page-writeback.c 83.9 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 * mm/page-writeback.c
L
Linus Torvalds 已提交
3 4
 *
 * Copyright (C) 2002, Linus Torvalds.
5
 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
L
Linus Torvalds 已提交
6 7 8 9
 *
 * Contains functions related to writing back dirty pages at the
 * address_space level.
 *
10
 * 10Apr2002	Andrew Morton
L
Linus Torvalds 已提交
11 12 13 14
 *		Initial version
 */

#include <linux/kernel.h>
15
#include <linux/export.h>
L
Linus Torvalds 已提交
16 17 18 19 20 21 22 23 24
#include <linux/spinlock.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/writeback.h>
#include <linux/init.h>
#include <linux/backing-dev.h>
25
#include <linux/task_io_accounting_ops.h>
L
Linus Torvalds 已提交
26 27
#include <linux/blkdev.h>
#include <linux/mpage.h>
28
#include <linux/rmap.h>
L
Linus Torvalds 已提交
29 30 31 32 33 34
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/smp.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
A
Al Viro 已提交
35
#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36
#include <linux/pagevec.h>
37
#include <linux/timer.h>
38
#include <linux/sched/rt.h>
39
#include <linux/mm_inline.h>
40
#include <trace/events/writeback.h>
L
Linus Torvalds 已提交
41

42 43
#include "internal.h"

44 45 46 47 48
/*
 * Sleep at most 200ms at a time in balance_dirty_pages().
 */
#define MAX_PAUSE		max(HZ/5, 1)

49 50 51 52 53 54
/*
 * Try to keep balance_dirty_pages() call intervals higher than this many pages
 * by raising pause time to max_pause when falls below it.
 */
#define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))

55 56 57 58 59
/*
 * Estimate write bandwidth at 200ms intervals.
 */
#define BANDWIDTH_INTERVAL	max(HZ/5, 1)

W
Wu Fengguang 已提交
60 61
#define RATELIMIT_CALC_SHIFT	10

L
Linus Torvalds 已提交
62 63 64 65 66 67 68 69 70
/*
 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
 * will look to see if it needs to force writeback or throttling.
 */
static long ratelimit_pages = 32;

/* The following parameters are exported via /proc/sys/vm */

/*
71
 * Start background writeback (via writeback threads) at this percentage
L
Linus Torvalds 已提交
72
 */
73
int dirty_background_ratio = 10;
L
Linus Torvalds 已提交
74

75 76 77 78 79 80
/*
 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
 * dirty_background_ratio * the amount of dirtyable memory
 */
unsigned long dirty_background_bytes;

81 82 83 84 85 86
/*
 * free highmem will not be subtracted from the total free memory
 * for calculating free ratios if vm_highmem_is_dirtyable is true
 */
int vm_highmem_is_dirtyable;

L
Linus Torvalds 已提交
87 88 89
/*
 * The generator of dirty data starts writeback at this percentage
 */
90
int vm_dirty_ratio = 20;
L
Linus Torvalds 已提交
91

92 93 94 95 96 97
/*
 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
 * vm_dirty_ratio * the amount of dirtyable memory
 */
unsigned long vm_dirty_bytes;

L
Linus Torvalds 已提交
98
/*
99
 * The interval between `kupdate'-style writebacks
L
Linus Torvalds 已提交
100
 */
101
unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
L
Linus Torvalds 已提交
102

103 104
EXPORT_SYMBOL_GPL(dirty_writeback_interval);

L
Linus Torvalds 已提交
105
/*
106
 * The longest time for which data is allowed to remain dirty
L
Linus Torvalds 已提交
107
 */
108
unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
L
Linus Torvalds 已提交
109 110 111 112 113 114 115

/*
 * Flag that makes the machine dump writes/reads and block dirtyings.
 */
int block_dump;

/*
116 117
 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 * a full sync is triggered after this time elapses without any disk activity.
L
Linus Torvalds 已提交
118 119 120 121 122 123 124
 */
int laptop_mode;

EXPORT_SYMBOL(laptop_mode);

/* End of sysctl-exported parameters */

125
struct wb_domain global_wb_domain;
L
Linus Torvalds 已提交
126

127 128
/* consolidated parameters for balance_dirty_pages() and its subroutines */
struct dirty_throttle_control {
129 130
#ifdef CONFIG_CGROUP_WRITEBACK
	struct wb_domain	*dom;
131
	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
132
#endif
133
	struct bdi_writeback	*wb;
134
	struct fprop_local_percpu *wb_completions;
135

136
	unsigned long		avail;		/* dirtyable */
137 138 139 140 141 142
	unsigned long		dirty;		/* file_dirty + write + nfs */
	unsigned long		thresh;		/* dirty threshold */
	unsigned long		bg_thresh;	/* dirty background threshold */

	unsigned long		wb_dirty;	/* per-wb counterparts */
	unsigned long		wb_thresh;
143
	unsigned long		wb_bg_thresh;
144 145

	unsigned long		pos_ratio;
146 147
};

148 149 150 151 152 153
/*
 * Length of period for aging writeout fractions of bdis. This is an
 * arbitrarily chosen number. The longer the period, the slower fractions will
 * reflect changes in current writeout rate.
 */
#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
P
Peter Zijlstra 已提交
154

155 156
#ifdef CONFIG_CGROUP_WRITEBACK

157 158 159 160
#define GDTC_INIT(__wb)		.wb = (__wb),				\
				.dom = &global_wb_domain,		\
				.wb_completions = &(__wb)->completions

161
#define GDTC_INIT_NO_WB		.dom = &global_wb_domain
162 163 164 165 166

#define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
				.dom = mem_cgroup_wb_domain(__wb),	\
				.wb_completions = &(__wb)->memcg_completions, \
				.gdtc = __gdtc
167 168 169 170 171

static bool mdtc_valid(struct dirty_throttle_control *dtc)
{
	return dtc->dom;
}
172 173 174 175 176 177

static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
{
	return dtc->dom;
}

178 179 180 181 182
static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
{
	return mdtc->gdtc;
}

T
Tejun Heo 已提交
183 184 185 186 187
static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
{
	return &wb->memcg_completions;
}

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
static void wb_min_max_ratio(struct bdi_writeback *wb,
			     unsigned long *minp, unsigned long *maxp)
{
	unsigned long this_bw = wb->avg_write_bandwidth;
	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
	unsigned long long min = wb->bdi->min_ratio;
	unsigned long long max = wb->bdi->max_ratio;

	/*
	 * @wb may already be clean by the time control reaches here and
	 * the total may not include its bw.
	 */
	if (this_bw < tot_bw) {
		if (min) {
			min *= this_bw;
			do_div(min, tot_bw);
		}
		if (max < 100) {
			max *= this_bw;
			do_div(max, tot_bw);
		}
	}

	*minp = min;
	*maxp = max;
}

#else	/* CONFIG_CGROUP_WRITEBACK */

217 218
#define GDTC_INIT(__wb)		.wb = (__wb),                           \
				.wb_completions = &(__wb)->completions
219
#define GDTC_INIT_NO_WB
220 221 222 223 224 225
#define MDTC_INIT(__wb, __gdtc)

static bool mdtc_valid(struct dirty_throttle_control *dtc)
{
	return false;
}
226 227 228 229 230 231

static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
{
	return &global_wb_domain;
}

232 233 234 235 236
static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
{
	return NULL;
}

T
Tejun Heo 已提交
237 238 239 240 241
static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
{
	return NULL;
}

242 243 244 245 246 247 248 249 250
static void wb_min_max_ratio(struct bdi_writeback *wb,
			     unsigned long *minp, unsigned long *maxp)
{
	*minp = wb->bdi->min_ratio;
	*maxp = wb->bdi->max_ratio;
}

#endif	/* CONFIG_CGROUP_WRITEBACK */

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
/*
 * In a memory zone, there is a certain amount of pages we consider
 * available for the page cache, which is essentially the number of
 * free and reclaimable pages, minus some zone reserves to protect
 * lowmem and the ability to uphold the zone's watermarks without
 * requiring writeback.
 *
 * This number of dirtyable pages is the base value of which the
 * user-configurable dirty ratio is the effictive number of pages that
 * are allowed to be actually dirtied.  Per individual zone, or
 * globally by using the sum of dirtyable pages over all zones.
 *
 * Because the user is allowed to specify the dirty limit globally as
 * absolute number of bytes, calculating the per-zone dirty limit can
 * require translating the configured limit into a percentage of
 * global dirtyable memory first.
 */

269 270 271 272 273 274 275 276 277 278 279 280
/**
 * zone_dirtyable_memory - number of dirtyable pages in a zone
 * @zone: the zone
 *
 * Returns the zone's number of pages potentially available for dirty
 * page cache.  This is the base value for the per-zone dirty limits.
 */
static unsigned long zone_dirtyable_memory(struct zone *zone)
{
	unsigned long nr_pages;

	nr_pages = zone_page_state(zone, NR_FREE_PAGES);
281 282 283 284 285 286
	/*
	 * Pages reserved for the kernel should not be considered
	 * dirtyable, to prevent a situation where reclaim has to
	 * clean pages in order to balance the zones.
	 */
	nr_pages -= min(nr_pages, zone->totalreserve_pages);
287

288 289
	nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
	nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
290 291 292 293

	return nr_pages;
}

294 295 296 297 298
static unsigned long highmem_dirtyable_memory(unsigned long total)
{
#ifdef CONFIG_HIGHMEM
	int node;
	unsigned long x = 0;
299
	int i;
300 301

	for_each_node_state(node, N_HIGH_MEMORY) {
302 303
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *z = &NODE_DATA(node)->node_zones[i];
304

305 306 307
			if (is_highmem(z))
				x += zone_dirtyable_memory(z);
		}
308
	}
309 310 311 312 313 314 315 316 317 318 319 320
	/*
	 * Unreclaimable memory (kernel memory or anonymous memory
	 * without swap) can bring down the dirtyable pages below
	 * the zone's dirty balance reserve and the above calculation
	 * will underflow.  However we still want to add in nodes
	 * which are below threshold (negative values) to get a more
	 * accurate calculation but make sure that the total never
	 * underflows.
	 */
	if ((long)x < 0)
		x = 0;

321 322 323 324 325 326 327 328 329 330 331 332 333
	/*
	 * Make sure that the number of highmem pages is never larger
	 * than the number of the total dirtyable memory. This can only
	 * occur in very strange VM situations but we want to make sure
	 * that this does not occur.
	 */
	return min(x, total);
#else
	return 0;
#endif
}

/**
334
 * global_dirtyable_memory - number of globally dirtyable pages
335
 *
336 337
 * Returns the global number of pages potentially available for dirty
 * page cache.  This is the base value for the global dirty limits.
338
 */
339
static unsigned long global_dirtyable_memory(void)
340 341 342
{
	unsigned long x;

343
	x = global_page_state(NR_FREE_PAGES);
344 345 346 347 348 349
	/*
	 * Pages reserved for the kernel should not be considered
	 * dirtyable, to prevent a situation where reclaim has to
	 * clean pages in order to balance the zones.
	 */
	x -= min(x, totalreserve_pages);
350

351 352
	x += global_page_state(NR_INACTIVE_FILE);
	x += global_page_state(NR_ACTIVE_FILE);
353

354 355 356 357 358 359
	if (!vm_highmem_is_dirtyable)
		x -= highmem_dirtyable_memory(x);

	return x + 1;	/* Ensure that we never return 0 */
}

360 361 362
/**
 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
 * @dtc: dirty_throttle_control of interest
363
 *
364 365 366 367
 * Calculate @dtc->thresh and ->bg_thresh considering
 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
 * must ensure that @dtc->avail is set before calling this function.  The
 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
368 369
 * real-time tasks.
 */
370
static void domain_dirty_limits(struct dirty_throttle_control *dtc)
371
{
372 373 374 375
	const unsigned long available_memory = dtc->avail;
	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
	unsigned long bytes = vm_dirty_bytes;
	unsigned long bg_bytes = dirty_background_bytes;
376 377 378
	/* convert ratios to per-PAGE_SIZE for higher precision */
	unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
	unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
379 380
	unsigned long thresh;
	unsigned long bg_thresh;
381 382
	struct task_struct *tsk;

383 384 385 386 387 388 389
	/* gdtc is !NULL iff @dtc is for memcg domain */
	if (gdtc) {
		unsigned long global_avail = gdtc->avail;

		/*
		 * The byte settings can't be applied directly to memcg
		 * domains.  Convert them to ratios by scaling against
390 391 392
		 * globally available memory.  As the ratios are in
		 * per-PAGE_SIZE, they can be obtained by dividing bytes by
		 * number of pages.
393 394
		 */
		if (bytes)
395 396
			ratio = min(DIV_ROUND_UP(bytes, global_avail),
				    PAGE_SIZE);
397
		if (bg_bytes)
398 399
			bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
				       PAGE_SIZE);
400 401 402 403 404
		bytes = bg_bytes = 0;
	}

	if (bytes)
		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
405
	else
406
		thresh = (ratio * available_memory) / PAGE_SIZE;
407

408 409
	if (bg_bytes)
		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
410
	else
411
		bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
412

413 414
	if (bg_thresh >= thresh)
		bg_thresh = thresh / 2;
415 416
	tsk = current;
	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
417 418
		bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
		thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
419
	}
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
	dtc->thresh = thresh;
	dtc->bg_thresh = bg_thresh;

	/* we should eventually report the domain in the TP */
	if (!gdtc)
		trace_global_dirty_state(bg_thresh, thresh);
}

/**
 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 * @pbackground: out parameter for bg_thresh
 * @pdirty: out parameter for thresh
 *
 * Calculate bg_thresh and thresh for global_wb_domain.  See
 * domain_dirty_limits() for details.
 */
void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
{
	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };

	gdtc.avail = global_dirtyable_memory();
	domain_dirty_limits(&gdtc);

	*pbackground = gdtc.bg_thresh;
	*pdirty = gdtc.thresh;
445 446
}

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
/**
 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
 * @zone: the zone
 *
 * Returns the maximum number of dirty pages allowed in a zone, based
 * on the zone's dirtyable memory.
 */
static unsigned long zone_dirty_limit(struct zone *zone)
{
	unsigned long zone_memory = zone_dirtyable_memory(zone);
	struct task_struct *tsk = current;
	unsigned long dirty;

	if (vm_dirty_bytes)
		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
			zone_memory / global_dirtyable_memory();
	else
		dirty = vm_dirty_ratio * zone_memory / 100;

	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
		dirty += dirty / 4;

	return dirty;
}

/**
 * zone_dirty_ok - tells whether a zone is within its dirty limits
 * @zone: the zone to check
 *
 * Returns %true when the dirty pages in @zone are within the zone's
 * dirty limit, %false if the limit is exceeded.
 */
bool zone_dirty_ok(struct zone *zone)
{
	unsigned long limit = zone_dirty_limit(zone);

	return zone_page_state(zone, NR_FILE_DIRTY) +
	       zone_page_state(zone, NR_UNSTABLE_NFS) +
	       zone_page_state(zone, NR_WRITEBACK) <= limit;
}

488
int dirty_background_ratio_handler(struct ctl_table *table, int write,
489
		void __user *buffer, size_t *lenp,
490 491 492 493
		loff_t *ppos)
{
	int ret;

494
	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
495 496 497 498 499 500
	if (ret == 0 && write)
		dirty_background_bytes = 0;
	return ret;
}

int dirty_background_bytes_handler(struct ctl_table *table, int write,
501
		void __user *buffer, size_t *lenp,
502 503 504 505
		loff_t *ppos)
{
	int ret;

506
	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
507 508 509 510 511
	if (ret == 0 && write)
		dirty_background_ratio = 0;
	return ret;
}

P
Peter Zijlstra 已提交
512
int dirty_ratio_handler(struct ctl_table *table, int write,
513
		void __user *buffer, size_t *lenp,
P
Peter Zijlstra 已提交
514 515 516
		loff_t *ppos)
{
	int old_ratio = vm_dirty_ratio;
517 518
	int ret;

519
	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
520
	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
521
		writeback_set_ratelimit();
522 523 524 525 526 527
		vm_dirty_bytes = 0;
	}
	return ret;
}

int dirty_bytes_handler(struct ctl_table *table, int write,
528
		void __user *buffer, size_t *lenp,
529 530
		loff_t *ppos)
{
531
	unsigned long old_bytes = vm_dirty_bytes;
532 533
	int ret;

534
	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
535
	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
536
		writeback_set_ratelimit();
537
		vm_dirty_ratio = 0;
P
Peter Zijlstra 已提交
538 539 540 541
	}
	return ret;
}

542 543 544 545 546 547 548 549 550
static unsigned long wp_next_time(unsigned long cur_time)
{
	cur_time += VM_COMPLETIONS_PERIOD_LEN;
	/* 0 has a special meaning... */
	if (!cur_time)
		return 1;
	return cur_time;
}

551 552 553
static void wb_domain_writeout_inc(struct wb_domain *dom,
				   struct fprop_local_percpu *completions,
				   unsigned int max_prop_frac)
P
Peter Zijlstra 已提交
554
{
555 556
	__fprop_inc_percpu_max(&dom->completions, completions,
			       max_prop_frac);
557
	/* First event after period switching was turned off? */
T
Tejun Heo 已提交
558
	if (!unlikely(dom->period_time)) {
559 560 561 562 563 564
		/*
		 * We can race with other __bdi_writeout_inc calls here but
		 * it does not cause any harm since the resulting time when
		 * timer will fire and what is in writeout_period_time will be
		 * roughly the same.
		 */
T
Tejun Heo 已提交
565 566
		dom->period_time = wp_next_time(jiffies);
		mod_timer(&dom->period_timer, dom->period_time);
567
	}
P
Peter Zijlstra 已提交
568 569
}

570 571 572 573 574
/*
 * Increment @wb's writeout completion count and the global writeout
 * completion count. Called from test_clear_page_writeback().
 */
static inline void __wb_writeout_inc(struct bdi_writeback *wb)
575
{
T
Tejun Heo 已提交
576
	struct wb_domain *cgdom;
577

578 579 580
	__inc_wb_stat(wb, WB_WRITTEN);
	wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
			       wb->bdi->max_prop_frac);
T
Tejun Heo 已提交
581 582 583 584 585

	cgdom = mem_cgroup_wb_domain(wb);
	if (cgdom)
		wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
				       wb->bdi->max_prop_frac);
586 587
}

588
void wb_writeout_inc(struct bdi_writeback *wb)
P
Peter Zijlstra 已提交
589
{
590 591 592
	unsigned long flags;

	local_irq_save(flags);
593
	__wb_writeout_inc(wb);
594
	local_irq_restore(flags);
P
Peter Zijlstra 已提交
595
}
596
EXPORT_SYMBOL_GPL(wb_writeout_inc);
P
Peter Zijlstra 已提交
597

598 599 600 601 602 603
/*
 * On idle system, we can be called long after we scheduled because we use
 * deferred timers so count with missed periods.
 */
static void writeout_period(unsigned long t)
{
T
Tejun Heo 已提交
604 605
	struct wb_domain *dom = (void *)t;
	int miss_periods = (jiffies - dom->period_time) /
606 607
						 VM_COMPLETIONS_PERIOD_LEN;

T
Tejun Heo 已提交
608 609
	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
		dom->period_time = wp_next_time(dom->period_time +
610
				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
T
Tejun Heo 已提交
611
		mod_timer(&dom->period_timer, dom->period_time);
612 613 614 615 616
	} else {
		/*
		 * Aging has zeroed all fractions. Stop wasting CPU on period
		 * updates.
		 */
T
Tejun Heo 已提交
617
		dom->period_time = 0;
618 619 620
	}
}

T
Tejun Heo 已提交
621 622 623
int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
{
	memset(dom, 0, sizeof(*dom));
624 625 626

	spin_lock_init(&dom->lock);

T
Tejun Heo 已提交
627 628 629
	init_timer_deferrable(&dom->period_timer);
	dom->period_timer.function = writeout_period;
	dom->period_timer.data = (unsigned long)dom;
630 631 632

	dom->dirty_limit_tstamp = jiffies;

T
Tejun Heo 已提交
633 634 635
	return fprop_global_init(&dom->completions, gfp);
}

T
Tejun Heo 已提交
636 637 638 639 640 641 642 643
#ifdef CONFIG_CGROUP_WRITEBACK
void wb_domain_exit(struct wb_domain *dom)
{
	del_timer_sync(&dom->period_timer);
	fprop_global_destroy(&dom->completions);
}
#endif

644
/*
645 646 647
 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 * registered backing devices, which, for obvious reasons, can not
 * exceed 100%.
648 649 650 651 652 653 654
 */
static unsigned int bdi_min_ratio;

int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
{
	int ret = 0;

655
	spin_lock_bh(&bdi_lock);
656
	if (min_ratio > bdi->max_ratio) {
657
		ret = -EINVAL;
658 659 660 661 662 663 664 665 666
	} else {
		min_ratio -= bdi->min_ratio;
		if (bdi_min_ratio + min_ratio < 100) {
			bdi_min_ratio += min_ratio;
			bdi->min_ratio += min_ratio;
		} else {
			ret = -EINVAL;
		}
	}
667
	spin_unlock_bh(&bdi_lock);
668 669 670 671 672 673 674 675 676 677 678

	return ret;
}

int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
{
	int ret = 0;

	if (max_ratio > 100)
		return -EINVAL;

679
	spin_lock_bh(&bdi_lock);
680 681 682 683
	if (bdi->min_ratio > max_ratio) {
		ret = -EINVAL;
	} else {
		bdi->max_ratio = max_ratio;
684
		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
685
	}
686
	spin_unlock_bh(&bdi_lock);
687 688 689

	return ret;
}
690
EXPORT_SYMBOL(bdi_set_max_ratio);
691

W
Wu Fengguang 已提交
692 693 694 695 696 697
static unsigned long dirty_freerun_ceiling(unsigned long thresh,
					   unsigned long bg_thresh)
{
	return (thresh + bg_thresh) / 2;
}

698 699
static unsigned long hard_dirty_limit(struct wb_domain *dom,
				      unsigned long thresh)
700
{
701
	return max(thresh, dom->dirty_limit);
702 703
}

704 705 706 707 708 709
/*
 * Memory which can be further allocated to a memcg domain is capped by
 * system-wide clean memory excluding the amount being used in the domain.
 */
static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
			    unsigned long filepages, unsigned long headroom)
710 711
{
	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
712 713 714
	unsigned long clean = filepages - min(filepages, mdtc->dirty);
	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
	unsigned long other_clean = global_clean - min(global_clean, clean);
715

716
	mdtc->avail = filepages + min(headroom, other_clean);
717 718
}

719
/**
720 721
 * __wb_calc_thresh - @wb's share of dirty throttling threshold
 * @dtc: dirty_throttle_context of interest
722
 *
723
 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
724
 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
725 726 727 728 729 730
 *
 * Note that balance_dirty_pages() will only seriously take it as a hard limit
 * when sleeping max_pause per page is not enough to keep the dirty pages under
 * control. For example, when the device is completely stalled due to some error
 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 * In the other normal situations, it acts more gently by throttling the tasks
731
 * more (rather than completely block them) when the wb dirty pages go high.
732
 *
733
 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
734 735 736
 * - starving fast devices
 * - piling up dirty pages (that will take long time to sync) on slow devices
 *
737
 * The wb's share of dirty limit will be adapting to its throughput and
738 739
 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 */
740
static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
741
{
742
	struct wb_domain *dom = dtc_dom(dtc);
743
	unsigned long thresh = dtc->thresh;
T
Tejun Heo 已提交
744
	u64 wb_thresh;
745
	long numerator, denominator;
746
	unsigned long wb_min_ratio, wb_max_ratio;
P
Peter Zijlstra 已提交
747

748
	/*
T
Tejun Heo 已提交
749
	 * Calculate this BDI's share of the thresh ratio.
750
	 */
751
	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
T
Tejun Heo 已提交
752
			      &numerator, &denominator);
P
Peter Zijlstra 已提交
753

T
Tejun Heo 已提交
754 755 756
	wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
	wb_thresh *= numerator;
	do_div(wb_thresh, denominator);
P
Peter Zijlstra 已提交
757

758
	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
P
Peter Zijlstra 已提交
759

T
Tejun Heo 已提交
760 761 762
	wb_thresh += (thresh * wb_min_ratio) / 100;
	if (wb_thresh > (thresh * wb_max_ratio) / 100)
		wb_thresh = thresh * wb_max_ratio / 100;
763

T
Tejun Heo 已提交
764
	return wb_thresh;
L
Linus Torvalds 已提交
765 766
}

767 768 769 770 771
unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
{
	struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
					       .thresh = thresh };
	return __wb_calc_thresh(&gdtc);
L
Linus Torvalds 已提交
772 773
}

774 775 776 777 778 779 780 781 782 783 784 785 786 787
/*
 *                           setpoint - dirty 3
 *        f(dirty) := 1.0 + (----------------)
 *                           limit - setpoint
 *
 * it's a 3rd order polynomial that subjects to
 *
 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 * (2) f(setpoint) = 1.0 => the balance point
 * (3) f(limit)    = 0   => the hard limit
 * (4) df/dx      <= 0	 => negative feedback control
 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 *     => fast response on large errors; small oscillation near setpoint
 */
788
static long long pos_ratio_polynom(unsigned long setpoint,
789 790 791 792 793 794
					  unsigned long dirty,
					  unsigned long limit)
{
	long long pos_ratio;
	long x;

795
	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
796
		      (limit - setpoint) | 1);
797 798 799 800 801 802 803 804
	pos_ratio = x;
	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;

	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
}

W
Wu Fengguang 已提交
805 806 807 808 809
/*
 * Dirty position control.
 *
 * (o) global/bdi setpoints
 *
810
 * We want the dirty pages be balanced around the global/wb setpoints.
W
Wu Fengguang 已提交
811 812 813 814 815 816 817 818 819
 * When the number of dirty pages is higher/lower than the setpoint, the
 * dirty position control ratio (and hence task dirty ratelimit) will be
 * decreased/increased to bring the dirty pages back to the setpoint.
 *
 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 *
 *     if (dirty < setpoint) scale up   pos_ratio
 *     if (dirty > setpoint) scale down pos_ratio
 *
820 821
 *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
 *     if (wb_dirty > wb_setpoint) scale down pos_ratio
W
Wu Fengguang 已提交
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
 *
 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 *
 * (o) global control line
 *
 *     ^ pos_ratio
 *     |
 *     |            |<===== global dirty control scope ======>|
 * 2.0 .............*
 *     |            .*
 *     |            . *
 *     |            .   *
 *     |            .     *
 *     |            .        *
 *     |            .            *
 * 1.0 ................................*
 *     |            .                  .     *
 *     |            .                  .          *
 *     |            .                  .              *
 *     |            .                  .                 *
 *     |            .                  .                    *
 *   0 +------------.------------------.----------------------*------------->
 *           freerun^          setpoint^                 limit^   dirty pages
 *
846
 * (o) wb control line
W
Wu Fengguang 已提交
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
 *
 *     ^ pos_ratio
 *     |
 *     |            *
 *     |              *
 *     |                *
 *     |                  *
 *     |                    * |<=========== span ============>|
 * 1.0 .......................*
 *     |                      . *
 *     |                      .   *
 *     |                      .     *
 *     |                      .       *
 *     |                      .         *
 *     |                      .           *
 *     |                      .             *
 *     |                      .               *
 *     |                      .                 *
 *     |                      .                   *
 *     |                      .                     *
 * 1/4 ...............................................* * * * * * * * * * * *
 *     |                      .                         .
 *     |                      .                           .
 *     |                      .                             .
 *   0 +----------------------.-------------------------------.------------->
872
 *                wb_setpoint^                    x_intercept^
W
Wu Fengguang 已提交
873
 *
874
 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
W
Wu Fengguang 已提交
875 876
 * be smoothly throttled down to normal if it starts high in situations like
 * - start writing to a slow SD card and a fast disk at the same time. The SD
877 878
 *   card's wb_dirty may rush to many times higher than wb_setpoint.
 * - the wb dirty thresh drops quickly due to change of JBOD workload
W
Wu Fengguang 已提交
879
 */
880
static void wb_position_ratio(struct dirty_throttle_control *dtc)
W
Wu Fengguang 已提交
881
{
882
	struct bdi_writeback *wb = dtc->wb;
883
	unsigned long write_bw = wb->avg_write_bandwidth;
884
	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
885
	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
886
	unsigned long wb_thresh = dtc->wb_thresh;
W
Wu Fengguang 已提交
887 888
	unsigned long x_intercept;
	unsigned long setpoint;		/* dirty pages' target balance point */
889
	unsigned long wb_setpoint;
W
Wu Fengguang 已提交
890 891 892 893
	unsigned long span;
	long long pos_ratio;		/* for scaling up/down the rate limit */
	long x;

894 895
	dtc->pos_ratio = 0;

896
	if (unlikely(dtc->dirty >= limit))
897
		return;
W
Wu Fengguang 已提交
898 899 900 901

	/*
	 * global setpoint
	 *
902 903 904
	 * See comment for pos_ratio_polynom().
	 */
	setpoint = (freerun + limit) / 2;
905
	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
906 907 908 909

	/*
	 * The strictlimit feature is a tool preventing mistrusted filesystems
	 * from growing a large number of dirty pages before throttling. For
910 911
	 * such filesystems balance_dirty_pages always checks wb counters
	 * against wb limits. Even if global "nr_dirty" is under "freerun".
912 913 914 915
	 * This is especially important for fuse which sets bdi->max_ratio to
	 * 1% by default. Without strictlimit feature, fuse writeback may
	 * consume arbitrary amount of RAM because it is accounted in
	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
W
Wu Fengguang 已提交
916
	 *
917
	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
918
	 * two values: wb_dirty and wb_thresh. Let's consider an example:
919 920
	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
	 * limits are set by default to 10% and 20% (background and throttle).
921
	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
T
Tejun Heo 已提交
922
	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
923
	 * about ~6K pages (as the average of background and throttle wb
924
	 * limits). The 3rd order polynomial will provide positive feedback if
925
	 * wb_dirty is under wb_setpoint and vice versa.
W
Wu Fengguang 已提交
926
	 *
927
	 * Note, that we cannot use global counters in these calculations
928
	 * because we want to throttle process writing to a strictlimit wb
929 930
	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
	 * in the example above).
W
Wu Fengguang 已提交
931
	 */
932
	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
933
		long long wb_pos_ratio;
934

935 936 937 938 939
		if (dtc->wb_dirty < 8) {
			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
					   2 << RATELIMIT_CALC_SHIFT);
			return;
		}
940

941
		if (dtc->wb_dirty >= wb_thresh)
942
			return;
943

944 945
		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
						    dtc->wb_bg_thresh);
946

947
		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
948
			return;
949

950
		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
951
						 wb_thresh);
952 953

		/*
954 955
		 * Typically, for strictlimit case, wb_setpoint << setpoint
		 * and pos_ratio >> wb_pos_ratio. In the other words global
956
		 * state ("dirty") is not limiting factor and we have to
957
		 * make decision based on wb counters. But there is an
958 959
		 * important case when global pos_ratio should get precedence:
		 * global limits are exceeded (e.g. due to activities on other
960
		 * wb's) while given strictlimit wb is below limit.
961
		 *
962
		 * "pos_ratio * wb_pos_ratio" would work for the case above,
963
		 * but it would look too non-natural for the case of all
964
		 * activity in the system coming from a single strictlimit wb
965 966 967 968
		 * with bdi->max_ratio == 100%.
		 *
		 * Note that min() below somewhat changes the dynamics of the
		 * control system. Normally, pos_ratio value can be well over 3
969
		 * (when globally we are at freerun and wb is well below wb
970 971 972 973
		 * setpoint). Now the maximum pos_ratio in the same situation
		 * is 2. We might want to tweak this if we observe the control
		 * system is too slow to adapt.
		 */
974 975
		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
		return;
976
	}
W
Wu Fengguang 已提交
977 978 979

	/*
	 * We have computed basic pos_ratio above based on global situation. If
980
	 * the wb is over/under its share of dirty pages, we want to scale
W
Wu Fengguang 已提交
981 982 983 984
	 * pos_ratio further down/up. That is done by the following mechanism.
	 */

	/*
985
	 * wb setpoint
W
Wu Fengguang 已提交
986
	 *
987
	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
W
Wu Fengguang 已提交
988
	 *
989
	 *                        x_intercept - wb_dirty
W
Wu Fengguang 已提交
990
	 *                     := --------------------------
991
	 *                        x_intercept - wb_setpoint
W
Wu Fengguang 已提交
992
	 *
993
	 * The main wb control line is a linear function that subjects to
W
Wu Fengguang 已提交
994
	 *
995 996 997
	 * (1) f(wb_setpoint) = 1.0
	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
W
Wu Fengguang 已提交
998
	 *
999
	 * For single wb case, the dirty pages are observed to fluctuate
W
Wu Fengguang 已提交
1000
	 * regularly within range
1001
	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
W
Wu Fengguang 已提交
1002 1003 1004
	 * for various filesystems, where (2) can yield in a reasonable 12.5%
	 * fluctuation range for pos_ratio.
	 *
1005
	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
W
Wu Fengguang 已提交
1006
	 * own size, so move the slope over accordingly and choose a slope that
1007
	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
W
Wu Fengguang 已提交
1008
	 */
1009 1010
	if (unlikely(wb_thresh > dtc->thresh))
		wb_thresh = dtc->thresh;
1011
	/*
1012
	 * It's very possible that wb_thresh is close to 0 not because the
1013 1014 1015 1016 1017
	 * device is slow, but that it has remained inactive for long time.
	 * Honour such devices a reasonable good (hopefully IO efficient)
	 * threshold, so that the occasional writes won't be blocked and active
	 * writes can rampup the threshold quickly.
	 */
1018
	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
W
Wu Fengguang 已提交
1019
	/*
1020 1021
	 * scale global setpoint to wb's:
	 *	wb_setpoint = setpoint * wb_thresh / thresh
W
Wu Fengguang 已提交
1022
	 */
1023
	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1024
	wb_setpoint = setpoint * (u64)x >> 16;
W
Wu Fengguang 已提交
1025
	/*
1026 1027
	 * Use span=(8*write_bw) in single wb case as indicated by
	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
W
Wu Fengguang 已提交
1028
	 *
1029 1030 1031
	 *        wb_thresh                    thresh - wb_thresh
	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
	 *         thresh                           thresh
W
Wu Fengguang 已提交
1032
	 */
1033
	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1034
	x_intercept = wb_setpoint + span;
W
Wu Fengguang 已提交
1035

1036 1037
	if (dtc->wb_dirty < x_intercept - span / 4) {
		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1038
				      (x_intercept - wb_setpoint) | 1);
W
Wu Fengguang 已提交
1039 1040 1041
	} else
		pos_ratio /= 4;

1042
	/*
1043
	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1044 1045 1046
	 * It may push the desired control point of global dirty pages higher
	 * than setpoint.
	 */
1047
	x_intercept = wb_thresh / 2;
1048 1049 1050 1051
	if (dtc->wb_dirty < x_intercept) {
		if (dtc->wb_dirty > x_intercept / 8)
			pos_ratio = div_u64(pos_ratio * x_intercept,
					    dtc->wb_dirty);
1052
		else
1053 1054 1055
			pos_ratio *= 8;
	}

1056
	dtc->pos_ratio = pos_ratio;
W
Wu Fengguang 已提交
1057 1058
}

1059 1060 1061
static void wb_update_write_bandwidth(struct bdi_writeback *wb,
				      unsigned long elapsed,
				      unsigned long written)
1062 1063
{
	const unsigned long period = roundup_pow_of_two(3 * HZ);
1064 1065
	unsigned long avg = wb->avg_write_bandwidth;
	unsigned long old = wb->write_bandwidth;
1066 1067 1068 1069 1070 1071 1072 1073
	u64 bw;

	/*
	 * bw = written * HZ / elapsed
	 *
	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
	 * write_bandwidth = ---------------------------------------------------
	 *                                          period
1074 1075 1076
	 *
	 * @written may have decreased due to account_page_redirty().
	 * Avoid underflowing @bw calculation.
1077
	 */
1078
	bw = written - min(written, wb->written_stamp);
1079 1080 1081 1082 1083 1084
	bw *= HZ;
	if (unlikely(elapsed > period)) {
		do_div(bw, elapsed);
		avg = bw;
		goto out;
	}
1085
	bw += (u64)wb->write_bandwidth * (period - elapsed);
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
	bw >>= ilog2(period);

	/*
	 * one more level of smoothing, for filtering out sudden spikes
	 */
	if (avg > old && old >= (unsigned long)bw)
		avg -= (avg - old) >> 3;

	if (avg < old && old <= (unsigned long)bw)
		avg += (old - avg) >> 3;

out:
1098 1099 1100 1101 1102 1103 1104
	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
	avg = max(avg, 1LU);
	if (wb_has_dirty_io(wb)) {
		long delta = avg - wb->avg_write_bandwidth;
		WARN_ON_ONCE(atomic_long_add_return(delta,
					&wb->bdi->tot_write_bandwidth) <= 0);
	}
1105 1106
	wb->write_bandwidth = bw;
	wb->avg_write_bandwidth = avg;
1107 1108
}

1109
static void update_dirty_limit(struct dirty_throttle_control *dtc)
1110
{
1111
	struct wb_domain *dom = dtc_dom(dtc);
1112
	unsigned long thresh = dtc->thresh;
1113
	unsigned long limit = dom->dirty_limit;
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125

	/*
	 * Follow up in one step.
	 */
	if (limit < thresh) {
		limit = thresh;
		goto update;
	}

	/*
	 * Follow down slowly. Use the higher one as the target, because thresh
	 * may drop below dirty. This is exactly the reason to introduce
1126
	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1127
	 */
1128
	thresh = max(thresh, dtc->dirty);
1129 1130 1131 1132 1133 1134
	if (limit > thresh) {
		limit -= (limit - thresh) >> 5;
		goto update;
	}
	return;
update:
1135
	dom->dirty_limit = limit;
1136 1137
}

1138
static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1139 1140
				    unsigned long now)
{
1141
	struct wb_domain *dom = dtc_dom(dtc);
1142 1143 1144 1145

	/*
	 * check locklessly first to optimize away locking for the most time
	 */
1146
	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1147 1148
		return;

1149 1150
	spin_lock(&dom->lock);
	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1151
		update_dirty_limit(dtc);
1152
		dom->dirty_limit_tstamp = now;
1153
	}
1154
	spin_unlock(&dom->lock);
1155 1156
}

W
Wu Fengguang 已提交
1157
/*
1158
 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
W
Wu Fengguang 已提交
1159
 *
1160
 * Normal wb tasks will be curbed at or below it in long term.
W
Wu Fengguang 已提交
1161 1162
 * Obviously it should be around (write_bw / N) when there are N dd tasks.
 */
1163
static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1164 1165
				      unsigned long dirtied,
				      unsigned long elapsed)
W
Wu Fengguang 已提交
1166
{
1167 1168 1169
	struct bdi_writeback *wb = dtc->wb;
	unsigned long dirty = dtc->dirty;
	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1170
	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1171
	unsigned long setpoint = (freerun + limit) / 2;
1172 1173
	unsigned long write_bw = wb->avg_write_bandwidth;
	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
W
Wu Fengguang 已提交
1174 1175 1176
	unsigned long dirty_rate;
	unsigned long task_ratelimit;
	unsigned long balanced_dirty_ratelimit;
1177 1178
	unsigned long step;
	unsigned long x;
1179
	unsigned long shift;
W
Wu Fengguang 已提交
1180 1181 1182 1183 1184

	/*
	 * The dirty rate will match the writeout rate in long term, except
	 * when dirty pages are truncated by userspace or re-dirtied by FS.
	 */
1185
	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
W
Wu Fengguang 已提交
1186 1187 1188 1189 1190

	/*
	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
	 */
	task_ratelimit = (u64)dirty_ratelimit *
1191
					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
W
Wu Fengguang 已提交
1192 1193 1194 1195
	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */

	/*
	 * A linear estimation of the "balanced" throttle rate. The theory is,
1196
	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
W
Wu Fengguang 已提交
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
	 * formula will yield the balanced rate limit (write_bw / N).
	 *
	 * Note that the expanded form is not a pure rate feedback:
	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
	 * but also takes pos_ratio into account:
	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
	 *
	 * (1) is not realistic because pos_ratio also takes part in balancing
	 * the dirty rate.  Consider the state
	 *	pos_ratio = 0.5						     (3)
	 *	rate = 2 * (write_bw / N)				     (4)
	 * If (1) is used, it will stuck in that state! Because each dd will
	 * be throttled at
	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
	 * yielding
	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
	 * put (6) into (1) we get
	 *	rate_(i+1) = rate_(i)					     (7)
	 *
	 * So we end up using (2) to always keep
	 *	rate_(i+1) ~= (write_bw / N)				     (8)
	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
	 * pos_ratio is able to drive itself to 1.0, which is not only where
	 * the dirty count meet the setpoint, but also where the slope of
	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
	 */
	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
					   dirty_rate | 1);
1226 1227 1228 1229 1230
	/*
	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
	 */
	if (unlikely(balanced_dirty_ratelimit > write_bw))
		balanced_dirty_ratelimit = write_bw;
W
Wu Fengguang 已提交
1231

1232 1233 1234
	/*
	 * We could safely do this and return immediately:
	 *
1235
	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1236 1237
	 *
	 * However to get a more stable dirty_ratelimit, the below elaborated
W
Wanpeng Li 已提交
1238
	 * code makes use of task_ratelimit to filter out singular points and
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
	 * limit the step size.
	 *
	 * The below code essentially only uses the relative value of
	 *
	 *	task_ratelimit - dirty_ratelimit
	 *	= (pos_ratio - 1) * dirty_ratelimit
	 *
	 * which reflects the direction and size of dirty position error.
	 */

	/*
	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
	 * task_ratelimit is on the same side of dirty_ratelimit, too.
	 * For example, when
	 * - dirty_ratelimit > balanced_dirty_ratelimit
	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
	 * lowering dirty_ratelimit will help meet both the position and rate
	 * control targets. Otherwise, don't update dirty_ratelimit if it will
	 * only help meet the rate target. After all, what the users ultimately
	 * feel and care are stable dirty rate and small position error.
	 *
	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
W
Wanpeng Li 已提交
1261
	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1262 1263 1264 1265 1266
	 * keeps jumping around randomly and can even leap far away at times
	 * due to the small 200ms estimation period of dirty_rate (we want to
	 * keep that period small to reduce time lags).
	 */
	step = 0;
1267 1268

	/*
1269
	 * For strictlimit case, calculations above were based on wb counters
1270
	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1271
	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1272 1273
	 * Hence, to calculate "step" properly, we have to use wb_dirty as
	 * "dirty" and wb_setpoint as "setpoint".
1274
	 *
1275 1276
	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
	 * it's possible that wb_thresh is close to zero due to inactivity
1277
	 * of backing device.
1278
	 */
1279
	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1280 1281 1282
		dirty = dtc->wb_dirty;
		if (dtc->wb_dirty < 8)
			setpoint = dtc->wb_dirty + 1;
1283
		else
1284
			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1285 1286
	}

1287
	if (dirty < setpoint) {
1288
		x = min3(wb->balanced_dirty_ratelimit,
1289
			 balanced_dirty_ratelimit, task_ratelimit);
1290 1291 1292
		if (dirty_ratelimit < x)
			step = x - dirty_ratelimit;
	} else {
1293
		x = max3(wb->balanced_dirty_ratelimit,
1294
			 balanced_dirty_ratelimit, task_ratelimit);
1295 1296 1297 1298 1299 1300 1301 1302 1303
		if (dirty_ratelimit > x)
			step = dirty_ratelimit - x;
	}

	/*
	 * Don't pursue 100% rate matching. It's impossible since the balanced
	 * rate itself is constantly fluctuating. So decrease the track speed
	 * when it gets close to the target. Helps eliminate pointless tremors.
	 */
1304 1305 1306 1307 1308
	shift = dirty_ratelimit / (2 * step + 1);
	if (shift < BITS_PER_LONG)
		step = DIV_ROUND_UP(step >> shift, 8);
	else
		step = 0;
1309 1310 1311 1312 1313 1314

	if (dirty_ratelimit < balanced_dirty_ratelimit)
		dirty_ratelimit += step;
	else
		dirty_ratelimit -= step;

1315 1316
	wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1317

1318
	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
W
Wu Fengguang 已提交
1319 1320
}

1321 1322
static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
				  struct dirty_throttle_control *mdtc,
1323 1324
				  unsigned long start_time,
				  bool update_ratelimit)
1325
{
1326
	struct bdi_writeback *wb = gdtc->wb;
1327
	unsigned long now = jiffies;
1328
	unsigned long elapsed = now - wb->bw_time_stamp;
W
Wu Fengguang 已提交
1329
	unsigned long dirtied;
1330 1331
	unsigned long written;

1332 1333
	lockdep_assert_held(&wb->list_lock);

1334 1335 1336 1337 1338 1339
	/*
	 * rate-limit, only update once every 200ms.
	 */
	if (elapsed < BANDWIDTH_INTERVAL)
		return;

1340 1341
	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1342 1343 1344 1345 1346

	/*
	 * Skip quiet periods when disk bandwidth is under-utilized.
	 * (at least 1s idle time between two flusher runs)
	 */
1347
	if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1348 1349
		goto snapshot;

1350
	if (update_ratelimit) {
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
		domain_update_bandwidth(gdtc, now);
		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);

		/*
		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
		 * compiler has no way to figure that out.  Help it.
		 */
		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
			domain_update_bandwidth(mdtc, now);
			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
		}
W
Wu Fengguang 已提交
1362
	}
1363
	wb_update_write_bandwidth(wb, elapsed, written);
1364 1365

snapshot:
1366 1367 1368
	wb->dirtied_stamp = dirtied;
	wb->written_stamp = written;
	wb->bw_time_stamp = now;
1369 1370
}

1371
void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1372
{
1373 1374
	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };

1375
	__wb_update_bandwidth(&gdtc, NULL, start_time, false);
1376 1377
}

1378
/*
1379
 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
 * will look to see if it needs to start dirty throttling.
 *
 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
 * global_page_state() too often. So scale it near-sqrt to the safety margin
 * (the number of pages we may dirty without exceeding the dirty limits).
 */
static unsigned long dirty_poll_interval(unsigned long dirty,
					 unsigned long thresh)
{
	if (thresh > dirty)
		return 1UL << (ilog2(thresh - dirty) >> 1);

	return 1;
}

1395
static unsigned long wb_max_pause(struct bdi_writeback *wb,
1396
				  unsigned long wb_dirty)
1397
{
1398
	unsigned long bw = wb->avg_write_bandwidth;
1399
	unsigned long t;
1400

1401 1402 1403 1404 1405 1406 1407
	/*
	 * Limit pause time for small memory systems. If sleeping for too long
	 * time, a small pool of dirty/writeback pages may go empty and disk go
	 * idle.
	 *
	 * 8 serves as the safety ratio.
	 */
1408
	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1409 1410
	t++;

1411
	return min_t(unsigned long, t, MAX_PAUSE);
1412 1413
}

1414 1415 1416 1417 1418
static long wb_min_pause(struct bdi_writeback *wb,
			 long max_pause,
			 unsigned long task_ratelimit,
			 unsigned long dirty_ratelimit,
			 int *nr_dirtied_pause)
1419
{
1420 1421
	long hi = ilog2(wb->avg_write_bandwidth);
	long lo = ilog2(wb->dirty_ratelimit);
1422 1423 1424
	long t;		/* target pause */
	long pause;	/* estimated next pause */
	int pages;	/* target nr_dirtied_pause */
1425

1426 1427
	/* target for 10ms pause on 1-dd case */
	t = max(1, HZ / 100);
1428 1429 1430 1431 1432

	/*
	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
	 * overheads.
	 *
1433
	 * (N * 10ms) on 2^N concurrent tasks.
1434 1435
	 */
	if (hi > lo)
1436
		t += (hi - lo) * (10 * HZ) / 1024;
1437 1438

	/*
1439 1440 1441 1442 1443 1444 1445 1446
	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
	 * on the much more stable dirty_ratelimit. However the next pause time
	 * will be computed based on task_ratelimit and the two rate limits may
	 * depart considerably at some time. Especially if task_ratelimit goes
	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
	 * result task_ratelimit won't be executed faithfully, which could
	 * eventually bring down dirty_ratelimit.
1447
	 *
1448 1449 1450 1451 1452 1453 1454
	 * We apply two rules to fix it up:
	 * 1) try to estimate the next pause time and if necessary, use a lower
	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
	 * 2) limit the target pause time to max_pause/2, so that the normal
	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1455
	 */
1456 1457
	t = min(t, 1 + max_pause / 2);
	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1458 1459

	/*
1460 1461 1462 1463 1464 1465
	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
	 * When the 16 consecutive reads are often interrupted by some dirty
	 * throttling pause during the async writes, cfq will go into idles
	 * (deadline is fine). So push nr_dirtied_pause as high as possible
	 * until reaches DIRTY_POLL_THRESH=32 pages.
1466
	 */
1467 1468 1469 1470 1471 1472 1473 1474 1475
	if (pages < DIRTY_POLL_THRESH) {
		t = max_pause;
		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
		if (pages > DIRTY_POLL_THRESH) {
			pages = DIRTY_POLL_THRESH;
			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
		}
	}

1476 1477 1478 1479 1480
	pause = HZ * pages / (task_ratelimit + 1);
	if (pause > max_pause) {
		t = max_pause;
		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
	}
1481

1482
	*nr_dirtied_pause = pages;
1483
	/*
1484
	 * The minimal pause time will normally be half the target pause time.
1485
	 */
1486
	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1487 1488
}

1489
static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1490
{
1491
	struct bdi_writeback *wb = dtc->wb;
1492
	unsigned long wb_reclaimable;
1493 1494

	/*
1495
	 * wb_thresh is not treated as some limiting factor as
1496
	 * dirty_thresh, due to reasons
1497
	 * - in JBOD setup, wb_thresh can fluctuate a lot
1498
	 * - in a system with HDD and USB key, the USB key may somehow
1499 1500
	 *   go into state (wb_dirty >> wb_thresh) either because
	 *   wb_dirty starts high, or because wb_thresh drops low.
1501
	 *   In this case we don't want to hard throttle the USB key
1502 1503
	 *   dirtiers for 100 seconds until wb_dirty drops under
	 *   wb_thresh. Instead the auxiliary wb control line in
1504
	 *   wb_position_ratio() will let the dirtier task progress
1505
	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1506
	 */
1507
	dtc->wb_thresh = __wb_calc_thresh(dtc);
1508 1509
	dtc->wb_bg_thresh = dtc->thresh ?
		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520

	/*
	 * In order to avoid the stacked BDI deadlock we need
	 * to ensure we accurately count the 'dirty' pages when
	 * the threshold is low.
	 *
	 * Otherwise it would be possible to get thresh+n pages
	 * reported dirty, even though there are thresh-m pages
	 * actually dirty; with m+n sitting in the percpu
	 * deltas.
	 */
1521
	if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1522
		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1523
		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1524
	} else {
1525
		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1526
		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1527 1528 1529
	}
}

L
Linus Torvalds 已提交
1530 1531 1532
/*
 * balance_dirty_pages() must be called by processes which are generating dirty
 * data.  It looks at the number of dirty pages in the machine and will force
1533
 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1534 1535
 * If we're over `background_thresh' then the writeback threads are woken to
 * perform some writeout.
L
Linus Torvalds 已提交
1536
 */
1537
static void balance_dirty_pages(struct address_space *mapping,
1538
				struct bdi_writeback *wb,
1539
				unsigned long pages_dirtied)
L
Linus Torvalds 已提交
1540
{
1541
	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1542
	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1543
	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1544 1545 1546
	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
						     &mdtc_stor : NULL;
	struct dirty_throttle_control *sdtc;
1547
	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1548
	long period;
1549 1550 1551 1552
	long pause;
	long max_pause;
	long min_pause;
	int nr_dirtied_pause;
1553
	bool dirty_exceeded = false;
1554
	unsigned long task_ratelimit;
1555
	unsigned long dirty_ratelimit;
1556
	struct backing_dev_info *bdi = wb->bdi;
1557
	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1558
	unsigned long start_time = jiffies;
L
Linus Torvalds 已提交
1559 1560

	for (;;) {
1561
		unsigned long now = jiffies;
1562
		unsigned long dirty, thresh, bg_thresh;
1563 1564 1565
		unsigned long m_dirty = 0;	/* stop bogus uninit warnings */
		unsigned long m_thresh = 0;
		unsigned long m_bg_thresh = 0;
1566

1567 1568 1569 1570 1571 1572
		/*
		 * Unstable writes are a feature of certain networked
		 * filesystems (i.e. NFS) in which data may have been
		 * written to the server's write cache, but has not yet
		 * been flushed to permanent storage.
		 */
1573 1574
		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
					global_page_state(NR_UNSTABLE_NFS);
1575
		gdtc->avail = global_dirtyable_memory();
1576
		gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1577

1578
		domain_dirty_limits(gdtc);
1579

1580
		if (unlikely(strictlimit)) {
1581
			wb_dirty_limits(gdtc);
1582

1583 1584
			dirty = gdtc->wb_dirty;
			thresh = gdtc->wb_thresh;
1585
			bg_thresh = gdtc->wb_bg_thresh;
1586
		} else {
1587 1588 1589
			dirty = gdtc->dirty;
			thresh = gdtc->thresh;
			bg_thresh = gdtc->bg_thresh;
1590 1591
		}

1592
		if (mdtc) {
1593
			unsigned long filepages, headroom, writeback;
1594 1595 1596 1597 1598

			/*
			 * If @wb belongs to !root memcg, repeat the same
			 * basic calculations for the memcg domain.
			 */
1599 1600
			mem_cgroup_wb_stats(wb, &filepages, &headroom,
					    &mdtc->dirty, &writeback);
1601
			mdtc->dirty += writeback;
1602
			mdtc_calc_avail(mdtc, filepages, headroom);
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615

			domain_dirty_limits(mdtc);

			if (unlikely(strictlimit)) {
				wb_dirty_limits(mdtc);
				m_dirty = mdtc->wb_dirty;
				m_thresh = mdtc->wb_thresh;
				m_bg_thresh = mdtc->wb_bg_thresh;
			} else {
				m_dirty = mdtc->dirty;
				m_thresh = mdtc->thresh;
				m_bg_thresh = mdtc->bg_thresh;
			}
1616 1617
		}

1618 1619 1620
		/*
		 * Throttle it only when the background writeback cannot
		 * catch-up. This avoids (excessively) small writeouts
1621
		 * when the wb limits are ramping up in case of !strictlimit.
1622
		 *
1623 1624
		 * In strictlimit case make decision based on the wb counters
		 * and limits. Small writeouts when the wb limits are ramping
1625
		 * up are the price we consciously pay for strictlimit-ing.
1626 1627 1628
		 *
		 * If memcg domain is in effect, @dirty should be under
		 * both global and memcg freerun ceilings.
1629
		 */
1630 1631 1632 1633 1634 1635
		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
		    (!mdtc ||
		     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
			unsigned long intv = dirty_poll_interval(dirty, thresh);
			unsigned long m_intv = ULONG_MAX;

1636 1637
			current->dirty_paused_when = now;
			current->nr_dirtied = 0;
1638 1639 1640
			if (mdtc)
				m_intv = dirty_poll_interval(m_dirty, m_thresh);
			current->nr_dirtied_pause = min(intv, m_intv);
1641
			break;
1642
		}
1643

1644
		if (unlikely(!writeback_in_progress(wb)))
1645
			wb_start_background_writeback(wb);
1646

1647 1648 1649 1650
		/*
		 * Calculate global domain's pos_ratio and select the
		 * global dtc by default.
		 */
1651
		if (!strictlimit)
1652
			wb_dirty_limits(gdtc);
1653

1654 1655
		dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
			((gdtc->dirty > gdtc->thresh) || strictlimit);
1656 1657

		wb_position_ratio(gdtc);
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
		sdtc = gdtc;

		if (mdtc) {
			/*
			 * If memcg domain is in effect, calculate its
			 * pos_ratio.  @wb should satisfy constraints from
			 * both global and memcg domains.  Choose the one
			 * w/ lower pos_ratio.
			 */
			if (!strictlimit)
				wb_dirty_limits(mdtc);

			dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
				((mdtc->dirty > mdtc->thresh) || strictlimit);

			wb_position_ratio(mdtc);
			if (mdtc->pos_ratio < gdtc->pos_ratio)
				sdtc = mdtc;
		}
1677

1678 1679
		if (dirty_exceeded && !wb->dirty_exceeded)
			wb->dirty_exceeded = 1;
L
Linus Torvalds 已提交
1680

1681 1682 1683
		if (time_is_before_jiffies(wb->bw_time_stamp +
					   BANDWIDTH_INTERVAL)) {
			spin_lock(&wb->list_lock);
1684
			__wb_update_bandwidth(gdtc, mdtc, start_time, true);
1685 1686
			spin_unlock(&wb->list_lock);
		}
1687

1688
		/* throttle according to the chosen dtc */
1689
		dirty_ratelimit = wb->dirty_ratelimit;
1690
		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1691
							RATELIMIT_CALC_SHIFT;
1692
		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1693 1694 1695
		min_pause = wb_min_pause(wb, max_pause,
					 task_ratelimit, dirty_ratelimit,
					 &nr_dirtied_pause);
1696

1697
		if (unlikely(task_ratelimit == 0)) {
1698
			period = max_pause;
1699
			pause = max_pause;
1700
			goto pause;
P
Peter Zijlstra 已提交
1701
		}
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
		period = HZ * pages_dirtied / task_ratelimit;
		pause = period;
		if (current->dirty_paused_when)
			pause -= now - current->dirty_paused_when;
		/*
		 * For less than 1s think time (ext3/4 may block the dirtier
		 * for up to 800ms from time to time on 1-HDD; so does xfs,
		 * however at much less frequency), try to compensate it in
		 * future periods by updating the virtual time; otherwise just
		 * do a reset, as it may be a light dirtier.
		 */
1713
		if (pause < min_pause) {
1714
			trace_balance_dirty_pages(wb,
1715 1716 1717 1718 1719
						  sdtc->thresh,
						  sdtc->bg_thresh,
						  sdtc->dirty,
						  sdtc->wb_thresh,
						  sdtc->wb_dirty,
1720 1721 1722
						  dirty_ratelimit,
						  task_ratelimit,
						  pages_dirtied,
1723
						  period,
1724
						  min(pause, 0L),
1725
						  start_time);
1726 1727 1728 1729 1730 1731
			if (pause < -HZ) {
				current->dirty_paused_when = now;
				current->nr_dirtied = 0;
			} else if (period) {
				current->dirty_paused_when += period;
				current->nr_dirtied = 0;
1732 1733
			} else if (current->nr_dirtied_pause <= pages_dirtied)
				current->nr_dirtied_pause += pages_dirtied;
W
Wu Fengguang 已提交
1734
			break;
P
Peter Zijlstra 已提交
1735
		}
1736 1737 1738 1739 1740
		if (unlikely(pause > max_pause)) {
			/* for occasional dropped task_ratelimit */
			now += min(pause - max_pause, max_pause);
			pause = max_pause;
		}
1741 1742

pause:
1743
		trace_balance_dirty_pages(wb,
1744 1745 1746 1747 1748
					  sdtc->thresh,
					  sdtc->bg_thresh,
					  sdtc->dirty,
					  sdtc->wb_thresh,
					  sdtc->wb_dirty,
1749 1750 1751
					  dirty_ratelimit,
					  task_ratelimit,
					  pages_dirtied,
1752
					  period,
1753 1754
					  pause,
					  start_time);
1755
		__set_current_state(TASK_KILLABLE);
1756
		io_schedule_timeout(pause);
1757

1758 1759
		current->dirty_paused_when = now + pause;
		current->nr_dirtied = 0;
1760
		current->nr_dirtied_pause = nr_dirtied_pause;
1761

1762
		/*
1763 1764
		 * This is typically equal to (dirty < thresh) and can also
		 * keep "1000+ dd on a slow USB stick" under control.
1765
		 */
1766
		if (task_ratelimit)
1767
			break;
1768

1769 1770
		/*
		 * In the case of an unresponding NFS server and the NFS dirty
1771
		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1772 1773 1774 1775
		 * to go through, so that tasks on them still remain responsive.
		 *
		 * In theory 1 page is enough to keep the comsumer-producer
		 * pipe going: the flusher cleans 1 page => the task dirties 1
1776
		 * more page. However wb_dirty has accounting errors.  So use
1777
		 * the larger and more IO friendly wb_stat_error.
1778
		 */
1779
		if (sdtc->wb_dirty <= wb_stat_error(wb))
1780 1781
			break;

1782 1783
		if (fatal_signal_pending(current))
			break;
L
Linus Torvalds 已提交
1784 1785
	}

1786 1787
	if (!dirty_exceeded && wb->dirty_exceeded)
		wb->dirty_exceeded = 0;
L
Linus Torvalds 已提交
1788

1789
	if (writeback_in_progress(wb))
1790
		return;
L
Linus Torvalds 已提交
1791 1792 1793 1794 1795 1796 1797 1798 1799

	/*
	 * In laptop mode, we wait until hitting the higher threshold before
	 * starting background writeout, and then write out all the way down
	 * to the lower threshold.  So slow writers cause minimal disk activity.
	 *
	 * In normal mode, we start background writeout at the lower
	 * background_thresh, to keep the amount of dirty memory low.
	 */
1800 1801 1802
	if (laptop_mode)
		return;

1803
	if (nr_reclaimable > gdtc->bg_thresh)
1804
		wb_start_background_writeback(wb);
L
Linus Torvalds 已提交
1805 1806
}

1807
static DEFINE_PER_CPU(int, bdp_ratelimits);
1808

1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
/*
 * Normal tasks are throttled by
 *	loop {
 *		dirty tsk->nr_dirtied_pause pages;
 *		take a snap in balance_dirty_pages();
 *	}
 * However there is a worst case. If every task exit immediately when dirtied
 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
 * called to throttle the page dirties. The solution is to save the not yet
 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
 * randomly into the running tasks. This works well for the above worst case,
 * as the new task will pick up and accumulate the old task's leaked dirty
 * count and eventually get throttled.
 */
DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;

L
Linus Torvalds 已提交
1825
/**
1826
 * balance_dirty_pages_ratelimited - balance dirty memory state
1827
 * @mapping: address_space which was dirtied
L
Linus Torvalds 已提交
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
 *
 * Processes which are dirtying memory should call in here once for each page
 * which was newly dirtied.  The function will periodically check the system's
 * dirty state and will initiate writeback if needed.
 *
 * On really big machines, get_writeback_state is expensive, so try to avoid
 * calling it too often (ratelimiting).  But once we're over the dirty memory
 * limit we decrease the ratelimiting by a lot, to prevent individual processes
 * from overshooting the limit by (ratelimit_pages) each.
 */
1838
void balance_dirty_pages_ratelimited(struct address_space *mapping)
L
Linus Torvalds 已提交
1839
{
1840 1841 1842
	struct inode *inode = mapping->host;
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct bdi_writeback *wb = NULL;
1843 1844
	int ratelimit;
	int *p;
L
Linus Torvalds 已提交
1845

1846 1847 1848
	if (!bdi_cap_account_dirty(bdi))
		return;

1849 1850 1851 1852 1853
	if (inode_cgwb_enabled(inode))
		wb = wb_get_create_current(bdi, GFP_KERNEL);
	if (!wb)
		wb = &bdi->wb;

1854
	ratelimit = current->nr_dirtied_pause;
1855
	if (wb->dirty_exceeded)
1856 1857 1858
		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));

	preempt_disable();
L
Linus Torvalds 已提交
1859
	/*
1860 1861 1862 1863
	 * This prevents one CPU to accumulate too many dirtied pages without
	 * calling into balance_dirty_pages(), which can happen when there are
	 * 1000+ tasks, all of them start dirtying pages at exactly the same
	 * time, hence all honoured too large initial task->nr_dirtied_pause.
L
Linus Torvalds 已提交
1864
	 */
1865
	p =  this_cpu_ptr(&bdp_ratelimits);
1866
	if (unlikely(current->nr_dirtied >= ratelimit))
1867
		*p = 0;
1868 1869 1870
	else if (unlikely(*p >= ratelimit_pages)) {
		*p = 0;
		ratelimit = 0;
L
Linus Torvalds 已提交
1871
	}
1872 1873 1874 1875 1876
	/*
	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
	 * the dirty throttling and livelock other long-run dirtiers.
	 */
1877
	p = this_cpu_ptr(&dirty_throttle_leaks);
1878
	if (*p > 0 && current->nr_dirtied < ratelimit) {
1879
		unsigned long nr_pages_dirtied;
1880 1881 1882
		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
		*p -= nr_pages_dirtied;
		current->nr_dirtied += nr_pages_dirtied;
L
Linus Torvalds 已提交
1883
	}
1884
	preempt_enable();
1885 1886

	if (unlikely(current->nr_dirtied >= ratelimit))
1887 1888 1889
		balance_dirty_pages(mapping, wb, current->nr_dirtied);

	wb_put(wb);
L
Linus Torvalds 已提交
1890
}
1891
EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
L
Linus Torvalds 已提交
1892

1893 1894 1895 1896 1897 1898 1899 1900 1901
/**
 * wb_over_bg_thresh - does @wb need to be written back?
 * @wb: bdi_writeback of interest
 *
 * Determines whether background writeback should keep writing @wb or it's
 * clean enough.  Returns %true if writeback should continue.
 */
bool wb_over_bg_thresh(struct bdi_writeback *wb)
{
1902
	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1903
	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1904
	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1905 1906
	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
						     &mdtc_stor : NULL;
1907

1908 1909 1910 1911 1912 1913 1914 1915
	/*
	 * Similar to balance_dirty_pages() but ignores pages being written
	 * as we're trying to decide whether to put more under writeback.
	 */
	gdtc->avail = global_dirtyable_memory();
	gdtc->dirty = global_page_state(NR_FILE_DIRTY) +
		      global_page_state(NR_UNSTABLE_NFS);
	domain_dirty_limits(gdtc);
1916

1917
	if (gdtc->dirty > gdtc->bg_thresh)
1918 1919
		return true;

1920 1921
	if (wb_stat(wb, WB_RECLAIMABLE) >
	    wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1922 1923
		return true;

1924
	if (mdtc) {
1925
		unsigned long filepages, headroom, writeback;
1926

1927 1928 1929
		mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
				    &writeback);
		mdtc_calc_avail(mdtc, filepages, headroom);
1930 1931 1932 1933 1934
		domain_dirty_limits(mdtc);	/* ditto, ignore writeback */

		if (mdtc->dirty > mdtc->bg_thresh)
			return true;

1935 1936
		if (wb_stat(wb, WB_RECLAIMABLE) >
		    wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1937 1938 1939
			return true;
	}

1940 1941 1942
	return false;
}

1943
void throttle_vm_writeout(gfp_t gfp_mask)
L
Linus Torvalds 已提交
1944
{
1945 1946
	unsigned long background_thresh;
	unsigned long dirty_thresh;
L
Linus Torvalds 已提交
1947 1948

        for ( ; ; ) {
1949
		global_dirty_limits(&background_thresh, &dirty_thresh);
1950
		dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
L
Linus Torvalds 已提交
1951 1952 1953 1954 1955 1956 1957

                /*
                 * Boost the allowable dirty threshold a bit for page
                 * allocators so they don't get DoS'ed by heavy writers
                 */
                dirty_thresh += dirty_thresh / 10;      /* wheeee... */

1958 1959 1960
                if (global_page_state(NR_UNSTABLE_NFS) +
			global_page_state(NR_WRITEBACK) <= dirty_thresh)
                        	break;
1961
                congestion_wait(BLK_RW_ASYNC, HZ/10);
1962 1963 1964 1965 1966 1967 1968 1969

		/*
		 * The caller might hold locks which can prevent IO completion
		 * or progress in the filesystem.  So we cannot just sit here
		 * waiting for IO to complete.
		 */
		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
			break;
L
Linus Torvalds 已提交
1970 1971 1972 1973 1974 1975
        }
}

/*
 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
 */
1976
int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1977
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
1978
{
1979
	proc_dointvec(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
1980 1981 1982
	return 0;
}

1983
#ifdef CONFIG_BLOCK
1984
void laptop_mode_timer_fn(unsigned long data)
L
Linus Torvalds 已提交
1985
{
1986 1987 1988
	struct request_queue *q = (struct request_queue *)data;
	int nr_pages = global_page_state(NR_FILE_DIRTY) +
		global_page_state(NR_UNSTABLE_NFS);
1989
	struct bdi_writeback *wb;
L
Linus Torvalds 已提交
1990

1991 1992 1993 1994
	/*
	 * We want to write everything out, not just down to the dirty
	 * threshold
	 */
1995 1996 1997
	if (!bdi_has_dirty_io(&q->backing_dev_info))
		return;

1998
	rcu_read_lock();
1999
	list_for_each_entry_rcu(wb, &q->backing_dev_info.wb_list, bdi_node)
2000 2001 2002
		if (wb_has_dirty_io(wb))
			wb_start_writeback(wb, nr_pages, true,
					   WB_REASON_LAPTOP_TIMER);
2003
	rcu_read_unlock();
L
Linus Torvalds 已提交
2004 2005 2006 2007 2008 2009 2010
}

/*
 * We've spun up the disk and we're in laptop mode: schedule writeback
 * of all dirty data a few seconds from now.  If the flush is already scheduled
 * then push it back - the user is still using the disk.
 */
2011
void laptop_io_completion(struct backing_dev_info *info)
L
Linus Torvalds 已提交
2012
{
2013
	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
L
Linus Torvalds 已提交
2014 2015 2016 2017 2018 2019 2020 2021 2022
}

/*
 * We're in laptop mode and we've just synced. The sync's writes will have
 * caused another writeback to be scheduled by laptop_io_completion.
 * Nothing needs to be written back anymore, so we unschedule the writeback.
 */
void laptop_sync_completion(void)
{
2023 2024 2025 2026 2027 2028 2029 2030
	struct backing_dev_info *bdi;

	rcu_read_lock();

	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
		del_timer(&bdi->laptop_mode_wb_timer);

	rcu_read_unlock();
L
Linus Torvalds 已提交
2031
}
2032
#endif
L
Linus Torvalds 已提交
2033 2034 2035 2036 2037 2038 2039 2040 2041

/*
 * If ratelimit_pages is too high then we can get into dirty-data overload
 * if a large number of processes all perform writes at the same time.
 * If it is too low then SMP machines will call the (expensive)
 * get_writeback_state too often.
 *
 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2042
 * thresholds.
L
Linus Torvalds 已提交
2043 2044
 */

2045
void writeback_set_ratelimit(void)
L
Linus Torvalds 已提交
2046
{
2047
	struct wb_domain *dom = &global_wb_domain;
2048 2049
	unsigned long background_thresh;
	unsigned long dirty_thresh;
2050

2051
	global_dirty_limits(&background_thresh, &dirty_thresh);
2052
	dom->dirty_limit = dirty_thresh;
2053
	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
L
Linus Torvalds 已提交
2054 2055 2056 2057
	if (ratelimit_pages < 16)
		ratelimit_pages = 16;
}

2058
static int
2059 2060
ratelimit_handler(struct notifier_block *self, unsigned long action,
		  void *hcpu)
L
Linus Torvalds 已提交
2061
{
2062 2063 2064 2065 2066 2067 2068 2069 2070

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
	case CPU_DEAD:
		writeback_set_ratelimit();
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
L
Linus Torvalds 已提交
2071 2072
}

2073
static struct notifier_block ratelimit_nb = {
L
Linus Torvalds 已提交
2074 2075 2076 2077 2078
	.notifier_call	= ratelimit_handler,
	.next		= NULL,
};

/*
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
 * Called early on to tune the page writeback dirty limits.
 *
 * We used to scale dirty pages according to how total memory
 * related to pages that could be allocated for buffers (by
 * comparing nr_free_buffer_pages() to vm_total_pages.
 *
 * However, that was when we used "dirty_ratio" to scale with
 * all memory, and we don't do that any more. "dirty_ratio"
 * is now applied to total non-HIGHPAGE memory (by subtracting
 * totalhigh_pages from vm_total_pages), and as such we can't
 * get into the old insane situation any more where we had
 * large amounts of dirty pages compared to a small amount of
 * non-HIGHMEM memory.
 *
 * But we might still want to scale the dirty_ratio by how
 * much memory the box has..
L
Linus Torvalds 已提交
2095 2096 2097
 */
void __init page_writeback_init(void)
{
2098 2099
	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));

2100
	writeback_set_ratelimit();
L
Linus Torvalds 已提交
2101 2102 2103
	register_cpu_notifier(&ratelimit_nb);
}

2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
/**
 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
 * @mapping: address space structure to write
 * @start: starting page index
 * @end: ending page index (inclusive)
 *
 * This function scans the page range from @start to @end (inclusive) and tags
 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
 * that write_cache_pages (or whoever calls this function) will then use
 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
 * used to avoid livelocking of writeback by a process steadily creating new
 * dirty pages in the file (thus it is important for this function to be quick
 * so that it can tag pages faster than a dirtying process can create them).
 */
/*
 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
 */
void tag_pages_for_writeback(struct address_space *mapping,
			     pgoff_t start, pgoff_t end)
{
R
Randy Dunlap 已提交
2124
#define WRITEBACK_TAG_BATCH 4096
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
	unsigned long tagged;

	do {
		spin_lock_irq(&mapping->tree_lock);
		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
				&start, end, WRITEBACK_TAG_BATCH,
				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
		spin_unlock_irq(&mapping->tree_lock);
		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
		cond_resched();
2135 2136
		/* We check 'start' to handle wrapping when end == ~0UL */
	} while (tagged >= WRITEBACK_TAG_BATCH && start);
2137 2138 2139
}
EXPORT_SYMBOL(tag_pages_for_writeback);

2140
/**
2141
 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2142 2143
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2144 2145
 * @writepage: function called for each page
 * @data: data passed to writepage function
2146
 *
2147
 * If a page is already under I/O, write_cache_pages() skips it, even
2148 2149 2150 2151 2152 2153
 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 * and msync() need to guarantee that all the data which was dirty at the time
 * the call was made get new I/O started against them.  If wbc->sync_mode is
 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 * existing IO to complete.
2154 2155 2156 2157 2158 2159 2160
 *
 * To avoid livelocks (when other process dirties new pages), we first tag
 * pages which should be written back with TOWRITE tag and only then start
 * writing them. For data-integrity sync we have to be careful so that we do
 * not miss some pages (e.g., because some other process has cleared TOWRITE
 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
 * by the process clearing the DIRTY tag (and submitting the page for IO).
2161
 */
2162 2163 2164
int write_cache_pages(struct address_space *mapping,
		      struct writeback_control *wbc, writepage_t writepage,
		      void *data)
2165 2166 2167 2168 2169
{
	int ret = 0;
	int done = 0;
	struct pagevec pvec;
	int nr_pages;
N
Nick Piggin 已提交
2170
	pgoff_t uninitialized_var(writeback_index);
2171 2172
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
2173
	pgoff_t done_index;
N
Nick Piggin 已提交
2174
	int cycled;
2175
	int range_whole = 0;
2176
	int tag;
2177 2178 2179

	pagevec_init(&pvec, 0);
	if (wbc->range_cyclic) {
N
Nick Piggin 已提交
2180 2181 2182 2183 2184 2185
		writeback_index = mapping->writeback_index; /* prev offset */
		index = writeback_index;
		if (index == 0)
			cycled = 1;
		else
			cycled = 0;
2186 2187
		end = -1;
	} else {
2188 2189
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
2190 2191
		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
			range_whole = 1;
N
Nick Piggin 已提交
2192
		cycled = 1; /* ignore range_cyclic tests */
2193
	}
2194
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2195 2196 2197
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
2198
retry:
2199
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2200
		tag_pages_for_writeback(mapping, index, end);
2201
	done_index = index;
N
Nick Piggin 已提交
2202 2203 2204
	while (!done && (index <= end)) {
		int i;

2205
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
N
Nick Piggin 已提交
2206 2207 2208
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
			break;
2209 2210 2211 2212 2213

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
2214 2215 2216 2217 2218
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
2219
			 */
2220 2221 2222 2223 2224 2225 2226 2227 2228
			if (page->index > end) {
				/*
				 * can't be range_cyclic (1st pass) because
				 * end == -1 in that case.
				 */
				done = 1;
				break;
			}

2229
			done_index = page->index;
2230

2231 2232
			lock_page(page);

N
Nick Piggin 已提交
2233 2234 2235 2236 2237 2238 2239 2240
			/*
			 * Page truncated or invalidated. We can freely skip it
			 * then, even for data integrity operations: the page
			 * has disappeared concurrently, so there could be no
			 * real expectation of this data interity operation
			 * even if there is now a new, dirty page at the same
			 * pagecache address.
			 */
2241
			if (unlikely(page->mapping != mapping)) {
N
Nick Piggin 已提交
2242
continue_unlock:
2243 2244 2245 2246
				unlock_page(page);
				continue;
			}

2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
			if (!PageDirty(page)) {
				/* someone wrote it for us */
				goto continue_unlock;
			}

			if (PageWriteback(page)) {
				if (wbc->sync_mode != WB_SYNC_NONE)
					wait_on_page_writeback(page);
				else
					goto continue_unlock;
			}
2258

2259 2260
			BUG_ON(PageWriteback(page));
			if (!clear_page_dirty_for_io(page))
N
Nick Piggin 已提交
2261
				goto continue_unlock;
2262

2263
			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2264
			ret = (*writepage)(page, wbc, data);
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
			if (unlikely(ret)) {
				if (ret == AOP_WRITEPAGE_ACTIVATE) {
					unlock_page(page);
					ret = 0;
				} else {
					/*
					 * done_index is set past this page,
					 * so media errors will not choke
					 * background writeout for the entire
					 * file. This has consequences for
					 * range_cyclic semantics (ie. it may
					 * not be suitable for data integrity
					 * writeout).
					 */
2279
					done_index = page->index + 1;
2280 2281 2282
					done = 1;
					break;
				}
2283
			}
2284

2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
			/*
			 * We stop writing back only if we are not doing
			 * integrity sync. In case of integrity sync we have to
			 * keep going until we have written all the pages
			 * we tagged for writeback prior to entering this loop.
			 */
			if (--wbc->nr_to_write <= 0 &&
			    wbc->sync_mode == WB_SYNC_NONE) {
				done = 1;
				break;
2295
			}
2296 2297 2298 2299
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2300
	if (!cycled && !done) {
2301
		/*
N
Nick Piggin 已提交
2302
		 * range_cyclic:
2303 2304 2305
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
N
Nick Piggin 已提交
2306
		cycled = 1;
2307
		index = 0;
N
Nick Piggin 已提交
2308
		end = writeback_index - 1;
2309 2310
		goto retry;
	}
2311 2312
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		mapping->writeback_index = done_index;
2313

2314 2315
	return ret;
}
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
EXPORT_SYMBOL(write_cache_pages);

/*
 * Function used by generic_writepages to call the real writepage
 * function and set the mapping flags on error
 */
static int __writepage(struct page *page, struct writeback_control *wbc,
		       void *data)
{
	struct address_space *mapping = data;
	int ret = mapping->a_ops->writepage(page, wbc);
	mapping_set_error(mapping, ret);
	return ret;
}

/**
 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 *
 * This is a library function, which implements the writepages()
 * address_space_operation.
 */
int generic_writepages(struct address_space *mapping,
		       struct writeback_control *wbc)
{
2342 2343 2344
	struct blk_plug plug;
	int ret;

2345 2346 2347 2348
	/* deal with chardevs and other special file */
	if (!mapping->a_ops->writepage)
		return 0;

2349 2350 2351 2352
	blk_start_plug(&plug);
	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
	blk_finish_plug(&plug);
	return ret;
2353
}
2354 2355 2356

EXPORT_SYMBOL(generic_writepages);

L
Linus Torvalds 已提交
2357 2358
int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
{
2359 2360
	int ret;

L
Linus Torvalds 已提交
2361 2362 2363
	if (wbc->nr_to_write <= 0)
		return 0;
	if (mapping->a_ops->writepages)
2364
		ret = mapping->a_ops->writepages(mapping, wbc);
2365 2366 2367
	else
		ret = generic_writepages(mapping, wbc);
	return ret;
L
Linus Torvalds 已提交
2368 2369 2370 2371
}

/**
 * write_one_page - write out a single page and optionally wait on I/O
2372 2373
 * @page: the page to write
 * @wait: if true, wait on writeout
L
Linus Torvalds 已提交
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
 *
 * The page must be locked by the caller and will be unlocked upon return.
 *
 * write_one_page() returns a negative error code if I/O failed.
 */
int write_one_page(struct page *page, int wait)
{
	struct address_space *mapping = page->mapping;
	int ret = 0;
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_ALL,
		.nr_to_write = 1,
	};

	BUG_ON(!PageLocked(page));

	if (wait)
		wait_on_page_writeback(page);

	if (clear_page_dirty_for_io(page)) {
2394
		get_page(page);
L
Linus Torvalds 已提交
2395 2396 2397 2398 2399 2400
		ret = mapping->a_ops->writepage(page, &wbc);
		if (ret == 0 && wait) {
			wait_on_page_writeback(page);
			if (PageError(page))
				ret = -EIO;
		}
2401
		put_page(page);
L
Linus Torvalds 已提交
2402 2403 2404 2405 2406 2407 2408
	} else {
		unlock_page(page);
	}
	return ret;
}
EXPORT_SYMBOL(write_one_page);

2409 2410 2411 2412 2413 2414
/*
 * For address_spaces which do not use buffers nor write back.
 */
int __set_page_dirty_no_writeback(struct page *page)
{
	if (!PageDirty(page))
2415
		return !TestSetPageDirty(page);
2416 2417 2418
	return 0;
}

2419 2420
/*
 * Helper function for set_page_dirty family.
2421
 *
2422
 * Caller must hold lock_page_memcg().
2423
 *
2424 2425
 * NOTE: This relies on being atomic wrt interrupts.
 */
J
Johannes Weiner 已提交
2426
void account_page_dirtied(struct page *page, struct address_space *mapping)
2427
{
2428 2429
	struct inode *inode = mapping->host;

T
Tejun Heo 已提交
2430 2431
	trace_writeback_dirty_page(page, mapping);

2432
	if (mapping_cap_account_dirty(mapping)) {
2433
		struct bdi_writeback *wb;
2434

2435 2436
		inode_attach_wb(inode, page);
		wb = inode_to_wb(inode);
2437

J
Johannes Weiner 已提交
2438
		mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2439
		__inc_zone_page_state(page, NR_FILE_DIRTY);
2440
		__inc_zone_page_state(page, NR_DIRTIED);
2441 2442
		__inc_wb_stat(wb, WB_RECLAIMABLE);
		__inc_wb_stat(wb, WB_DIRTIED);
2443
		task_io_account_write(PAGE_SIZE);
2444 2445
		current->nr_dirtied++;
		this_cpu_inc(bdp_ratelimits);
2446 2447
	}
}
M
Michael Rubin 已提交
2448
EXPORT_SYMBOL(account_page_dirtied);
2449

2450 2451 2452
/*
 * Helper function for deaccounting dirty page without writeback.
 *
2453
 * Caller must hold lock_page_memcg().
2454
 */
2455
void account_page_cleaned(struct page *page, struct address_space *mapping,
J
Johannes Weiner 已提交
2456
			  struct bdi_writeback *wb)
2457 2458
{
	if (mapping_cap_account_dirty(mapping)) {
J
Johannes Weiner 已提交
2459
		mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2460
		dec_zone_page_state(page, NR_FILE_DIRTY);
2461
		dec_wb_stat(wb, WB_RECLAIMABLE);
2462
		task_io_account_cancelled_write(PAGE_SIZE);
2463 2464 2465
	}
}

L
Linus Torvalds 已提交
2466 2467 2468 2469 2470 2471 2472 2473
/*
 * For address_spaces which do not use buffers.  Just tag the page as dirty in
 * its radix tree.
 *
 * This is also used when a single buffer is being dirtied: we want to set the
 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
 *
2474 2475 2476
 * The caller must ensure this doesn't race with truncation.  Most will simply
 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
 * the pte lock held, which also locks out truncation.
L
Linus Torvalds 已提交
2477 2478 2479
 */
int __set_page_dirty_nobuffers(struct page *page)
{
J
Johannes Weiner 已提交
2480
	lock_page_memcg(page);
L
Linus Torvalds 已提交
2481 2482
	if (!TestSetPageDirty(page)) {
		struct address_space *mapping = page_mapping(page);
2483
		unsigned long flags;
L
Linus Torvalds 已提交
2484

2485
		if (!mapping) {
J
Johannes Weiner 已提交
2486
			unlock_page_memcg(page);
2487
			return 1;
2488
		}
2489

2490
		spin_lock_irqsave(&mapping->tree_lock, flags);
2491 2492
		BUG_ON(page_mapping(page) != mapping);
		WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
J
Johannes Weiner 已提交
2493
		account_page_dirtied(page, mapping);
2494 2495
		radix_tree_tag_set(&mapping->page_tree, page_index(page),
				   PAGECACHE_TAG_DIRTY);
2496
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
J
Johannes Weiner 已提交
2497
		unlock_page_memcg(page);
2498

2499 2500 2501
		if (mapping->host) {
			/* !PageAnon && !swapper_space */
			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
L
Linus Torvalds 已提交
2502
		}
2503
		return 1;
L
Linus Torvalds 已提交
2504
	}
J
Johannes Weiner 已提交
2505
	unlock_page_memcg(page);
2506
	return 0;
L
Linus Torvalds 已提交
2507 2508 2509
}
EXPORT_SYMBOL(__set_page_dirty_nobuffers);

2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
/*
 * Call this whenever redirtying a page, to de-account the dirty counters
 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
 * control.
 */
void account_page_redirty(struct page *page)
{
	struct address_space *mapping = page->mapping;
2520

2521
	if (mapping && mapping_cap_account_dirty(mapping)) {
2522 2523 2524
		struct inode *inode = mapping->host;
		struct bdi_writeback *wb;
		bool locked;
2525

2526
		wb = unlocked_inode_to_wb_begin(inode, &locked);
2527 2528
		current->nr_dirtied--;
		dec_zone_page_state(page, NR_DIRTIED);
2529
		dec_wb_stat(wb, WB_DIRTIED);
2530
		unlocked_inode_to_wb_end(inode, locked);
2531 2532 2533 2534
	}
}
EXPORT_SYMBOL(account_page_redirty);

L
Linus Torvalds 已提交
2535 2536 2537 2538 2539 2540 2541
/*
 * When a writepage implementation decides that it doesn't want to write this
 * page for some reason, it should redirty the locked page via
 * redirty_page_for_writepage() and it should then unlock the page and return 0
 */
int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
{
2542 2543
	int ret;

L
Linus Torvalds 已提交
2544
	wbc->pages_skipped++;
2545
	ret = __set_page_dirty_nobuffers(page);
2546
	account_page_redirty(page);
2547
	return ret;
L
Linus Torvalds 已提交
2548 2549 2550 2551
}
EXPORT_SYMBOL(redirty_page_for_writepage);

/*
2552 2553 2554 2555 2556 2557 2558
 * Dirty a page.
 *
 * For pages with a mapping this should be done under the page lock
 * for the benefit of asynchronous memory errors who prefer a consistent
 * dirty state. This rule can be broken in some special cases,
 * but should be better not to.
 *
L
Linus Torvalds 已提交
2559 2560 2561
 * If the mapping doesn't provide a set_page_dirty a_op, then
 * just fall through and assume that it wants buffer_heads.
 */
N
Nick Piggin 已提交
2562
int set_page_dirty(struct page *page)
L
Linus Torvalds 已提交
2563 2564 2565 2566 2567
{
	struct address_space *mapping = page_mapping(page);

	if (likely(mapping)) {
		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
M
Minchan Kim 已提交
2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
		/*
		 * readahead/lru_deactivate_page could remain
		 * PG_readahead/PG_reclaim due to race with end_page_writeback
		 * About readahead, if the page is written, the flags would be
		 * reset. So no problem.
		 * About lru_deactivate_page, if the page is redirty, the flag
		 * will be reset. So no problem. but if the page is used by readahead
		 * it will confuse readahead and make it restart the size rampup
		 * process. But it's a trivial problem.
		 */
2578 2579
		if (PageReclaim(page))
			ClearPageReclaim(page);
2580 2581 2582 2583 2584
#ifdef CONFIG_BLOCK
		if (!spd)
			spd = __set_page_dirty_buffers;
#endif
		return (*spd)(page);
L
Linus Torvalds 已提交
2585
	}
2586 2587 2588 2589
	if (!PageDirty(page)) {
		if (!TestSetPageDirty(page))
			return 1;
	}
L
Linus Torvalds 已提交
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
	return 0;
}
EXPORT_SYMBOL(set_page_dirty);

/*
 * set_page_dirty() is racy if the caller has no reference against
 * page->mapping->host, and if the page is unlocked.  This is because another
 * CPU could truncate the page off the mapping and then free the mapping.
 *
 * Usually, the page _is_ locked, or the caller is a user-space process which
 * holds a reference on the inode by having an open file.
 *
 * In other cases, the page should be locked before running set_page_dirty().
 */
int set_page_dirty_lock(struct page *page)
{
	int ret;

J
Jens Axboe 已提交
2608
	lock_page(page);
L
Linus Torvalds 已提交
2609 2610 2611 2612 2613 2614
	ret = set_page_dirty(page);
	unlock_page(page);
	return ret;
}
EXPORT_SYMBOL(set_page_dirty_lock);

2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
/*
 * This cancels just the dirty bit on the kernel page itself, it does NOT
 * actually remove dirty bits on any mmap's that may be around. It also
 * leaves the page tagged dirty, so any sync activity will still find it on
 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
 * look at the dirty bits in the VM.
 *
 * Doing this should *normally* only ever be done when a page is truncated,
 * and is not actually mapped anywhere at all. However, fs/buffer.c does
 * this when it notices that somebody has cleaned out all the buffers on a
 * page without actually doing it through the VM. Can you say "ext3 is
 * horribly ugly"? Thought you could.
 */
void cancel_dirty_page(struct page *page)
{
2630 2631 2632
	struct address_space *mapping = page_mapping(page);

	if (mapping_cap_account_dirty(mapping)) {
2633 2634 2635
		struct inode *inode = mapping->host;
		struct bdi_writeback *wb;
		bool locked;
2636

J
Johannes Weiner 已提交
2637
		lock_page_memcg(page);
2638
		wb = unlocked_inode_to_wb_begin(inode, &locked);
2639 2640

		if (TestClearPageDirty(page))
J
Johannes Weiner 已提交
2641
			account_page_cleaned(page, mapping, wb);
2642

2643
		unlocked_inode_to_wb_end(inode, locked);
J
Johannes Weiner 已提交
2644
		unlock_page_memcg(page);
2645 2646 2647
	} else {
		ClearPageDirty(page);
	}
2648 2649 2650
}
EXPORT_SYMBOL(cancel_dirty_page);

L
Linus Torvalds 已提交
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
/*
 * Clear a page's dirty flag, while caring for dirty memory accounting.
 * Returns true if the page was previously dirty.
 *
 * This is for preparing to put the page under writeout.  We leave the page
 * tagged as dirty in the radix tree so that a concurrent write-for-sync
 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
 * implementation will run either set_page_writeback() or set_page_dirty(),
 * at which stage we bring the page's dirty flag and radix-tree dirty tag
 * back into sync.
 *
 * This incoherency between the page's dirty flag and radix-tree tag is
 * unfortunate, but it only exists while the page is locked.
 */
int clear_page_dirty_for_io(struct page *page)
{
	struct address_space *mapping = page_mapping(page);
2668
	int ret = 0;
L
Linus Torvalds 已提交
2669

2670 2671
	BUG_ON(!PageLocked(page));

2672
	if (mapping && mapping_cap_account_dirty(mapping)) {
2673 2674 2675 2676
		struct inode *inode = mapping->host;
		struct bdi_writeback *wb;
		bool locked;

2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
		/*
		 * Yes, Virginia, this is indeed insane.
		 *
		 * We use this sequence to make sure that
		 *  (a) we account for dirty stats properly
		 *  (b) we tell the low-level filesystem to
		 *      mark the whole page dirty if it was
		 *      dirty in a pagetable. Only to then
		 *  (c) clean the page again and return 1 to
		 *      cause the writeback.
		 *
		 * This way we avoid all nasty races with the
		 * dirty bit in multiple places and clearing
		 * them concurrently from different threads.
		 *
		 * Note! Normally the "set_page_dirty(page)"
		 * has no effect on the actual dirty bit - since
		 * that will already usually be set. But we
		 * need the side effects, and it can help us
		 * avoid races.
		 *
		 * We basically use the page "master dirty bit"
		 * as a serialization point for all the different
		 * threads doing their things.
		 */
		if (page_mkclean(page))
			set_page_dirty(page);
2704 2705 2706
		/*
		 * We carefully synchronise fault handlers against
		 * installing a dirty pte and marking the page dirty
2707 2708 2709 2710
		 * at this point.  We do this by having them hold the
		 * page lock while dirtying the page, and pages are
		 * always locked coming in here, so we get the desired
		 * exclusion.
2711
		 */
2712
		wb = unlocked_inode_to_wb_begin(inode, &locked);
2713
		if (TestClearPageDirty(page)) {
J
Johannes Weiner 已提交
2714
			mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2715
			dec_zone_page_state(page, NR_FILE_DIRTY);
2716
			dec_wb_stat(wb, WB_RECLAIMABLE);
2717
			ret = 1;
L
Linus Torvalds 已提交
2718
		}
2719
		unlocked_inode_to_wb_end(inode, locked);
2720
		return ret;
L
Linus Torvalds 已提交
2721
	}
2722
	return TestClearPageDirty(page);
L
Linus Torvalds 已提交
2723
}
2724
EXPORT_SYMBOL(clear_page_dirty_for_io);
L
Linus Torvalds 已提交
2725 2726 2727 2728

int test_clear_page_writeback(struct page *page)
{
	struct address_space *mapping = page_mapping(page);
2729
	int ret;
L
Linus Torvalds 已提交
2730

J
Johannes Weiner 已提交
2731
	lock_page_memcg(page);
L
Linus Torvalds 已提交
2732
	if (mapping) {
2733 2734
		struct inode *inode = mapping->host;
		struct backing_dev_info *bdi = inode_to_bdi(inode);
L
Linus Torvalds 已提交
2735 2736
		unsigned long flags;

N
Nick Piggin 已提交
2737
		spin_lock_irqsave(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2738
		ret = TestClearPageWriteback(page);
P
Peter Zijlstra 已提交
2739
		if (ret) {
L
Linus Torvalds 已提交
2740 2741 2742
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_WRITEBACK);
2743
			if (bdi_cap_account_writeback(bdi)) {
2744 2745 2746 2747
				struct bdi_writeback *wb = inode_to_wb(inode);

				__dec_wb_stat(wb, WB_WRITEBACK);
				__wb_writeout_inc(wb);
P
Peter Zijlstra 已提交
2748
			}
P
Peter Zijlstra 已提交
2749
		}
N
Nick Piggin 已提交
2750
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2751 2752 2753
	} else {
		ret = TestClearPageWriteback(page);
	}
2754
	if (ret) {
J
Johannes Weiner 已提交
2755
		mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2756
		dec_zone_page_state(page, NR_WRITEBACK);
2757 2758
		inc_zone_page_state(page, NR_WRITTEN);
	}
J
Johannes Weiner 已提交
2759
	unlock_page_memcg(page);
L
Linus Torvalds 已提交
2760 2761 2762
	return ret;
}

2763
int __test_set_page_writeback(struct page *page, bool keep_write)
L
Linus Torvalds 已提交
2764 2765
{
	struct address_space *mapping = page_mapping(page);
2766
	int ret;
L
Linus Torvalds 已提交
2767

J
Johannes Weiner 已提交
2768
	lock_page_memcg(page);
L
Linus Torvalds 已提交
2769
	if (mapping) {
2770 2771
		struct inode *inode = mapping->host;
		struct backing_dev_info *bdi = inode_to_bdi(inode);
L
Linus Torvalds 已提交
2772 2773
		unsigned long flags;

N
Nick Piggin 已提交
2774
		spin_lock_irqsave(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2775
		ret = TestSetPageWriteback(page);
P
Peter Zijlstra 已提交
2776
		if (!ret) {
L
Linus Torvalds 已提交
2777 2778 2779
			radix_tree_tag_set(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_WRITEBACK);
2780
			if (bdi_cap_account_writeback(bdi))
2781
				__inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
P
Peter Zijlstra 已提交
2782
		}
L
Linus Torvalds 已提交
2783 2784 2785 2786
		if (!PageDirty(page))
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_DIRTY);
2787 2788 2789 2790
		if (!keep_write)
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_TOWRITE);
N
Nick Piggin 已提交
2791
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2792 2793 2794
	} else {
		ret = TestSetPageWriteback(page);
	}
2795
	if (!ret) {
J
Johannes Weiner 已提交
2796
		mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2797 2798
		inc_zone_page_state(page, NR_WRITEBACK);
	}
J
Johannes Weiner 已提交
2799
	unlock_page_memcg(page);
L
Linus Torvalds 已提交
2800 2801 2802
	return ret;

}
2803
EXPORT_SYMBOL(__test_set_page_writeback);
L
Linus Torvalds 已提交
2804 2805

/*
N
Nick Piggin 已提交
2806
 * Return true if any of the pages in the mapping are marked with the
L
Linus Torvalds 已提交
2807 2808 2809 2810
 * passed tag.
 */
int mapping_tagged(struct address_space *mapping, int tag)
{
2811
	return radix_tree_tagged(&mapping->page_tree, tag);
L
Linus Torvalds 已提交
2812 2813
}
EXPORT_SYMBOL(mapping_tagged);
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824

/**
 * wait_for_stable_page() - wait for writeback to finish, if necessary.
 * @page:	The page to wait on.
 *
 * This function determines if the given page is related to a backing device
 * that requires page contents to be held stable during writeback.  If so, then
 * it will wait for any pending writeback to complete.
 */
void wait_for_stable_page(struct page *page)
{
2825 2826
	if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
		wait_on_page_writeback(page);
2827 2828
}
EXPORT_SYMBOL_GPL(wait_for_stable_page);