev_lock);
5296 5297 5298 5299 5300 5301
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5302 5303
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
5304 5305

out_unlock:
5306
	spin_unlock_irq(&mchdev_lock);
5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5323
	spin_lock_irq(&mchdev_lock);
5324 5325 5326 5327 5328 5329
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5330 5331
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
5332 5333

out_unlock:
5334
	spin_unlock_irq(&mchdev_lock);
5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
5348
	struct intel_engine_cs *ring;
5349
	bool ret = false;
5350
	int i;
5351

5352
	spin_lock_irq(&mchdev_lock);
5353 5354 5355 5356
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5357 5358
	for_each_ring(ring, dev_priv, i)
		ret |= !list_empty(&ring->request_list);
5359 5360

out_unlock:
5361
	spin_unlock_irq(&mchdev_lock);
5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5378
	spin_lock_irq(&mchdev_lock);
5379 5380 5381 5382 5383 5384
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5385
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
5386

5387
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5388 5389 5390
		ret = false;

out_unlock:
5391
	spin_unlock_irq(&mchdev_lock);
5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
5419 5420
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
5421
	spin_lock_irq(&mchdev_lock);
5422
	i915_mch_dev = dev_priv;
5423
	spin_unlock_irq(&mchdev_lock);
5424 5425 5426 5427 5428 5429

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
5430
	spin_lock_irq(&mchdev_lock);
5431
	i915_mch_dev = NULL;
5432
	spin_unlock_irq(&mchdev_lock);
5433
}
5434

5435
static void intel_init_emon(struct drm_device *dev)
5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
		I915_WRITE(PEW + (i * 4), 0);
	for (i = 0; i < 3; i++)
		I915_WRITE(DEW + (i * 4), 0);

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
		I915_WRITE(PXW + (i * 4), val);
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
		I915_WRITE(PXWL + (i * 4), 0);

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

5503
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
5504 5505
}

5506 5507
void intel_init_gt_powersave(struct drm_device *dev)
{
I
Imre Deak 已提交
5508 5509
	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);

5510 5511 5512
	if (IS_CHERRYVIEW(dev))
		cherryview_init_gt_powersave(dev);
	else if (IS_VALLEYVIEW(dev))
5513
		valleyview_init_gt_powersave(dev);
5514 5515 5516 5517
}

void intel_cleanup_gt_powersave(struct drm_device *dev)
{
5518 5519 5520
	if (IS_CHERRYVIEW(dev))
		return;
	else if (IS_VALLEYVIEW(dev))
5521
		valleyview_cleanup_gt_powersave(dev);
5522 5523
}

5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537
static void gen6_suspend_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	flush_delayed_work(&dev_priv->rps.delayed_resume_work);

	/*
	 * TODO: disable RPS interrupts on GEN9+ too once RPS support
	 * is added for it.
	 */
	if (INTEL_INFO(dev)->gen < 9)
		gen6_disable_rps_interrupts(dev);
}

5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev: drm device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

I
Imre Deak 已提交
5550 5551 5552
	if (INTEL_INFO(dev)->gen < 6)
		return;

5553
	gen6_suspend_rps(dev);
5554 5555 5556

	/* Force GPU to min freq during suspend */
	gen6_rps_idle(dev_priv);
5557 5558
}

5559 5560
void intel_disable_gt_powersave(struct drm_device *dev)
{
5561 5562
	struct drm_i915_private *dev_priv = dev->dev_private;

5563
	if (IS_IRONLAKE_M(dev)) {
5564
		ironlake_disable_drps(dev);
5565
		ironlake_disable_rc6(dev);
5566
	} else if (INTEL_INFO(dev)->gen >= 6) {
5567
		intel_suspend_gt_powersave(dev);
5568

5569
		mutex_lock(&dev_priv->rps.hw_lock);
Z
Zhe Wang 已提交
5570 5571 5572
		if (INTEL_INFO(dev)->gen >= 9)
			gen9_disable_rps(dev);
		else if (IS_CHERRYVIEW(dev))
5573 5574
			cherryview_disable_rps(dev);
		else if (IS_VALLEYVIEW(dev))
5575 5576 5577
			valleyview_disable_rps(dev);
		else
			gen6_disable_rps(dev);
5578

5579
		dev_priv->rps.enabled = false;
5580
		mutex_unlock(&dev_priv->rps.hw_lock);
5581
	}
5582 5583
}

5584 5585 5586 5587 5588 5589 5590
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);
	struct drm_device *dev = dev_priv->dev;

5591
	mutex_lock(&dev_priv->rps.hw_lock);
5592

I
Imre Deak 已提交
5593 5594 5595 5596 5597 5598 5599
	/*
	 * TODO: reset/enable RPS interrupts on GEN9+ too, once RPS support is
	 * added for it.
	 */
	if (INTEL_INFO(dev)->gen < 9)
		gen6_reset_rps_interrupts(dev);

5600 5601 5602
	if (IS_CHERRYVIEW(dev)) {
		cherryview_enable_rps(dev);
	} else if (IS_VALLEYVIEW(dev)) {
5603
		valleyview_enable_rps(dev);
Z
Zhe Wang 已提交
5604
	} else if (INTEL_INFO(dev)->gen >= 9) {
J
Jesse Barnes 已提交
5605
		gen9_enable_rc6(dev);
Z
Zhe Wang 已提交
5606
		gen9_enable_rps(dev);
J
Jesse Barnes 已提交
5607
		__gen6_update_ring_freq(dev);
5608 5609
	} else if (IS_BROADWELL(dev)) {
		gen8_enable_rps(dev);
5610
		__gen6_update_ring_freq(dev);
5611 5612
	} else {
		gen6_enable_rps(dev);
5613
		__gen6_update_ring_freq(dev);
5614
	}
5615
	dev_priv->rps.enabled = true;
I
Imre Deak 已提交
5616 5617 5618 5619

	if (INTEL_INFO(dev)->gen < 9)
		gen6_enable_rps_interrupts(dev);

5620
	mutex_unlock(&dev_priv->rps.hw_lock);
5621 5622

	intel_runtime_pm_put(dev_priv);
5623 5624
}

5625 5626
void intel_enable_gt_powersave(struct drm_device *dev)
{
5627 5628
	struct drm_i915_private *dev_priv = dev->dev_private;

5629 5630 5631 5632
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev))
		return;

5633
	if (IS_IRONLAKE_M(dev)) {
5634
		mutex_lock(&dev->struct_mutex);
5635 5636 5637
		ironlake_enable_drps(dev);
		ironlake_enable_rc6(dev);
		intel_init_emon(dev);
5638
		mutex_unlock(&dev->struct_mutex);
5639
	} else if (INTEL_INFO(dev)->gen >= 6) {
5640 5641 5642 5643
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
5644 5645 5646 5647 5648 5649 5650
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
5651
		 */
5652 5653 5654
		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
					   round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
5655 5656 5657
	}
}

5658 5659 5660 5661
void intel_reset_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5662 5663 5664 5665
	if (INTEL_INFO(dev)->gen < 6)
		return;

	gen6_suspend_rps(dev);
5666 5667 5668
	dev_priv->rps.enabled = false;
}

5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

5681 5682 5683 5684 5685
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;

5686
	for_each_pipe(dev_priv, pipe) {
5687 5688 5689
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
5690
		intel_flush_primary_plane(dev_priv, pipe);
5691 5692 5693
	}
}

5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

5708
static void ironlake_init_clock_gating(struct drm_device *dev)
5709 5710
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5711
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5712

5713 5714 5715 5716
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
5717 5718 5719
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5737
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5738 5739 5740
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
5741 5742

	ilk_init_lp_watermarks(dev);
5743 5744 5745 5746 5747 5748 5749 5750 5751

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
5752
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
5753 5754 5755 5756 5757 5758 5759 5760
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

5761 5762
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

5763 5764 5765 5766 5767 5768
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
5769

5770
	/* WaDisableRenderCachePipelinedFlush:ilk */
5771 5772
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5773

5774 5775 5776
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5777
	g4x_disable_trickle_feed(dev);
5778

5779 5780 5781 5782 5783 5784 5785
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
5786
	uint32_t val;
5787 5788 5789 5790 5791 5792

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
5793 5794 5795
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
5796 5797
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
5798 5799 5800
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
5801
	for_each_pipe(dev_priv, pipe) {
5802 5803 5804
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5805
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
5806
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5807 5808 5809
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5810 5811
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
5812
	/* WADP0ClockGatingDisable */
5813
	for_each_pipe(dev_priv, pipe) {
5814 5815 5816
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
5817 5818
}

5819 5820 5821 5822 5823 5824
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
5825 5826 5827
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
5828 5829
}

5830
static void gen6_init_clock_gating(struct drm_device *dev)
5831 5832
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5833
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5834

5835
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5836 5837 5838 5839 5840

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

5841
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5842 5843 5844
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

5845 5846 5847
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5848 5849 5850
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
5851 5852 5853 5854
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5855 5856
	 */
	I915_WRITE(GEN6_GT_MODE,
5857
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
5858

5859
	ilk_init_lp_watermarks(dev);
5860 5861

	I915_WRITE(CACHE_MODE_0,
5862
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
5878
	 *
5879 5880
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
5881 5882 5883 5884 5885
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

5886
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
5887 5888
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
5889

5890 5891 5892 5893 5894 5895 5896 5897
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

5898 5899 5900 5901 5902 5903 5904 5905
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
5906 5907
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
5908 5909 5910 5911 5912 5913 5914
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
5915 5916 5917 5918
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5919

5920
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
5921

5922
	cpt_init_clock_gating(dev);
5923 5924

	gen6_check_mch_setup(dev);
5925 5926 5927 5928 5929 5930
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

5931
	/*
5932
	 * WaVSThreadDispatchOverride:ivb,vlv
5933 5934 5935 5936
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
5937 5938 5939 5940 5941 5942 5943 5944
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
5957 5958 5959 5960 5961

	/* WADPOClockGatingDisable:hsw */
	I915_WRITE(_TRANSA_CHICKEN1,
		   I915_READ(_TRANSA_CHICKEN1) |
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5962 5963
}

5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

5976
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
5977 5978
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5979
	enum pipe pipe;
B
Ben Widawsky 已提交
5980 5981 5982 5983

	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);
5984

5985
	/* WaSwitchSolVfFArbitrationPriority:bdw */
5986
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5987

5988
	/* WaPsrDPAMaskVBlankInSRD:bdw */
5989 5990 5991
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

5992
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
5993
	for_each_pipe(dev_priv, pipe) {
5994
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
5995
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
5996
			   BDW_DPRS_MASK_VBLANK_SRD);
5997
	}
5998

5999 6000 6001 6002 6003
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6004

6005 6006
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6007 6008 6009 6010

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6011

6012
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
6013 6014
}

6015 6016 6017 6018
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6019
	ilk_init_lp_watermarks(dev);
6020

6021 6022 6023 6024 6025
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

6026
	/* This is required by WaCatErrorRejectionIssue:hsw */
6027 6028 6029 6030
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6031 6032 6033
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6034

6035 6036 6037
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6038 6039 6040 6041
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

6042
	/* WaDisable4x2SubspanOptimization:hsw */
6043 6044
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6045

6046 6047 6048
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6049 6050 6051 6052
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6053 6054
	 */
	I915_WRITE(GEN7_GT_MODE,
6055
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6056

6057 6058 6059 6060
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

6061
	/* WaSwitchSolVfFArbitrationPriority:hsw */
6062 6063
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

6064 6065 6066
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6067

6068
	lpt_init_clock_gating(dev);
6069 6070
}

6071
static void ivybridge_init_clock_gating(struct drm_device *dev)
6072 6073
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6074
	uint32_t snpcr;
6075

6076
	ilk_init_lp_watermarks(dev);
6077

6078
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6079

6080
	/* WaDisableEarlyCull:ivb */
6081 6082 6083
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6084
	/* WaDisableBackToBackFlipFix:ivb */
6085 6086 6087 6088
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6089
	/* WaDisablePSDDualDispatchEnable:ivb */
6090 6091 6092 6093
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

6094 6095 6096
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6097
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6098 6099 6100
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

6101
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
6102 6103 6104
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6105 6106 6107 6108
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6109 6110 6111 6112
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6113 6114
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6115
	}
6116

6117
	/* WaForceL3Serialization:ivb */
6118 6119 6120
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6121
	/*
6122
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6123
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6124 6125
	 */
	I915_WRITE(GEN6_UCGCTL2,
6126
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6127

6128
	/* This is required by WaCatErrorRejectionIssue:ivb */
6129 6130 6131 6132
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6133
	g4x_disable_trickle_feed(dev);
6134 6135

	gen7_setup_fixed_func_scheduler(dev_priv);
6136

6137 6138 6139 6140 6141
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
6142

6143
	/* WaDisable4x2SubspanOptimization:ivb */
6144 6145
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6146

6147 6148 6149
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6150 6151 6152 6153
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6154 6155
	 */
	I915_WRITE(GEN7_GT_MODE,
6156
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6157

6158 6159 6160 6161
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6162

6163 6164
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
6165 6166

	gen6_check_mch_setup(dev);
6167 6168
}

6169
static void valleyview_init_clock_gating(struct drm_device *dev)
6170 6171 6172
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6173
	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6174

6175
	/* WaDisableEarlyCull:vlv */
6176 6177 6178
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6179
	/* WaDisableBackToBackFlipFix:vlv */
6180 6181 6182 6183
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6184
	/* WaPsdDispatchEnable:vlv */
6185
	/* WaDisablePSDDualDispatchEnable:vlv */
6186
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6187 6188
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6189

6190 6191 6192
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6193
	/* WaForceL3Serialization:vlv */
6194 6195 6196
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6197
	/* WaDisableDopClockGating:vlv */
6198 6199 6200
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

6201
	/* This is required by WaCatErrorRejectionIssue:vlv */
6202 6203 6204 6205
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6206 6207
	gen7_setup_fixed_func_scheduler(dev_priv);

6208
	/*
6209
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6210
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6211 6212
	 */
	I915_WRITE(GEN6_UCGCTL2,
6213
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6214

6215 6216 6217 6218 6219
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6220

6221
	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6222

6223 6224 6225 6226
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
6227 6228
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6229

6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

6241 6242 6243 6244 6245 6246
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

6247
	/*
6248
	 * WaDisableVLVClockGating_VBIIssue:vlv
6249 6250 6251
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
6252
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6253 6254
}

6255 6256 6257 6258 6259 6260 6261
static void cherryview_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);

	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6262

6263 6264 6265 6266 6267
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6268 6269 6270 6271

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6272 6273 6274 6275

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6276 6277 6278 6279

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6280 6281
}

6282
static void g4x_init_clock_gating(struct drm_device *dev)
6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6298 6299 6300 6301

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6302

6303 6304 6305
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6306
	g4x_disable_trickle_feed(dev);
6307 6308
}

6309
static void crestline_init_clock_gating(struct drm_device *dev)
6310 6311 6312 6313 6314 6315 6316 6317
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
6318 6319
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6320 6321 6322

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6323 6324
}

6325
static void broadwater_init_clock_gating(struct drm_device *dev)
6326 6327 6328 6329 6330 6331 6332 6333 6334
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
6335 6336
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6337 6338 6339

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6340 6341
}

6342
static void gen3_init_clock_gating(struct drm_device *dev)
6343 6344 6345 6346 6347 6348 6349
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
6350 6351 6352

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6353 6354 6355

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6356 6357

	/* interrupts should cause a wake up from C3 */
6358
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6359 6360 6361

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6362 6363 6364

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6365 6366
}

6367
static void i85x_init_clock_gating(struct drm_device *dev)
6368 6369 6370 6371
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6372 6373 6374 6375

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6376 6377 6378

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6379 6380
}

6381
static void i830_init_clock_gating(struct drm_device *dev)
6382 6383 6384 6385
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6386 6387 6388 6389

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6390 6391 6392 6393 6394 6395
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6396 6397
	if (dev_priv->display.init_clock_gating)
		dev_priv->display.init_clock_gating(dev);
6398 6399
}

6400 6401 6402 6403 6404 6405
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

6406 6407 6408 6409 6410
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6411
	intel_fbc_init(dev_priv);
6412

6413 6414 6415 6416 6417 6418
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

6419
	/* For FIFO watermark updates */
6420
	if (INTEL_INFO(dev)->gen >= 9) {
6421 6422
		skl_setup_wm_latency(dev);

6423
		dev_priv->display.init_clock_gating = skl_init_clock_gating;
6424 6425
		dev_priv->display.update_wm = skl_update_wm;
		dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
6426
	} else if (HAS_PCH_SPLIT(dev)) {
6427
		ilk_setup_wm_latency(dev);
6428

6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
			dev_priv->display.update_wm = ilk_update_wm;
			dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}

		if (IS_GEN5(dev))
6441
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6442
		else if (IS_GEN6(dev))
6443
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6444
		else if (IS_IVYBRIDGE(dev))
6445
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6446
		else if (IS_HASWELL(dev))
6447
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6448
		else if (INTEL_INFO(dev)->gen == 8)
6449
			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
6450
	} else if (IS_CHERRYVIEW(dev)) {
6451
		dev_priv->display.update_wm = cherryview_update_wm;
6452
		dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6453 6454
		dev_priv->display.init_clock_gating =
			cherryview_init_clock_gating;
6455 6456
	} else if (IS_VALLEYVIEW(dev)) {
		dev_priv->display.update_wm = valleyview_update_wm;
6457
		dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470
		dev_priv->display.init_clock_gating =
			valleyview_init_clock_gating;
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
6471
			intel_set_memory_cxsr(dev_priv, false);
6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
		if (IS_CRESTLINE(dev))
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
		else if (IS_BROADWATER(dev))
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6489 6490 6491
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
6492
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
6493 6494
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
6495
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
6496 6497 6498 6499 6500 6501 6502 6503
		}

		if (IS_I85X(dev) || IS_I865G(dev))
			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
		else
			dev_priv->display.init_clock_gating = i830_init_clock_gating;
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6504 6505 6506
	}
}

6507
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
6508
{
6509
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
6510 6511 6512 6513 6514 6515 6516

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
6517
	I915_WRITE(GEN6_PCODE_DATA1, 0);
B
Ben Widawsky 已提交
6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

6532
int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
B
Ben Widawsky 已提交
6533
{
6534
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
6554

6555
static int vlv_gpu_freq_div(unsigned int czclk_freq)
6556
{
6557 6558 6559 6560 6561 6562 6563 6564
	switch (czclk_freq) {
	case 200:
		return 10;
	case 267:
		return 12;
	case 320:
	case 333:
		return 16;
6565 6566
	case 400:
		return 20;
6567 6568 6569
	default:
		return -1;
	}
6570
}
6571

6572 6573 6574 6575 6576 6577 6578 6579 6580
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);

	div = vlv_gpu_freq_div(czclk_freq);
	if (div < 0)
		return div;

	return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
6581 6582
}

6583
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
6584
{
6585
	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
6586

6587 6588 6589
	mul = vlv_gpu_freq_div(czclk_freq);
	if (mul < 0)
		return mul;
6590

6591
	return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
6592 6593
}

6594
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6595
{
6596
	int div, czclk_freq = dev_priv->rps.cz_freq;
6597

6598 6599 6600
	div = vlv_gpu_freq_div(czclk_freq) / 2;
	if (div < 0)
		return div;
6601

6602
	return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
6603 6604
}

6605
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6606
{
6607
	int mul, czclk_freq = dev_priv->rps.cz_freq;
6608

6609 6610 6611
	mul = vlv_gpu_freq_div(czclk_freq) / 2;
	if (mul < 0)
		return mul;
6612

6613
	/* CHV needs even values */
6614
	return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
6615 6616
}

6617
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
6618 6619
{
	if (IS_CHERRYVIEW(dev_priv->dev))
6620
		return chv_gpu_freq(dev_priv, val);
6621
	else if (IS_VALLEYVIEW(dev_priv->dev))
6622 6623 6624
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
6625 6626
}

6627 6628
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
6629
	if (IS_CHERRYVIEW(dev_priv->dev))
6630
		return chv_freq_opcode(dev_priv, val);
6631
	else if (IS_VALLEYVIEW(dev_priv->dev))
6632 6633 6634 6635
		return byt_freq_opcode(dev_priv, val);
	else
		return val / GT_FREQUENCY_MULTIPLIER;
}
6636

D
Daniel Vetter 已提交
6637
void intel_pm_setup(struct drm_device *dev)
6638 6639 6640
{
	struct drm_i915_private *dev_priv = dev->dev_private;

D
Daniel Vetter 已提交
6641 6642
	mutex_init(&dev_priv->rps.hw_lock);

6643 6644
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
6645

6646
	dev_priv->pm.suspended = false;
6647
}