blk-mq.c 47.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);

static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
					   unsigned int cpu)
{
	return per_cpu_ptr(q->queue_ctx, cpu);
}

/*
 * This assumes per-cpu software queueing queues. They could be per-node
 * as well, for instance. For now this is hardcoded as-is. Note that we don't
 * care about preemption, since we know the ctx's are persistent. This does
 * mean that we can't rely on ctx always matching the currently running CPU.
 */
static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
{
	return __blk_mq_get_ctx(q, get_cpu());
}

static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
{
	put_cpu();
}

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
	unsigned int i;

59 60
	for (i = 0; i < hctx->ctx_map.map_size; i++)
		if (hctx->ctx_map.map[i].word)
61 62 63 64 65
			return true;

	return false;
}

66 67 68 69 70 71 72 73 74
static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
					      struct blk_mq_ctx *ctx)
{
	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
}

#define CTX_TO_BIT(hctx, ctx)	\
	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))

75 76 77 78 79 80
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
81 82 83 84 85 86 87 88 89 90 91 92
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
}

static int blk_mq_queue_enter(struct request_queue *q)
{
	int ret;

	__percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
	smp_wmb();
	/* we have problems to freeze the queue if it's initializing */
	if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
		return 0;

	__percpu_counter_add(&q->mq_usage_counter, -1, 1000000);

	spin_lock_irq(q->queue_lock);
	ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
109 110
		!blk_queue_bypass(q) || blk_queue_dying(q),
		*q->queue_lock);
111
	/* inc usage with lock hold to avoid freeze_queue runs here */
112
	if (!ret && !blk_queue_dying(q))
113
		__percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
114 115
	else if (blk_queue_dying(q))
		ret = -ENODEV;
116 117 118 119 120 121 122 123 124 125
	spin_unlock_irq(q->queue_lock);

	return ret;
}

static void blk_mq_queue_exit(struct request_queue *q)
{
	__percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
}

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
static void __blk_mq_drain_queue(struct request_queue *q)
{
	while (true) {
		s64 count;

		spin_lock_irq(q->queue_lock);
		count = percpu_counter_sum(&q->mq_usage_counter);
		spin_unlock_irq(q->queue_lock);

		if (count == 0)
			break;
		blk_mq_run_queues(q, false);
		msleep(10);
	}
}

142 143 144 145 146 147 148 149 150 151 152 153 154
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
static void blk_mq_freeze_queue(struct request_queue *q)
{
	bool drain;

	spin_lock_irq(q->queue_lock);
	drain = !q->bypass_depth++;
	queue_flag_set(QUEUE_FLAG_BYPASS, q);
	spin_unlock_irq(q->queue_lock);

155 156 157
	if (drain)
		__blk_mq_drain_queue(q);
}
158

159 160 161
void blk_mq_drain_queue(struct request_queue *q)
{
	__blk_mq_drain_queue(q);
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
}

static void blk_mq_unfreeze_queue(struct request_queue *q)
{
	bool wake = false;

	spin_lock_irq(q->queue_lock);
	if (!--q->bypass_depth) {
		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
		wake = true;
	}
	WARN_ON_ONCE(q->bypass_depth < 0);
	spin_unlock_irq(q->queue_lock);
	if (wake)
		wake_up_all(&q->mq_freeze_wq);
}

bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

185 186
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			       struct request *rq, unsigned int rw_flags)
187
{
188 189 190
	if (blk_queue_io_stat(q))
		rw_flags |= REQ_IO_STAT;

191 192 193
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
194
	rq->mq_ctx = ctx;
195
	rq->cmd_flags |= rw_flags;
196 197 198 199 200 201 202 203 204 205 206 207
	rq->cmd_type = 0;
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = NULL;
	rq->biotail = NULL;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	memset(&rq->flush, 0, max(sizeof(rq->flush), sizeof(rq->elv)));
	rq->rq_disk = NULL;
	rq->part = NULL;
208
	rq->start_time = jiffies;
209 210
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
211
	set_start_time_ns(rq);
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->ioprio = 0;
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;
	memset(rq->__cmd, 0, sizeof(rq->__cmd));
	rq->cmd = rq->__cmd;
	rq->cmd_len = BLK_MAX_CDB;

	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	rq->deadline = 0;
	INIT_LIST_HEAD(&rq->timeout_list);
	rq->timeout = 0;
	rq->retries = 0;
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

239 240 241
	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
}

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
static struct request *
__blk_mq_alloc_request(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
		struct blk_mq_ctx *ctx, int rw, gfp_t gfp, bool reserved)
{
	struct request *rq;
	unsigned int tag;

	tag = blk_mq_get_tag(hctx, &ctx->last_tag, gfp, reserved);
	if (tag != BLK_MQ_TAG_FAIL) {
		rq = hctx->tags->rqs[tag];

		rq->cmd_flags = 0;
		if (blk_mq_tag_busy(hctx)) {
			rq->cmd_flags = REQ_MQ_INFLIGHT;
			atomic_inc(&hctx->nr_active);
		}

		rq->tag = tag;
		blk_mq_rq_ctx_init(q, ctx, rq, rw);
		return rq;
	}

	return NULL;
}

267 268 269 270
static struct request *blk_mq_alloc_request_pinned(struct request_queue *q,
						   int rw, gfp_t gfp,
						   bool reserved)
{
271
	bool gfp_mask = gfp & ~__GFP_WAIT;
272 273 274 275 276 277
	struct request *rq;

	do {
		struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
		struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);

278
		rq = __blk_mq_alloc_request(q, hctx, ctx, rw, gfp_mask,
279
						reserved);
280
		if (rq)
281 282
			break;

283
		if (!(gfp & __GFP_WAIT)) {
284
			blk_mq_put_ctx(ctx);
285
			break;
286
		}
287

288 289 290
		__blk_mq_run_hw_queue(hctx);
		blk_mq_put_ctx(ctx);
		gfp_mask = gfp;
291 292 293 294 295
	} while (1);

	return rq;
}

296 297
struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
		bool reserved)
298 299 300 301 302 303
{
	struct request *rq;

	if (blk_mq_queue_enter(q))
		return NULL;

304
	rq = blk_mq_alloc_request_pinned(q, rw, gfp, reserved);
305 306
	if (rq)
		blk_mq_put_ctx(rq->mq_ctx);
307 308
	return rq;
}
309
EXPORT_SYMBOL(blk_mq_alloc_request);
310 311 312 313 314 315 316

static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

317 318 319
	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
		atomic_dec(&hctx->nr_active);

320
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
321
	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
	blk_mq_queue_exit(q);
}

void blk_mq_free_request(struct request *rq)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q = rq->q;

	ctx->rq_completed[rq_is_sync(rq)]++;

	hctx = q->mq_ops->map_queue(q, ctx->cpu);
	__blk_mq_free_request(hctx, ctx, rq);
}

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
/*
 * Clone all relevant state from a request that has been put on hold in
 * the flush state machine into the preallocated flush request that hangs
 * off the request queue.
 *
 * For a driver the flush request should be invisible, that's why we are
 * impersonating the original request here.
 */
void blk_mq_clone_flush_request(struct request *flush_rq,
		struct request *orig_rq)
{
	struct blk_mq_hw_ctx *hctx =
		orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);

	flush_rq->mq_ctx = orig_rq->mq_ctx;
	flush_rq->tag = orig_rq->tag;
	memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
		hctx->cmd_size);
}

357
inline void __blk_mq_end_io(struct request *rq, int error)
358
{
M
Ming Lei 已提交
359 360
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
361
	if (rq->end_io) {
362
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
363 364 365
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
366
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
367
	}
368
}
369 370 371 372 373 374 375 376 377
EXPORT_SYMBOL(__blk_mq_end_io);

void blk_mq_end_io(struct request *rq, int error)
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
	__blk_mq_end_io(rq, error);
}
EXPORT_SYMBOL(blk_mq_end_io);
378

379
static void __blk_mq_complete_request_remote(void *data)
380
{
381
	struct request *rq = data;
382

383
	rq->q->softirq_done_fn(rq);
384 385
}

386
void __blk_mq_complete_request(struct request *rq)
387 388
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
389
	bool shared = false;
390 391
	int cpu;

C
Christoph Hellwig 已提交
392
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
393 394 395
		rq->q->softirq_done_fn(rq);
		return;
	}
396 397

	cpu = get_cpu();
C
Christoph Hellwig 已提交
398 399 400 401
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
402
		rq->csd.func = __blk_mq_complete_request_remote;
403 404
		rq->csd.info = rq;
		rq->csd.flags = 0;
405
		smp_call_function_single_async(ctx->cpu, &rq->csd);
406
	} else {
407
		rq->q->softirq_done_fn(rq);
408
	}
409 410
	put_cpu();
}
411 412 413 414 415 416 417 418 419 420 421

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
void blk_mq_complete_request(struct request *rq)
{
422 423 424
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
425
		return;
426 427 428 429 430 431
	if (!blk_mark_rq_complete(rq)) {
		if (q->softirq_done_fn)
			__blk_mq_complete_request(rq);
		else
			blk_mq_end_io(rq, rq->errors);
	}
432 433
}
EXPORT_SYMBOL(blk_mq_complete_request);
434

435
static void blk_mq_start_request(struct request *rq, bool last)
436 437 438 439 440
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
441
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
442 443
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
444

445 446 447
	/*
	 * Just mark start time and set the started bit. Due to memory
	 * ordering, we know we'll see the correct deadline as long as
448 449
	 * REQ_ATOMIC_STARTED is seen. Use the default queue timeout,
	 * unless one has been set in the request.
450
	 */
451 452 453 454
	if (!rq->timeout)
		rq->deadline = jiffies + q->rq_timeout;
	else
		rq->deadline = jiffies + rq->timeout;
455 456 457 458 459 460 461

	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
462
	set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
463
	clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}

	/*
	 * Flag the last request in the series so that drivers know when IO
	 * should be kicked off, if they don't do it on a per-request basis.
	 *
	 * Note: the flag isn't the only condition drivers should do kick off.
	 * If drive is busy, the last request might not have the bit set.
	 */
	if (last)
		rq->cmd_flags |= REQ_END;
483 484
}

485
static void __blk_mq_requeue_request(struct request *rq)
486 487 488 489 490
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
491 492 493 494 495

	rq->cmd_flags &= ~REQ_END;

	if (q->dma_drain_size && blk_rq_bytes(rq))
		rq->nr_phys_segments--;
496 497
}

498 499 500 501 502 503
void blk_mq_requeue_request(struct request *rq)
{
	__blk_mq_requeue_request(rq);
	blk_clear_rq_complete(rq);

	BUG_ON(blk_queued_rq(rq));
504
	blk_mq_add_to_requeue_list(rq, true);
505 506 507
}
EXPORT_SYMBOL(blk_mq_requeue_request);

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
		container_of(work, struct request_queue, requeue_work);
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
			continue;

		rq->cmd_flags &= ~REQ_SOFTBARRIER;
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

	blk_mq_run_queues(q, false);
}

void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
		rq->cmd_flags |= REQ_SOFTBARRIER;
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
	kblockd_schedule_work(&q->requeue_work);
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

566 567 568 569 570 571
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
	return tags->rqs[tag];
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
struct blk_mq_timeout_data {
	struct blk_mq_hw_ctx *hctx;
	unsigned long *next;
	unsigned int *next_set;
};

static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
{
	struct blk_mq_timeout_data *data = __data;
	struct blk_mq_hw_ctx *hctx = data->hctx;
	unsigned int tag;

	 /* It may not be in flight yet (this is where
	 * the REQ_ATOMIC_STARTED flag comes in). The requests are
	 * statically allocated, so we know it's always safe to access the
	 * memory associated with a bit offset into ->rqs[].
	 */
	tag = 0;
	do {
		struct request *rq;

593 594
		tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
		if (tag >= hctx->tags->nr_tags)
595 596
			break;

597 598 599
		rq = blk_mq_tag_to_rq(hctx->tags, tag++);
		if (rq->q != hctx->queue)
			continue;
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
		if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
			continue;

		blk_rq_check_expired(rq, data->next, data->next_set);
	} while (1);
}

static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
					unsigned long *next,
					unsigned int *next_set)
{
	struct blk_mq_timeout_data data = {
		.hctx		= hctx,
		.next		= next,
		.next_set	= next_set,
	};

	/*
	 * Ask the tagging code to iterate busy requests, so we can
	 * check them for timeout.
	 */
	blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
}

624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
{
	struct request_queue *q = rq->q;

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		return BLK_EH_NOT_HANDLED;

	if (!q->mq_ops->timeout)
		return BLK_EH_RESET_TIMER;

	return q->mq_ops->timeout(rq);
}

646 647 648 649 650 651 652
static void blk_mq_rq_timer(unsigned long data)
{
	struct request_queue *q = (struct request_queue *) data;
	struct blk_mq_hw_ctx *hctx;
	unsigned long next = 0;
	int i, next_set = 0;

653 654 655 656 657 658 659 660
	queue_for_each_hw_ctx(q, hctx, i) {
		/*
		 * If not software queues are currently mapped to this
		 * hardware queue, there's nothing to check
		 */
		if (!hctx->nr_ctx || !hctx->tags)
			continue;

661
		blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
662
	}
663

664 665 666 667 668 669 670
	if (next_set) {
		next = blk_rq_timeout(round_jiffies_up(next));
		mod_timer(&q->timeout, next);
	} else {
		queue_for_each_hw_ctx(q, hctx, i)
			blk_mq_tag_idle(hctx);
	}
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
	struct blk_mq_ctx *ctx;
	int i;

	for (i = 0; i < hctx->ctx_map.map_size; i++) {
		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
		unsigned int off, bit;

		if (!bm->word)
			continue;

		bit = 0;
		off = i * hctx->ctx_map.bits_per_word;
		do {
			bit = find_next_bit(&bm->word, bm->depth, bit);
			if (bit >= bm->depth)
				break;

			ctx = hctx->ctxs[bit + off];
			clear_bit(bit, &bm->word);
			spin_lock(&ctx->lock);
			list_splice_tail_init(&ctx->rq_list, list);
			spin_unlock(&ctx->lock);

			bit++;
		} while (1);
	}
}

746 747 748 749 750 751 752 753 754 755 756
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
757
	int queued;
758

759
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
760

761
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
762 763 764 765 766 767 768
		return;

	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
769
	flush_busy_ctxs(hctx, &rq_list);
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

	/*
	 * Now process all the entries, sending them to the driver.
	 */
785
	queued = 0;
786 787 788 789 790 791
	while (!list_empty(&rq_list)) {
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

792
		blk_mq_start_request(rq, list_empty(&rq_list));
793 794 795 796 797 798 799 800

		ret = q->mq_ops->queue_rq(hctx, rq);
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
			continue;
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
801
			__blk_mq_requeue_request(rq);
802 803 804 805
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
806
			rq->errors = -EIO;
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
			blk_mq_end_io(rq, rq->errors);
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
	}

	if (!queued)
		hctx->dispatched[0]++;
	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
		hctx->dispatched[ilog2(queued) + 1]++;

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
	}
}

831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = hctx->next_cpu;

	if (--hctx->next_cpu_batch <= 0) {
		int next_cpu;

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

	return cpu;
}

855 856
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
857
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
858 859
		return;

860
	if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
861
		__blk_mq_run_hw_queue(hctx);
862
	else if (hctx->queue->nr_hw_queues == 1)
863
		kblockd_schedule_delayed_work(&hctx->run_work, 0);
864 865 866
	else {
		unsigned int cpu;

867
		cpu = blk_mq_hctx_next_cpu(hctx);
868
		kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
869
	}
870 871 872 873 874 875 876 877 878 879
}

void blk_mq_run_queues(struct request_queue *q, bool async)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
880
		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
881 882
			continue;

883
		preempt_disable();
884
		blk_mq_run_hw_queue(hctx, async);
885
		preempt_enable();
886 887 888 889 890 891
	}
}
EXPORT_SYMBOL(blk_mq_run_queues);

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
892 893
	cancel_delayed_work(&hctx->run_work);
	cancel_delayed_work(&hctx->delay_work);
894 895 896 897
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

898 899 900 901 902 903 904 905 906 907
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

908 909 910
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
911 912

	preempt_disable();
913
	__blk_mq_run_hw_queue(hctx);
914
	preempt_enable();
915 916 917
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

918 919 920 921 922 923 924 925 926 927 928
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);


929
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
930 931 932 933 934 935 936 937 938
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
939
		preempt_disable();
940
		blk_mq_run_hw_queue(hctx, async);
941
		preempt_enable();
942 943 944 945
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

946
static void blk_mq_run_work_fn(struct work_struct *work)
947 948 949
{
	struct blk_mq_hw_ctx *hctx;

950
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
951

952 953 954
	__blk_mq_run_hw_queue(hctx);
}

955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	unsigned long tmo = msecs_to_jiffies(msecs);

	if (hctx->queue->nr_hw_queues == 1)
		kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
	else {
		unsigned int cpu;

974
		cpu = blk_mq_hctx_next_cpu(hctx);
975 976 977 978 979
		kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
	}
}
EXPORT_SYMBOL(blk_mq_delay_queue);

980
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
981
				    struct request *rq, bool at_head)
982 983 984
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

985 986
	trace_block_rq_insert(hctx->queue, rq);

987 988 989 990
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
991

992 993 994 995 996
	blk_mq_hctx_mark_pending(hctx, ctx);

	/*
	 * We do this early, to ensure we are on the right CPU.
	 */
997
	blk_add_timer(rq);
998 999
}

1000 1001
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
		bool async)
1002
{
1003
	struct request_queue *q = rq->q;
1004
	struct blk_mq_hw_ctx *hctx;
1005 1006 1007 1008 1009
	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;

	current_ctx = blk_mq_get_ctx(q);
	if (!cpu_online(ctx->cpu))
		rq->mq_ctx = ctx = current_ctx;
1010 1011 1012

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1013 1014
	if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
	    !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
1015 1016 1017
		blk_insert_flush(rq);
	} else {
		spin_lock(&ctx->lock);
1018
		__blk_mq_insert_request(hctx, rq, at_head);
1019 1020 1021 1022 1023
		spin_unlock(&ctx->lock);
	}

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
1024 1025

	blk_mq_put_ctx(current_ctx);
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *current_ctx;

	trace_block_unplug(q, depth, !from_schedule);

	current_ctx = blk_mq_get_ctx(q);

	if (!cpu_online(ctx->cpu))
		ctx = current_ctx;
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->mq_ctx = ctx;
1057
		__blk_mq_insert_request(hctx, rq, false);
1058 1059 1060 1061
	}
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
1062
	blk_mq_put_ctx(current_ctx);
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
	blk_account_io_start(rq, 1);
}

1128 1129 1130
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1131
{
1132
	struct request_queue *q = hctx->queue;
1133

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
	if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE)) {
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1147

1148 1149 1150
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1151
	}
1152
}
1153

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
struct blk_map_ctx {
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
};

static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
					  struct blk_map_ctx *data)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	int rw = bio_data_dir(bio);
1167

1168
	if (unlikely(blk_mq_queue_enter(q))) {
1169
		bio_endio(bio, -EIO);
1170
		return NULL;
1171 1172 1173 1174 1175
	}

	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1176
	if (rw_is_sync(bio->bi_rw))
S
Shaohua Li 已提交
1177
		rw |= REQ_SYNC;
1178

1179
	trace_block_getrq(q, bio, rw);
1180 1181
	rq = __blk_mq_alloc_request(q, hctx, ctx, rw, GFP_ATOMIC, false);
	if (unlikely(!rq)) {
1182
		__blk_mq_run_hw_queue(hctx);
1183 1184
		blk_mq_put_ctx(ctx);
		trace_block_sleeprq(q, bio, rw);
1185 1186

		ctx = blk_mq_get_ctx(q);
1187
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1188 1189
		rq = __blk_mq_alloc_request(q, hctx, ctx, rw,
					    __GFP_WAIT|GFP_ATOMIC, false);
1190 1191 1192
	}

	hctx->queued++;
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
	data->hctx = hctx;
	data->ctx = ctx;
	return rq;
}

/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	struct blk_map_ctx data;
	struct request *rq;

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
		bio_endio(bio, -EIO);
		return;
	}

	rq = blk_mq_map_request(q, bio, &data);
	if (unlikely(!rq))
		return;

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	if (is_sync) {
		int ret;

		blk_mq_bio_to_request(rq, bio);
		blk_mq_start_request(rq, true);

		/*
		 * For OK queue, we are done. For error, kill it. Any other
		 * error (busy), just add it to our list as we previously
		 * would have done
		 */
		ret = q->mq_ops->queue_rq(data.hctx, rq);
		if (ret == BLK_MQ_RQ_QUEUE_OK)
			goto done;
		else {
			__blk_mq_requeue_request(rq);

			if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
				rq->errors = -EIO;
				blk_mq_end_io(rq, rq->errors);
				goto done;
			}
		}
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
done:
	blk_mq_put_ctx(data.ctx);
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	unsigned int use_plug, request_count = 0;
	struct blk_map_ctx data;
	struct request *rq;

	/*
	 * If we have multiple hardware queues, just go directly to
	 * one of those for sync IO.
	 */
	use_plug = !is_flush_fua && !is_sync;

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
		bio_endio(bio, -EIO);
		return;
	}

	if (use_plug && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count))
		return;

	rq = blk_mq_map_request(q, bio, &data);
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
	if (use_plug) {
		struct blk_plug *plug = current->plug;

		if (plug) {
			blk_mq_bio_to_request(rq, bio);
S
Shaohua Li 已提交
1313
			if (list_empty(&plug->mq_list))
1314 1315 1316 1317 1318 1319
				trace_block_plug(q);
			else if (request_count >= BLK_MAX_REQUEST_COUNT) {
				blk_flush_plug_list(plug, false);
				trace_block_plug(q);
			}
			list_add_tail(&rq->queuelist, &plug->mq_list);
1320
			blk_mq_put_ctx(data.ctx);
1321 1322 1323 1324
			return;
		}
	}

1325 1326 1327 1328 1329 1330 1331 1332 1333
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1334 1335
	}

1336
	blk_mq_put_ctx(data.ctx);
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
}

/*
 * Default mapping to a software queue, since we use one per CPU.
 */
struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
{
	return q->queue_hw_ctx[q->mq_map[cpu]];
}
EXPORT_SYMBOL(blk_mq_map_queue);

1348
struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_tag_set *set,
1349 1350
						   unsigned int hctx_index,
						   int node)
1351
{
1352
	return kzalloc_node(sizeof(struct blk_mq_hw_ctx), GFP_KERNEL, node);
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
}
EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue);

void blk_mq_free_single_hw_queue(struct blk_mq_hw_ctx *hctx,
				 unsigned int hctx_index)
{
	kfree(hctx);
}
EXPORT_SYMBOL(blk_mq_free_single_hw_queue);

1363 1364
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1365
{
1366
	struct page *page;
1367

1368
	if (tags->rqs && set->ops->exit_request) {
1369
		int i;
1370

1371 1372
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1373
				continue;
1374 1375
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1376
		}
1377 1378
	}

1379 1380
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1381
		list_del_init(&page->lru);
1382 1383 1384
		__free_pages(page, page->private);
	}

1385
	kfree(tags->rqs);
1386

1387
	blk_mq_free_tags(tags);
1388 1389 1390 1391
}

static size_t order_to_size(unsigned int order)
{
1392
	return (size_t)PAGE_SIZE << order;
1393 1394
}

1395 1396
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1397
{
1398
	struct blk_mq_tags *tags;
1399 1400 1401
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1402 1403 1404 1405
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
				set->numa_node);
	if (!tags)
		return NULL;
1406

1407 1408 1409 1410 1411 1412 1413 1414
	INIT_LIST_HEAD(&tags->page_list);

	tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *),
					GFP_KERNEL, set->numa_node);
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1415 1416 1417 1418 1419

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1420
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1421
				cache_line_size());
1422
	left = rq_size * set->queue_depth;
1423

1424
	for (i = 0; i < set->queue_depth; ) {
1425 1426 1427 1428 1429 1430 1431 1432 1433
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

		while (left < order_to_size(this_order - 1) && this_order)
			this_order--;

		do {
1434 1435
			page = alloc_pages_node(set->numa_node, GFP_KERNEL,
						this_order);
1436 1437 1438 1439 1440 1441 1442 1443 1444
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1445
			goto fail;
1446 1447

		page->private = this_order;
1448
		list_add_tail(&page->lru, &tags->page_list);
1449 1450 1451

		p = page_address(page);
		entries_per_page = order_to_size(this_order) / rq_size;
1452
		to_do = min(entries_per_page, set->queue_depth - i);
1453 1454
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1455 1456 1457 1458 1459 1460
			tags->rqs[i] = p;
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
						set->numa_node))
					goto fail;
1461 1462
			}

1463 1464 1465 1466 1467
			p += rq_size;
			i++;
		}
	}

1468
	return tags;
1469

1470 1471 1472 1473
fail:
	pr_warn("%s: failed to allocate requests\n", __func__);
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1474 1475
}

1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
{
	kfree(bitmap->map);
}

static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
{
	unsigned int bpw = 8, total, num_maps, i;

	bitmap->bits_per_word = bpw;

	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
					GFP_KERNEL, node);
	if (!bitmap->map)
		return -ENOMEM;

	bitmap->map_size = num_maps;

	total = nr_cpu_ids;
	for (i = 0; i < num_maps; i++) {
		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
		total -= bitmap->map[i].depth;
	}

	return 0;
}

1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

	/*
	 * Move ctx entries to new CPU, if this one is going away.
	 */
	ctx = __blk_mq_get_ctx(q, cpu);

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
		return NOTIFY_OK;

	ctx = blk_mq_get_ctx(q);
	spin_lock(&ctx->lock);

	while (!list_empty(&tmp)) {
		struct request *rq;

		rq = list_first_entry(&tmp, struct request, queuelist);
		rq->mq_ctx = ctx;
		list_move_tail(&rq->queuelist, &ctx->rq_list);
	}

	hctx = q->mq_ops->map_queue(q, ctx->cpu);
	blk_mq_hctx_mark_pending(hctx, ctx);

	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, true);
	blk_mq_put_ctx(ctx);
	return NOTIFY_OK;
}

static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_tag_set *set = q->tag_set;

	if (set->tags[hctx->queue_num])
		return NOTIFY_OK;

	set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
	if (!set->tags[hctx->queue_num])
		return NOTIFY_STOP;

	hctx->tags = set->tags[hctx->queue_num];
	return NOTIFY_OK;
}

static int blk_mq_hctx_notify(void *data, unsigned long action,
			      unsigned int cpu)
{
	struct blk_mq_hw_ctx *hctx = data;

	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
		return blk_mq_hctx_cpu_offline(hctx, cpu);
	else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
		return blk_mq_hctx_cpu_online(hctx, cpu);

	return NOTIFY_OK;
}

M
Ming Lei 已提交
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;

		if (set->ops->exit_hctx)
			set->ops->exit_hctx(hctx, i);

		blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
		kfree(hctx->ctxs);
		blk_mq_free_bitmap(&hctx->ctx_map);
	}

}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		free_cpumask_var(hctx->cpumask);
		set->ops->free_hctx(hctx, i);
	}
}

1607
static int blk_mq_init_hw_queues(struct request_queue *q,
1608
		struct blk_mq_tag_set *set)
1609 1610
{
	struct blk_mq_hw_ctx *hctx;
M
Ming Lei 已提交
1611
	unsigned int i;
1612 1613 1614 1615 1616 1617 1618 1619 1620

	/*
	 * Initialize hardware queues
	 */
	queue_for_each_hw_ctx(q, hctx, i) {
		int node;

		node = hctx->numa_node;
		if (node == NUMA_NO_NODE)
1621
			node = hctx->numa_node = set->numa_node;
1622

1623 1624
		INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
		INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1625 1626 1627 1628
		spin_lock_init(&hctx->lock);
		INIT_LIST_HEAD(&hctx->dispatch);
		hctx->queue = q;
		hctx->queue_num = i;
1629 1630
		hctx->flags = set->flags;
		hctx->cmd_size = set->cmd_size;
1631 1632 1633 1634 1635

		blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
						blk_mq_hctx_notify, hctx);
		blk_mq_register_cpu_notifier(&hctx->cpu_notifier);

1636
		hctx->tags = set->tags[i];
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646

		/*
		 * Allocate space for all possible cpus to avoid allocation in
		 * runtime
		 */
		hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
						GFP_KERNEL, node);
		if (!hctx->ctxs)
			break;

1647
		if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1648 1649 1650 1651
			break;

		hctx->nr_ctx = 0;

1652 1653
		if (set->ops->init_hctx &&
		    set->ops->init_hctx(hctx, set->driver_data, i))
1654 1655 1656 1657 1658 1659 1660 1661 1662
			break;
	}

	if (i == q->nr_hw_queues)
		return 0;

	/*
	 * Init failed
	 */
M
Ming Lei 已提交
1663
	blk_mq_exit_hw_queues(q, set, i);
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686

	return 1;
}

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

1687 1688 1689 1690
		hctx = q->mq_ops->map_queue(q, i);
		cpumask_set_cpu(i, hctx->cpumask);
		hctx->nr_ctx++;

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
			hctx->numa_node = cpu_to_node(i);
	}
}

static void blk_mq_map_swqueue(struct request_queue *q)
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;

	queue_for_each_hw_ctx(q, hctx, i) {
1707
		cpumask_clear(hctx->cpumask);
1708 1709 1710 1711 1712 1713 1714 1715
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
	queue_for_each_ctx(q, ctx, i) {
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1716 1717 1718
		if (!cpu_online(i))
			continue;

1719
		hctx = q->mq_ops->map_queue(q, i);
1720
		cpumask_set_cpu(i, hctx->cpumask);
1721 1722 1723
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1724 1725

	queue_for_each_hw_ctx(q, hctx, i) {
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
		/*
		 * If not software queues are mapped to this hardware queue,
		 * disable it and free the request entries
		 */
		if (!hctx->nr_ctx) {
			struct blk_mq_tag_set *set = q->tag_set;

			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
				hctx->tags = NULL;
			}
			continue;
		}

		/*
		 * Initialize batch roundrobin counts
		 */
1744 1745 1746
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1747 1748
}

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q;
	bool shared;
	int i;

	if (set->tag_list.next == set->tag_list.prev)
		shared = false;
	else
		shared = true;

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);

		queue_for_each_hw_ctx(q, hctx, i) {
			if (shared)
				hctx->flags |= BLK_MQ_F_TAG_SHARED;
			else
				hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
		}
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	blk_mq_freeze_queue(q);

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
	blk_mq_update_tag_set_depth(set);
	mutex_unlock(&set->tag_list_lock);

	blk_mq_unfreeze_queue(q);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
	list_add_tail(&q->tag_set_list, &set->tag_list);
	blk_mq_update_tag_set_depth(set);
	mutex_unlock(&set->tag_list_lock);
}

1799
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1800 1801 1802 1803
{
	struct blk_mq_hw_ctx **hctxs;
	struct blk_mq_ctx *ctx;
	struct request_queue *q;
1804
	unsigned int *map;
1805 1806 1807 1808 1809 1810
	int i;

	ctx = alloc_percpu(struct blk_mq_ctx);
	if (!ctx)
		return ERR_PTR(-ENOMEM);

1811 1812
	hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
			set->numa_node);
1813 1814 1815 1816

	if (!hctxs)
		goto err_percpu;

1817 1818 1819 1820
	map = blk_mq_make_queue_map(set);
	if (!map)
		goto err_map;

1821
	for (i = 0; i < set->nr_hw_queues; i++) {
1822 1823 1824
		int node = blk_mq_hw_queue_to_node(map, i);

		hctxs[i] = set->ops->alloc_hctx(set, i, node);
1825 1826 1827
		if (!hctxs[i])
			goto err_hctxs;

1828 1829 1830
		if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
			goto err_hctxs;

1831
		atomic_set(&hctxs[i]->nr_active, 0);
1832
		hctxs[i]->numa_node = node;
1833 1834 1835
		hctxs[i]->queue_num = i;
	}

1836
	q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1837 1838 1839
	if (!q)
		goto err_hctxs;

1840 1841 1842
	if (percpu_counter_init(&q->mq_usage_counter, 0))
		goto err_map;

1843 1844 1845 1846
	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
	blk_queue_rq_timeout(q, 30000);

	q->nr_queues = nr_cpu_ids;
1847
	q->nr_hw_queues = set->nr_hw_queues;
1848
	q->mq_map = map;
1849 1850 1851 1852

	q->queue_ctx = ctx;
	q->queue_hw_ctx = hctxs;

1853
	q->mq_ops = set->ops;
1854
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1855

1856 1857
	q->sg_reserved_size = INT_MAX;

1858 1859 1860 1861
	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

1862 1863 1864 1865 1866
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

1867
	blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
1868 1869
	if (set->timeout)
		blk_queue_rq_timeout(q, set->timeout);
1870

1871 1872 1873 1874 1875
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

1876 1877
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
1878

1879
	blk_mq_init_flush(q);
1880
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1881

1882 1883 1884
	q->flush_rq = kzalloc(round_up(sizeof(struct request) +
				set->cmd_size, cache_line_size()),
				GFP_KERNEL);
1885
	if (!q->flush_rq)
1886 1887
		goto err_hw;

1888
	if (blk_mq_init_hw_queues(q, set))
1889 1890
		goto err_flush_rq;

1891 1892 1893 1894
	mutex_lock(&all_q_mutex);
	list_add_tail(&q->all_q_node, &all_q_list);
	mutex_unlock(&all_q_mutex);

1895 1896
	blk_mq_add_queue_tag_set(set, q);

1897 1898
	blk_mq_map_swqueue(q);

1899
	return q;
1900 1901 1902

err_flush_rq:
	kfree(q->flush_rq);
1903 1904 1905
err_hw:
	blk_cleanup_queue(q);
err_hctxs:
1906
	kfree(map);
1907
	for (i = 0; i < set->nr_hw_queues; i++) {
1908 1909
		if (!hctxs[i])
			break;
1910
		free_cpumask_var(hctxs[i]->cpumask);
1911
		set->ops->free_hctx(hctxs[i], i);
1912
	}
1913
err_map:
1914 1915 1916 1917 1918 1919 1920 1921 1922
	kfree(hctxs);
err_percpu:
	free_percpu(ctx);
	return ERR_PTR(-ENOMEM);
}
EXPORT_SYMBOL(blk_mq_init_queue);

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
1923
	struct blk_mq_tag_set	*set = q->tag_set;
1924

1925 1926
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
1927 1928
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
1929

1930 1931
	percpu_counter_destroy(&q->mq_usage_counter);

1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
	free_percpu(q->queue_ctx);
	kfree(q->queue_hw_ctx);
	kfree(q->mq_map);

	q->queue_ctx = NULL;
	q->queue_hw_ctx = NULL;
	q->mq_map = NULL;

	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);
}

/* Basically redo blk_mq_init_queue with queue frozen */
1946
static void blk_mq_queue_reinit(struct request_queue *q)
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
{
	blk_mq_freeze_queue(q);

	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);

	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

	blk_mq_map_swqueue(q);

	blk_mq_unfreeze_queue(q);
}

1963 1964
static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
				      unsigned long action, void *hcpu)
1965 1966 1967 1968
{
	struct request_queue *q;

	/*
1969 1970 1971 1972
	 * Before new mappings are established, hotadded cpu might already
	 * start handling requests. This doesn't break anything as we map
	 * offline CPUs to first hardware queue. We will re-init the queue
	 * below to get optimal settings.
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
	 */
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
	    action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
		return NOTIFY_OK;

	mutex_lock(&all_q_mutex);
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_queue_reinit(q);
	mutex_unlock(&all_q_mutex);
	return NOTIFY_OK;
}

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
	int i;

	if (!set->nr_hw_queues)
		return -EINVAL;
	if (!set->queue_depth || set->queue_depth > BLK_MQ_MAX_DEPTH)
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

	if (!set->nr_hw_queues ||
	    !set->ops->queue_rq || !set->ops->map_queue ||
	    !set->ops->alloc_hctx || !set->ops->free_hctx)
		return -EINVAL;


M
Ming Lei 已提交
2002 2003
	set->tags = kmalloc_node(set->nr_hw_queues *
				 sizeof(struct blk_mq_tags *),
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
		goto out;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

2014 2015 2016
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);
out:
	return -ENOMEM;
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2031 2032 2033 2034 2035
	for (i = 0; i < set->nr_hw_queues; i++) {
		if (set->tags[i])
			blk_mq_free_rq_map(set, set->tags[i], i);
	}

M
Ming Lei 已提交
2036
	kfree(set->tags);
2037 2038 2039
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
static int __init blk_mq_init(void)
{
	blk_mq_cpu_init();

	/* Must be called after percpu_counter_hotcpu_callback() */
	hotcpu_notifier(blk_mq_queue_reinit_notify, -10);

	return 0;
}
subsys_initcall(blk_mq_init);