page-writeback.c 77.0 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 * mm/page-writeback.c
L
Linus Torvalds 已提交
3 4
 *
 * Copyright (C) 2002, Linus Torvalds.
P
Peter Zijlstra 已提交
5
 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
L
Linus Torvalds 已提交
6 7 8 9
 *
 * Contains functions related to writing back dirty pages at the
 * address_space level.
 *
10
 * 10Apr2002	Andrew Morton
L
Linus Torvalds 已提交
11 12 13 14
 *		Initial version
 */

#include <linux/kernel.h>
15
#include <linux/export.h>
L
Linus Torvalds 已提交
16 17 18 19 20 21 22 23 24
#include <linux/spinlock.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/writeback.h>
#include <linux/init.h>
#include <linux/backing-dev.h>
25
#include <linux/task_io_accounting_ops.h>
L
Linus Torvalds 已提交
26 27
#include <linux/blkdev.h>
#include <linux/mpage.h>
28
#include <linux/rmap.h>
L
Linus Torvalds 已提交
29 30 31 32 33 34
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/smp.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
A
Al Viro 已提交
35
#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36
#include <linux/pagevec.h>
37
#include <linux/timer.h>
38
#include <linux/sched/rt.h>
39
#include <linux/mm_inline.h>
40
#include <trace/events/writeback.h>
L
Linus Torvalds 已提交
41

42 43
#include "internal.h"

44 45 46 47 48
/*
 * Sleep at most 200ms at a time in balance_dirty_pages().
 */
#define MAX_PAUSE		max(HZ/5, 1)

49 50 51 52 53 54
/*
 * Try to keep balance_dirty_pages() call intervals higher than this many pages
 * by raising pause time to max_pause when falls below it.
 */
#define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))

55 56 57 58 59
/*
 * Estimate write bandwidth at 200ms intervals.
 */
#define BANDWIDTH_INTERVAL	max(HZ/5, 1)

W
Wu Fengguang 已提交
60 61
#define RATELIMIT_CALC_SHIFT	10

L
Linus Torvalds 已提交
62 63 64 65 66 67 68 69 70
/*
 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
 * will look to see if it needs to force writeback or throttling.
 */
static long ratelimit_pages = 32;

/* The following parameters are exported via /proc/sys/vm */

/*
71
 * Start background writeback (via writeback threads) at this percentage
L
Linus Torvalds 已提交
72
 */
73
int dirty_background_ratio = 10;
L
Linus Torvalds 已提交
74

75 76 77 78 79 80
/*
 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
 * dirty_background_ratio * the amount of dirtyable memory
 */
unsigned long dirty_background_bytes;

81 82 83 84 85 86
/*
 * free highmem will not be subtracted from the total free memory
 * for calculating free ratios if vm_highmem_is_dirtyable is true
 */
int vm_highmem_is_dirtyable;

L
Linus Torvalds 已提交
87 88 89
/*
 * The generator of dirty data starts writeback at this percentage
 */
90
int vm_dirty_ratio = 20;
L
Linus Torvalds 已提交
91

92 93 94 95 96 97
/*
 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
 * vm_dirty_ratio * the amount of dirtyable memory
 */
unsigned long vm_dirty_bytes;

L
Linus Torvalds 已提交
98
/*
99
 * The interval between `kupdate'-style writebacks
L
Linus Torvalds 已提交
100
 */
101
unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
L
Linus Torvalds 已提交
102

103 104
EXPORT_SYMBOL_GPL(dirty_writeback_interval);

L
Linus Torvalds 已提交
105
/*
106
 * The longest time for which data is allowed to remain dirty
L
Linus Torvalds 已提交
107
 */
108
unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
L
Linus Torvalds 已提交
109 110 111 112 113 114 115

/*
 * Flag that makes the machine dump writes/reads and block dirtyings.
 */
int block_dump;

/*
116 117
 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 * a full sync is triggered after this time elapses without any disk activity.
L
Linus Torvalds 已提交
118 119 120 121 122 123 124
 */
int laptop_mode;

EXPORT_SYMBOL(laptop_mode);

/* End of sysctl-exported parameters */

125
unsigned long global_dirty_limit;
L
Linus Torvalds 已提交
126

P
Peter Zijlstra 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
/*
 * Scale the writeback cache size proportional to the relative writeout speeds.
 *
 * We do this by keeping a floating proportion between BDIs, based on page
 * writeback completions [end_page_writeback()]. Those devices that write out
 * pages fastest will get the larger share, while the slower will get a smaller
 * share.
 *
 * We use page writeout completions because we are interested in getting rid of
 * dirty pages. Having them written out is the primary goal.
 *
 * We introduce a concept of time, a period over which we measure these events,
 * because demand can/will vary over time. The length of this period itself is
 * measured in page writeback completions.
 *
 */
143 144 145 146 147 148 149 150 151 152 153 154 155 156
static struct fprop_global writeout_completions;

static void writeout_period(unsigned long t);
/* Timer for aging of writeout_completions */
static struct timer_list writeout_period_timer =
		TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0);
static unsigned long writeout_period_time = 0;

/*
 * Length of period for aging writeout fractions of bdis. This is an
 * arbitrarily chosen number. The longer the period, the slower fractions will
 * reflect changes in current writeout rate.
 */
#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
P
Peter Zijlstra 已提交
157

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
#ifdef CONFIG_CGROUP_WRITEBACK

static void wb_min_max_ratio(struct bdi_writeback *wb,
			     unsigned long *minp, unsigned long *maxp)
{
	unsigned long this_bw = wb->avg_write_bandwidth;
	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
	unsigned long long min = wb->bdi->min_ratio;
	unsigned long long max = wb->bdi->max_ratio;

	/*
	 * @wb may already be clean by the time control reaches here and
	 * the total may not include its bw.
	 */
	if (this_bw < tot_bw) {
		if (min) {
			min *= this_bw;
			do_div(min, tot_bw);
		}
		if (max < 100) {
			max *= this_bw;
			do_div(max, tot_bw);
		}
	}

	*minp = min;
	*maxp = max;
}

#else	/* CONFIG_CGROUP_WRITEBACK */

static void wb_min_max_ratio(struct bdi_writeback *wb,
			     unsigned long *minp, unsigned long *maxp)
{
	*minp = wb->bdi->min_ratio;
	*maxp = wb->bdi->max_ratio;
}

#endif	/* CONFIG_CGROUP_WRITEBACK */

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
/*
 * In a memory zone, there is a certain amount of pages we consider
 * available for the page cache, which is essentially the number of
 * free and reclaimable pages, minus some zone reserves to protect
 * lowmem and the ability to uphold the zone's watermarks without
 * requiring writeback.
 *
 * This number of dirtyable pages is the base value of which the
 * user-configurable dirty ratio is the effictive number of pages that
 * are allowed to be actually dirtied.  Per individual zone, or
 * globally by using the sum of dirtyable pages over all zones.
 *
 * Because the user is allowed to specify the dirty limit globally as
 * absolute number of bytes, calculating the per-zone dirty limit can
 * require translating the configured limit into a percentage of
 * global dirtyable memory first.
 */

216 217 218 219 220 221 222 223 224 225 226 227 228 229
/**
 * zone_dirtyable_memory - number of dirtyable pages in a zone
 * @zone: the zone
 *
 * Returns the zone's number of pages potentially available for dirty
 * page cache.  This is the base value for the per-zone dirty limits.
 */
static unsigned long zone_dirtyable_memory(struct zone *zone)
{
	unsigned long nr_pages;

	nr_pages = zone_page_state(zone, NR_FREE_PAGES);
	nr_pages -= min(nr_pages, zone->dirty_balance_reserve);

230 231
	nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
	nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
232 233 234 235

	return nr_pages;
}

236 237 238 239 240 241 242
static unsigned long highmem_dirtyable_memory(unsigned long total)
{
#ifdef CONFIG_HIGHMEM
	int node;
	unsigned long x = 0;

	for_each_node_state(node, N_HIGH_MEMORY) {
243
		struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
244

245
		x += zone_dirtyable_memory(z);
246
	}
247 248 249 250 251 252 253 254 255 256 257 258
	/*
	 * Unreclaimable memory (kernel memory or anonymous memory
	 * without swap) can bring down the dirtyable pages below
	 * the zone's dirty balance reserve and the above calculation
	 * will underflow.  However we still want to add in nodes
	 * which are below threshold (negative values) to get a more
	 * accurate calculation but make sure that the total never
	 * underflows.
	 */
	if ((long)x < 0)
		x = 0;

259 260 261 262 263 264 265 266 267 268 269 270 271
	/*
	 * Make sure that the number of highmem pages is never larger
	 * than the number of the total dirtyable memory. This can only
	 * occur in very strange VM situations but we want to make sure
	 * that this does not occur.
	 */
	return min(x, total);
#else
	return 0;
#endif
}

/**
272
 * global_dirtyable_memory - number of globally dirtyable pages
273
 *
274 275
 * Returns the global number of pages potentially available for dirty
 * page cache.  This is the base value for the global dirty limits.
276
 */
277
static unsigned long global_dirtyable_memory(void)
278 279 280
{
	unsigned long x;

281
	x = global_page_state(NR_FREE_PAGES);
282
	x -= min(x, dirty_balance_reserve);
283

284 285
	x += global_page_state(NR_INACTIVE_FILE);
	x += global_page_state(NR_ACTIVE_FILE);
286

287 288 289 290 291 292
	if (!vm_highmem_is_dirtyable)
		x -= highmem_dirtyable_memory(x);

	return x + 1;	/* Ensure that we never return 0 */
}

293 294 295 296 297 298 299 300 301 302 303
/*
 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 *
 * Calculate the dirty thresholds based on sysctl parameters
 * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
 * - vm.dirty_ratio             or  vm.dirty_bytes
 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
 * real-time tasks.
 */
void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
{
304
	const unsigned long available_memory = global_dirtyable_memory();
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
	unsigned long background;
	unsigned long dirty;
	struct task_struct *tsk;

	if (vm_dirty_bytes)
		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
	else
		dirty = (vm_dirty_ratio * available_memory) / 100;

	if (dirty_background_bytes)
		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
	else
		background = (dirty_background_ratio * available_memory) / 100;

	if (background >= dirty)
		background = dirty / 2;
	tsk = current;
	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
		background += background / 4;
		dirty += dirty / 4;
	}
	*pbackground = background;
	*pdirty = dirty;
	trace_global_dirty_state(background, dirty);
}

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
/**
 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
 * @zone: the zone
 *
 * Returns the maximum number of dirty pages allowed in a zone, based
 * on the zone's dirtyable memory.
 */
static unsigned long zone_dirty_limit(struct zone *zone)
{
	unsigned long zone_memory = zone_dirtyable_memory(zone);
	struct task_struct *tsk = current;
	unsigned long dirty;

	if (vm_dirty_bytes)
		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
			zone_memory / global_dirtyable_memory();
	else
		dirty = vm_dirty_ratio * zone_memory / 100;

	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
		dirty += dirty / 4;

	return dirty;
}

/**
 * zone_dirty_ok - tells whether a zone is within its dirty limits
 * @zone: the zone to check
 *
 * Returns %true when the dirty pages in @zone are within the zone's
 * dirty limit, %false if the limit is exceeded.
 */
bool zone_dirty_ok(struct zone *zone)
{
	unsigned long limit = zone_dirty_limit(zone);

	return zone_page_state(zone, NR_FILE_DIRTY) +
	       zone_page_state(zone, NR_UNSTABLE_NFS) +
	       zone_page_state(zone, NR_WRITEBACK) <= limit;
}

372
int dirty_background_ratio_handler(struct ctl_table *table, int write,
373
		void __user *buffer, size_t *lenp,
374 375 376 377
		loff_t *ppos)
{
	int ret;

378
	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
379 380 381 382 383 384
	if (ret == 0 && write)
		dirty_background_bytes = 0;
	return ret;
}

int dirty_background_bytes_handler(struct ctl_table *table, int write,
385
		void __user *buffer, size_t *lenp,
386 387 388 389
		loff_t *ppos)
{
	int ret;

390
	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
391 392 393 394 395
	if (ret == 0 && write)
		dirty_background_ratio = 0;
	return ret;
}

P
Peter Zijlstra 已提交
396
int dirty_ratio_handler(struct ctl_table *table, int write,
397
		void __user *buffer, size_t *lenp,
P
Peter Zijlstra 已提交
398 399 400
		loff_t *ppos)
{
	int old_ratio = vm_dirty_ratio;
401 402
	int ret;

403
	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
404
	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
405
		writeback_set_ratelimit();
406 407 408 409 410 411
		vm_dirty_bytes = 0;
	}
	return ret;
}

int dirty_bytes_handler(struct ctl_table *table, int write,
412
		void __user *buffer, size_t *lenp,
413 414
		loff_t *ppos)
{
415
	unsigned long old_bytes = vm_dirty_bytes;
416 417
	int ret;

418
	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
419
	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
420
		writeback_set_ratelimit();
421
		vm_dirty_ratio = 0;
P
Peter Zijlstra 已提交
422 423 424 425
	}
	return ret;
}

426 427 428 429 430 431 432 433 434
static unsigned long wp_next_time(unsigned long cur_time)
{
	cur_time += VM_COMPLETIONS_PERIOD_LEN;
	/* 0 has a special meaning... */
	if (!cur_time)
		return 1;
	return cur_time;
}

P
Peter Zijlstra 已提交
435 436 437 438
/*
 * Increment the BDI's writeout completion count and the global writeout
 * completion count. Called from test_clear_page_writeback().
 */
439
static inline void __wb_writeout_inc(struct bdi_writeback *wb)
P
Peter Zijlstra 已提交
440
{
441
	__inc_wb_stat(wb, WB_WRITTEN);
442
	__fprop_inc_percpu_max(&writeout_completions, &wb->completions,
443
			       wb->bdi->max_prop_frac);
444 445 446 447 448 449 450 451 452 453 454
	/* First event after period switching was turned off? */
	if (!unlikely(writeout_period_time)) {
		/*
		 * We can race with other __bdi_writeout_inc calls here but
		 * it does not cause any harm since the resulting time when
		 * timer will fire and what is in writeout_period_time will be
		 * roughly the same.
		 */
		writeout_period_time = wp_next_time(jiffies);
		mod_timer(&writeout_period_timer, writeout_period_time);
	}
P
Peter Zijlstra 已提交
455 456
}

457
void wb_writeout_inc(struct bdi_writeback *wb)
458 459 460 461
{
	unsigned long flags;

	local_irq_save(flags);
462
	__wb_writeout_inc(wb);
463 464
	local_irq_restore(flags);
}
465
EXPORT_SYMBOL_GPL(wb_writeout_inc);
466

P
Peter Zijlstra 已提交
467 468 469
/*
 * Obtain an accurate fraction of the BDI's portion.
 */
470 471
static void wb_writeout_fraction(struct bdi_writeback *wb,
				 long *numerator, long *denominator)
P
Peter Zijlstra 已提交
472
{
473
	fprop_fraction_percpu(&writeout_completions, &wb->completions,
P
Peter Zijlstra 已提交
474 475 476
				numerator, denominator);
}

477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
/*
 * On idle system, we can be called long after we scheduled because we use
 * deferred timers so count with missed periods.
 */
static void writeout_period(unsigned long t)
{
	int miss_periods = (jiffies - writeout_period_time) /
						 VM_COMPLETIONS_PERIOD_LEN;

	if (fprop_new_period(&writeout_completions, miss_periods + 1)) {
		writeout_period_time = wp_next_time(writeout_period_time +
				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
		mod_timer(&writeout_period_timer, writeout_period_time);
	} else {
		/*
		 * Aging has zeroed all fractions. Stop wasting CPU on period
		 * updates.
		 */
		writeout_period_time = 0;
	}
}

499
/*
500 501 502
 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 * registered backing devices, which, for obvious reasons, can not
 * exceed 100%.
503 504 505 506 507 508 509
 */
static unsigned int bdi_min_ratio;

int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
{
	int ret = 0;

510
	spin_lock_bh(&bdi_lock);
511
	if (min_ratio > bdi->max_ratio) {
512
		ret = -EINVAL;
513 514 515 516 517 518 519 520 521
	} else {
		min_ratio -= bdi->min_ratio;
		if (bdi_min_ratio + min_ratio < 100) {
			bdi_min_ratio += min_ratio;
			bdi->min_ratio += min_ratio;
		} else {
			ret = -EINVAL;
		}
	}
522
	spin_unlock_bh(&bdi_lock);
523 524 525 526 527 528 529 530 531 532 533

	return ret;
}

int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
{
	int ret = 0;

	if (max_ratio > 100)
		return -EINVAL;

534
	spin_lock_bh(&bdi_lock);
535 536 537 538
	if (bdi->min_ratio > max_ratio) {
		ret = -EINVAL;
	} else {
		bdi->max_ratio = max_ratio;
539
		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
540
	}
541
	spin_unlock_bh(&bdi_lock);
542 543 544

	return ret;
}
545
EXPORT_SYMBOL(bdi_set_max_ratio);
546

W
Wu Fengguang 已提交
547 548 549 550 551 552
static unsigned long dirty_freerun_ceiling(unsigned long thresh,
					   unsigned long bg_thresh)
{
	return (thresh + bg_thresh) / 2;
}

553 554 555 556 557
static unsigned long hard_dirty_limit(unsigned long thresh)
{
	return max(thresh, global_dirty_limit);
}

558
/**
T
Tejun Heo 已提交
559
 * wb_calc_thresh - @wb's share of dirty throttling threshold
560
 * @wb: bdi_writeback to query
561
 * @dirty: global dirty limit in pages
562
 *
563
 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
564
 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
565 566 567 568 569 570
 *
 * Note that balance_dirty_pages() will only seriously take it as a hard limit
 * when sleeping max_pause per page is not enough to keep the dirty pages under
 * control. For example, when the device is completely stalled due to some error
 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 * In the other normal situations, it acts more gently by throttling the tasks
571
 * more (rather than completely block them) when the wb dirty pages go high.
572
 *
573
 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
574 575 576
 * - starving fast devices
 * - piling up dirty pages (that will take long time to sync) on slow devices
 *
577
 * The wb's share of dirty limit will be adapting to its throughput and
578 579
 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 */
T
Tejun Heo 已提交
580
unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
581
{
T
Tejun Heo 已提交
582
	u64 wb_thresh;
583
	long numerator, denominator;
584
	unsigned long wb_min_ratio, wb_max_ratio;
P
Peter Zijlstra 已提交
585

586
	/*
T
Tejun Heo 已提交
587
	 * Calculate this BDI's share of the thresh ratio.
588
	 */
589
	wb_writeout_fraction(wb, &numerator, &denominator);
P
Peter Zijlstra 已提交
590

T
Tejun Heo 已提交
591 592 593
	wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
	wb_thresh *= numerator;
	do_div(wb_thresh, denominator);
P
Peter Zijlstra 已提交
594

595 596
	wb_min_max_ratio(wb, &wb_min_ratio, &wb_max_ratio);

T
Tejun Heo 已提交
597 598 599
	wb_thresh += (thresh * wb_min_ratio) / 100;
	if (wb_thresh > (thresh * wb_max_ratio) / 100)
		wb_thresh = thresh * wb_max_ratio / 100;
600

T
Tejun Heo 已提交
601
	return wb_thresh;
L
Linus Torvalds 已提交
602 603
}

604 605 606 607 608 609 610 611 612 613 614 615 616 617
/*
 *                           setpoint - dirty 3
 *        f(dirty) := 1.0 + (----------------)
 *                           limit - setpoint
 *
 * it's a 3rd order polynomial that subjects to
 *
 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 * (2) f(setpoint) = 1.0 => the balance point
 * (3) f(limit)    = 0   => the hard limit
 * (4) df/dx      <= 0	 => negative feedback control
 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 *     => fast response on large errors; small oscillation near setpoint
 */
618
static long long pos_ratio_polynom(unsigned long setpoint,
619 620 621 622 623 624
					  unsigned long dirty,
					  unsigned long limit)
{
	long long pos_ratio;
	long x;

625
	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
626 627 628 629 630 631 632 633 634
		    limit - setpoint + 1);
	pos_ratio = x;
	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;

	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
}

W
Wu Fengguang 已提交
635 636 637 638 639
/*
 * Dirty position control.
 *
 * (o) global/bdi setpoints
 *
640
 * We want the dirty pages be balanced around the global/wb setpoints.
W
Wu Fengguang 已提交
641 642 643 644 645 646 647 648 649
 * When the number of dirty pages is higher/lower than the setpoint, the
 * dirty position control ratio (and hence task dirty ratelimit) will be
 * decreased/increased to bring the dirty pages back to the setpoint.
 *
 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 *
 *     if (dirty < setpoint) scale up   pos_ratio
 *     if (dirty > setpoint) scale down pos_ratio
 *
650 651
 *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
 *     if (wb_dirty > wb_setpoint) scale down pos_ratio
W
Wu Fengguang 已提交
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
 *
 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 *
 * (o) global control line
 *
 *     ^ pos_ratio
 *     |
 *     |            |<===== global dirty control scope ======>|
 * 2.0 .............*
 *     |            .*
 *     |            . *
 *     |            .   *
 *     |            .     *
 *     |            .        *
 *     |            .            *
 * 1.0 ................................*
 *     |            .                  .     *
 *     |            .                  .          *
 *     |            .                  .              *
 *     |            .                  .                 *
 *     |            .                  .                    *
 *   0 +------------.------------------.----------------------*------------->
 *           freerun^          setpoint^                 limit^   dirty pages
 *
676
 * (o) wb control line
W
Wu Fengguang 已提交
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
 *
 *     ^ pos_ratio
 *     |
 *     |            *
 *     |              *
 *     |                *
 *     |                  *
 *     |                    * |<=========== span ============>|
 * 1.0 .......................*
 *     |                      . *
 *     |                      .   *
 *     |                      .     *
 *     |                      .       *
 *     |                      .         *
 *     |                      .           *
 *     |                      .             *
 *     |                      .               *
 *     |                      .                 *
 *     |                      .                   *
 *     |                      .                     *
 * 1/4 ...............................................* * * * * * * * * * * *
 *     |                      .                         .
 *     |                      .                           .
 *     |                      .                             .
 *   0 +----------------------.-------------------------------.------------->
702
 *                wb_setpoint^                    x_intercept^
W
Wu Fengguang 已提交
703
 *
704
 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
W
Wu Fengguang 已提交
705 706
 * be smoothly throttled down to normal if it starts high in situations like
 * - start writing to a slow SD card and a fast disk at the same time. The SD
707 708
 *   card's wb_dirty may rush to many times higher than wb_setpoint.
 * - the wb dirty thresh drops quickly due to change of JBOD workload
W
Wu Fengguang 已提交
709
 */
710 711 712 713
static unsigned long wb_position_ratio(struct bdi_writeback *wb,
				       unsigned long thresh,
				       unsigned long bg_thresh,
				       unsigned long dirty,
714 715
				       unsigned long wb_thresh,
				       unsigned long wb_dirty)
W
Wu Fengguang 已提交
716
{
717
	unsigned long write_bw = wb->avg_write_bandwidth;
W
Wu Fengguang 已提交
718 719 720 721
	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
	unsigned long limit = hard_dirty_limit(thresh);
	unsigned long x_intercept;
	unsigned long setpoint;		/* dirty pages' target balance point */
722
	unsigned long wb_setpoint;
W
Wu Fengguang 已提交
723 724 725 726 727 728 729 730 731 732
	unsigned long span;
	long long pos_ratio;		/* for scaling up/down the rate limit */
	long x;

	if (unlikely(dirty >= limit))
		return 0;

	/*
	 * global setpoint
	 *
733 734 735 736 737 738 739 740
	 * See comment for pos_ratio_polynom().
	 */
	setpoint = (freerun + limit) / 2;
	pos_ratio = pos_ratio_polynom(setpoint, dirty, limit);

	/*
	 * The strictlimit feature is a tool preventing mistrusted filesystems
	 * from growing a large number of dirty pages before throttling. For
741 742
	 * such filesystems balance_dirty_pages always checks wb counters
	 * against wb limits. Even if global "nr_dirty" is under "freerun".
743 744 745 746
	 * This is especially important for fuse which sets bdi->max_ratio to
	 * 1% by default. Without strictlimit feature, fuse writeback may
	 * consume arbitrary amount of RAM because it is accounted in
	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
W
Wu Fengguang 已提交
747
	 *
748
	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
749
	 * two values: wb_dirty and wb_thresh. Let's consider an example:
750 751
	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
	 * limits are set by default to 10% and 20% (background and throttle).
752
	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
T
Tejun Heo 已提交
753
	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
754
	 * about ~6K pages (as the average of background and throttle wb
755
	 * limits). The 3rd order polynomial will provide positive feedback if
756
	 * wb_dirty is under wb_setpoint and vice versa.
W
Wu Fengguang 已提交
757
	 *
758
	 * Note, that we cannot use global counters in these calculations
759
	 * because we want to throttle process writing to a strictlimit wb
760 761
	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
	 * in the example above).
W
Wu Fengguang 已提交
762
	 */
763
	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
764 765
		long long wb_pos_ratio;
		unsigned long wb_bg_thresh;
766

767
		if (wb_dirty < 8)
768 769 770
			return min_t(long long, pos_ratio * 2,
				     2 << RATELIMIT_CALC_SHIFT);

771
		if (wb_dirty >= wb_thresh)
772 773
			return 0;

774 775
		wb_bg_thresh = div_u64((u64)wb_thresh * bg_thresh, thresh);
		wb_setpoint = dirty_freerun_ceiling(wb_thresh, wb_bg_thresh);
776

777
		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
778 779
			return 0;

780 781
		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, wb_dirty,
						 wb_thresh);
782 783

		/*
784 785
		 * Typically, for strictlimit case, wb_setpoint << setpoint
		 * and pos_ratio >> wb_pos_ratio. In the other words global
786
		 * state ("dirty") is not limiting factor and we have to
787
		 * make decision based on wb counters. But there is an
788 789
		 * important case when global pos_ratio should get precedence:
		 * global limits are exceeded (e.g. due to activities on other
790
		 * wb's) while given strictlimit wb is below limit.
791
		 *
792
		 * "pos_ratio * wb_pos_ratio" would work for the case above,
793
		 * but it would look too non-natural for the case of all
794
		 * activity in the system coming from a single strictlimit wb
795 796 797 798
		 * with bdi->max_ratio == 100%.
		 *
		 * Note that min() below somewhat changes the dynamics of the
		 * control system. Normally, pos_ratio value can be well over 3
799
		 * (when globally we are at freerun and wb is well below wb
800 801 802 803
		 * setpoint). Now the maximum pos_ratio in the same situation
		 * is 2. We might want to tweak this if we observe the control
		 * system is too slow to adapt.
		 */
804
		return min(pos_ratio, wb_pos_ratio);
805
	}
W
Wu Fengguang 已提交
806 807 808

	/*
	 * We have computed basic pos_ratio above based on global situation. If
809
	 * the wb is over/under its share of dirty pages, we want to scale
W
Wu Fengguang 已提交
810 811 812 813
	 * pos_ratio further down/up. That is done by the following mechanism.
	 */

	/*
814
	 * wb setpoint
W
Wu Fengguang 已提交
815
	 *
816
	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
W
Wu Fengguang 已提交
817
	 *
818
	 *                        x_intercept - wb_dirty
W
Wu Fengguang 已提交
819
	 *                     := --------------------------
820
	 *                        x_intercept - wb_setpoint
W
Wu Fengguang 已提交
821
	 *
822
	 * The main wb control line is a linear function that subjects to
W
Wu Fengguang 已提交
823
	 *
824 825 826
	 * (1) f(wb_setpoint) = 1.0
	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
W
Wu Fengguang 已提交
827
	 *
828
	 * For single wb case, the dirty pages are observed to fluctuate
W
Wu Fengguang 已提交
829
	 * regularly within range
830
	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
W
Wu Fengguang 已提交
831 832 833
	 * for various filesystems, where (2) can yield in a reasonable 12.5%
	 * fluctuation range for pos_ratio.
	 *
834
	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
W
Wu Fengguang 已提交
835
	 * own size, so move the slope over accordingly and choose a slope that
836
	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
W
Wu Fengguang 已提交
837
	 */
838 839
	if (unlikely(wb_thresh > thresh))
		wb_thresh = thresh;
840
	/*
841
	 * It's very possible that wb_thresh is close to 0 not because the
842 843 844 845 846
	 * device is slow, but that it has remained inactive for long time.
	 * Honour such devices a reasonable good (hopefully IO efficient)
	 * threshold, so that the occasional writes won't be blocked and active
	 * writes can rampup the threshold quickly.
	 */
847
	wb_thresh = max(wb_thresh, (limit - dirty) / 8);
W
Wu Fengguang 已提交
848
	/*
849 850
	 * scale global setpoint to wb's:
	 *	wb_setpoint = setpoint * wb_thresh / thresh
W
Wu Fengguang 已提交
851
	 */
852 853
	x = div_u64((u64)wb_thresh << 16, thresh + 1);
	wb_setpoint = setpoint * (u64)x >> 16;
W
Wu Fengguang 已提交
854
	/*
855 856
	 * Use span=(8*write_bw) in single wb case as indicated by
	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
W
Wu Fengguang 已提交
857
	 *
858 859 860
	 *        wb_thresh                    thresh - wb_thresh
	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
	 *         thresh                           thresh
W
Wu Fengguang 已提交
861
	 */
862 863
	span = (thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
	x_intercept = wb_setpoint + span;
W
Wu Fengguang 已提交
864

865 866 867
	if (wb_dirty < x_intercept - span / 4) {
		pos_ratio = div64_u64(pos_ratio * (x_intercept - wb_dirty),
				    x_intercept - wb_setpoint + 1);
W
Wu Fengguang 已提交
868 869 870
	} else
		pos_ratio /= 4;

871
	/*
872
	 * wb reserve area, safeguard against dirty pool underrun and disk idle
873 874 875
	 * It may push the desired control point of global dirty pages higher
	 * than setpoint.
	 */
876 877 878 879
	x_intercept = wb_thresh / 2;
	if (wb_dirty < x_intercept) {
		if (wb_dirty > x_intercept / 8)
			pos_ratio = div_u64(pos_ratio * x_intercept, wb_dirty);
880
		else
881 882 883
			pos_ratio *= 8;
	}

W
Wu Fengguang 已提交
884 885 886
	return pos_ratio;
}

887 888 889
static void wb_update_write_bandwidth(struct bdi_writeback *wb,
				      unsigned long elapsed,
				      unsigned long written)
890 891
{
	const unsigned long period = roundup_pow_of_two(3 * HZ);
892 893
	unsigned long avg = wb->avg_write_bandwidth;
	unsigned long old = wb->write_bandwidth;
894 895 896 897 898 899 900 901
	u64 bw;

	/*
	 * bw = written * HZ / elapsed
	 *
	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
	 * write_bandwidth = ---------------------------------------------------
	 *                                          period
902 903 904
	 *
	 * @written may have decreased due to account_page_redirty().
	 * Avoid underflowing @bw calculation.
905
	 */
906
	bw = written - min(written, wb->written_stamp);
907 908 909 910 911 912
	bw *= HZ;
	if (unlikely(elapsed > period)) {
		do_div(bw, elapsed);
		avg = bw;
		goto out;
	}
913
	bw += (u64)wb->write_bandwidth * (period - elapsed);
914 915 916 917 918 919 920 921 922 923 924 925
	bw >>= ilog2(period);

	/*
	 * one more level of smoothing, for filtering out sudden spikes
	 */
	if (avg > old && old >= (unsigned long)bw)
		avg -= (avg - old) >> 3;

	if (avg < old && old <= (unsigned long)bw)
		avg += (old - avg) >> 3;

out:
926 927 928 929 930 931 932
	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
	avg = max(avg, 1LU);
	if (wb_has_dirty_io(wb)) {
		long delta = avg - wb->avg_write_bandwidth;
		WARN_ON_ONCE(atomic_long_add_return(delta,
					&wb->bdi->tot_write_bandwidth) <= 0);
	}
933 934
	wb->write_bandwidth = bw;
	wb->avg_write_bandwidth = avg;
935 936
}

937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
/*
 * The global dirtyable memory and dirty threshold could be suddenly knocked
 * down by a large amount (eg. on the startup of KVM in a swapless system).
 * This may throw the system into deep dirty exceeded state and throttle
 * heavy/light dirtiers alike. To retain good responsiveness, maintain
 * global_dirty_limit for tracking slowly down to the knocked down dirty
 * threshold.
 */
static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
{
	unsigned long limit = global_dirty_limit;

	/*
	 * Follow up in one step.
	 */
	if (limit < thresh) {
		limit = thresh;
		goto update;
	}

	/*
	 * Follow down slowly. Use the higher one as the target, because thresh
	 * may drop below dirty. This is exactly the reason to introduce
	 * global_dirty_limit which is guaranteed to lie above the dirty pages.
	 */
	thresh = max(thresh, dirty);
	if (limit > thresh) {
		limit -= (limit - thresh) >> 5;
		goto update;
	}
	return;
update:
	global_dirty_limit = limit;
}

static void global_update_bandwidth(unsigned long thresh,
				    unsigned long dirty,
				    unsigned long now)
{
	static DEFINE_SPINLOCK(dirty_lock);
977
	static unsigned long update_time = INITIAL_JIFFIES;
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992

	/*
	 * check locklessly first to optimize away locking for the most time
	 */
	if (time_before(now, update_time + BANDWIDTH_INTERVAL))
		return;

	spin_lock(&dirty_lock);
	if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
		update_dirty_limit(thresh, dirty);
		update_time = now;
	}
	spin_unlock(&dirty_lock);
}

W
Wu Fengguang 已提交
993
/*
994
 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
W
Wu Fengguang 已提交
995
 *
996
 * Normal wb tasks will be curbed at or below it in long term.
W
Wu Fengguang 已提交
997 998
 * Obviously it should be around (write_bw / N) when there are N dd tasks.
 */
999 1000 1001 1002
static void wb_update_dirty_ratelimit(struct bdi_writeback *wb,
				      unsigned long thresh,
				      unsigned long bg_thresh,
				      unsigned long dirty,
1003 1004
				      unsigned long wb_thresh,
				      unsigned long wb_dirty,
1005 1006
				      unsigned long dirtied,
				      unsigned long elapsed)
W
Wu Fengguang 已提交
1007
{
1008 1009 1010
	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
	unsigned long limit = hard_dirty_limit(thresh);
	unsigned long setpoint = (freerun + limit) / 2;
1011 1012
	unsigned long write_bw = wb->avg_write_bandwidth;
	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
W
Wu Fengguang 已提交
1013 1014 1015 1016
	unsigned long dirty_rate;
	unsigned long task_ratelimit;
	unsigned long balanced_dirty_ratelimit;
	unsigned long pos_ratio;
1017 1018
	unsigned long step;
	unsigned long x;
W
Wu Fengguang 已提交
1019 1020 1021 1022 1023

	/*
	 * The dirty rate will match the writeout rate in long term, except
	 * when dirty pages are truncated by userspace or re-dirtied by FS.
	 */
1024
	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
W
Wu Fengguang 已提交
1025

1026
	pos_ratio = wb_position_ratio(wb, thresh, bg_thresh, dirty,
1027
				      wb_thresh, wb_dirty);
W
Wu Fengguang 已提交
1028 1029 1030 1031 1032 1033 1034 1035 1036
	/*
	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
	 */
	task_ratelimit = (u64)dirty_ratelimit *
					pos_ratio >> RATELIMIT_CALC_SHIFT;
	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */

	/*
	 * A linear estimation of the "balanced" throttle rate. The theory is,
1037
	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
W
Wu Fengguang 已提交
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
	 * formula will yield the balanced rate limit (write_bw / N).
	 *
	 * Note that the expanded form is not a pure rate feedback:
	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
	 * but also takes pos_ratio into account:
	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
	 *
	 * (1) is not realistic because pos_ratio also takes part in balancing
	 * the dirty rate.  Consider the state
	 *	pos_ratio = 0.5						     (3)
	 *	rate = 2 * (write_bw / N)				     (4)
	 * If (1) is used, it will stuck in that state! Because each dd will
	 * be throttled at
	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
	 * yielding
	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
	 * put (6) into (1) we get
	 *	rate_(i+1) = rate_(i)					     (7)
	 *
	 * So we end up using (2) to always keep
	 *	rate_(i+1) ~= (write_bw / N)				     (8)
	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
	 * pos_ratio is able to drive itself to 1.0, which is not only where
	 * the dirty count meet the setpoint, but also where the slope of
	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
	 */
	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
					   dirty_rate | 1);
1067 1068 1069 1070 1071
	/*
	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
	 */
	if (unlikely(balanced_dirty_ratelimit > write_bw))
		balanced_dirty_ratelimit = write_bw;
W
Wu Fengguang 已提交
1072

1073 1074 1075
	/*
	 * We could safely do this and return immediately:
	 *
1076
	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1077 1078
	 *
	 * However to get a more stable dirty_ratelimit, the below elaborated
W
Wanpeng Li 已提交
1079
	 * code makes use of task_ratelimit to filter out singular points and
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
	 * limit the step size.
	 *
	 * The below code essentially only uses the relative value of
	 *
	 *	task_ratelimit - dirty_ratelimit
	 *	= (pos_ratio - 1) * dirty_ratelimit
	 *
	 * which reflects the direction and size of dirty position error.
	 */

	/*
	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
	 * task_ratelimit is on the same side of dirty_ratelimit, too.
	 * For example, when
	 * - dirty_ratelimit > balanced_dirty_ratelimit
	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
	 * lowering dirty_ratelimit will help meet both the position and rate
	 * control targets. Otherwise, don't update dirty_ratelimit if it will
	 * only help meet the rate target. After all, what the users ultimately
	 * feel and care are stable dirty rate and small position error.
	 *
	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
W
Wanpeng Li 已提交
1102
	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1103 1104 1105 1106 1107
	 * keeps jumping around randomly and can even leap far away at times
	 * due to the small 200ms estimation period of dirty_rate (we want to
	 * keep that period small to reduce time lags).
	 */
	step = 0;
1108 1109

	/*
1110
	 * For strictlimit case, calculations above were based on wb counters
1111
	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1112
	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1113 1114
	 * Hence, to calculate "step" properly, we have to use wb_dirty as
	 * "dirty" and wb_setpoint as "setpoint".
1115
	 *
1116 1117
	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
	 * it's possible that wb_thresh is close to zero due to inactivity
T
Tejun Heo 已提交
1118
	 * of backing device (see the implementation of wb_calc_thresh()).
1119
	 */
1120
	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1121 1122 1123
		dirty = wb_dirty;
		if (wb_dirty < 8)
			setpoint = wb_dirty + 1;
1124
		else
1125
			setpoint = (wb_thresh +
T
Tejun Heo 已提交
1126
				    wb_calc_thresh(wb, bg_thresh)) / 2;
1127 1128
	}

1129
	if (dirty < setpoint) {
1130
		x = min3(wb->balanced_dirty_ratelimit,
1131
			 balanced_dirty_ratelimit, task_ratelimit);
1132 1133 1134
		if (dirty_ratelimit < x)
			step = x - dirty_ratelimit;
	} else {
1135
		x = max3(wb->balanced_dirty_ratelimit,
1136
			 balanced_dirty_ratelimit, task_ratelimit);
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
		if (dirty_ratelimit > x)
			step = dirty_ratelimit - x;
	}

	/*
	 * Don't pursue 100% rate matching. It's impossible since the balanced
	 * rate itself is constantly fluctuating. So decrease the track speed
	 * when it gets close to the target. Helps eliminate pointless tremors.
	 */
	step >>= dirty_ratelimit / (2 * step + 1);
	/*
	 * Limit the tracking speed to avoid overshooting.
	 */
	step = (step + 7) / 8;

	if (dirty_ratelimit < balanced_dirty_ratelimit)
		dirty_ratelimit += step;
	else
		dirty_ratelimit -= step;

1157 1158
	wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1159

1160
	trace_bdi_dirty_ratelimit(wb->bdi, dirty_rate, task_ratelimit);
W
Wu Fengguang 已提交
1161 1162
}

1163 1164 1165 1166 1167 1168 1169 1170
static void __wb_update_bandwidth(struct bdi_writeback *wb,
				  unsigned long thresh,
				  unsigned long bg_thresh,
				  unsigned long dirty,
				  unsigned long wb_thresh,
				  unsigned long wb_dirty,
				  unsigned long start_time,
				  bool update_ratelimit)
1171 1172
{
	unsigned long now = jiffies;
1173
	unsigned long elapsed = now - wb->bw_time_stamp;
W
Wu Fengguang 已提交
1174
	unsigned long dirtied;
1175 1176
	unsigned long written;

1177 1178
	lockdep_assert_held(&wb->list_lock);

1179 1180 1181 1182 1183 1184
	/*
	 * rate-limit, only update once every 200ms.
	 */
	if (elapsed < BANDWIDTH_INTERVAL)
		return;

1185 1186
	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1187 1188 1189 1190 1191

	/*
	 * Skip quiet periods when disk bandwidth is under-utilized.
	 * (at least 1s idle time between two flusher runs)
	 */
1192
	if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1193 1194
		goto snapshot;

1195
	if (update_ratelimit) {
1196
		global_update_bandwidth(thresh, dirty, now);
1197
		wb_update_dirty_ratelimit(wb, thresh, bg_thresh, dirty,
1198
					  wb_thresh, wb_dirty,
1199
					  dirtied, elapsed);
W
Wu Fengguang 已提交
1200
	}
1201
	wb_update_write_bandwidth(wb, elapsed, written);
1202 1203

snapshot:
1204 1205 1206
	wb->dirtied_stamp = dirtied;
	wb->written_stamp = written;
	wb->bw_time_stamp = now;
1207 1208
}

1209
void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1210
{
1211
	__wb_update_bandwidth(wb, 0, 0, 0, 0, 0, start_time, false);
1212 1213
}

1214
/*
1215
 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
 * will look to see if it needs to start dirty throttling.
 *
 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
 * global_page_state() too often. So scale it near-sqrt to the safety margin
 * (the number of pages we may dirty without exceeding the dirty limits).
 */
static unsigned long dirty_poll_interval(unsigned long dirty,
					 unsigned long thresh)
{
	if (thresh > dirty)
		return 1UL << (ilog2(thresh - dirty) >> 1);

	return 1;
}

1231
static unsigned long wb_max_pause(struct bdi_writeback *wb,
1232
				  unsigned long wb_dirty)
1233
{
1234
	unsigned long bw = wb->avg_write_bandwidth;
1235
	unsigned long t;
1236

1237 1238 1239 1240 1241 1242 1243
	/*
	 * Limit pause time for small memory systems. If sleeping for too long
	 * time, a small pool of dirty/writeback pages may go empty and disk go
	 * idle.
	 *
	 * 8 serves as the safety ratio.
	 */
1244
	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1245 1246
	t++;

1247
	return min_t(unsigned long, t, MAX_PAUSE);
1248 1249
}

1250 1251 1252 1253 1254
static long wb_min_pause(struct bdi_writeback *wb,
			 long max_pause,
			 unsigned long task_ratelimit,
			 unsigned long dirty_ratelimit,
			 int *nr_dirtied_pause)
1255
{
1256 1257
	long hi = ilog2(wb->avg_write_bandwidth);
	long lo = ilog2(wb->dirty_ratelimit);
1258 1259 1260
	long t;		/* target pause */
	long pause;	/* estimated next pause */
	int pages;	/* target nr_dirtied_pause */
1261

1262 1263
	/* target for 10ms pause on 1-dd case */
	t = max(1, HZ / 100);
1264 1265 1266 1267 1268

	/*
	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
	 * overheads.
	 *
1269
	 * (N * 10ms) on 2^N concurrent tasks.
1270 1271
	 */
	if (hi > lo)
1272
		t += (hi - lo) * (10 * HZ) / 1024;
1273 1274

	/*
1275 1276 1277 1278 1279 1280 1281 1282
	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
	 * on the much more stable dirty_ratelimit. However the next pause time
	 * will be computed based on task_ratelimit and the two rate limits may
	 * depart considerably at some time. Especially if task_ratelimit goes
	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
	 * result task_ratelimit won't be executed faithfully, which could
	 * eventually bring down dirty_ratelimit.
1283
	 *
1284 1285 1286 1287 1288 1289 1290
	 * We apply two rules to fix it up:
	 * 1) try to estimate the next pause time and if necessary, use a lower
	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
	 * 2) limit the target pause time to max_pause/2, so that the normal
	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1291
	 */
1292 1293
	t = min(t, 1 + max_pause / 2);
	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1294 1295

	/*
1296 1297 1298 1299 1300 1301
	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
	 * When the 16 consecutive reads are often interrupted by some dirty
	 * throttling pause during the async writes, cfq will go into idles
	 * (deadline is fine). So push nr_dirtied_pause as high as possible
	 * until reaches DIRTY_POLL_THRESH=32 pages.
1302
	 */
1303 1304 1305 1306 1307 1308 1309 1310 1311
	if (pages < DIRTY_POLL_THRESH) {
		t = max_pause;
		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
		if (pages > DIRTY_POLL_THRESH) {
			pages = DIRTY_POLL_THRESH;
			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
		}
	}

1312 1313 1314 1315 1316
	pause = HZ * pages / (task_ratelimit + 1);
	if (pause > max_pause) {
		t = max_pause;
		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
	}
1317

1318
	*nr_dirtied_pause = pages;
1319
	/*
1320
	 * The minimal pause time will normally be half the target pause time.
1321
	 */
1322
	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1323 1324
}

1325 1326 1327
static inline void wb_dirty_limits(struct bdi_writeback *wb,
				   unsigned long dirty_thresh,
				   unsigned long background_thresh,
1328 1329 1330
				   unsigned long *wb_dirty,
				   unsigned long *wb_thresh,
				   unsigned long *wb_bg_thresh)
1331
{
1332
	unsigned long wb_reclaimable;
1333 1334

	/*
1335
	 * wb_thresh is not treated as some limiting factor as
1336
	 * dirty_thresh, due to reasons
1337
	 * - in JBOD setup, wb_thresh can fluctuate a lot
1338
	 * - in a system with HDD and USB key, the USB key may somehow
1339 1340
	 *   go into state (wb_dirty >> wb_thresh) either because
	 *   wb_dirty starts high, or because wb_thresh drops low.
1341
	 *   In this case we don't want to hard throttle the USB key
1342 1343
	 *   dirtiers for 100 seconds until wb_dirty drops under
	 *   wb_thresh. Instead the auxiliary wb control line in
1344
	 *   wb_position_ratio() will let the dirtier task progress
1345
	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1346
	 */
T
Tejun Heo 已提交
1347
	*wb_thresh = wb_calc_thresh(wb, dirty_thresh);
1348

1349 1350 1351 1352
	if (wb_bg_thresh)
		*wb_bg_thresh = dirty_thresh ? div_u64((u64)*wb_thresh *
						       background_thresh,
						       dirty_thresh) : 0;
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363

	/*
	 * In order to avoid the stacked BDI deadlock we need
	 * to ensure we accurately count the 'dirty' pages when
	 * the threshold is low.
	 *
	 * Otherwise it would be possible to get thresh+n pages
	 * reported dirty, even though there are thresh-m pages
	 * actually dirty; with m+n sitting in the percpu
	 * deltas.
	 */
1364
	if (*wb_thresh < 2 * wb_stat_error(wb)) {
1365
		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1366
		*wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1367
	} else {
1368
		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1369
		*wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1370 1371 1372
	}
}

L
Linus Torvalds 已提交
1373 1374 1375
/*
 * balance_dirty_pages() must be called by processes which are generating dirty
 * data.  It looks at the number of dirty pages in the machine and will force
1376
 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1377 1378
 * If we're over `background_thresh' then the writeback threads are woken to
 * perform some writeout.
L
Linus Torvalds 已提交
1379
 */
1380
static void balance_dirty_pages(struct address_space *mapping,
1381
				struct bdi_writeback *wb,
1382
				unsigned long pages_dirtied)
L
Linus Torvalds 已提交
1383
{
1384
	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1385
	unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
1386 1387
	unsigned long background_thresh;
	unsigned long dirty_thresh;
1388
	long period;
1389 1390 1391 1392
	long pause;
	long max_pause;
	long min_pause;
	int nr_dirtied_pause;
1393
	bool dirty_exceeded = false;
1394
	unsigned long task_ratelimit;
1395
	unsigned long dirty_ratelimit;
1396
	unsigned long pos_ratio;
1397
	struct backing_dev_info *bdi = wb->bdi;
1398
	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1399
	unsigned long start_time = jiffies;
L
Linus Torvalds 已提交
1400 1401

	for (;;) {
1402
		unsigned long now = jiffies;
1403
		unsigned long uninitialized_var(wb_thresh);
1404
		unsigned long thresh;
1405
		unsigned long uninitialized_var(wb_dirty);
1406 1407
		unsigned long dirty;
		unsigned long bg_thresh;
1408

1409 1410 1411 1412 1413 1414
		/*
		 * Unstable writes are a feature of certain networked
		 * filesystems (i.e. NFS) in which data may have been
		 * written to the server's write cache, but has not yet
		 * been flushed to permanent storage.
		 */
1415 1416
		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
					global_page_state(NR_UNSTABLE_NFS);
1417
		nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1418

1419 1420
		global_dirty_limits(&background_thresh, &dirty_thresh);

1421
		if (unlikely(strictlimit)) {
1422
			wb_dirty_limits(wb, dirty_thresh, background_thresh,
1423
					&wb_dirty, &wb_thresh, &bg_thresh);
1424

1425 1426
			dirty = wb_dirty;
			thresh = wb_thresh;
1427 1428 1429 1430 1431 1432
		} else {
			dirty = nr_dirty;
			thresh = dirty_thresh;
			bg_thresh = background_thresh;
		}

1433 1434 1435
		/*
		 * Throttle it only when the background writeback cannot
		 * catch-up. This avoids (excessively) small writeouts
1436
		 * when the wb limits are ramping up in case of !strictlimit.
1437
		 *
1438 1439
		 * In strictlimit case make decision based on the wb counters
		 * and limits. Small writeouts when the wb limits are ramping
1440
		 * up are the price we consciously pay for strictlimit-ing.
1441
		 */
1442
		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) {
1443 1444
			current->dirty_paused_when = now;
			current->nr_dirtied = 0;
1445
			current->nr_dirtied_pause =
1446
				dirty_poll_interval(dirty, thresh);
1447
			break;
1448
		}
1449

1450
		if (unlikely(!writeback_in_progress(wb)))
1451
			wb_start_background_writeback(wb);
1452

1453
		if (!strictlimit)
1454
			wb_dirty_limits(wb, dirty_thresh, background_thresh,
1455
					&wb_dirty, &wb_thresh, NULL);
1456

1457
		dirty_exceeded = (wb_dirty > wb_thresh) &&
1458
				 ((nr_dirty > dirty_thresh) || strictlimit);
1459 1460
		if (dirty_exceeded && !wb->dirty_exceeded)
			wb->dirty_exceeded = 1;
L
Linus Torvalds 已提交
1461

1462 1463 1464 1465 1466 1467 1468 1469 1470
		if (time_is_before_jiffies(wb->bw_time_stamp +
					   BANDWIDTH_INTERVAL)) {
			spin_lock(&wb->list_lock);
			__wb_update_bandwidth(wb, dirty_thresh,
					      background_thresh, nr_dirty,
					      wb_thresh, wb_dirty, start_time,
					      true);
			spin_unlock(&wb->list_lock);
		}
1471

1472 1473 1474
		dirty_ratelimit = wb->dirty_ratelimit;
		pos_ratio = wb_position_ratio(wb, dirty_thresh,
					      background_thresh, nr_dirty,
1475
					      wb_thresh, wb_dirty);
1476 1477
		task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
							RATELIMIT_CALC_SHIFT;
1478
		max_pause = wb_max_pause(wb, wb_dirty);
1479 1480 1481
		min_pause = wb_min_pause(wb, max_pause,
					 task_ratelimit, dirty_ratelimit,
					 &nr_dirtied_pause);
1482

1483
		if (unlikely(task_ratelimit == 0)) {
1484
			period = max_pause;
1485
			pause = max_pause;
1486
			goto pause;
P
Peter Zijlstra 已提交
1487
		}
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
		period = HZ * pages_dirtied / task_ratelimit;
		pause = period;
		if (current->dirty_paused_when)
			pause -= now - current->dirty_paused_when;
		/*
		 * For less than 1s think time (ext3/4 may block the dirtier
		 * for up to 800ms from time to time on 1-HDD; so does xfs,
		 * however at much less frequency), try to compensate it in
		 * future periods by updating the virtual time; otherwise just
		 * do a reset, as it may be a light dirtier.
		 */
1499
		if (pause < min_pause) {
1500 1501 1502 1503
			trace_balance_dirty_pages(bdi,
						  dirty_thresh,
						  background_thresh,
						  nr_dirty,
1504 1505
						  wb_thresh,
						  wb_dirty,
1506 1507 1508
						  dirty_ratelimit,
						  task_ratelimit,
						  pages_dirtied,
1509
						  period,
1510
						  min(pause, 0L),
1511
						  start_time);
1512 1513 1514 1515 1516 1517
			if (pause < -HZ) {
				current->dirty_paused_when = now;
				current->nr_dirtied = 0;
			} else if (period) {
				current->dirty_paused_when += period;
				current->nr_dirtied = 0;
1518 1519
			} else if (current->nr_dirtied_pause <= pages_dirtied)
				current->nr_dirtied_pause += pages_dirtied;
W
Wu Fengguang 已提交
1520
			break;
P
Peter Zijlstra 已提交
1521
		}
1522 1523 1524 1525 1526
		if (unlikely(pause > max_pause)) {
			/* for occasional dropped task_ratelimit */
			now += min(pause - max_pause, max_pause);
			pause = max_pause;
		}
1527 1528

pause:
1529 1530 1531 1532
		trace_balance_dirty_pages(bdi,
					  dirty_thresh,
					  background_thresh,
					  nr_dirty,
1533 1534
					  wb_thresh,
					  wb_dirty,
1535 1536 1537
					  dirty_ratelimit,
					  task_ratelimit,
					  pages_dirtied,
1538
					  period,
1539 1540
					  pause,
					  start_time);
1541
		__set_current_state(TASK_KILLABLE);
1542
		io_schedule_timeout(pause);
1543

1544 1545
		current->dirty_paused_when = now + pause;
		current->nr_dirtied = 0;
1546
		current->nr_dirtied_pause = nr_dirtied_pause;
1547

1548
		/*
1549 1550
		 * This is typically equal to (nr_dirty < dirty_thresh) and can
		 * also keep "1000+ dd on a slow USB stick" under control.
1551
		 */
1552
		if (task_ratelimit)
1553
			break;
1554

1555 1556
		/*
		 * In the case of an unresponding NFS server and the NFS dirty
1557
		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1558 1559 1560 1561
		 * to go through, so that tasks on them still remain responsive.
		 *
		 * In theory 1 page is enough to keep the comsumer-producer
		 * pipe going: the flusher cleans 1 page => the task dirties 1
1562
		 * more page. However wb_dirty has accounting errors.  So use
1563
		 * the larger and more IO friendly wb_stat_error.
1564
		 */
1565
		if (wb_dirty <= wb_stat_error(wb))
1566 1567
			break;

1568 1569
		if (fatal_signal_pending(current))
			break;
L
Linus Torvalds 已提交
1570 1571
	}

1572 1573
	if (!dirty_exceeded && wb->dirty_exceeded)
		wb->dirty_exceeded = 0;
L
Linus Torvalds 已提交
1574

1575
	if (writeback_in_progress(wb))
1576
		return;
L
Linus Torvalds 已提交
1577 1578 1579 1580 1581 1582 1583 1584 1585

	/*
	 * In laptop mode, we wait until hitting the higher threshold before
	 * starting background writeout, and then write out all the way down
	 * to the lower threshold.  So slow writers cause minimal disk activity.
	 *
	 * In normal mode, we start background writeout at the lower
	 * background_thresh, to keep the amount of dirty memory low.
	 */
1586 1587 1588 1589
	if (laptop_mode)
		return;

	if (nr_reclaimable > background_thresh)
1590
		wb_start_background_writeback(wb);
L
Linus Torvalds 已提交
1591 1592
}

1593
static DEFINE_PER_CPU(int, bdp_ratelimits);
1594

1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
/*
 * Normal tasks are throttled by
 *	loop {
 *		dirty tsk->nr_dirtied_pause pages;
 *		take a snap in balance_dirty_pages();
 *	}
 * However there is a worst case. If every task exit immediately when dirtied
 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
 * called to throttle the page dirties. The solution is to save the not yet
 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
 * randomly into the running tasks. This works well for the above worst case,
 * as the new task will pick up and accumulate the old task's leaked dirty
 * count and eventually get throttled.
 */
DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;

L
Linus Torvalds 已提交
1611
/**
1612
 * balance_dirty_pages_ratelimited - balance dirty memory state
1613
 * @mapping: address_space which was dirtied
L
Linus Torvalds 已提交
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
 *
 * Processes which are dirtying memory should call in here once for each page
 * which was newly dirtied.  The function will periodically check the system's
 * dirty state and will initiate writeback if needed.
 *
 * On really big machines, get_writeback_state is expensive, so try to avoid
 * calling it too often (ratelimiting).  But once we're over the dirty memory
 * limit we decrease the ratelimiting by a lot, to prevent individual processes
 * from overshooting the limit by (ratelimit_pages) each.
 */
1624
void balance_dirty_pages_ratelimited(struct address_space *mapping)
L
Linus Torvalds 已提交
1625
{
1626 1627 1628
	struct inode *inode = mapping->host;
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct bdi_writeback *wb = NULL;
1629 1630
	int ratelimit;
	int *p;
L
Linus Torvalds 已提交
1631

1632 1633 1634
	if (!bdi_cap_account_dirty(bdi))
		return;

1635 1636 1637 1638 1639
	if (inode_cgwb_enabled(inode))
		wb = wb_get_create_current(bdi, GFP_KERNEL);
	if (!wb)
		wb = &bdi->wb;

1640
	ratelimit = current->nr_dirtied_pause;
1641
	if (wb->dirty_exceeded)
1642 1643 1644
		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));

	preempt_disable();
L
Linus Torvalds 已提交
1645
	/*
1646 1647 1648 1649
	 * This prevents one CPU to accumulate too many dirtied pages without
	 * calling into balance_dirty_pages(), which can happen when there are
	 * 1000+ tasks, all of them start dirtying pages at exactly the same
	 * time, hence all honoured too large initial task->nr_dirtied_pause.
L
Linus Torvalds 已提交
1650
	 */
1651
	p =  this_cpu_ptr(&bdp_ratelimits);
1652
	if (unlikely(current->nr_dirtied >= ratelimit))
1653
		*p = 0;
1654 1655 1656
	else if (unlikely(*p >= ratelimit_pages)) {
		*p = 0;
		ratelimit = 0;
L
Linus Torvalds 已提交
1657
	}
1658 1659 1660 1661 1662
	/*
	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
	 * the dirty throttling and livelock other long-run dirtiers.
	 */
1663
	p = this_cpu_ptr(&dirty_throttle_leaks);
1664
	if (*p > 0 && current->nr_dirtied < ratelimit) {
1665
		unsigned long nr_pages_dirtied;
1666 1667 1668
		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
		*p -= nr_pages_dirtied;
		current->nr_dirtied += nr_pages_dirtied;
L
Linus Torvalds 已提交
1669
	}
1670
	preempt_enable();
1671 1672

	if (unlikely(current->nr_dirtied >= ratelimit))
1673 1674 1675
		balance_dirty_pages(mapping, wb, current->nr_dirtied);

	wb_put(wb);
L
Linus Torvalds 已提交
1676
}
1677
EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
L
Linus Torvalds 已提交
1678

1679
void throttle_vm_writeout(gfp_t gfp_mask)
L
Linus Torvalds 已提交
1680
{
1681 1682
	unsigned long background_thresh;
	unsigned long dirty_thresh;
L
Linus Torvalds 已提交
1683 1684

        for ( ; ; ) {
1685
		global_dirty_limits(&background_thresh, &dirty_thresh);
1686
		dirty_thresh = hard_dirty_limit(dirty_thresh);
L
Linus Torvalds 已提交
1687 1688 1689 1690 1691 1692 1693

                /*
                 * Boost the allowable dirty threshold a bit for page
                 * allocators so they don't get DoS'ed by heavy writers
                 */
                dirty_thresh += dirty_thresh / 10;      /* wheeee... */

1694 1695 1696
                if (global_page_state(NR_UNSTABLE_NFS) +
			global_page_state(NR_WRITEBACK) <= dirty_thresh)
                        	break;
1697
                congestion_wait(BLK_RW_ASYNC, HZ/10);
1698 1699 1700 1701 1702 1703 1704 1705

		/*
		 * The caller might hold locks which can prevent IO completion
		 * or progress in the filesystem.  So we cannot just sit here
		 * waiting for IO to complete.
		 */
		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
			break;
L
Linus Torvalds 已提交
1706 1707 1708 1709 1710 1711
        }
}

/*
 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
 */
1712
int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1713
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
1714
{
1715
	proc_dointvec(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
1716 1717 1718
	return 0;
}

1719
#ifdef CONFIG_BLOCK
1720
void laptop_mode_timer_fn(unsigned long data)
L
Linus Torvalds 已提交
1721
{
1722 1723 1724
	struct request_queue *q = (struct request_queue *)data;
	int nr_pages = global_page_state(NR_FILE_DIRTY) +
		global_page_state(NR_UNSTABLE_NFS);
1725 1726
	struct bdi_writeback *wb;
	struct wb_iter iter;
L
Linus Torvalds 已提交
1727

1728 1729 1730 1731
	/*
	 * We want to write everything out, not just down to the dirty
	 * threshold
	 */
1732 1733 1734 1735 1736 1737 1738
	if (!bdi_has_dirty_io(&q->backing_dev_info))
		return;

	bdi_for_each_wb(wb, &q->backing_dev_info, &iter, 0)
		if (wb_has_dirty_io(wb))
			wb_start_writeback(wb, nr_pages, true,
					   WB_REASON_LAPTOP_TIMER);
L
Linus Torvalds 已提交
1739 1740 1741 1742 1743 1744 1745
}

/*
 * We've spun up the disk and we're in laptop mode: schedule writeback
 * of all dirty data a few seconds from now.  If the flush is already scheduled
 * then push it back - the user is still using the disk.
 */
1746
void laptop_io_completion(struct backing_dev_info *info)
L
Linus Torvalds 已提交
1747
{
1748
	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
L
Linus Torvalds 已提交
1749 1750 1751 1752 1753 1754 1755 1756 1757
}

/*
 * We're in laptop mode and we've just synced. The sync's writes will have
 * caused another writeback to be scheduled by laptop_io_completion.
 * Nothing needs to be written back anymore, so we unschedule the writeback.
 */
void laptop_sync_completion(void)
{
1758 1759 1760 1761 1762 1763 1764 1765
	struct backing_dev_info *bdi;

	rcu_read_lock();

	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
		del_timer(&bdi->laptop_mode_wb_timer);

	rcu_read_unlock();
L
Linus Torvalds 已提交
1766
}
1767
#endif
L
Linus Torvalds 已提交
1768 1769 1770 1771 1772 1773 1774 1775 1776

/*
 * If ratelimit_pages is too high then we can get into dirty-data overload
 * if a large number of processes all perform writes at the same time.
 * If it is too low then SMP machines will call the (expensive)
 * get_writeback_state too often.
 *
 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1777
 * thresholds.
L
Linus Torvalds 已提交
1778 1779
 */

1780
void writeback_set_ratelimit(void)
L
Linus Torvalds 已提交
1781
{
1782 1783 1784
	unsigned long background_thresh;
	unsigned long dirty_thresh;
	global_dirty_limits(&background_thresh, &dirty_thresh);
1785
	global_dirty_limit = dirty_thresh;
1786
	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
L
Linus Torvalds 已提交
1787 1788 1789 1790
	if (ratelimit_pages < 16)
		ratelimit_pages = 16;
}

1791
static int
1792 1793
ratelimit_handler(struct notifier_block *self, unsigned long action,
		  void *hcpu)
L
Linus Torvalds 已提交
1794
{
1795 1796 1797 1798 1799 1800 1801 1802 1803

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
	case CPU_DEAD:
		writeback_set_ratelimit();
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
L
Linus Torvalds 已提交
1804 1805
}

1806
static struct notifier_block ratelimit_nb = {
L
Linus Torvalds 已提交
1807 1808 1809 1810 1811
	.notifier_call	= ratelimit_handler,
	.next		= NULL,
};

/*
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
 * Called early on to tune the page writeback dirty limits.
 *
 * We used to scale dirty pages according to how total memory
 * related to pages that could be allocated for buffers (by
 * comparing nr_free_buffer_pages() to vm_total_pages.
 *
 * However, that was when we used "dirty_ratio" to scale with
 * all memory, and we don't do that any more. "dirty_ratio"
 * is now applied to total non-HIGHPAGE memory (by subtracting
 * totalhigh_pages from vm_total_pages), and as such we can't
 * get into the old insane situation any more where we had
 * large amounts of dirty pages compared to a small amount of
 * non-HIGHMEM memory.
 *
 * But we might still want to scale the dirty_ratio by how
 * much memory the box has..
L
Linus Torvalds 已提交
1828 1829 1830
 */
void __init page_writeback_init(void)
{
1831
	writeback_set_ratelimit();
L
Linus Torvalds 已提交
1832
	register_cpu_notifier(&ratelimit_nb);
P
Peter Zijlstra 已提交
1833

1834
	fprop_global_init(&writeout_completions, GFP_KERNEL);
L
Linus Torvalds 已提交
1835 1836
}

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
/**
 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
 * @mapping: address space structure to write
 * @start: starting page index
 * @end: ending page index (inclusive)
 *
 * This function scans the page range from @start to @end (inclusive) and tags
 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
 * that write_cache_pages (or whoever calls this function) will then use
 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
 * used to avoid livelocking of writeback by a process steadily creating new
 * dirty pages in the file (thus it is important for this function to be quick
 * so that it can tag pages faster than a dirtying process can create them).
 */
/*
 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
 */
void tag_pages_for_writeback(struct address_space *mapping,
			     pgoff_t start, pgoff_t end)
{
R
Randy Dunlap 已提交
1857
#define WRITEBACK_TAG_BATCH 4096
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
	unsigned long tagged;

	do {
		spin_lock_irq(&mapping->tree_lock);
		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
				&start, end, WRITEBACK_TAG_BATCH,
				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
		spin_unlock_irq(&mapping->tree_lock);
		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
		cond_resched();
1868 1869
		/* We check 'start' to handle wrapping when end == ~0UL */
	} while (tagged >= WRITEBACK_TAG_BATCH && start);
1870 1871 1872
}
EXPORT_SYMBOL(tag_pages_for_writeback);

1873
/**
1874
 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1875 1876
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1877 1878
 * @writepage: function called for each page
 * @data: data passed to writepage function
1879
 *
1880
 * If a page is already under I/O, write_cache_pages() skips it, even
1881 1882 1883 1884 1885 1886
 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 * and msync() need to guarantee that all the data which was dirty at the time
 * the call was made get new I/O started against them.  If wbc->sync_mode is
 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 * existing IO to complete.
1887 1888 1889 1890 1891 1892 1893
 *
 * To avoid livelocks (when other process dirties new pages), we first tag
 * pages which should be written back with TOWRITE tag and only then start
 * writing them. For data-integrity sync we have to be careful so that we do
 * not miss some pages (e.g., because some other process has cleared TOWRITE
 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
 * by the process clearing the DIRTY tag (and submitting the page for IO).
1894
 */
1895 1896 1897
int write_cache_pages(struct address_space *mapping,
		      struct writeback_control *wbc, writepage_t writepage,
		      void *data)
1898 1899 1900 1901 1902
{
	int ret = 0;
	int done = 0;
	struct pagevec pvec;
	int nr_pages;
N
Nick Piggin 已提交
1903
	pgoff_t uninitialized_var(writeback_index);
1904 1905
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
1906
	pgoff_t done_index;
N
Nick Piggin 已提交
1907
	int cycled;
1908
	int range_whole = 0;
1909
	int tag;
1910 1911 1912

	pagevec_init(&pvec, 0);
	if (wbc->range_cyclic) {
N
Nick Piggin 已提交
1913 1914 1915 1916 1917 1918
		writeback_index = mapping->writeback_index; /* prev offset */
		index = writeback_index;
		if (index == 0)
			cycled = 1;
		else
			cycled = 0;
1919 1920 1921 1922 1923 1924
		end = -1;
	} else {
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
			range_whole = 1;
N
Nick Piggin 已提交
1925
		cycled = 1; /* ignore range_cyclic tests */
1926
	}
1927
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1928 1929 1930
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
1931
retry:
1932
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1933
		tag_pages_for_writeback(mapping, index, end);
1934
	done_index = index;
N
Nick Piggin 已提交
1935 1936 1937
	while (!done && (index <= end)) {
		int i;

1938
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
N
Nick Piggin 已提交
1939 1940 1941
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
			break;
1942 1943 1944 1945 1946

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
1947 1948 1949 1950 1951
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
1952
			 */
1953 1954 1955 1956 1957 1958 1959 1960 1961
			if (page->index > end) {
				/*
				 * can't be range_cyclic (1st pass) because
				 * end == -1 in that case.
				 */
				done = 1;
				break;
			}

1962
			done_index = page->index;
1963

1964 1965
			lock_page(page);

N
Nick Piggin 已提交
1966 1967 1968 1969 1970 1971 1972 1973
			/*
			 * Page truncated or invalidated. We can freely skip it
			 * then, even for data integrity operations: the page
			 * has disappeared concurrently, so there could be no
			 * real expectation of this data interity operation
			 * even if there is now a new, dirty page at the same
			 * pagecache address.
			 */
1974
			if (unlikely(page->mapping != mapping)) {
N
Nick Piggin 已提交
1975
continue_unlock:
1976 1977 1978 1979
				unlock_page(page);
				continue;
			}

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
			if (!PageDirty(page)) {
				/* someone wrote it for us */
				goto continue_unlock;
			}

			if (PageWriteback(page)) {
				if (wbc->sync_mode != WB_SYNC_NONE)
					wait_on_page_writeback(page);
				else
					goto continue_unlock;
			}
1991

1992 1993
			BUG_ON(PageWriteback(page));
			if (!clear_page_dirty_for_io(page))
N
Nick Piggin 已提交
1994
				goto continue_unlock;
1995

1996
			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
1997
			ret = (*writepage)(page, wbc, data);
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
			if (unlikely(ret)) {
				if (ret == AOP_WRITEPAGE_ACTIVATE) {
					unlock_page(page);
					ret = 0;
				} else {
					/*
					 * done_index is set past this page,
					 * so media errors will not choke
					 * background writeout for the entire
					 * file. This has consequences for
					 * range_cyclic semantics (ie. it may
					 * not be suitable for data integrity
					 * writeout).
					 */
2012
					done_index = page->index + 1;
2013 2014 2015
					done = 1;
					break;
				}
2016
			}
2017

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
			/*
			 * We stop writing back only if we are not doing
			 * integrity sync. In case of integrity sync we have to
			 * keep going until we have written all the pages
			 * we tagged for writeback prior to entering this loop.
			 */
			if (--wbc->nr_to_write <= 0 &&
			    wbc->sync_mode == WB_SYNC_NONE) {
				done = 1;
				break;
2028
			}
2029 2030 2031 2032
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2033
	if (!cycled && !done) {
2034
		/*
N
Nick Piggin 已提交
2035
		 * range_cyclic:
2036 2037 2038
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
N
Nick Piggin 已提交
2039
		cycled = 1;
2040
		index = 0;
N
Nick Piggin 已提交
2041
		end = writeback_index - 1;
2042 2043
		goto retry;
	}
2044 2045
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		mapping->writeback_index = done_index;
2046

2047 2048
	return ret;
}
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
EXPORT_SYMBOL(write_cache_pages);

/*
 * Function used by generic_writepages to call the real writepage
 * function and set the mapping flags on error
 */
static int __writepage(struct page *page, struct writeback_control *wbc,
		       void *data)
{
	struct address_space *mapping = data;
	int ret = mapping->a_ops->writepage(page, wbc);
	mapping_set_error(mapping, ret);
	return ret;
}

/**
 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 *
 * This is a library function, which implements the writepages()
 * address_space_operation.
 */
int generic_writepages(struct address_space *mapping,
		       struct writeback_control *wbc)
{
2075 2076 2077
	struct blk_plug plug;
	int ret;

2078 2079 2080 2081
	/* deal with chardevs and other special file */
	if (!mapping->a_ops->writepage)
		return 0;

2082 2083 2084 2085
	blk_start_plug(&plug);
	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
	blk_finish_plug(&plug);
	return ret;
2086
}
2087 2088 2089

EXPORT_SYMBOL(generic_writepages);

L
Linus Torvalds 已提交
2090 2091
int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
{
2092 2093
	int ret;

L
Linus Torvalds 已提交
2094 2095 2096
	if (wbc->nr_to_write <= 0)
		return 0;
	if (mapping->a_ops->writepages)
2097
		ret = mapping->a_ops->writepages(mapping, wbc);
2098 2099 2100
	else
		ret = generic_writepages(mapping, wbc);
	return ret;
L
Linus Torvalds 已提交
2101 2102 2103 2104
}

/**
 * write_one_page - write out a single page and optionally wait on I/O
2105 2106
 * @page: the page to write
 * @wait: if true, wait on writeout
L
Linus Torvalds 已提交
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
 *
 * The page must be locked by the caller and will be unlocked upon return.
 *
 * write_one_page() returns a negative error code if I/O failed.
 */
int write_one_page(struct page *page, int wait)
{
	struct address_space *mapping = page->mapping;
	int ret = 0;
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_ALL,
		.nr_to_write = 1,
	};

	BUG_ON(!PageLocked(page));

	if (wait)
		wait_on_page_writeback(page);

	if (clear_page_dirty_for_io(page)) {
		page_cache_get(page);
		ret = mapping->a_ops->writepage(page, &wbc);
		if (ret == 0 && wait) {
			wait_on_page_writeback(page);
			if (PageError(page))
				ret = -EIO;
		}
		page_cache_release(page);
	} else {
		unlock_page(page);
	}
	return ret;
}
EXPORT_SYMBOL(write_one_page);

2142 2143 2144 2145 2146 2147
/*
 * For address_spaces which do not use buffers nor write back.
 */
int __set_page_dirty_no_writeback(struct page *page)
{
	if (!PageDirty(page))
2148
		return !TestSetPageDirty(page);
2149 2150 2151
	return 0;
}

2152 2153
/*
 * Helper function for set_page_dirty family.
2154 2155 2156
 *
 * Caller must hold mem_cgroup_begin_page_stat().
 *
2157 2158
 * NOTE: This relies on being atomic wrt interrupts.
 */
2159 2160
void account_page_dirtied(struct page *page, struct address_space *mapping,
			  struct mem_cgroup *memcg)
2161
{
2162 2163
	struct inode *inode = mapping->host;

T
Tejun Heo 已提交
2164 2165
	trace_writeback_dirty_page(page, mapping);

2166
	if (mapping_cap_account_dirty(mapping)) {
2167 2168 2169 2170
		struct bdi_writeback *wb;

		inode_attach_wb(inode, page);
		wb = inode_to_wb(inode);
2171

2172
		mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2173
		__inc_zone_page_state(page, NR_FILE_DIRTY);
2174
		__inc_zone_page_state(page, NR_DIRTIED);
2175 2176
		__inc_wb_stat(wb, WB_RECLAIMABLE);
		__inc_wb_stat(wb, WB_DIRTIED);
2177
		task_io_account_write(PAGE_CACHE_SIZE);
2178 2179
		current->nr_dirtied++;
		this_cpu_inc(bdp_ratelimits);
2180 2181
	}
}
M
Michael Rubin 已提交
2182
EXPORT_SYMBOL(account_page_dirtied);
2183

2184 2185
/*
 * Helper function for deaccounting dirty page without writeback.
2186 2187
 *
 * Caller must hold mem_cgroup_begin_page_stat().
2188
 */
2189 2190
void account_page_cleaned(struct page *page, struct address_space *mapping,
			  struct mem_cgroup *memcg)
2191 2192
{
	if (mapping_cap_account_dirty(mapping)) {
2193
		mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2194
		dec_zone_page_state(page, NR_FILE_DIRTY);
2195
		dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
2196 2197 2198 2199
		task_io_account_cancelled_write(PAGE_CACHE_SIZE);
	}
}

L
Linus Torvalds 已提交
2200 2201 2202 2203 2204 2205 2206 2207
/*
 * For address_spaces which do not use buffers.  Just tag the page as dirty in
 * its radix tree.
 *
 * This is also used when a single buffer is being dirtied: we want to set the
 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
 *
2208 2209 2210
 * The caller must ensure this doesn't race with truncation.  Most will simply
 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
 * the pte lock held, which also locks out truncation.
L
Linus Torvalds 已提交
2211 2212 2213
 */
int __set_page_dirty_nobuffers(struct page *page)
{
2214 2215 2216
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_begin_page_stat(page);
L
Linus Torvalds 已提交
2217 2218
	if (!TestSetPageDirty(page)) {
		struct address_space *mapping = page_mapping(page);
2219
		unsigned long flags;
L
Linus Torvalds 已提交
2220

2221 2222
		if (!mapping) {
			mem_cgroup_end_page_stat(memcg);
2223
			return 1;
2224
		}
2225

2226
		spin_lock_irqsave(&mapping->tree_lock, flags);
2227 2228
		BUG_ON(page_mapping(page) != mapping);
		WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2229
		account_page_dirtied(page, mapping, memcg);
2230 2231
		radix_tree_tag_set(&mapping->page_tree, page_index(page),
				   PAGECACHE_TAG_DIRTY);
2232
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2233 2234
		mem_cgroup_end_page_stat(memcg);

2235 2236 2237
		if (mapping->host) {
			/* !PageAnon && !swapper_space */
			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
L
Linus Torvalds 已提交
2238
		}
2239
		return 1;
L
Linus Torvalds 已提交
2240
	}
2241
	mem_cgroup_end_page_stat(memcg);
2242
	return 0;
L
Linus Torvalds 已提交
2243 2244 2245
}
EXPORT_SYMBOL(__set_page_dirty_nobuffers);

2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
/*
 * Call this whenever redirtying a page, to de-account the dirty counters
 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
 * control.
 */
void account_page_redirty(struct page *page)
{
	struct address_space *mapping = page->mapping;
2256

2257
	if (mapping && mapping_cap_account_dirty(mapping)) {
2258 2259
		struct bdi_writeback *wb = inode_to_wb(mapping->host);

2260 2261
		current->nr_dirtied--;
		dec_zone_page_state(page, NR_DIRTIED);
2262
		dec_wb_stat(wb, WB_DIRTIED);
2263 2264 2265 2266
	}
}
EXPORT_SYMBOL(account_page_redirty);

L
Linus Torvalds 已提交
2267 2268 2269 2270 2271 2272 2273
/*
 * When a writepage implementation decides that it doesn't want to write this
 * page for some reason, it should redirty the locked page via
 * redirty_page_for_writepage() and it should then unlock the page and return 0
 */
int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
{
2274 2275
	int ret;

L
Linus Torvalds 已提交
2276
	wbc->pages_skipped++;
2277
	ret = __set_page_dirty_nobuffers(page);
2278
	account_page_redirty(page);
2279
	return ret;
L
Linus Torvalds 已提交
2280 2281 2282 2283
}
EXPORT_SYMBOL(redirty_page_for_writepage);

/*
2284 2285 2286 2287 2288 2289 2290
 * Dirty a page.
 *
 * For pages with a mapping this should be done under the page lock
 * for the benefit of asynchronous memory errors who prefer a consistent
 * dirty state. This rule can be broken in some special cases,
 * but should be better not to.
 *
L
Linus Torvalds 已提交
2291 2292 2293
 * If the mapping doesn't provide a set_page_dirty a_op, then
 * just fall through and assume that it wants buffer_heads.
 */
N
Nick Piggin 已提交
2294
int set_page_dirty(struct page *page)
L
Linus Torvalds 已提交
2295 2296 2297 2298 2299
{
	struct address_space *mapping = page_mapping(page);

	if (likely(mapping)) {
		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
M
Minchan Kim 已提交
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
		/*
		 * readahead/lru_deactivate_page could remain
		 * PG_readahead/PG_reclaim due to race with end_page_writeback
		 * About readahead, if the page is written, the flags would be
		 * reset. So no problem.
		 * About lru_deactivate_page, if the page is redirty, the flag
		 * will be reset. So no problem. but if the page is used by readahead
		 * it will confuse readahead and make it restart the size rampup
		 * process. But it's a trivial problem.
		 */
2310 2311
		if (PageReclaim(page))
			ClearPageReclaim(page);
2312 2313 2314 2315 2316
#ifdef CONFIG_BLOCK
		if (!spd)
			spd = __set_page_dirty_buffers;
#endif
		return (*spd)(page);
L
Linus Torvalds 已提交
2317
	}
2318 2319 2320 2321
	if (!PageDirty(page)) {
		if (!TestSetPageDirty(page))
			return 1;
	}
L
Linus Torvalds 已提交
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
	return 0;
}
EXPORT_SYMBOL(set_page_dirty);

/*
 * set_page_dirty() is racy if the caller has no reference against
 * page->mapping->host, and if the page is unlocked.  This is because another
 * CPU could truncate the page off the mapping and then free the mapping.
 *
 * Usually, the page _is_ locked, or the caller is a user-space process which
 * holds a reference on the inode by having an open file.
 *
 * In other cases, the page should be locked before running set_page_dirty().
 */
int set_page_dirty_lock(struct page *page)
{
	int ret;

J
Jens Axboe 已提交
2340
	lock_page(page);
L
Linus Torvalds 已提交
2341 2342 2343 2344 2345 2346
	ret = set_page_dirty(page);
	unlock_page(page);
	return ret;
}
EXPORT_SYMBOL(set_page_dirty_lock);

2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
/*
 * This cancels just the dirty bit on the kernel page itself, it does NOT
 * actually remove dirty bits on any mmap's that may be around. It also
 * leaves the page tagged dirty, so any sync activity will still find it on
 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
 * look at the dirty bits in the VM.
 *
 * Doing this should *normally* only ever be done when a page is truncated,
 * and is not actually mapped anywhere at all. However, fs/buffer.c does
 * this when it notices that somebody has cleaned out all the buffers on a
 * page without actually doing it through the VM. Can you say "ext3 is
 * horribly ugly"? Thought you could.
 */
void cancel_dirty_page(struct page *page)
{
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
	struct address_space *mapping = page_mapping(page);

	if (mapping_cap_account_dirty(mapping)) {
		struct mem_cgroup *memcg;

		memcg = mem_cgroup_begin_page_stat(page);

		if (TestClearPageDirty(page))
			account_page_cleaned(page, mapping, memcg);

		mem_cgroup_end_page_stat(memcg);
	} else {
		ClearPageDirty(page);
	}
2376 2377 2378
}
EXPORT_SYMBOL(cancel_dirty_page);

L
Linus Torvalds 已提交
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
/*
 * Clear a page's dirty flag, while caring for dirty memory accounting.
 * Returns true if the page was previously dirty.
 *
 * This is for preparing to put the page under writeout.  We leave the page
 * tagged as dirty in the radix tree so that a concurrent write-for-sync
 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
 * implementation will run either set_page_writeback() or set_page_dirty(),
 * at which stage we bring the page's dirty flag and radix-tree dirty tag
 * back into sync.
 *
 * This incoherency between the page's dirty flag and radix-tree tag is
 * unfortunate, but it only exists while the page is locked.
 */
int clear_page_dirty_for_io(struct page *page)
{
	struct address_space *mapping = page_mapping(page);
2396 2397
	struct mem_cgroup *memcg;
	int ret = 0;
L
Linus Torvalds 已提交
2398

2399 2400
	BUG_ON(!PageLocked(page));

2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
	if (mapping && mapping_cap_account_dirty(mapping)) {
		/*
		 * Yes, Virginia, this is indeed insane.
		 *
		 * We use this sequence to make sure that
		 *  (a) we account for dirty stats properly
		 *  (b) we tell the low-level filesystem to
		 *      mark the whole page dirty if it was
		 *      dirty in a pagetable. Only to then
		 *  (c) clean the page again and return 1 to
		 *      cause the writeback.
		 *
		 * This way we avoid all nasty races with the
		 * dirty bit in multiple places and clearing
		 * them concurrently from different threads.
		 *
		 * Note! Normally the "set_page_dirty(page)"
		 * has no effect on the actual dirty bit - since
		 * that will already usually be set. But we
		 * need the side effects, and it can help us
		 * avoid races.
		 *
		 * We basically use the page "master dirty bit"
		 * as a serialization point for all the different
		 * threads doing their things.
		 */
		if (page_mkclean(page))
			set_page_dirty(page);
2429 2430 2431
		/*
		 * We carefully synchronise fault handlers against
		 * installing a dirty pte and marking the page dirty
2432 2433 2434 2435
		 * at this point.  We do this by having them hold the
		 * page lock while dirtying the page, and pages are
		 * always locked coming in here, so we get the desired
		 * exclusion.
2436
		 */
2437
		memcg = mem_cgroup_begin_page_stat(page);
2438
		if (TestClearPageDirty(page)) {
2439
			mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2440
			dec_zone_page_state(page, NR_FILE_DIRTY);
2441
			dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
2442
			ret = 1;
L
Linus Torvalds 已提交
2443
		}
2444 2445
		mem_cgroup_end_page_stat(memcg);
		return ret;
L
Linus Torvalds 已提交
2446
	}
2447
	return TestClearPageDirty(page);
L
Linus Torvalds 已提交
2448
}
2449
EXPORT_SYMBOL(clear_page_dirty_for_io);
L
Linus Torvalds 已提交
2450 2451 2452 2453

int test_clear_page_writeback(struct page *page)
{
	struct address_space *mapping = page_mapping(page);
2454 2455
	struct mem_cgroup *memcg;
	int ret;
L
Linus Torvalds 已提交
2456

2457
	memcg = mem_cgroup_begin_page_stat(page);
L
Linus Torvalds 已提交
2458
	if (mapping) {
2459 2460
		struct inode *inode = mapping->host;
		struct backing_dev_info *bdi = inode_to_bdi(inode);
L
Linus Torvalds 已提交
2461 2462
		unsigned long flags;

N
Nick Piggin 已提交
2463
		spin_lock_irqsave(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2464
		ret = TestClearPageWriteback(page);
P
Peter Zijlstra 已提交
2465
		if (ret) {
L
Linus Torvalds 已提交
2466 2467 2468
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_WRITEBACK);
2469
			if (bdi_cap_account_writeback(bdi)) {
2470 2471 2472 2473
				struct bdi_writeback *wb = inode_to_wb(inode);

				__dec_wb_stat(wb, WB_WRITEBACK);
				__wb_writeout_inc(wb);
P
Peter Zijlstra 已提交
2474
			}
P
Peter Zijlstra 已提交
2475
		}
N
Nick Piggin 已提交
2476
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2477 2478 2479
	} else {
		ret = TestClearPageWriteback(page);
	}
2480
	if (ret) {
2481
		mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2482
		dec_zone_page_state(page, NR_WRITEBACK);
2483 2484
		inc_zone_page_state(page, NR_WRITTEN);
	}
2485
	mem_cgroup_end_page_stat(memcg);
L
Linus Torvalds 已提交
2486 2487 2488
	return ret;
}

2489
int __test_set_page_writeback(struct page *page, bool keep_write)
L
Linus Torvalds 已提交
2490 2491
{
	struct address_space *mapping = page_mapping(page);
2492 2493
	struct mem_cgroup *memcg;
	int ret;
L
Linus Torvalds 已提交
2494

2495
	memcg = mem_cgroup_begin_page_stat(page);
L
Linus Torvalds 已提交
2496
	if (mapping) {
2497 2498
		struct inode *inode = mapping->host;
		struct backing_dev_info *bdi = inode_to_bdi(inode);
L
Linus Torvalds 已提交
2499 2500
		unsigned long flags;

N
Nick Piggin 已提交
2501
		spin_lock_irqsave(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2502
		ret = TestSetPageWriteback(page);
P
Peter Zijlstra 已提交
2503
		if (!ret) {
L
Linus Torvalds 已提交
2504 2505 2506
			radix_tree_tag_set(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_WRITEBACK);
2507
			if (bdi_cap_account_writeback(bdi))
2508
				__inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
P
Peter Zijlstra 已提交
2509
		}
L
Linus Torvalds 已提交
2510 2511 2512 2513
		if (!PageDirty(page))
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_DIRTY);
2514 2515 2516 2517
		if (!keep_write)
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_TOWRITE);
N
Nick Piggin 已提交
2518
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2519 2520 2521
	} else {
		ret = TestSetPageWriteback(page);
	}
2522
	if (!ret) {
2523
		mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2524 2525
		inc_zone_page_state(page, NR_WRITEBACK);
	}
2526
	mem_cgroup_end_page_stat(memcg);
L
Linus Torvalds 已提交
2527 2528 2529
	return ret;

}
2530
EXPORT_SYMBOL(__test_set_page_writeback);
L
Linus Torvalds 已提交
2531 2532

/*
N
Nick Piggin 已提交
2533
 * Return true if any of the pages in the mapping are marked with the
L
Linus Torvalds 已提交
2534 2535 2536 2537
 * passed tag.
 */
int mapping_tagged(struct address_space *mapping, int tag)
{
2538
	return radix_tree_tagged(&mapping->page_tree, tag);
L
Linus Torvalds 已提交
2539 2540
}
EXPORT_SYMBOL(mapping_tagged);
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551

/**
 * wait_for_stable_page() - wait for writeback to finish, if necessary.
 * @page:	The page to wait on.
 *
 * This function determines if the given page is related to a backing device
 * that requires page contents to be held stable during writeback.  If so, then
 * it will wait for any pending writeback to complete.
 */
void wait_for_stable_page(struct page *page)
{
2552 2553
	if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
		wait_on_page_writeback(page);
2554 2555
}
EXPORT_SYMBOL_GPL(wait_for_stable_page);