blk-mq.c 57.0 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
24
#include <linux/crash_dump.h>
25
#include <linux/prefetch.h>
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
42
	return sbitmap_any_bit_set(&hctx->ctx_map);
43 44
}

45 46 47 48 49 50
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
51 52
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
53 54 55 56 57
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
58
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
59 60
}

61
void blk_mq_freeze_queue_start(struct request_queue *q)
62
{
63
	int freeze_depth;
64

65 66
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
67
		percpu_ref_kill(&q->q_usage_counter);
68
		blk_mq_run_hw_queues(q, false);
69
	}
70
}
71
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
72 73 74

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
75
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
76 77
}

78 79 80 81
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
82
void blk_freeze_queue(struct request_queue *q)
83
{
84 85 86 87 88 89 90
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
91 92 93
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
94 95 96 97 98 99 100 101 102

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
103
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
104

105
void blk_mq_unfreeze_queue(struct request_queue *q)
106
{
107
	int freeze_depth;
108

109 110 111
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
112
		percpu_ref_reinit(&q->q_usage_counter);
113
		wake_up_all(&q->mq_freeze_wq);
114
	}
115
}
116
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
117

118 119 120 121 122 123 124 125
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
126 127 128 129 130 131 132

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
133 134
}

135 136 137 138 139 140
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

141
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
142 143
			       struct request *rq, int op,
			       unsigned int op_flags)
144
{
145
	if (blk_queue_io_stat(q))
146
		op_flags |= REQ_IO_STAT;
147

148 149 150
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
151
	rq->mq_ctx = ctx;
152
	req_set_op_attrs(rq, op, op_flags);
153 154 155 156 157 158
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
159
	rq->start_time = jiffies;
160 161
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
162
	set_start_time_ns(rq);
163 164 165 166 167 168 169 170 171 172
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

173 174
	rq->cmd = rq->__cmd;

175 176 177 178 179 180
	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
181 182
	rq->timeout = 0;

183 184 185 186
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

187
	ctx->rq_dispatched[rw_is_sync(op, op_flags)]++;
188 189
}

190
static struct request *
191
__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int op, int op_flags)
192 193 194 195
{
	struct request *rq;
	unsigned int tag;

196
	tag = blk_mq_get_tag(data);
197
	if (tag != BLK_MQ_TAG_FAIL) {
198
		rq = data->hctx->tags->rqs[tag];
199

200
		if (blk_mq_tag_busy(data->hctx)) {
201
			rq->cmd_flags = REQ_MQ_INFLIGHT;
202
			atomic_inc(&data->hctx->nr_active);
203 204 205
		}

		rq->tag = tag;
206
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op, op_flags);
207 208 209 210 211 212
		return rq;
	}

	return NULL;
}

213 214
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
215
{
216 217
	struct blk_mq_ctx *ctx;
	struct blk_mq_hw_ctx *hctx;
218
	struct request *rq;
219
	struct blk_mq_alloc_data alloc_data;
220
	int ret;
221

222
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
223 224
	if (ret)
		return ERR_PTR(ret);
225

226 227
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);
228
	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
229
	rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
230
	blk_mq_put_ctx(ctx);
231

K
Keith Busch 已提交
232
	if (!rq) {
233
		blk_queue_exit(q);
234
		return ERR_PTR(-EWOULDBLOCK);
K
Keith Busch 已提交
235
	}
236 237 238 239

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
240 241
	return rq;
}
242
EXPORT_SYMBOL(blk_mq_alloc_request);
243

M
Ming Lin 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	struct blk_mq_alloc_data alloc_data;
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

	hctx = q->queue_hw_ctx[hctx_idx];
	ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));

	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
	rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
	if (!rq) {
		blk_queue_exit(q);
		return ERR_PTR(-EWOULDBLOCK);
	}

	return rq;
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

283 284 285 286 287 288
static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

289 290
	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
		atomic_dec(&hctx->nr_active);
291
	rq->cmd_flags = 0;
292

293
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
294
	blk_mq_put_tag(hctx, ctx, tag);
295
	blk_queue_exit(q);
296 297
}

298
void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
299 300 301 302 303
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
	__blk_mq_free_request(hctx, ctx, rq);
304 305 306 307 308 309 310 311 312 313 314

}
EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);

void blk_mq_free_request(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q = rq->q;

	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
	blk_mq_free_hctx_request(hctx, rq);
315
}
J
Jens Axboe 已提交
316
EXPORT_SYMBOL_GPL(blk_mq_free_request);
317

318
inline void __blk_mq_end_request(struct request *rq, int error)
319
{
M
Ming Lei 已提交
320 321
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
322
	if (rq->end_io) {
323
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
324 325 326
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
327
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
328
	}
329
}
330
EXPORT_SYMBOL(__blk_mq_end_request);
331

332
void blk_mq_end_request(struct request *rq, int error)
333 334 335
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
336
	__blk_mq_end_request(rq, error);
337
}
338
EXPORT_SYMBOL(blk_mq_end_request);
339

340
static void __blk_mq_complete_request_remote(void *data)
341
{
342
	struct request *rq = data;
343

344
	rq->q->softirq_done_fn(rq);
345 346
}

347
static void blk_mq_ipi_complete_request(struct request *rq)
348 349
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
350
	bool shared = false;
351 352
	int cpu;

C
Christoph Hellwig 已提交
353
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
354 355 356
		rq->q->softirq_done_fn(rq);
		return;
	}
357 358

	cpu = get_cpu();
C
Christoph Hellwig 已提交
359 360 361 362
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
363
		rq->csd.func = __blk_mq_complete_request_remote;
364 365
		rq->csd.info = rq;
		rq->csd.flags = 0;
366
		smp_call_function_single_async(ctx->cpu, &rq->csd);
367
	} else {
368
		rq->q->softirq_done_fn(rq);
369
	}
370 371
	put_cpu();
}
372

373
static void __blk_mq_complete_request(struct request *rq)
374 375 376 377
{
	struct request_queue *q = rq->q;

	if (!q->softirq_done_fn)
378
		blk_mq_end_request(rq, rq->errors);
379 380 381 382
	else
		blk_mq_ipi_complete_request(rq);
}

383 384 385 386 387 388 389 390
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
391
void blk_mq_complete_request(struct request *rq, int error)
392
{
393 394 395
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
396
		return;
397 398
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
399
		__blk_mq_complete_request(rq);
400
	}
401 402
}
EXPORT_SYMBOL(blk_mq_complete_request);
403

404 405 406 407 408 409
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

410
void blk_mq_start_request(struct request *rq)
411 412 413 414 415
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
416
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
417 418
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
419

420
	blk_add_timer(rq);
421

422 423 424 425 426 427
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

428 429 430 431 432 433
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
434 435 436 437
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
438 439 440 441 442 443 444 445 446

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
447
}
448
EXPORT_SYMBOL(blk_mq_start_request);
449

450
static void __blk_mq_requeue_request(struct request *rq)
451 452 453 454
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
455

456 457 458 459
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
460 461
}

462 463 464 465 466
void blk_mq_requeue_request(struct request *rq)
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
467
	blk_mq_add_to_requeue_list(rq, true);
468 469 470
}
EXPORT_SYMBOL(blk_mq_requeue_request);

471 472 473
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
474
		container_of(work, struct request_queue, requeue_work.work);
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
			continue;

		rq->cmd_flags &= ~REQ_SOFTBARRIER;
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

498 499 500 501 502
	/*
	 * Use the start variant of queue running here, so that running
	 * the requeue work will kick stopped queues.
	 */
	blk_mq_start_hw_queues(q);
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
}

void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
		rq->cmd_flags |= REQ_SOFTBARRIER;
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

527 528
void blk_mq_cancel_requeue_work(struct request_queue *q)
{
529
	cancel_delayed_work_sync(&q->requeue_work);
530 531 532
}
EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);

533 534
void blk_mq_kick_requeue_list(struct request_queue *q)
{
535
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
536 537 538
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

539 540 541 542 543 544 545 546
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

567 568
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
569 570
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
571
		return tags->rqs[tag];
572
	}
573 574

	return NULL;
575 576 577
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

578
struct blk_mq_timeout_data {
579 580
	unsigned long next;
	unsigned int next_set;
581 582
};

583
void blk_mq_rq_timed_out(struct request *req, bool reserved)
584
{
585 586
	struct blk_mq_ops *ops = req->q->mq_ops;
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
587 588 589 590 591 592 593 594 595 596

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
597 598
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
599

600
	if (ops->timeout)
601
		ret = ops->timeout(req, reserved);
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
617
}
618

619 620 621 622
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
623

624 625 626 627 628
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		/*
		 * If a request wasn't started before the queue was
		 * marked dying, kill it here or it'll go unnoticed.
		 */
629 630 631 632
		if (unlikely(blk_queue_dying(rq->q))) {
			rq->errors = -EIO;
			blk_mq_end_request(rq, rq->errors);
		}
633
		return;
634
	}
635

636 637
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
638
			blk_mq_rq_timed_out(rq, reserved);
639 640 641 642
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
643 644
}

645
static void blk_mq_timeout_work(struct work_struct *work)
646
{
647 648
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
649 650 651 652 653
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
654

655 656 657 658 659 660 661 662 663 664 665 666 667 668
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
	 * blk_mq_freeze_queue_start, and the moment the last request is
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
669 670
		return;

671
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
672

673 674 675
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
676
	} else {
677 678
		struct blk_mq_hw_ctx *hctx;

679 680 681 682 683
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
684
	}
685
	blk_queue_exit(q);
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

745 746 747 748 749 750
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
751 752 753 754
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
755

756
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
757 758
}

759 760 761 762 763 764 765 766
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;

	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
}

767 768 769 770 771 772 773 774 775 776 777
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
778 779
	LIST_HEAD(driver_list);
	struct list_head *dptr;
780
	int queued;
781

782
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
783 784
		return;

785 786 787
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

788 789 790 791 792
	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
793
	flush_busy_ctxs(hctx, &rq_list);
794 795 796 797 798 799 800 801 802 803 804 805

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

806 807 808 809 810 811
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

812 813 814
	/*
	 * Now process all the entries, sending them to the driver.
	 */
815
	queued = 0;
816
	while (!list_empty(&rq_list)) {
817
		struct blk_mq_queue_data bd;
818 819 820 821 822
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

823 824 825 826 827
		bd.rq = rq;
		bd.list = dptr;
		bd.last = list_empty(&rq_list);

		ret = q->mq_ops->queue_rq(hctx, &bd);
828 829 830
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
831
			break;
832 833
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
834
			__blk_mq_requeue_request(rq);
835 836 837 838
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
839
			rq->errors = -EIO;
840
			blk_mq_end_request(rq, rq->errors);
841 842 843 844 845
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
846 847 848 849 850 851 852

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
		if (!dptr && rq_list.next != rq_list.prev)
			dptr = &driver_list;
853 854
	}

855
	hctx->dispatched[queued_to_index(queued)]++;
856 857 858 859 860 861 862 863 864

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
865 866 867 868 869 870 871 872 873 874
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
		 **/
		blk_mq_run_hw_queue(hctx, true);
875 876 877
	}
}

878 879 880 881 882 883 884 885
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
886 887
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
888 889

	if (--hctx->next_cpu_batch <= 0) {
890
		int cpu = hctx->next_cpu, next_cpu;
891 892 893 894 895 896 897

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
898 899

		return cpu;
900 901
	}

902
	return hctx->next_cpu;
903 904
}

905 906
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
907 908
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
	    !blk_mq_hw_queue_mapped(hctx)))
909 910
		return;

911
	if (!async) {
912 913
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
914
			__blk_mq_run_hw_queue(hctx);
915
			put_cpu();
916 917
			return;
		}
918

919
		put_cpu();
920
	}
921

922
	kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
923 924
}

925
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
926 927 928 929 930 931 932
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
933
		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
934 935
			continue;

936
		blk_mq_run_hw_queue(hctx, async);
937 938
	}
}
939
EXPORT_SYMBOL(blk_mq_run_hw_queues);
940 941 942

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
943
	cancel_work(&hctx->run_work);
944
	cancel_delayed_work(&hctx->delay_work);
945 946 947 948
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

949 950 951 952 953 954 955 956 957 958
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

959 960 961
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
962

963
	blk_mq_run_hw_queue(hctx, false);
964 965 966
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

967 968 969 970 971 972 973 974 975 976
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

977
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
978 979 980 981 982 983 984 985 986
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
987
		blk_mq_run_hw_queue(hctx, async);
988 989 990 991
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

992
static void blk_mq_run_work_fn(struct work_struct *work)
993 994 995
{
	struct blk_mq_hw_ctx *hctx;

996
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
997

998 999 1000
	__blk_mq_run_hw_queue(hctx);
}

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1013 1014
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1015

1016 1017
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1018 1019 1020
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1021 1022 1023
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1024
{
J
Jens Axboe 已提交
1025 1026
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1027 1028
	trace_block_rq_insert(hctx->queue, rq);

1029 1030 1031 1032
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1033
}
1034

1035 1036 1037 1038 1039
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
				    struct request *rq, bool at_head)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1040
	__blk_mq_insert_req_list(hctx, rq, at_head);
1041 1042 1043
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1044
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
J
Jens Axboe 已提交
1045
			   bool async)
1046
{
J
Jens Axboe 已提交
1047
	struct blk_mq_ctx *ctx = rq->mq_ctx;
1048
	struct request_queue *q = rq->q;
1049 1050 1051 1052
	struct blk_mq_hw_ctx *hctx;

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1053 1054 1055
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, at_head);
	spin_unlock(&ctx->lock);
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
	struct blk_mq_hw_ctx *hctx;

	trace_block_unplug(q, depth, !from_schedule);

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1083
		BUG_ON(rq->mq_ctx != ctx);
1084
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1085
		__blk_mq_insert_req_list(hctx, rq, false);
1086
	}
1087
	blk_mq_hctx_mark_pending(hctx, ctx);
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1153

1154
	blk_account_io_start(rq, 1);
1155 1156
}

1157 1158 1159 1160 1161 1162
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1163 1164 1165
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1166
{
1167
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1168 1169 1170 1171 1172 1173 1174
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1175 1176
		struct request_queue *q = hctx->queue;

1177 1178 1179 1180 1181
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1182

1183 1184 1185
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1186
	}
1187
}
1188

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
struct blk_map_ctx {
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
};

static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
					  struct blk_map_ctx *data)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
1201 1202
	int op = bio_data_dir(bio);
	int op_flags = 0;
1203
	struct blk_mq_alloc_data alloc_data;
1204

1205
	blk_queue_enter_live(q);
1206 1207 1208
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

J
Jens Axboe 已提交
1209
	if (rw_is_sync(bio_op(bio), bio->bi_opf))
1210
		op_flags |= REQ_SYNC;
1211

1212
	trace_block_getrq(q, bio, op);
1213
	blk_mq_set_alloc_data(&alloc_data, q, BLK_MQ_REQ_NOWAIT, ctx, hctx);
1214
	rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
1215
	if (unlikely(!rq)) {
1216
		blk_mq_run_hw_queue(hctx, false);
1217
		blk_mq_put_ctx(ctx);
1218
		trace_block_sleeprq(q, bio, op);
1219 1220

		ctx = blk_mq_get_ctx(q);
1221
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1222
		blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
1223
		rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
1224 1225
		ctx = alloc_data.ctx;
		hctx = alloc_data.hctx;
1226 1227 1228
	}

	hctx->queued++;
1229 1230 1231 1232 1233
	data->hctx = hctx;
	data->ctx = ctx;
	return rq;
}

1234
static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
{
	int ret;
	struct request_queue *q = rq->q;
	struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
			rq->mq_ctx->cpu);
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};
1245
	blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1246 1247 1248 1249 1250 1251 1252

	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1253 1254
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1255
		return 0;
1256
	}
1257

1258 1259 1260 1261 1262 1263 1264
	__blk_mq_requeue_request(rq);

	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
		return 0;
1265
	}
1266 1267

	return -1;
1268 1269
}

1270 1271 1272 1273 1274
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
1275
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1276
{
J
Jens Axboe 已提交
1277 1278
	const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1279 1280
	struct blk_map_ctx data;
	struct request *rq;
1281 1282
	unsigned int request_count = 0;
	struct blk_plug *plug;
1283
	struct request *same_queue_rq = NULL;
1284
	blk_qc_t cookie;
1285 1286 1287 1288

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1289
		bio_io_error(bio);
1290
		return BLK_QC_T_NONE;
1291 1292
	}

1293 1294
	blk_queue_split(q, &bio, q->bio_split);

1295 1296 1297
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1298

1299 1300
	rq = blk_mq_map_request(q, bio, &data);
	if (unlikely(!rq))
1301
		return BLK_QC_T_NONE;
1302

1303
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1304 1305 1306 1307 1308 1309 1310

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

1311
	plug = current->plug;
1312 1313 1314 1315 1316
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1317 1318 1319
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1320 1321 1322 1323

		blk_mq_bio_to_request(rq, bio);

		/*
1324
		 * We do limited pluging. If the bio can be merged, do that.
1325 1326
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1327
		 */
1328
		if (plug) {
1329 1330
			/*
			 * The plug list might get flushed before this. If that
1331 1332 1333
			 * happens, same_queue_rq is invalid and plug list is
			 * empty
			 */
1334 1335
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1336
				list_del_init(&old_rq->queuelist);
1337
			}
1338 1339 1340 1341 1342
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1343 1344 1345
			goto done;
		if (!blk_mq_direct_issue_request(old_rq, &cookie))
			goto done;
1346
		blk_mq_insert_request(old_rq, false, true, true);
1347
		goto done;
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
1361 1362
done:
	return cookie;
1363 1364 1365 1366 1367 1368
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
1369
static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1370
{
J
Jens Axboe 已提交
1371 1372
	const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1373 1374
	struct blk_plug *plug;
	unsigned int request_count = 0;
1375 1376
	struct blk_map_ctx data;
	struct request *rq;
1377
	blk_qc_t cookie;
1378 1379 1380 1381

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1382
		bio_io_error(bio);
1383
		return BLK_QC_T_NONE;
1384 1385
	}

1386 1387
	blk_queue_split(q, &bio, q->bio_split);

1388 1389 1390 1391 1392
	if (!is_flush_fua && !blk_queue_nomerges(q)) {
		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
			return BLK_QC_T_NONE;
	} else
		request_count = blk_plug_queued_count(q);
1393 1394

	rq = blk_mq_map_request(q, bio, &data);
1395
	if (unlikely(!rq))
1396
		return BLK_QC_T_NONE;
1397

1398
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1411 1412 1413
	plug = current->plug;
	if (plug) {
		blk_mq_bio_to_request(rq, bio);
M
Ming Lei 已提交
1414
		if (!request_count)
1415
			trace_block_plug(q);
1416 1417 1418 1419

		blk_mq_put_ctx(data.ctx);

		if (request_count >= BLK_MAX_REQUEST_COUNT) {
1420 1421
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1422
		}
1423

1424
		list_add_tail(&rq->queuelist, &plug->mq_list);
1425
		return cookie;
1426 1427
	}

1428 1429 1430 1431 1432 1433 1434 1435 1436
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1437 1438
	}

1439
	blk_mq_put_ctx(data.ctx);
1440
	return cookie;
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
}

/*
 * Default mapping to a software queue, since we use one per CPU.
 */
struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
{
	return q->queue_hw_ctx[q->mq_map[cpu]];
}
EXPORT_SYMBOL(blk_mq_map_queue);

1452 1453
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1454
{
1455
	struct page *page;
1456

1457
	if (tags->rqs && set->ops->exit_request) {
1458
		int i;
1459

1460 1461
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1462
				continue;
1463 1464
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1465
			tags->rqs[i] = NULL;
1466
		}
1467 1468
	}

1469 1470
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1471
		list_del_init(&page->lru);
1472 1473 1474 1475 1476
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1477 1478 1479
		__free_pages(page, page->private);
	}

1480
	kfree(tags->rqs);
1481

1482
	blk_mq_free_tags(tags);
1483 1484 1485 1486
}

static size_t order_to_size(unsigned int order)
{
1487
	return (size_t)PAGE_SIZE << order;
1488 1489
}

1490 1491
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1492
{
1493
	struct blk_mq_tags *tags;
1494 1495 1496
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1497
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
S
Shaohua Li 已提交
1498 1499
				set->numa_node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1500 1501
	if (!tags)
		return NULL;
1502

1503 1504
	INIT_LIST_HEAD(&tags->page_list);

1505 1506 1507
	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
1508 1509 1510 1511
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1512 1513 1514 1515 1516

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1517
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1518
				cache_line_size());
1519
	left = rq_size * set->queue_depth;
1520

1521
	for (i = 0; i < set->queue_depth; ) {
1522 1523 1524 1525 1526
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1527
		while (this_order && left < order_to_size(this_order - 1))
1528 1529 1530
			this_order--;

		do {
1531
			page = alloc_pages_node(set->numa_node,
1532
				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1533
				this_order);
1534 1535 1536 1537 1538 1539 1540 1541 1542
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1543
			goto fail;
1544 1545

		page->private = this_order;
1546
		list_add_tail(&page->lru, &tags->page_list);
1547 1548

		p = page_address(page);
1549 1550 1551 1552 1553
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1554
		entries_per_page = order_to_size(this_order) / rq_size;
1555
		to_do = min(entries_per_page, set->queue_depth - i);
1556 1557
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1558 1559 1560 1561
			tags->rqs[i] = p;
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
1562 1563
						set->numa_node)) {
					tags->rqs[i] = NULL;
1564
					goto fail;
1565
				}
1566 1567
			}

1568 1569 1570 1571
			p += rq_size;
			i++;
		}
	}
1572
	return tags;
1573

1574 1575 1576
fail:
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1577 1578
}

J
Jens Axboe 已提交
1579 1580 1581 1582 1583
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1584 1585 1586 1587 1588
static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

J
Jens Axboe 已提交
1589
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
		return NOTIFY_OK;

J
Jens Axboe 已提交
1601 1602 1603
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615

	blk_mq_run_hw_queue(hctx, true);
	return NOTIFY_OK;
}

static int blk_mq_hctx_notify(void *data, unsigned long action,
			      unsigned int cpu)
{
	struct blk_mq_hw_ctx *hctx = data;

	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
		return blk_mq_hctx_cpu_offline(hctx, cpu);
M
Ming Lei 已提交
1616 1617 1618 1619 1620

	/*
	 * In case of CPU online, tags may be reallocated
	 * in blk_mq_map_swqueue() after mapping is updated.
	 */
1621 1622 1623 1624

	return NOTIFY_OK;
}

1625
/* hctx->ctxs will be freed in queue's release handler */
1626 1627 1628 1629
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1630 1631
	unsigned flush_start_tag = set->queue_depth;

1632 1633
	blk_mq_tag_idle(hctx);

1634 1635 1636 1637 1638
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1639 1640 1641 1642
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1643
	blk_free_flush_queue(hctx->fq);
1644
	sbitmap_free(&hctx->ctx_map);
1645 1646
}

M
Ming Lei 已提交
1647 1648 1649 1650 1651 1652 1653 1654 1655
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1656
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1657 1658 1659 1660 1661 1662 1663 1664 1665
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

1666
	queue_for_each_hw_ctx(q, hctx, i)
M
Ming Lei 已提交
1667 1668 1669
		free_cpumask_var(hctx->cpumask);
}

1670 1671 1672
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1673
{
1674
	int node;
1675
	unsigned flush_start_tag = set->queue_depth;
1676 1677 1678 1679 1680

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1681
	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1682 1683 1684 1685 1686
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1687
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1688 1689 1690 1691 1692 1693

	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
					blk_mq_hctx_notify, hctx);
	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);

	hctx->tags = set->tags[hctx_idx];
1694 1695

	/*
1696 1697
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1698
	 */
1699 1700 1701 1702
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1703

1704 1705
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1706
		goto free_ctxs;
1707

1708
	hctx->nr_ctx = 0;
1709

1710 1711 1712
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1713

1714 1715 1716
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1717

1718 1719 1720 1721 1722
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1723

1724
	return 0;
1725

1726 1727 1728 1729 1730
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1731
 free_bitmap:
1732
	sbitmap_free(&hctx->ctx_map);
1733 1734 1735 1736
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1737

1738 1739
	return -1;
}
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

1760 1761
		hctx = q->mq_ops->map_queue(q, i);

1762 1763 1764 1765 1766
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1767
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1768 1769 1770
	}
}

1771 1772
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
1773 1774 1775 1776
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
1777
	struct blk_mq_tag_set *set = q->tag_set;
1778

1779 1780 1781 1782 1783
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

1784
	queue_for_each_hw_ctx(q, hctx, i) {
1785
		cpumask_clear(hctx->cpumask);
1786 1787 1788 1789 1790 1791
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
1792
	for_each_possible_cpu(i) {
1793
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1794
		if (!cpumask_test_cpu(i, online_mask))
1795 1796
			continue;

1797
		ctx = per_cpu_ptr(q->queue_ctx, i);
1798
		hctx = q->mq_ops->map_queue(q, i);
K
Keith Busch 已提交
1799

1800
		cpumask_set_cpu(i, hctx->cpumask);
1801 1802 1803
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1804

1805 1806
	mutex_unlock(&q->sysfs_lock);

1807
	queue_for_each_hw_ctx(q, hctx, i) {
1808
		/*
1809 1810
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
1811 1812 1813 1814 1815 1816
		 */
		if (!hctx->nr_ctx) {
			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
			}
M
Ming Lei 已提交
1817
			hctx->tags = NULL;
1818 1819 1820
			continue;
		}

M
Ming Lei 已提交
1821 1822 1823 1824 1825 1826
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[i])
			set->tags[i] = blk_mq_init_rq_map(set, i);
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

1827
		cpumask_copy(hctx->tags->cpumask, hctx->cpumask);
1828 1829 1830 1831 1832
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
1833
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
1834

1835 1836 1837
		/*
		 * Initialize batch roundrobin counts
		 */
1838 1839 1840
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1841 1842
}

1843
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1844 1845 1846 1847
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
1859 1860 1861

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
1862
		queue_set_hctx_shared(q, shared);
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
1873 1874 1875 1876 1877 1878
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
1879 1880 1881 1882 1883 1884 1885 1886 1887
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
1888 1889 1890 1891 1892 1893 1894 1895 1896

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
1897
	list_add_tail(&q->tag_set_list, &set->tag_list);
1898

1899 1900 1901
	mutex_unlock(&set->tag_list_lock);
}

1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
1914 1915 1916 1917
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
		kfree(hctx->ctxs);
1918
		kfree(hctx);
1919
	}
1920

1921 1922 1923
	kfree(q->mq_map);
	q->mq_map = NULL;

1924 1925 1926 1927 1928 1929
	kfree(q->queue_hw_ctx);

	/* ctx kobj stays in queue_ctx */
	free_percpu(q->queue_ctx);
}

1930
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
1946 1947
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
1948
{
K
Keith Busch 已提交
1949 1950
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
1951

K
Keith Busch 已提交
1952
	blk_mq_sysfs_unregister(q);
1953
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
1954
		int node;
1955

K
Keith Busch 已提交
1956 1957 1958 1959
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
1960 1961
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
1962
		if (!hctxs[i])
K
Keith Busch 已提交
1963
			break;
1964

1965
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
1966 1967 1968 1969 1970
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
1971

1972
		atomic_set(&hctxs[i]->nr_active, 0);
1973
		hctxs[i]->numa_node = node;
1974
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
1975 1976 1977 1978 1979 1980 1981 1982

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
1983
	}
K
Keith Busch 已提交
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
			if (hctx->tags) {
				blk_mq_free_rq_map(set, hctx->tags, j);
				set->tags[j] = NULL;
			}
			blk_mq_exit_hctx(q, set, hctx, j);
			free_cpumask_var(hctx->cpumask);
			kobject_put(&hctx->kobj);
			kfree(hctx->ctxs);
			kfree(hctx);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2008 2009 2010
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

K
Keith Busch 已提交
2011 2012
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2013
		goto err_exit;
K
Keith Busch 已提交
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026

	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

	q->mq_map = blk_mq_make_queue_map(set);
	if (!q->mq_map)
		goto err_map;

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2027

2028
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2029
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2030 2031 2032

	q->nr_queues = nr_cpu_ids;

2033
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2034

2035 2036 2037
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2038 2039
	q->sg_reserved_size = INT_MAX;

2040
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2041 2042 2043
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2044 2045 2046 2047 2048
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2049 2050 2051 2052 2053
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2054 2055
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2056

2057
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2058

2059
	get_online_cpus();
2060 2061
	mutex_lock(&all_q_mutex);

2062
	list_add_tail(&q->all_q_node, &all_q_list);
2063
	blk_mq_add_queue_tag_set(set, q);
2064
	blk_mq_map_swqueue(q, cpu_online_mask);
2065

2066
	mutex_unlock(&all_q_mutex);
2067
	put_online_cpus();
2068

2069
	return q;
2070

2071
err_hctxs:
K
Keith Busch 已提交
2072
	kfree(q->mq_map);
2073
err_map:
K
Keith Busch 已提交
2074
	kfree(q->queue_hw_ctx);
2075
err_percpu:
K
Keith Busch 已提交
2076
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2077 2078
err_exit:
	q->mq_ops = NULL;
2079 2080
	return ERR_PTR(-ENOMEM);
}
2081
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2082 2083 2084

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2085
	struct blk_mq_tag_set	*set = q->tag_set;
2086

2087 2088 2089 2090
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2091 2092
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2093 2094
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
2095 2096 2097
}

/* Basically redo blk_mq_init_queue with queue frozen */
2098 2099
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2100
{
2101
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2102

2103 2104
	blk_mq_sysfs_unregister(q);

2105
	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2106 2107 2108 2109 2110 2111 2112

	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2113
	blk_mq_map_swqueue(q, online_mask);
2114

2115
	blk_mq_sysfs_register(q);
2116 2117
}

2118 2119
static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
				      unsigned long action, void *hcpu)
2120 2121
{
	struct request_queue *q;
2122 2123 2124 2125 2126 2127 2128
	int cpu = (unsigned long)hcpu;
	/*
	 * New online cpumask which is going to be set in this hotplug event.
	 * Declare this cpumasks as global as cpu-hotplug operation is invoked
	 * one-by-one and dynamically allocating this could result in a failure.
	 */
	static struct cpumask online_new;
2129 2130

	/*
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
	 * Before hotadded cpu starts handling requests, new mappings must
	 * be established.  Otherwise, these requests in hw queue might
	 * never be dispatched.
	 *
	 * For example, there is a single hw queue (hctx) and two CPU queues
	 * (ctx0 for CPU0, and ctx1 for CPU1).
	 *
	 * Now CPU1 is just onlined and a request is inserted into
	 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
	 * still zero.
	 *
	 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
	 * set in pending bitmap and tries to retrieve requests in
	 * hctx->ctxs[0]->rq_list.  But htx->ctxs[0] is a pointer to ctx0,
	 * so the request in ctx1->rq_list is ignored.
2146
	 */
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DEAD:
	case CPU_UP_CANCELED:
		cpumask_copy(&online_new, cpu_online_mask);
		break;
	case CPU_UP_PREPARE:
		cpumask_copy(&online_new, cpu_online_mask);
		cpumask_set_cpu(cpu, &online_new);
		break;
	default:
2157
		return NOTIFY_OK;
2158
	}
2159 2160

	mutex_lock(&all_q_mutex);
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170

	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2171
	list_for_each_entry(q, &all_q_list, all_q_node) {
2172 2173
		blk_mq_freeze_queue_wait(q);

2174 2175 2176 2177 2178 2179 2180
		/*
		 * timeout handler can't touch hw queue during the
		 * reinitialization
		 */
		del_timer_sync(&q->timeout);
	}

2181
	list_for_each_entry(q, &all_q_list, all_q_node)
2182
		blk_mq_queue_reinit(q, &online_new);
2183 2184 2185 2186

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2187 2188 2189 2190
	mutex_unlock(&all_q_mutex);
	return NOTIFY_OK;
}

2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

K
Keith Busch 已提交
2245 2246 2247 2248 2249 2250
struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
{
	return tags->cpumask;
}
EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);

2251 2252 2253 2254 2255 2256
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2257 2258
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
B
Bart Van Assche 已提交
2259 2260
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2261 2262
	if (!set->nr_hw_queues)
		return -EINVAL;
2263
	if (!set->queue_depth)
2264 2265 2266 2267
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

2268
	if (!set->ops->queue_rq || !set->ops->map_queue)
2269 2270
		return -EINVAL;

2271 2272 2273 2274 2275
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2276

2277 2278 2279 2280 2281 2282 2283 2284 2285
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2286 2287 2288 2289 2290
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2291

K
Keith Busch 已提交
2292
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2293 2294
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2295
		return -ENOMEM;
2296

2297 2298
	if (blk_mq_alloc_rq_maps(set))
		goto enomem;
2299

2300 2301 2302
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2303
	return 0;
2304
enomem:
2305 2306
	kfree(set->tags);
	set->tags = NULL;
2307 2308 2309 2310 2311 2312 2313 2314
	return -ENOMEM;
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

K
Keith Busch 已提交
2315
	for (i = 0; i < nr_cpu_ids; i++) {
2316
		if (set->tags[i])
2317 2318 2319
			blk_mq_free_rq_map(set, set->tags[i], i);
	}

M
Ming Lei 已提交
2320
	kfree(set->tags);
2321
	set->tags = NULL;
2322 2323 2324
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2336 2337
		if (!hctx->tags)
			continue;
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

K
Keith Busch 已提交
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);

		if (q->nr_hw_queues > 1)
			blk_queue_make_request(q, blk_mq_make_request);
		else
			blk_queue_make_request(q, blk_sq_make_request);

		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2388 2389 2390 2391
static int __init blk_mq_init(void)
{
	blk_mq_cpu_init();

2392
	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2393 2394 2395 2396

	return 0;
}
subsys_initcall(blk_mq_init);