page-writeback.c 83.1 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 * mm/page-writeback.c
L
Linus Torvalds 已提交
3 4
 *
 * Copyright (C) 2002, Linus Torvalds.
P
Peter Zijlstra 已提交
5
 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
L
Linus Torvalds 已提交
6 7 8 9
 *
 * Contains functions related to writing back dirty pages at the
 * address_space level.
 *
10
 * 10Apr2002	Andrew Morton
L
Linus Torvalds 已提交
11 12 13 14
 *		Initial version
 */

#include <linux/kernel.h>
15
#include <linux/export.h>
L
Linus Torvalds 已提交
16 17 18 19 20 21 22 23 24
#include <linux/spinlock.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/writeback.h>
#include <linux/init.h>
#include <linux/backing-dev.h>
25
#include <linux/task_io_accounting_ops.h>
L
Linus Torvalds 已提交
26 27
#include <linux/blkdev.h>
#include <linux/mpage.h>
28
#include <linux/rmap.h>
L
Linus Torvalds 已提交
29 30 31 32 33 34
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/smp.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
A
Al Viro 已提交
35
#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36
#include <linux/pagevec.h>
37
#include <linux/timer.h>
38
#include <linux/sched/rt.h>
39
#include <linux/mm_inline.h>
40
#include <trace/events/writeback.h>
L
Linus Torvalds 已提交
41

42 43
#include "internal.h"

44 45 46 47 48
/*
 * Sleep at most 200ms at a time in balance_dirty_pages().
 */
#define MAX_PAUSE		max(HZ/5, 1)

49 50 51 52 53 54
/*
 * Try to keep balance_dirty_pages() call intervals higher than this many pages
 * by raising pause time to max_pause when falls below it.
 */
#define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))

55 56 57 58 59
/*
 * Estimate write bandwidth at 200ms intervals.
 */
#define BANDWIDTH_INTERVAL	max(HZ/5, 1)

W
Wu Fengguang 已提交
60 61
#define RATELIMIT_CALC_SHIFT	10

L
Linus Torvalds 已提交
62 63 64 65 66 67 68 69 70
/*
 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
 * will look to see if it needs to force writeback or throttling.
 */
static long ratelimit_pages = 32;

/* The following parameters are exported via /proc/sys/vm */

/*
71
 * Start background writeback (via writeback threads) at this percentage
L
Linus Torvalds 已提交
72
 */
73
int dirty_background_ratio = 10;
L
Linus Torvalds 已提交
74

75 76 77 78 79 80
/*
 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
 * dirty_background_ratio * the amount of dirtyable memory
 */
unsigned long dirty_background_bytes;

81 82 83 84 85 86
/*
 * free highmem will not be subtracted from the total free memory
 * for calculating free ratios if vm_highmem_is_dirtyable is true
 */
int vm_highmem_is_dirtyable;

L
Linus Torvalds 已提交
87 88 89
/*
 * The generator of dirty data starts writeback at this percentage
 */
90
int vm_dirty_ratio = 20;
L
Linus Torvalds 已提交
91

92 93 94 95 96 97
/*
 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
 * vm_dirty_ratio * the amount of dirtyable memory
 */
unsigned long vm_dirty_bytes;

L
Linus Torvalds 已提交
98
/*
99
 * The interval between `kupdate'-style writebacks
L
Linus Torvalds 已提交
100
 */
101
unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
L
Linus Torvalds 已提交
102

103 104
EXPORT_SYMBOL_GPL(dirty_writeback_interval);

L
Linus Torvalds 已提交
105
/*
106
 * The longest time for which data is allowed to remain dirty
L
Linus Torvalds 已提交
107
 */
108
unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
L
Linus Torvalds 已提交
109 110 111 112 113 114 115

/*
 * Flag that makes the machine dump writes/reads and block dirtyings.
 */
int block_dump;

/*
116 117
 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 * a full sync is triggered after this time elapses without any disk activity.
L
Linus Torvalds 已提交
118 119 120 121 122 123 124
 */
int laptop_mode;

EXPORT_SYMBOL(laptop_mode);

/* End of sysctl-exported parameters */

125
struct wb_domain global_wb_domain;
L
Linus Torvalds 已提交
126

127 128
/* consolidated parameters for balance_dirty_pages() and its subroutines */
struct dirty_throttle_control {
129 130
#ifdef CONFIG_CGROUP_WRITEBACK
	struct wb_domain	*dom;
131
	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
132
#endif
133
	struct bdi_writeback	*wb;
134
	struct fprop_local_percpu *wb_completions;
135

136
	unsigned long		avail;		/* dirtyable */
137 138 139 140 141 142
	unsigned long		dirty;		/* file_dirty + write + nfs */
	unsigned long		thresh;		/* dirty threshold */
	unsigned long		bg_thresh;	/* dirty background threshold */

	unsigned long		wb_dirty;	/* per-wb counterparts */
	unsigned long		wb_thresh;
143
	unsigned long		wb_bg_thresh;
144 145

	unsigned long		pos_ratio;
146 147
};

148
#define DTC_INIT_COMMON(__wb)	.wb = (__wb),				\
149
				.wb_completions = &(__wb)->completions
150 151 152 153 154 155 156

/*
 * Length of period for aging writeout fractions of bdis. This is an
 * arbitrarily chosen number. The longer the period, the slower fractions will
 * reflect changes in current writeout rate.
 */
#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
P
Peter Zijlstra 已提交
157

158 159
#ifdef CONFIG_CGROUP_WRITEBACK

160 161
#define GDTC_INIT(__wb)		.dom = &global_wb_domain,		\
				DTC_INIT_COMMON(__wb)
162
#define GDTC_INIT_NO_WB		.dom = &global_wb_domain
163 164 165 166 167 168 169 170
#define MDTC_INIT(__wb, __gdtc)	.dom = mem_cgroup_wb_domain(__wb),	\
				.gdtc = __gdtc,				\
				DTC_INIT_COMMON(__wb)

static bool mdtc_valid(struct dirty_throttle_control *dtc)
{
	return dtc->dom;
}
171 172 173 174 175 176

static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
{
	return dtc->dom;
}

177 178 179 180 181
static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
{
	return mdtc->gdtc;
}

T
Tejun Heo 已提交
182 183 184 185 186
static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
{
	return &wb->memcg_completions;
}

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
static void wb_min_max_ratio(struct bdi_writeback *wb,
			     unsigned long *minp, unsigned long *maxp)
{
	unsigned long this_bw = wb->avg_write_bandwidth;
	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
	unsigned long long min = wb->bdi->min_ratio;
	unsigned long long max = wb->bdi->max_ratio;

	/*
	 * @wb may already be clean by the time control reaches here and
	 * the total may not include its bw.
	 */
	if (this_bw < tot_bw) {
		if (min) {
			min *= this_bw;
			do_div(min, tot_bw);
		}
		if (max < 100) {
			max *= this_bw;
			do_div(max, tot_bw);
		}
	}

	*minp = min;
	*maxp = max;
}

#else	/* CONFIG_CGROUP_WRITEBACK */

216
#define GDTC_INIT(__wb)		DTC_INIT_COMMON(__wb)
217
#define GDTC_INIT_NO_WB
218 219 220 221 222 223
#define MDTC_INIT(__wb, __gdtc)

static bool mdtc_valid(struct dirty_throttle_control *dtc)
{
	return false;
}
224 225 226 227 228 229

static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
{
	return &global_wb_domain;
}

230 231 232 233 234
static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
{
	return NULL;
}

T
Tejun Heo 已提交
235 236 237 238 239
static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
{
	return NULL;
}

240 241 242 243 244 245 246 247 248
static void wb_min_max_ratio(struct bdi_writeback *wb,
			     unsigned long *minp, unsigned long *maxp)
{
	*minp = wb->bdi->min_ratio;
	*maxp = wb->bdi->max_ratio;
}

#endif	/* CONFIG_CGROUP_WRITEBACK */

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
/*
 * In a memory zone, there is a certain amount of pages we consider
 * available for the page cache, which is essentially the number of
 * free and reclaimable pages, minus some zone reserves to protect
 * lowmem and the ability to uphold the zone's watermarks without
 * requiring writeback.
 *
 * This number of dirtyable pages is the base value of which the
 * user-configurable dirty ratio is the effictive number of pages that
 * are allowed to be actually dirtied.  Per individual zone, or
 * globally by using the sum of dirtyable pages over all zones.
 *
 * Because the user is allowed to specify the dirty limit globally as
 * absolute number of bytes, calculating the per-zone dirty limit can
 * require translating the configured limit into a percentage of
 * global dirtyable memory first.
 */

267 268 269 270 271 272 273 274 275 276 277 278 279 280
/**
 * zone_dirtyable_memory - number of dirtyable pages in a zone
 * @zone: the zone
 *
 * Returns the zone's number of pages potentially available for dirty
 * page cache.  This is the base value for the per-zone dirty limits.
 */
static unsigned long zone_dirtyable_memory(struct zone *zone)
{
	unsigned long nr_pages;

	nr_pages = zone_page_state(zone, NR_FREE_PAGES);
	nr_pages -= min(nr_pages, zone->dirty_balance_reserve);

281 282
	nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
	nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
283 284 285 286

	return nr_pages;
}

287 288 289 290 291 292 293
static unsigned long highmem_dirtyable_memory(unsigned long total)
{
#ifdef CONFIG_HIGHMEM
	int node;
	unsigned long x = 0;

	for_each_node_state(node, N_HIGH_MEMORY) {
294
		struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
295

296
		x += zone_dirtyable_memory(z);
297
	}
298 299 300 301 302 303 304 305 306 307 308 309
	/*
	 * Unreclaimable memory (kernel memory or anonymous memory
	 * without swap) can bring down the dirtyable pages below
	 * the zone's dirty balance reserve and the above calculation
	 * will underflow.  However we still want to add in nodes
	 * which are below threshold (negative values) to get a more
	 * accurate calculation but make sure that the total never
	 * underflows.
	 */
	if ((long)x < 0)
		x = 0;

310 311 312 313 314 315 316 317 318 319 320 321 322
	/*
	 * Make sure that the number of highmem pages is never larger
	 * than the number of the total dirtyable memory. This can only
	 * occur in very strange VM situations but we want to make sure
	 * that this does not occur.
	 */
	return min(x, total);
#else
	return 0;
#endif
}

/**
323
 * global_dirtyable_memory - number of globally dirtyable pages
324
 *
325 326
 * Returns the global number of pages potentially available for dirty
 * page cache.  This is the base value for the global dirty limits.
327
 */
328
static unsigned long global_dirtyable_memory(void)
329 330 331
{
	unsigned long x;

332
	x = global_page_state(NR_FREE_PAGES);
333
	x -= min(x, dirty_balance_reserve);
334

335 336
	x += global_page_state(NR_INACTIVE_FILE);
	x += global_page_state(NR_ACTIVE_FILE);
337

338 339 340 341 342 343
	if (!vm_highmem_is_dirtyable)
		x -= highmem_dirtyable_memory(x);

	return x + 1;	/* Ensure that we never return 0 */
}

344 345 346
/**
 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
 * @dtc: dirty_throttle_control of interest
347
 *
348 349 350 351
 * Calculate @dtc->thresh and ->bg_thresh considering
 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
 * must ensure that @dtc->avail is set before calling this function.  The
 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
352 353
 * real-time tasks.
 */
354
static void domain_dirty_limits(struct dirty_throttle_control *dtc)
355
{
356 357 358 359 360 361 362 363
	const unsigned long available_memory = dtc->avail;
	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
	unsigned long bytes = vm_dirty_bytes;
	unsigned long bg_bytes = dirty_background_bytes;
	unsigned long ratio = vm_dirty_ratio;
	unsigned long bg_ratio = dirty_background_ratio;
	unsigned long thresh;
	unsigned long bg_thresh;
364 365
	struct task_struct *tsk;

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
	/* gdtc is !NULL iff @dtc is for memcg domain */
	if (gdtc) {
		unsigned long global_avail = gdtc->avail;

		/*
		 * The byte settings can't be applied directly to memcg
		 * domains.  Convert them to ratios by scaling against
		 * globally available memory.
		 */
		if (bytes)
			ratio = min(DIV_ROUND_UP(bytes, PAGE_SIZE) * 100 /
				    global_avail, 100UL);
		if (bg_bytes)
			bg_ratio = min(DIV_ROUND_UP(bg_bytes, PAGE_SIZE) * 100 /
				       global_avail, 100UL);
		bytes = bg_bytes = 0;
	}

	if (bytes)
		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
386
	else
387
		thresh = (ratio * available_memory) / 100;
388

389 390
	if (bg_bytes)
		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
391
	else
392
		bg_thresh = (bg_ratio * available_memory) / 100;
393

394 395
	if (bg_thresh >= thresh)
		bg_thresh = thresh / 2;
396 397
	tsk = current;
	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
398 399
		bg_thresh += bg_thresh / 4;
		thresh += thresh / 4;
400
	}
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
	dtc->thresh = thresh;
	dtc->bg_thresh = bg_thresh;

	/* we should eventually report the domain in the TP */
	if (!gdtc)
		trace_global_dirty_state(bg_thresh, thresh);
}

/**
 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 * @pbackground: out parameter for bg_thresh
 * @pdirty: out parameter for thresh
 *
 * Calculate bg_thresh and thresh for global_wb_domain.  See
 * domain_dirty_limits() for details.
 */
void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
{
	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };

	gdtc.avail = global_dirtyable_memory();
	domain_dirty_limits(&gdtc);

	*pbackground = gdtc.bg_thresh;
	*pdirty = gdtc.thresh;
426 427
}

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
/**
 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
 * @zone: the zone
 *
 * Returns the maximum number of dirty pages allowed in a zone, based
 * on the zone's dirtyable memory.
 */
static unsigned long zone_dirty_limit(struct zone *zone)
{
	unsigned long zone_memory = zone_dirtyable_memory(zone);
	struct task_struct *tsk = current;
	unsigned long dirty;

	if (vm_dirty_bytes)
		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
			zone_memory / global_dirtyable_memory();
	else
		dirty = vm_dirty_ratio * zone_memory / 100;

	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
		dirty += dirty / 4;

	return dirty;
}

/**
 * zone_dirty_ok - tells whether a zone is within its dirty limits
 * @zone: the zone to check
 *
 * Returns %true when the dirty pages in @zone are within the zone's
 * dirty limit, %false if the limit is exceeded.
 */
bool zone_dirty_ok(struct zone *zone)
{
	unsigned long limit = zone_dirty_limit(zone);

	return zone_page_state(zone, NR_FILE_DIRTY) +
	       zone_page_state(zone, NR_UNSTABLE_NFS) +
	       zone_page_state(zone, NR_WRITEBACK) <= limit;
}

469
int dirty_background_ratio_handler(struct ctl_table *table, int write,
470
		void __user *buffer, size_t *lenp,
471 472 473 474
		loff_t *ppos)
{
	int ret;

475
	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
476 477 478 479 480 481
	if (ret == 0 && write)
		dirty_background_bytes = 0;
	return ret;
}

int dirty_background_bytes_handler(struct ctl_table *table, int write,
482
		void __user *buffer, size_t *lenp,
483 484 485 486
		loff_t *ppos)
{
	int ret;

487
	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
488 489 490 491 492
	if (ret == 0 && write)
		dirty_background_ratio = 0;
	return ret;
}

P
Peter Zijlstra 已提交
493
int dirty_ratio_handler(struct ctl_table *table, int write,
494
		void __user *buffer, size_t *lenp,
P
Peter Zijlstra 已提交
495 496 497
		loff_t *ppos)
{
	int old_ratio = vm_dirty_ratio;
498 499
	int ret;

500
	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
501
	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
502
		writeback_set_ratelimit();
503 504 505 506 507 508
		vm_dirty_bytes = 0;
	}
	return ret;
}

int dirty_bytes_handler(struct ctl_table *table, int write,
509
		void __user *buffer, size_t *lenp,
510 511
		loff_t *ppos)
{
512
	unsigned long old_bytes = vm_dirty_bytes;
513 514
	int ret;

515
	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
516
	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
517
		writeback_set_ratelimit();
518
		vm_dirty_ratio = 0;
P
Peter Zijlstra 已提交
519 520 521 522
	}
	return ret;
}

523 524 525 526 527 528 529 530 531
static unsigned long wp_next_time(unsigned long cur_time)
{
	cur_time += VM_COMPLETIONS_PERIOD_LEN;
	/* 0 has a special meaning... */
	if (!cur_time)
		return 1;
	return cur_time;
}

532 533 534
static void wb_domain_writeout_inc(struct wb_domain *dom,
				   struct fprop_local_percpu *completions,
				   unsigned int max_prop_frac)
P
Peter Zijlstra 已提交
535
{
536 537
	__fprop_inc_percpu_max(&dom->completions, completions,
			       max_prop_frac);
538
	/* First event after period switching was turned off? */
T
Tejun Heo 已提交
539
	if (!unlikely(dom->period_time)) {
540 541 542 543 544 545
		/*
		 * We can race with other __bdi_writeout_inc calls here but
		 * it does not cause any harm since the resulting time when
		 * timer will fire and what is in writeout_period_time will be
		 * roughly the same.
		 */
T
Tejun Heo 已提交
546 547
		dom->period_time = wp_next_time(jiffies);
		mod_timer(&dom->period_timer, dom->period_time);
548
	}
P
Peter Zijlstra 已提交
549 550
}

551 552 553 554 555
/*
 * Increment @wb's writeout completion count and the global writeout
 * completion count. Called from test_clear_page_writeback().
 */
static inline void __wb_writeout_inc(struct bdi_writeback *wb)
556
{
T
Tejun Heo 已提交
557
	struct wb_domain *cgdom;
558

559 560 561
	__inc_wb_stat(wb, WB_WRITTEN);
	wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
			       wb->bdi->max_prop_frac);
T
Tejun Heo 已提交
562 563 564 565 566

	cgdom = mem_cgroup_wb_domain(wb);
	if (cgdom)
		wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
				       wb->bdi->max_prop_frac);
567 568
}

569
void wb_writeout_inc(struct bdi_writeback *wb)
P
Peter Zijlstra 已提交
570
{
571 572 573
	unsigned long flags;

	local_irq_save(flags);
574
	__wb_writeout_inc(wb);
575
	local_irq_restore(flags);
P
Peter Zijlstra 已提交
576
}
577
EXPORT_SYMBOL_GPL(wb_writeout_inc);
P
Peter Zijlstra 已提交
578

579 580 581 582 583 584
/*
 * On idle system, we can be called long after we scheduled because we use
 * deferred timers so count with missed periods.
 */
static void writeout_period(unsigned long t)
{
T
Tejun Heo 已提交
585 586
	struct wb_domain *dom = (void *)t;
	int miss_periods = (jiffies - dom->period_time) /
587 588
						 VM_COMPLETIONS_PERIOD_LEN;

T
Tejun Heo 已提交
589 590
	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
		dom->period_time = wp_next_time(dom->period_time +
591
				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
T
Tejun Heo 已提交
592
		mod_timer(&dom->period_timer, dom->period_time);
593 594 595 596 597
	} else {
		/*
		 * Aging has zeroed all fractions. Stop wasting CPU on period
		 * updates.
		 */
T
Tejun Heo 已提交
598
		dom->period_time = 0;
599 600 601
	}
}

T
Tejun Heo 已提交
602 603 604
int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
{
	memset(dom, 0, sizeof(*dom));
605 606 607

	spin_lock_init(&dom->lock);

T
Tejun Heo 已提交
608 609 610
	init_timer_deferrable(&dom->period_timer);
	dom->period_timer.function = writeout_period;
	dom->period_timer.data = (unsigned long)dom;
611 612 613

	dom->dirty_limit_tstamp = jiffies;

T
Tejun Heo 已提交
614 615 616
	return fprop_global_init(&dom->completions, gfp);
}

T
Tejun Heo 已提交
617 618 619 620 621 622 623 624
#ifdef CONFIG_CGROUP_WRITEBACK
void wb_domain_exit(struct wb_domain *dom)
{
	del_timer_sync(&dom->period_timer);
	fprop_global_destroy(&dom->completions);
}
#endif

625
/*
626 627 628
 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 * registered backing devices, which, for obvious reasons, can not
 * exceed 100%.
629 630 631 632 633 634 635
 */
static unsigned int bdi_min_ratio;

int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
{
	int ret = 0;

636
	spin_lock_bh(&bdi_lock);
637
	if (min_ratio > bdi->max_ratio) {
638
		ret = -EINVAL;
639 640 641 642 643 644 645 646 647
	} else {
		min_ratio -= bdi->min_ratio;
		if (bdi_min_ratio + min_ratio < 100) {
			bdi_min_ratio += min_ratio;
			bdi->min_ratio += min_ratio;
		} else {
			ret = -EINVAL;
		}
	}
648
	spin_unlock_bh(&bdi_lock);
649 650 651 652 653 654 655 656 657 658 659

	return ret;
}

int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
{
	int ret = 0;

	if (max_ratio > 100)
		return -EINVAL;

660
	spin_lock_bh(&bdi_lock);
661 662 663 664
	if (bdi->min_ratio > max_ratio) {
		ret = -EINVAL;
	} else {
		bdi->max_ratio = max_ratio;
665
		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
666
	}
667
	spin_unlock_bh(&bdi_lock);
668 669 670

	return ret;
}
671
EXPORT_SYMBOL(bdi_set_max_ratio);
672

W
Wu Fengguang 已提交
673 674 675 676 677 678
static unsigned long dirty_freerun_ceiling(unsigned long thresh,
					   unsigned long bg_thresh)
{
	return (thresh + bg_thresh) / 2;
}

679 680
static unsigned long hard_dirty_limit(struct wb_domain *dom,
				      unsigned long thresh)
681
{
682
	return max(thresh, dom->dirty_limit);
683 684
}

685 686 687 688 689 690 691
/* memory available to a memcg domain is capped by system-wide clean memory */
static void mdtc_cap_avail(struct dirty_throttle_control *mdtc)
{
	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
	unsigned long clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);

	mdtc->avail = min(mdtc->avail, clean);
692 693
}

694
/**
695 696
 * __wb_calc_thresh - @wb's share of dirty throttling threshold
 * @dtc: dirty_throttle_context of interest
697
 *
698
 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
699
 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
700 701 702 703 704 705
 *
 * Note that balance_dirty_pages() will only seriously take it as a hard limit
 * when sleeping max_pause per page is not enough to keep the dirty pages under
 * control. For example, when the device is completely stalled due to some error
 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 * In the other normal situations, it acts more gently by throttling the tasks
706
 * more (rather than completely block them) when the wb dirty pages go high.
707
 *
708
 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
709 710 711
 * - starving fast devices
 * - piling up dirty pages (that will take long time to sync) on slow devices
 *
712
 * The wb's share of dirty limit will be adapting to its throughput and
713 714
 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 */
715
static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
716
{
717
	struct wb_domain *dom = dtc_dom(dtc);
718
	unsigned long thresh = dtc->thresh;
T
Tejun Heo 已提交
719
	u64 wb_thresh;
720
	long numerator, denominator;
721
	unsigned long wb_min_ratio, wb_max_ratio;
P
Peter Zijlstra 已提交
722

723
	/*
T
Tejun Heo 已提交
724
	 * Calculate this BDI's share of the thresh ratio.
725
	 */
726
	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
T
Tejun Heo 已提交
727
			      &numerator, &denominator);
P
Peter Zijlstra 已提交
728

T
Tejun Heo 已提交
729 730 731
	wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
	wb_thresh *= numerator;
	do_div(wb_thresh, denominator);
P
Peter Zijlstra 已提交
732

733
	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
P
Peter Zijlstra 已提交
734

T
Tejun Heo 已提交
735 736 737
	wb_thresh += (thresh * wb_min_ratio) / 100;
	if (wb_thresh > (thresh * wb_max_ratio) / 100)
		wb_thresh = thresh * wb_max_ratio / 100;
738

T
Tejun Heo 已提交
739
	return wb_thresh;
L
Linus Torvalds 已提交
740 741
}

742 743 744 745 746
unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
{
	struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
					       .thresh = thresh };
	return __wb_calc_thresh(&gdtc);
L
Linus Torvalds 已提交
747 748
}

749 750 751 752 753 754 755 756 757 758 759 760 761 762
/*
 *                           setpoint - dirty 3
 *        f(dirty) := 1.0 + (----------------)
 *                           limit - setpoint
 *
 * it's a 3rd order polynomial that subjects to
 *
 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 * (2) f(setpoint) = 1.0 => the balance point
 * (3) f(limit)    = 0   => the hard limit
 * (4) df/dx      <= 0	 => negative feedback control
 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 *     => fast response on large errors; small oscillation near setpoint
 */
763
static long long pos_ratio_polynom(unsigned long setpoint,
764 765 766 767 768 769
					  unsigned long dirty,
					  unsigned long limit)
{
	long long pos_ratio;
	long x;

770
	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
771
		      (limit - setpoint) | 1);
772 773 774 775 776 777 778 779
	pos_ratio = x;
	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;

	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
}

W
Wu Fengguang 已提交
780 781 782 783 784
/*
 * Dirty position control.
 *
 * (o) global/bdi setpoints
 *
785
 * We want the dirty pages be balanced around the global/wb setpoints.
W
Wu Fengguang 已提交
786 787 788 789 790 791 792 793 794
 * When the number of dirty pages is higher/lower than the setpoint, the
 * dirty position control ratio (and hence task dirty ratelimit) will be
 * decreased/increased to bring the dirty pages back to the setpoint.
 *
 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 *
 *     if (dirty < setpoint) scale up   pos_ratio
 *     if (dirty > setpoint) scale down pos_ratio
 *
795 796
 *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
 *     if (wb_dirty > wb_setpoint) scale down pos_ratio
W
Wu Fengguang 已提交
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
 *
 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 *
 * (o) global control line
 *
 *     ^ pos_ratio
 *     |
 *     |            |<===== global dirty control scope ======>|
 * 2.0 .............*
 *     |            .*
 *     |            . *
 *     |            .   *
 *     |            .     *
 *     |            .        *
 *     |            .            *
 * 1.0 ................................*
 *     |            .                  .     *
 *     |            .                  .          *
 *     |            .                  .              *
 *     |            .                  .                 *
 *     |            .                  .                    *
 *   0 +------------.------------------.----------------------*------------->
 *           freerun^          setpoint^                 limit^   dirty pages
 *
821
 * (o) wb control line
W
Wu Fengguang 已提交
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
 *
 *     ^ pos_ratio
 *     |
 *     |            *
 *     |              *
 *     |                *
 *     |                  *
 *     |                    * |<=========== span ============>|
 * 1.0 .......................*
 *     |                      . *
 *     |                      .   *
 *     |                      .     *
 *     |                      .       *
 *     |                      .         *
 *     |                      .           *
 *     |                      .             *
 *     |                      .               *
 *     |                      .                 *
 *     |                      .                   *
 *     |                      .                     *
 * 1/4 ...............................................* * * * * * * * * * * *
 *     |                      .                         .
 *     |                      .                           .
 *     |                      .                             .
 *   0 +----------------------.-------------------------------.------------->
847
 *                wb_setpoint^                    x_intercept^
W
Wu Fengguang 已提交
848
 *
849
 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
W
Wu Fengguang 已提交
850 851
 * be smoothly throttled down to normal if it starts high in situations like
 * - start writing to a slow SD card and a fast disk at the same time. The SD
852 853
 *   card's wb_dirty may rush to many times higher than wb_setpoint.
 * - the wb dirty thresh drops quickly due to change of JBOD workload
W
Wu Fengguang 已提交
854
 */
855
static void wb_position_ratio(struct dirty_throttle_control *dtc)
W
Wu Fengguang 已提交
856
{
857
	struct bdi_writeback *wb = dtc->wb;
858
	unsigned long write_bw = wb->avg_write_bandwidth;
859
	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
860
	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
861
	unsigned long wb_thresh = dtc->wb_thresh;
W
Wu Fengguang 已提交
862 863
	unsigned long x_intercept;
	unsigned long setpoint;		/* dirty pages' target balance point */
864
	unsigned long wb_setpoint;
W
Wu Fengguang 已提交
865 866 867 868
	unsigned long span;
	long long pos_ratio;		/* for scaling up/down the rate limit */
	long x;

869 870
	dtc->pos_ratio = 0;

871
	if (unlikely(dtc->dirty >= limit))
872
		return;
W
Wu Fengguang 已提交
873 874 875 876

	/*
	 * global setpoint
	 *
877 878 879
	 * See comment for pos_ratio_polynom().
	 */
	setpoint = (freerun + limit) / 2;
880
	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
881 882 883 884

	/*
	 * The strictlimit feature is a tool preventing mistrusted filesystems
	 * from growing a large number of dirty pages before throttling. For
885 886
	 * such filesystems balance_dirty_pages always checks wb counters
	 * against wb limits. Even if global "nr_dirty" is under "freerun".
887 888 889 890
	 * This is especially important for fuse which sets bdi->max_ratio to
	 * 1% by default. Without strictlimit feature, fuse writeback may
	 * consume arbitrary amount of RAM because it is accounted in
	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
W
Wu Fengguang 已提交
891
	 *
892
	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
893
	 * two values: wb_dirty and wb_thresh. Let's consider an example:
894 895
	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
	 * limits are set by default to 10% and 20% (background and throttle).
896
	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
T
Tejun Heo 已提交
897
	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
898
	 * about ~6K pages (as the average of background and throttle wb
899
	 * limits). The 3rd order polynomial will provide positive feedback if
900
	 * wb_dirty is under wb_setpoint and vice versa.
W
Wu Fengguang 已提交
901
	 *
902
	 * Note, that we cannot use global counters in these calculations
903
	 * because we want to throttle process writing to a strictlimit wb
904 905
	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
	 * in the example above).
W
Wu Fengguang 已提交
906
	 */
907
	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
908
		long long wb_pos_ratio;
909

910 911 912 913 914
		if (dtc->wb_dirty < 8) {
			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
					   2 << RATELIMIT_CALC_SHIFT);
			return;
		}
915

916
		if (dtc->wb_dirty >= wb_thresh)
917
			return;
918

919 920
		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
						    dtc->wb_bg_thresh);
921

922
		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
923
			return;
924

925
		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
926
						 wb_thresh);
927 928

		/*
929 930
		 * Typically, for strictlimit case, wb_setpoint << setpoint
		 * and pos_ratio >> wb_pos_ratio. In the other words global
931
		 * state ("dirty") is not limiting factor and we have to
932
		 * make decision based on wb counters. But there is an
933 934
		 * important case when global pos_ratio should get precedence:
		 * global limits are exceeded (e.g. due to activities on other
935
		 * wb's) while given strictlimit wb is below limit.
936
		 *
937
		 * "pos_ratio * wb_pos_ratio" would work for the case above,
938
		 * but it would look too non-natural for the case of all
939
		 * activity in the system coming from a single strictlimit wb
940 941 942 943
		 * with bdi->max_ratio == 100%.
		 *
		 * Note that min() below somewhat changes the dynamics of the
		 * control system. Normally, pos_ratio value can be well over 3
944
		 * (when globally we are at freerun and wb is well below wb
945 946 947 948
		 * setpoint). Now the maximum pos_ratio in the same situation
		 * is 2. We might want to tweak this if we observe the control
		 * system is too slow to adapt.
		 */
949 950
		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
		return;
951
	}
W
Wu Fengguang 已提交
952 953 954

	/*
	 * We have computed basic pos_ratio above based on global situation. If
955
	 * the wb is over/under its share of dirty pages, we want to scale
W
Wu Fengguang 已提交
956 957 958 959
	 * pos_ratio further down/up. That is done by the following mechanism.
	 */

	/*
960
	 * wb setpoint
W
Wu Fengguang 已提交
961
	 *
962
	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
W
Wu Fengguang 已提交
963
	 *
964
	 *                        x_intercept - wb_dirty
W
Wu Fengguang 已提交
965
	 *                     := --------------------------
966
	 *                        x_intercept - wb_setpoint
W
Wu Fengguang 已提交
967
	 *
968
	 * The main wb control line is a linear function that subjects to
W
Wu Fengguang 已提交
969
	 *
970 971 972
	 * (1) f(wb_setpoint) = 1.0
	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
W
Wu Fengguang 已提交
973
	 *
974
	 * For single wb case, the dirty pages are observed to fluctuate
W
Wu Fengguang 已提交
975
	 * regularly within range
976
	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
W
Wu Fengguang 已提交
977 978 979
	 * for various filesystems, where (2) can yield in a reasonable 12.5%
	 * fluctuation range for pos_ratio.
	 *
980
	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
W
Wu Fengguang 已提交
981
	 * own size, so move the slope over accordingly and choose a slope that
982
	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
W
Wu Fengguang 已提交
983
	 */
984 985
	if (unlikely(wb_thresh > dtc->thresh))
		wb_thresh = dtc->thresh;
986
	/*
987
	 * It's very possible that wb_thresh is close to 0 not because the
988 989 990 991 992
	 * device is slow, but that it has remained inactive for long time.
	 * Honour such devices a reasonable good (hopefully IO efficient)
	 * threshold, so that the occasional writes won't be blocked and active
	 * writes can rampup the threshold quickly.
	 */
993
	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
W
Wu Fengguang 已提交
994
	/*
995 996
	 * scale global setpoint to wb's:
	 *	wb_setpoint = setpoint * wb_thresh / thresh
W
Wu Fengguang 已提交
997
	 */
998
	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
999
	wb_setpoint = setpoint * (u64)x >> 16;
W
Wu Fengguang 已提交
1000
	/*
1001 1002
	 * Use span=(8*write_bw) in single wb case as indicated by
	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
W
Wu Fengguang 已提交
1003
	 *
1004 1005 1006
	 *        wb_thresh                    thresh - wb_thresh
	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
	 *         thresh                           thresh
W
Wu Fengguang 已提交
1007
	 */
1008
	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1009
	x_intercept = wb_setpoint + span;
W
Wu Fengguang 已提交
1010

1011 1012
	if (dtc->wb_dirty < x_intercept - span / 4) {
		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1013
				      (x_intercept - wb_setpoint) | 1);
W
Wu Fengguang 已提交
1014 1015 1016
	} else
		pos_ratio /= 4;

1017
	/*
1018
	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1019 1020 1021
	 * It may push the desired control point of global dirty pages higher
	 * than setpoint.
	 */
1022
	x_intercept = wb_thresh / 2;
1023 1024 1025 1026
	if (dtc->wb_dirty < x_intercept) {
		if (dtc->wb_dirty > x_intercept / 8)
			pos_ratio = div_u64(pos_ratio * x_intercept,
					    dtc->wb_dirty);
1027
		else
1028 1029 1030
			pos_ratio *= 8;
	}

1031
	dtc->pos_ratio = pos_ratio;
W
Wu Fengguang 已提交
1032 1033
}

1034 1035 1036
static void wb_update_write_bandwidth(struct bdi_writeback *wb,
				      unsigned long elapsed,
				      unsigned long written)
1037 1038
{
	const unsigned long period = roundup_pow_of_two(3 * HZ);
1039 1040
	unsigned long avg = wb->avg_write_bandwidth;
	unsigned long old = wb->write_bandwidth;
1041 1042 1043 1044 1045 1046 1047 1048
	u64 bw;

	/*
	 * bw = written * HZ / elapsed
	 *
	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
	 * write_bandwidth = ---------------------------------------------------
	 *                                          period
1049 1050 1051
	 *
	 * @written may have decreased due to account_page_redirty().
	 * Avoid underflowing @bw calculation.
1052
	 */
1053
	bw = written - min(written, wb->written_stamp);
1054 1055 1056 1057 1058 1059
	bw *= HZ;
	if (unlikely(elapsed > period)) {
		do_div(bw, elapsed);
		avg = bw;
		goto out;
	}
1060
	bw += (u64)wb->write_bandwidth * (period - elapsed);
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
	bw >>= ilog2(period);

	/*
	 * one more level of smoothing, for filtering out sudden spikes
	 */
	if (avg > old && old >= (unsigned long)bw)
		avg -= (avg - old) >> 3;

	if (avg < old && old <= (unsigned long)bw)
		avg += (old - avg) >> 3;

out:
1073 1074 1075 1076 1077 1078 1079
	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
	avg = max(avg, 1LU);
	if (wb_has_dirty_io(wb)) {
		long delta = avg - wb->avg_write_bandwidth;
		WARN_ON_ONCE(atomic_long_add_return(delta,
					&wb->bdi->tot_write_bandwidth) <= 0);
	}
1080 1081
	wb->write_bandwidth = bw;
	wb->avg_write_bandwidth = avg;
1082 1083
}

1084
static void update_dirty_limit(struct dirty_throttle_control *dtc)
1085
{
1086
	struct wb_domain *dom = dtc_dom(dtc);
1087
	unsigned long thresh = dtc->thresh;
1088
	unsigned long limit = dom->dirty_limit;
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100

	/*
	 * Follow up in one step.
	 */
	if (limit < thresh) {
		limit = thresh;
		goto update;
	}

	/*
	 * Follow down slowly. Use the higher one as the target, because thresh
	 * may drop below dirty. This is exactly the reason to introduce
1101
	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1102
	 */
1103
	thresh = max(thresh, dtc->dirty);
1104 1105 1106 1107 1108 1109
	if (limit > thresh) {
		limit -= (limit - thresh) >> 5;
		goto update;
	}
	return;
update:
1110
	dom->dirty_limit = limit;
1111 1112
}

1113
static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1114 1115
				    unsigned long now)
{
1116
	struct wb_domain *dom = dtc_dom(dtc);
1117 1118 1119 1120

	/*
	 * check locklessly first to optimize away locking for the most time
	 */
1121
	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1122 1123
		return;

1124 1125
	spin_lock(&dom->lock);
	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1126
		update_dirty_limit(dtc);
1127
		dom->dirty_limit_tstamp = now;
1128
	}
1129
	spin_unlock(&dom->lock);
1130 1131
}

W
Wu Fengguang 已提交
1132
/*
1133
 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
W
Wu Fengguang 已提交
1134
 *
1135
 * Normal wb tasks will be curbed at or below it in long term.
W
Wu Fengguang 已提交
1136 1137
 * Obviously it should be around (write_bw / N) when there are N dd tasks.
 */
1138
static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1139 1140
				      unsigned long dirtied,
				      unsigned long elapsed)
W
Wu Fengguang 已提交
1141
{
1142 1143 1144
	struct bdi_writeback *wb = dtc->wb;
	unsigned long dirty = dtc->dirty;
	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1145
	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1146
	unsigned long setpoint = (freerun + limit) / 2;
1147 1148
	unsigned long write_bw = wb->avg_write_bandwidth;
	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
W
Wu Fengguang 已提交
1149 1150 1151
	unsigned long dirty_rate;
	unsigned long task_ratelimit;
	unsigned long balanced_dirty_ratelimit;
1152 1153
	unsigned long step;
	unsigned long x;
W
Wu Fengguang 已提交
1154 1155 1156 1157 1158

	/*
	 * The dirty rate will match the writeout rate in long term, except
	 * when dirty pages are truncated by userspace or re-dirtied by FS.
	 */
1159
	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
W
Wu Fengguang 已提交
1160 1161 1162 1163 1164

	/*
	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
	 */
	task_ratelimit = (u64)dirty_ratelimit *
1165
					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
W
Wu Fengguang 已提交
1166 1167 1168 1169
	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */

	/*
	 * A linear estimation of the "balanced" throttle rate. The theory is,
1170
	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
W
Wu Fengguang 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
	 * formula will yield the balanced rate limit (write_bw / N).
	 *
	 * Note that the expanded form is not a pure rate feedback:
	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
	 * but also takes pos_ratio into account:
	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
	 *
	 * (1) is not realistic because pos_ratio also takes part in balancing
	 * the dirty rate.  Consider the state
	 *	pos_ratio = 0.5						     (3)
	 *	rate = 2 * (write_bw / N)				     (4)
	 * If (1) is used, it will stuck in that state! Because each dd will
	 * be throttled at
	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
	 * yielding
	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
	 * put (6) into (1) we get
	 *	rate_(i+1) = rate_(i)					     (7)
	 *
	 * So we end up using (2) to always keep
	 *	rate_(i+1) ~= (write_bw / N)				     (8)
	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
	 * pos_ratio is able to drive itself to 1.0, which is not only where
	 * the dirty count meet the setpoint, but also where the slope of
	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
	 */
	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
					   dirty_rate | 1);
1200 1201 1202 1203 1204
	/*
	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
	 */
	if (unlikely(balanced_dirty_ratelimit > write_bw))
		balanced_dirty_ratelimit = write_bw;
W
Wu Fengguang 已提交
1205

1206 1207 1208
	/*
	 * We could safely do this and return immediately:
	 *
1209
	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1210 1211
	 *
	 * However to get a more stable dirty_ratelimit, the below elaborated
W
Wanpeng Li 已提交
1212
	 * code makes use of task_ratelimit to filter out singular points and
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
	 * limit the step size.
	 *
	 * The below code essentially only uses the relative value of
	 *
	 *	task_ratelimit - dirty_ratelimit
	 *	= (pos_ratio - 1) * dirty_ratelimit
	 *
	 * which reflects the direction and size of dirty position error.
	 */

	/*
	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
	 * task_ratelimit is on the same side of dirty_ratelimit, too.
	 * For example, when
	 * - dirty_ratelimit > balanced_dirty_ratelimit
	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
	 * lowering dirty_ratelimit will help meet both the position and rate
	 * control targets. Otherwise, don't update dirty_ratelimit if it will
	 * only help meet the rate target. After all, what the users ultimately
	 * feel and care are stable dirty rate and small position error.
	 *
	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
W
Wanpeng Li 已提交
1235
	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1236 1237 1238 1239 1240
	 * keeps jumping around randomly and can even leap far away at times
	 * due to the small 200ms estimation period of dirty_rate (we want to
	 * keep that period small to reduce time lags).
	 */
	step = 0;
1241 1242

	/*
1243
	 * For strictlimit case, calculations above were based on wb counters
1244
	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1245
	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1246 1247
	 * Hence, to calculate "step" properly, we have to use wb_dirty as
	 * "dirty" and wb_setpoint as "setpoint".
1248
	 *
1249 1250
	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
	 * it's possible that wb_thresh is close to zero due to inactivity
1251
	 * of backing device.
1252
	 */
1253
	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1254 1255 1256
		dirty = dtc->wb_dirty;
		if (dtc->wb_dirty < 8)
			setpoint = dtc->wb_dirty + 1;
1257
		else
1258
			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1259 1260
	}

1261
	if (dirty < setpoint) {
1262
		x = min3(wb->balanced_dirty_ratelimit,
1263
			 balanced_dirty_ratelimit, task_ratelimit);
1264 1265 1266
		if (dirty_ratelimit < x)
			step = x - dirty_ratelimit;
	} else {
1267
		x = max3(wb->balanced_dirty_ratelimit,
1268
			 balanced_dirty_ratelimit, task_ratelimit);
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
		if (dirty_ratelimit > x)
			step = dirty_ratelimit - x;
	}

	/*
	 * Don't pursue 100% rate matching. It's impossible since the balanced
	 * rate itself is constantly fluctuating. So decrease the track speed
	 * when it gets close to the target. Helps eliminate pointless tremors.
	 */
	step >>= dirty_ratelimit / (2 * step + 1);
	/*
	 * Limit the tracking speed to avoid overshooting.
	 */
	step = (step + 7) / 8;

	if (dirty_ratelimit < balanced_dirty_ratelimit)
		dirty_ratelimit += step;
	else
		dirty_ratelimit -= step;

1289 1290
	wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1291

1292
	trace_bdi_dirty_ratelimit(wb->bdi, dirty_rate, task_ratelimit);
W
Wu Fengguang 已提交
1293 1294
}

1295 1296
static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
				  struct dirty_throttle_control *mdtc,
1297 1298
				  unsigned long start_time,
				  bool update_ratelimit)
1299
{
1300
	struct bdi_writeback *wb = gdtc->wb;
1301
	unsigned long now = jiffies;
1302
	unsigned long elapsed = now - wb->bw_time_stamp;
W
Wu Fengguang 已提交
1303
	unsigned long dirtied;
1304 1305
	unsigned long written;

1306 1307
	lockdep_assert_held(&wb->list_lock);

1308 1309 1310 1311 1312 1313
	/*
	 * rate-limit, only update once every 200ms.
	 */
	if (elapsed < BANDWIDTH_INTERVAL)
		return;

1314 1315
	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1316 1317 1318 1319 1320

	/*
	 * Skip quiet periods when disk bandwidth is under-utilized.
	 * (at least 1s idle time between two flusher runs)
	 */
1321
	if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1322 1323
		goto snapshot;

1324
	if (update_ratelimit) {
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
		domain_update_bandwidth(gdtc, now);
		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);

		/*
		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
		 * compiler has no way to figure that out.  Help it.
		 */
		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
			domain_update_bandwidth(mdtc, now);
			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
		}
W
Wu Fengguang 已提交
1336
	}
1337
	wb_update_write_bandwidth(wb, elapsed, written);
1338 1339

snapshot:
1340 1341 1342
	wb->dirtied_stamp = dirtied;
	wb->written_stamp = written;
	wb->bw_time_stamp = now;
1343 1344
}

1345
void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1346
{
1347 1348
	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };

1349
	__wb_update_bandwidth(&gdtc, NULL, start_time, false);
1350 1351
}

1352
/*
1353
 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
 * will look to see if it needs to start dirty throttling.
 *
 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
 * global_page_state() too often. So scale it near-sqrt to the safety margin
 * (the number of pages we may dirty without exceeding the dirty limits).
 */
static unsigned long dirty_poll_interval(unsigned long dirty,
					 unsigned long thresh)
{
	if (thresh > dirty)
		return 1UL << (ilog2(thresh - dirty) >> 1);

	return 1;
}

1369
static unsigned long wb_max_pause(struct bdi_writeback *wb,
1370
				  unsigned long wb_dirty)
1371
{
1372
	unsigned long bw = wb->avg_write_bandwidth;
1373
	unsigned long t;
1374

1375 1376 1377 1378 1379 1380 1381
	/*
	 * Limit pause time for small memory systems. If sleeping for too long
	 * time, a small pool of dirty/writeback pages may go empty and disk go
	 * idle.
	 *
	 * 8 serves as the safety ratio.
	 */
1382
	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1383 1384
	t++;

1385
	return min_t(unsigned long, t, MAX_PAUSE);
1386 1387
}

1388 1389 1390 1391 1392
static long wb_min_pause(struct bdi_writeback *wb,
			 long max_pause,
			 unsigned long task_ratelimit,
			 unsigned long dirty_ratelimit,
			 int *nr_dirtied_pause)
1393
{
1394 1395
	long hi = ilog2(wb->avg_write_bandwidth);
	long lo = ilog2(wb->dirty_ratelimit);
1396 1397 1398
	long t;		/* target pause */
	long pause;	/* estimated next pause */
	int pages;	/* target nr_dirtied_pause */
1399

1400 1401
	/* target for 10ms pause on 1-dd case */
	t = max(1, HZ / 100);
1402 1403 1404 1405 1406

	/*
	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
	 * overheads.
	 *
1407
	 * (N * 10ms) on 2^N concurrent tasks.
1408 1409
	 */
	if (hi > lo)
1410
		t += (hi - lo) * (10 * HZ) / 1024;
1411 1412

	/*
1413 1414 1415 1416 1417 1418 1419 1420
	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
	 * on the much more stable dirty_ratelimit. However the next pause time
	 * will be computed based on task_ratelimit and the two rate limits may
	 * depart considerably at some time. Especially if task_ratelimit goes
	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
	 * result task_ratelimit won't be executed faithfully, which could
	 * eventually bring down dirty_ratelimit.
1421
	 *
1422 1423 1424 1425 1426 1427 1428
	 * We apply two rules to fix it up:
	 * 1) try to estimate the next pause time and if necessary, use a lower
	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
	 * 2) limit the target pause time to max_pause/2, so that the normal
	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1429
	 */
1430 1431
	t = min(t, 1 + max_pause / 2);
	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1432 1433

	/*
1434 1435 1436 1437 1438 1439
	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
	 * When the 16 consecutive reads are often interrupted by some dirty
	 * throttling pause during the async writes, cfq will go into idles
	 * (deadline is fine). So push nr_dirtied_pause as high as possible
	 * until reaches DIRTY_POLL_THRESH=32 pages.
1440
	 */
1441 1442 1443 1444 1445 1446 1447 1448 1449
	if (pages < DIRTY_POLL_THRESH) {
		t = max_pause;
		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
		if (pages > DIRTY_POLL_THRESH) {
			pages = DIRTY_POLL_THRESH;
			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
		}
	}

1450 1451 1452 1453 1454
	pause = HZ * pages / (task_ratelimit + 1);
	if (pause > max_pause) {
		t = max_pause;
		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
	}
1455

1456
	*nr_dirtied_pause = pages;
1457
	/*
1458
	 * The minimal pause time will normally be half the target pause time.
1459
	 */
1460
	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1461 1462
}

1463
static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1464
{
1465
	struct bdi_writeback *wb = dtc->wb;
1466
	unsigned long wb_reclaimable;
1467 1468

	/*
1469
	 * wb_thresh is not treated as some limiting factor as
1470
	 * dirty_thresh, due to reasons
1471
	 * - in JBOD setup, wb_thresh can fluctuate a lot
1472
	 * - in a system with HDD and USB key, the USB key may somehow
1473 1474
	 *   go into state (wb_dirty >> wb_thresh) either because
	 *   wb_dirty starts high, or because wb_thresh drops low.
1475
	 *   In this case we don't want to hard throttle the USB key
1476 1477
	 *   dirtiers for 100 seconds until wb_dirty drops under
	 *   wb_thresh. Instead the auxiliary wb control line in
1478
	 *   wb_position_ratio() will let the dirtier task progress
1479
	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1480
	 */
1481
	dtc->wb_thresh = __wb_calc_thresh(dtc);
1482 1483
	dtc->wb_bg_thresh = dtc->thresh ?
		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494

	/*
	 * In order to avoid the stacked BDI deadlock we need
	 * to ensure we accurately count the 'dirty' pages when
	 * the threshold is low.
	 *
	 * Otherwise it would be possible to get thresh+n pages
	 * reported dirty, even though there are thresh-m pages
	 * actually dirty; with m+n sitting in the percpu
	 * deltas.
	 */
1495
	if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1496
		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1497
		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1498
	} else {
1499
		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1500
		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1501 1502 1503
	}
}

L
Linus Torvalds 已提交
1504 1505 1506
/*
 * balance_dirty_pages() must be called by processes which are generating dirty
 * data.  It looks at the number of dirty pages in the machine and will force
1507
 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1508 1509
 * If we're over `background_thresh' then the writeback threads are woken to
 * perform some writeout.
L
Linus Torvalds 已提交
1510
 */
1511
static void balance_dirty_pages(struct address_space *mapping,
1512
				struct bdi_writeback *wb,
1513
				unsigned long pages_dirtied)
L
Linus Torvalds 已提交
1514
{
1515
	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1516
	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1517
	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1518 1519 1520
	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
						     &mdtc_stor : NULL;
	struct dirty_throttle_control *sdtc;
1521
	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1522
	long period;
1523 1524 1525 1526
	long pause;
	long max_pause;
	long min_pause;
	int nr_dirtied_pause;
1527
	bool dirty_exceeded = false;
1528
	unsigned long task_ratelimit;
1529
	unsigned long dirty_ratelimit;
1530
	struct backing_dev_info *bdi = wb->bdi;
1531
	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1532
	unsigned long start_time = jiffies;
L
Linus Torvalds 已提交
1533 1534

	for (;;) {
1535
		unsigned long now = jiffies;
1536
		unsigned long dirty, thresh, bg_thresh;
1537
		unsigned long m_dirty, m_thresh, m_bg_thresh;
1538

1539 1540 1541 1542 1543 1544
		/*
		 * Unstable writes are a feature of certain networked
		 * filesystems (i.e. NFS) in which data may have been
		 * written to the server's write cache, but has not yet
		 * been flushed to permanent storage.
		 */
1545 1546
		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
					global_page_state(NR_UNSTABLE_NFS);
1547
		gdtc->avail = global_dirtyable_memory();
1548
		gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1549

1550
		domain_dirty_limits(gdtc);
1551

1552
		if (unlikely(strictlimit)) {
1553
			wb_dirty_limits(gdtc);
1554

1555 1556
			dirty = gdtc->wb_dirty;
			thresh = gdtc->wb_thresh;
1557
			bg_thresh = gdtc->wb_bg_thresh;
1558
		} else {
1559 1560 1561
			dirty = gdtc->dirty;
			thresh = gdtc->thresh;
			bg_thresh = gdtc->bg_thresh;
1562 1563
		}

1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
		if (mdtc) {
			unsigned long writeback;

			/*
			 * If @wb belongs to !root memcg, repeat the same
			 * basic calculations for the memcg domain.
			 */
			mem_cgroup_wb_stats(wb, &mdtc->avail, &mdtc->dirty,
					    &writeback);
			mdtc_cap_avail(mdtc);
			mdtc->dirty += writeback;

			domain_dirty_limits(mdtc);

			if (unlikely(strictlimit)) {
				wb_dirty_limits(mdtc);
				m_dirty = mdtc->wb_dirty;
				m_thresh = mdtc->wb_thresh;
				m_bg_thresh = mdtc->wb_bg_thresh;
			} else {
				m_dirty = mdtc->dirty;
				m_thresh = mdtc->thresh;
				m_bg_thresh = mdtc->bg_thresh;
			}
1588 1589
		}

1590 1591 1592
		/*
		 * Throttle it only when the background writeback cannot
		 * catch-up. This avoids (excessively) small writeouts
1593
		 * when the wb limits are ramping up in case of !strictlimit.
1594
		 *
1595 1596
		 * In strictlimit case make decision based on the wb counters
		 * and limits. Small writeouts when the wb limits are ramping
1597
		 * up are the price we consciously pay for strictlimit-ing.
1598 1599 1600
		 *
		 * If memcg domain is in effect, @dirty should be under
		 * both global and memcg freerun ceilings.
1601
		 */
1602 1603 1604 1605 1606 1607
		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
		    (!mdtc ||
		     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
			unsigned long intv = dirty_poll_interval(dirty, thresh);
			unsigned long m_intv = ULONG_MAX;

1608 1609
			current->dirty_paused_when = now;
			current->nr_dirtied = 0;
1610 1611 1612
			if (mdtc)
				m_intv = dirty_poll_interval(m_dirty, m_thresh);
			current->nr_dirtied_pause = min(intv, m_intv);
1613
			break;
1614
		}
1615

1616
		if (unlikely(!writeback_in_progress(wb)))
1617
			wb_start_background_writeback(wb);
1618

1619 1620 1621 1622
		/*
		 * Calculate global domain's pos_ratio and select the
		 * global dtc by default.
		 */
1623
		if (!strictlimit)
1624
			wb_dirty_limits(gdtc);
1625

1626 1627
		dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
			((gdtc->dirty > gdtc->thresh) || strictlimit);
1628 1629

		wb_position_ratio(gdtc);
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
		sdtc = gdtc;

		if (mdtc) {
			/*
			 * If memcg domain is in effect, calculate its
			 * pos_ratio.  @wb should satisfy constraints from
			 * both global and memcg domains.  Choose the one
			 * w/ lower pos_ratio.
			 */
			if (!strictlimit)
				wb_dirty_limits(mdtc);

			dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
				((mdtc->dirty > mdtc->thresh) || strictlimit);

			wb_position_ratio(mdtc);
			if (mdtc->pos_ratio < gdtc->pos_ratio)
				sdtc = mdtc;
		}
1649

1650 1651
		if (dirty_exceeded && !wb->dirty_exceeded)
			wb->dirty_exceeded = 1;
L
Linus Torvalds 已提交
1652

1653 1654 1655
		if (time_is_before_jiffies(wb->bw_time_stamp +
					   BANDWIDTH_INTERVAL)) {
			spin_lock(&wb->list_lock);
1656
			__wb_update_bandwidth(gdtc, mdtc, start_time, true);
1657 1658
			spin_unlock(&wb->list_lock);
		}
1659

1660
		/* throttle according to the chosen dtc */
1661
		dirty_ratelimit = wb->dirty_ratelimit;
1662
		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1663
							RATELIMIT_CALC_SHIFT;
1664
		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1665 1666 1667
		min_pause = wb_min_pause(wb, max_pause,
					 task_ratelimit, dirty_ratelimit,
					 &nr_dirtied_pause);
1668

1669
		if (unlikely(task_ratelimit == 0)) {
1670
			period = max_pause;
1671
			pause = max_pause;
1672
			goto pause;
P
Peter Zijlstra 已提交
1673
		}
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
		period = HZ * pages_dirtied / task_ratelimit;
		pause = period;
		if (current->dirty_paused_when)
			pause -= now - current->dirty_paused_when;
		/*
		 * For less than 1s think time (ext3/4 may block the dirtier
		 * for up to 800ms from time to time on 1-HDD; so does xfs,
		 * however at much less frequency), try to compensate it in
		 * future periods by updating the virtual time; otherwise just
		 * do a reset, as it may be a light dirtier.
		 */
1685
		if (pause < min_pause) {
1686
			trace_balance_dirty_pages(bdi,
1687 1688 1689 1690 1691
						  sdtc->thresh,
						  sdtc->bg_thresh,
						  sdtc->dirty,
						  sdtc->wb_thresh,
						  sdtc->wb_dirty,
1692 1693 1694
						  dirty_ratelimit,
						  task_ratelimit,
						  pages_dirtied,
1695
						  period,
1696
						  min(pause, 0L),
1697
						  start_time);
1698 1699 1700 1701 1702 1703
			if (pause < -HZ) {
				current->dirty_paused_when = now;
				current->nr_dirtied = 0;
			} else if (period) {
				current->dirty_paused_when += period;
				current->nr_dirtied = 0;
1704 1705
			} else if (current->nr_dirtied_pause <= pages_dirtied)
				current->nr_dirtied_pause += pages_dirtied;
W
Wu Fengguang 已提交
1706
			break;
P
Peter Zijlstra 已提交
1707
		}
1708 1709 1710 1711 1712
		if (unlikely(pause > max_pause)) {
			/* for occasional dropped task_ratelimit */
			now += min(pause - max_pause, max_pause);
			pause = max_pause;
		}
1713 1714

pause:
1715
		trace_balance_dirty_pages(bdi,
1716 1717 1718 1719 1720
					  sdtc->thresh,
					  sdtc->bg_thresh,
					  sdtc->dirty,
					  sdtc->wb_thresh,
					  sdtc->wb_dirty,
1721 1722 1723
					  dirty_ratelimit,
					  task_ratelimit,
					  pages_dirtied,
1724
					  period,
1725 1726
					  pause,
					  start_time);
1727
		__set_current_state(TASK_KILLABLE);
1728
		io_schedule_timeout(pause);
1729

1730 1731
		current->dirty_paused_when = now + pause;
		current->nr_dirtied = 0;
1732
		current->nr_dirtied_pause = nr_dirtied_pause;
1733

1734
		/*
1735 1736
		 * This is typically equal to (dirty < thresh) and can also
		 * keep "1000+ dd on a slow USB stick" under control.
1737
		 */
1738
		if (task_ratelimit)
1739
			break;
1740

1741 1742
		/*
		 * In the case of an unresponding NFS server and the NFS dirty
1743
		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1744 1745 1746 1747
		 * to go through, so that tasks on them still remain responsive.
		 *
		 * In theory 1 page is enough to keep the comsumer-producer
		 * pipe going: the flusher cleans 1 page => the task dirties 1
1748
		 * more page. However wb_dirty has accounting errors.  So use
1749
		 * the larger and more IO friendly wb_stat_error.
1750
		 */
1751
		if (sdtc->wb_dirty <= wb_stat_error(wb))
1752 1753
			break;

1754 1755
		if (fatal_signal_pending(current))
			break;
L
Linus Torvalds 已提交
1756 1757
	}

1758 1759
	if (!dirty_exceeded && wb->dirty_exceeded)
		wb->dirty_exceeded = 0;
L
Linus Torvalds 已提交
1760

1761
	if (writeback_in_progress(wb))
1762
		return;
L
Linus Torvalds 已提交
1763 1764 1765 1766 1767 1768 1769 1770 1771

	/*
	 * In laptop mode, we wait until hitting the higher threshold before
	 * starting background writeout, and then write out all the way down
	 * to the lower threshold.  So slow writers cause minimal disk activity.
	 *
	 * In normal mode, we start background writeout at the lower
	 * background_thresh, to keep the amount of dirty memory low.
	 */
1772 1773 1774
	if (laptop_mode)
		return;

1775
	if (nr_reclaimable > gdtc->bg_thresh)
1776
		wb_start_background_writeback(wb);
L
Linus Torvalds 已提交
1777 1778
}

1779
static DEFINE_PER_CPU(int, bdp_ratelimits);
1780

1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
/*
 * Normal tasks are throttled by
 *	loop {
 *		dirty tsk->nr_dirtied_pause pages;
 *		take a snap in balance_dirty_pages();
 *	}
 * However there is a worst case. If every task exit immediately when dirtied
 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
 * called to throttle the page dirties. The solution is to save the not yet
 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
 * randomly into the running tasks. This works well for the above worst case,
 * as the new task will pick up and accumulate the old task's leaked dirty
 * count and eventually get throttled.
 */
DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;

L
Linus Torvalds 已提交
1797
/**
1798
 * balance_dirty_pages_ratelimited - balance dirty memory state
1799
 * @mapping: address_space which was dirtied
L
Linus Torvalds 已提交
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
 *
 * Processes which are dirtying memory should call in here once for each page
 * which was newly dirtied.  The function will periodically check the system's
 * dirty state and will initiate writeback if needed.
 *
 * On really big machines, get_writeback_state is expensive, so try to avoid
 * calling it too often (ratelimiting).  But once we're over the dirty memory
 * limit we decrease the ratelimiting by a lot, to prevent individual processes
 * from overshooting the limit by (ratelimit_pages) each.
 */
1810
void balance_dirty_pages_ratelimited(struct address_space *mapping)
L
Linus Torvalds 已提交
1811
{
1812 1813 1814
	struct inode *inode = mapping->host;
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct bdi_writeback *wb = NULL;
1815 1816
	int ratelimit;
	int *p;
L
Linus Torvalds 已提交
1817

1818 1819 1820
	if (!bdi_cap_account_dirty(bdi))
		return;

1821 1822 1823 1824 1825
	if (inode_cgwb_enabled(inode))
		wb = wb_get_create_current(bdi, GFP_KERNEL);
	if (!wb)
		wb = &bdi->wb;

1826
	ratelimit = current->nr_dirtied_pause;
1827
	if (wb->dirty_exceeded)
1828 1829 1830
		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));

	preempt_disable();
L
Linus Torvalds 已提交
1831
	/*
1832 1833 1834 1835
	 * This prevents one CPU to accumulate too many dirtied pages without
	 * calling into balance_dirty_pages(), which can happen when there are
	 * 1000+ tasks, all of them start dirtying pages at exactly the same
	 * time, hence all honoured too large initial task->nr_dirtied_pause.
L
Linus Torvalds 已提交
1836
	 */
1837
	p =  this_cpu_ptr(&bdp_ratelimits);
1838
	if (unlikely(current->nr_dirtied >= ratelimit))
1839
		*p = 0;
1840 1841 1842
	else if (unlikely(*p >= ratelimit_pages)) {
		*p = 0;
		ratelimit = 0;
L
Linus Torvalds 已提交
1843
	}
1844 1845 1846 1847 1848
	/*
	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
	 * the dirty throttling and livelock other long-run dirtiers.
	 */
1849
	p = this_cpu_ptr(&dirty_throttle_leaks);
1850
	if (*p > 0 && current->nr_dirtied < ratelimit) {
1851
		unsigned long nr_pages_dirtied;
1852 1853 1854
		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
		*p -= nr_pages_dirtied;
		current->nr_dirtied += nr_pages_dirtied;
L
Linus Torvalds 已提交
1855
	}
1856
	preempt_enable();
1857 1858

	if (unlikely(current->nr_dirtied >= ratelimit))
1859 1860 1861
		balance_dirty_pages(mapping, wb, current->nr_dirtied);

	wb_put(wb);
L
Linus Torvalds 已提交
1862
}
1863
EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
L
Linus Torvalds 已提交
1864

1865 1866 1867 1868 1869 1870 1871 1872 1873
/**
 * wb_over_bg_thresh - does @wb need to be written back?
 * @wb: bdi_writeback of interest
 *
 * Determines whether background writeback should keep writing @wb or it's
 * clean enough.  Returns %true if writeback should continue.
 */
bool wb_over_bg_thresh(struct bdi_writeback *wb)
{
1874
	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1875
	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1876
	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1877 1878
	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
						     &mdtc_stor : NULL;
1879

1880 1881 1882 1883 1884 1885 1886 1887
	/*
	 * Similar to balance_dirty_pages() but ignores pages being written
	 * as we're trying to decide whether to put more under writeback.
	 */
	gdtc->avail = global_dirtyable_memory();
	gdtc->dirty = global_page_state(NR_FILE_DIRTY) +
		      global_page_state(NR_UNSTABLE_NFS);
	domain_dirty_limits(gdtc);
1888

1889
	if (gdtc->dirty > gdtc->bg_thresh)
1890 1891
		return true;

1892
	if (wb_stat(wb, WB_RECLAIMABLE) > __wb_calc_thresh(gdtc))
1893 1894
		return true;

1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
	if (mdtc) {
		unsigned long writeback;

		mem_cgroup_wb_stats(wb, &mdtc->avail, &mdtc->dirty, &writeback);
		mdtc_cap_avail(mdtc);
		domain_dirty_limits(mdtc);	/* ditto, ignore writeback */

		if (mdtc->dirty > mdtc->bg_thresh)
			return true;

		if (wb_stat(wb, WB_RECLAIMABLE) > __wb_calc_thresh(mdtc))
			return true;
	}

1909 1910 1911
	return false;
}

1912
void throttle_vm_writeout(gfp_t gfp_mask)
L
Linus Torvalds 已提交
1913
{
1914 1915
	unsigned long background_thresh;
	unsigned long dirty_thresh;
L
Linus Torvalds 已提交
1916 1917

        for ( ; ; ) {
1918
		global_dirty_limits(&background_thresh, &dirty_thresh);
1919
		dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
L
Linus Torvalds 已提交
1920 1921 1922 1923 1924 1925 1926

                /*
                 * Boost the allowable dirty threshold a bit for page
                 * allocators so they don't get DoS'ed by heavy writers
                 */
                dirty_thresh += dirty_thresh / 10;      /* wheeee... */

1927 1928 1929
                if (global_page_state(NR_UNSTABLE_NFS) +
			global_page_state(NR_WRITEBACK) <= dirty_thresh)
                        	break;
1930
                congestion_wait(BLK_RW_ASYNC, HZ/10);
1931 1932 1933 1934 1935 1936 1937 1938

		/*
		 * The caller might hold locks which can prevent IO completion
		 * or progress in the filesystem.  So we cannot just sit here
		 * waiting for IO to complete.
		 */
		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
			break;
L
Linus Torvalds 已提交
1939 1940 1941 1942 1943 1944
        }
}

/*
 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
 */
1945
int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1946
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
1947
{
1948
	proc_dointvec(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
1949 1950 1951
	return 0;
}

1952
#ifdef CONFIG_BLOCK
1953
void laptop_mode_timer_fn(unsigned long data)
L
Linus Torvalds 已提交
1954
{
1955 1956 1957
	struct request_queue *q = (struct request_queue *)data;
	int nr_pages = global_page_state(NR_FILE_DIRTY) +
		global_page_state(NR_UNSTABLE_NFS);
1958 1959
	struct bdi_writeback *wb;
	struct wb_iter iter;
L
Linus Torvalds 已提交
1960

1961 1962 1963 1964
	/*
	 * We want to write everything out, not just down to the dirty
	 * threshold
	 */
1965 1966 1967 1968 1969 1970 1971
	if (!bdi_has_dirty_io(&q->backing_dev_info))
		return;

	bdi_for_each_wb(wb, &q->backing_dev_info, &iter, 0)
		if (wb_has_dirty_io(wb))
			wb_start_writeback(wb, nr_pages, true,
					   WB_REASON_LAPTOP_TIMER);
L
Linus Torvalds 已提交
1972 1973 1974 1975 1976 1977 1978
}

/*
 * We've spun up the disk and we're in laptop mode: schedule writeback
 * of all dirty data a few seconds from now.  If the flush is already scheduled
 * then push it back - the user is still using the disk.
 */
1979
void laptop_io_completion(struct backing_dev_info *info)
L
Linus Torvalds 已提交
1980
{
1981
	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
L
Linus Torvalds 已提交
1982 1983 1984 1985 1986 1987 1988 1989 1990
}

/*
 * We're in laptop mode and we've just synced. The sync's writes will have
 * caused another writeback to be scheduled by laptop_io_completion.
 * Nothing needs to be written back anymore, so we unschedule the writeback.
 */
void laptop_sync_completion(void)
{
1991 1992 1993 1994 1995 1996 1997 1998
	struct backing_dev_info *bdi;

	rcu_read_lock();

	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
		del_timer(&bdi->laptop_mode_wb_timer);

	rcu_read_unlock();
L
Linus Torvalds 已提交
1999
}
2000
#endif
L
Linus Torvalds 已提交
2001 2002 2003 2004 2005 2006 2007 2008 2009

/*
 * If ratelimit_pages is too high then we can get into dirty-data overload
 * if a large number of processes all perform writes at the same time.
 * If it is too low then SMP machines will call the (expensive)
 * get_writeback_state too often.
 *
 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2010
 * thresholds.
L
Linus Torvalds 已提交
2011 2012
 */

2013
void writeback_set_ratelimit(void)
L
Linus Torvalds 已提交
2014
{
2015
	struct wb_domain *dom = &global_wb_domain;
2016 2017
	unsigned long background_thresh;
	unsigned long dirty_thresh;
2018

2019
	global_dirty_limits(&background_thresh, &dirty_thresh);
2020
	dom->dirty_limit = dirty_thresh;
2021
	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
L
Linus Torvalds 已提交
2022 2023 2024 2025
	if (ratelimit_pages < 16)
		ratelimit_pages = 16;
}

2026
static int
2027 2028
ratelimit_handler(struct notifier_block *self, unsigned long action,
		  void *hcpu)
L
Linus Torvalds 已提交
2029
{
2030 2031 2032 2033 2034 2035 2036 2037 2038

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
	case CPU_DEAD:
		writeback_set_ratelimit();
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
L
Linus Torvalds 已提交
2039 2040
}

2041
static struct notifier_block ratelimit_nb = {
L
Linus Torvalds 已提交
2042 2043 2044 2045 2046
	.notifier_call	= ratelimit_handler,
	.next		= NULL,
};

/*
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
 * Called early on to tune the page writeback dirty limits.
 *
 * We used to scale dirty pages according to how total memory
 * related to pages that could be allocated for buffers (by
 * comparing nr_free_buffer_pages() to vm_total_pages.
 *
 * However, that was when we used "dirty_ratio" to scale with
 * all memory, and we don't do that any more. "dirty_ratio"
 * is now applied to total non-HIGHPAGE memory (by subtracting
 * totalhigh_pages from vm_total_pages), and as such we can't
 * get into the old insane situation any more where we had
 * large amounts of dirty pages compared to a small amount of
 * non-HIGHMEM memory.
 *
 * But we might still want to scale the dirty_ratio by how
 * much memory the box has..
L
Linus Torvalds 已提交
2063 2064 2065
 */
void __init page_writeback_init(void)
{
2066
	writeback_set_ratelimit();
L
Linus Torvalds 已提交
2067
	register_cpu_notifier(&ratelimit_nb);
P
Peter Zijlstra 已提交
2068

T
Tejun Heo 已提交
2069
	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
L
Linus Torvalds 已提交
2070 2071
}

2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
/**
 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
 * @mapping: address space structure to write
 * @start: starting page index
 * @end: ending page index (inclusive)
 *
 * This function scans the page range from @start to @end (inclusive) and tags
 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
 * that write_cache_pages (or whoever calls this function) will then use
 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
 * used to avoid livelocking of writeback by a process steadily creating new
 * dirty pages in the file (thus it is important for this function to be quick
 * so that it can tag pages faster than a dirtying process can create them).
 */
/*
 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
 */
void tag_pages_for_writeback(struct address_space *mapping,
			     pgoff_t start, pgoff_t end)
{
R
Randy Dunlap 已提交
2092
#define WRITEBACK_TAG_BATCH 4096
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
	unsigned long tagged;

	do {
		spin_lock_irq(&mapping->tree_lock);
		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
				&start, end, WRITEBACK_TAG_BATCH,
				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
		spin_unlock_irq(&mapping->tree_lock);
		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
		cond_resched();
2103 2104
		/* We check 'start' to handle wrapping when end == ~0UL */
	} while (tagged >= WRITEBACK_TAG_BATCH && start);
2105 2106 2107
}
EXPORT_SYMBOL(tag_pages_for_writeback);

2108
/**
2109
 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2110 2111
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2112 2113
 * @writepage: function called for each page
 * @data: data passed to writepage function
2114
 *
2115
 * If a page is already under I/O, write_cache_pages() skips it, even
2116 2117 2118 2119 2120 2121
 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 * and msync() need to guarantee that all the data which was dirty at the time
 * the call was made get new I/O started against them.  If wbc->sync_mode is
 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 * existing IO to complete.
2122 2123 2124 2125 2126 2127 2128
 *
 * To avoid livelocks (when other process dirties new pages), we first tag
 * pages which should be written back with TOWRITE tag and only then start
 * writing them. For data-integrity sync we have to be careful so that we do
 * not miss some pages (e.g., because some other process has cleared TOWRITE
 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
 * by the process clearing the DIRTY tag (and submitting the page for IO).
2129
 */
2130 2131 2132
int write_cache_pages(struct address_space *mapping,
		      struct writeback_control *wbc, writepage_t writepage,
		      void *data)
2133 2134 2135 2136 2137
{
	int ret = 0;
	int done = 0;
	struct pagevec pvec;
	int nr_pages;
N
Nick Piggin 已提交
2138
	pgoff_t uninitialized_var(writeback_index);
2139 2140
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
2141
	pgoff_t done_index;
N
Nick Piggin 已提交
2142
	int cycled;
2143
	int range_whole = 0;
2144
	int tag;
2145 2146 2147

	pagevec_init(&pvec, 0);
	if (wbc->range_cyclic) {
N
Nick Piggin 已提交
2148 2149 2150 2151 2152 2153
		writeback_index = mapping->writeback_index; /* prev offset */
		index = writeback_index;
		if (index == 0)
			cycled = 1;
		else
			cycled = 0;
2154 2155 2156 2157 2158 2159
		end = -1;
	} else {
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
			range_whole = 1;
N
Nick Piggin 已提交
2160
		cycled = 1; /* ignore range_cyclic tests */
2161
	}
2162
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2163 2164 2165
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
2166
retry:
2167
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2168
		tag_pages_for_writeback(mapping, index, end);
2169
	done_index = index;
N
Nick Piggin 已提交
2170 2171 2172
	while (!done && (index <= end)) {
		int i;

2173
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
N
Nick Piggin 已提交
2174 2175 2176
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
			break;
2177 2178 2179 2180 2181

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
2182 2183 2184 2185 2186
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
2187
			 */
2188 2189 2190 2191 2192 2193 2194 2195 2196
			if (page->index > end) {
				/*
				 * can't be range_cyclic (1st pass) because
				 * end == -1 in that case.
				 */
				done = 1;
				break;
			}

2197
			done_index = page->index;
2198

2199 2200
			lock_page(page);

N
Nick Piggin 已提交
2201 2202 2203 2204 2205 2206 2207 2208
			/*
			 * Page truncated or invalidated. We can freely skip it
			 * then, even for data integrity operations: the page
			 * has disappeared concurrently, so there could be no
			 * real expectation of this data interity operation
			 * even if there is now a new, dirty page at the same
			 * pagecache address.
			 */
2209
			if (unlikely(page->mapping != mapping)) {
N
Nick Piggin 已提交
2210
continue_unlock:
2211 2212 2213 2214
				unlock_page(page);
				continue;
			}

2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
			if (!PageDirty(page)) {
				/* someone wrote it for us */
				goto continue_unlock;
			}

			if (PageWriteback(page)) {
				if (wbc->sync_mode != WB_SYNC_NONE)
					wait_on_page_writeback(page);
				else
					goto continue_unlock;
			}
2226

2227 2228
			BUG_ON(PageWriteback(page));
			if (!clear_page_dirty_for_io(page))
N
Nick Piggin 已提交
2229
				goto continue_unlock;
2230

2231
			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2232
			ret = (*writepage)(page, wbc, data);
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
			if (unlikely(ret)) {
				if (ret == AOP_WRITEPAGE_ACTIVATE) {
					unlock_page(page);
					ret = 0;
				} else {
					/*
					 * done_index is set past this page,
					 * so media errors will not choke
					 * background writeout for the entire
					 * file. This has consequences for
					 * range_cyclic semantics (ie. it may
					 * not be suitable for data integrity
					 * writeout).
					 */
2247
					done_index = page->index + 1;
2248 2249 2250
					done = 1;
					break;
				}
2251
			}
2252

2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
			/*
			 * We stop writing back only if we are not doing
			 * integrity sync. In case of integrity sync we have to
			 * keep going until we have written all the pages
			 * we tagged for writeback prior to entering this loop.
			 */
			if (--wbc->nr_to_write <= 0 &&
			    wbc->sync_mode == WB_SYNC_NONE) {
				done = 1;
				break;
2263
			}
2264 2265 2266 2267
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2268
	if (!cycled && !done) {
2269
		/*
N
Nick Piggin 已提交
2270
		 * range_cyclic:
2271 2272 2273
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
N
Nick Piggin 已提交
2274
		cycled = 1;
2275
		index = 0;
N
Nick Piggin 已提交
2276
		end = writeback_index - 1;
2277 2278
		goto retry;
	}
2279 2280
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		mapping->writeback_index = done_index;
2281

2282 2283
	return ret;
}
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
EXPORT_SYMBOL(write_cache_pages);

/*
 * Function used by generic_writepages to call the real writepage
 * function and set the mapping flags on error
 */
static int __writepage(struct page *page, struct writeback_control *wbc,
		       void *data)
{
	struct address_space *mapping = data;
	int ret = mapping->a_ops->writepage(page, wbc);
	mapping_set_error(mapping, ret);
	return ret;
}

/**
 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 *
 * This is a library function, which implements the writepages()
 * address_space_operation.
 */
int generic_writepages(struct address_space *mapping,
		       struct writeback_control *wbc)
{
2310 2311 2312
	struct blk_plug plug;
	int ret;

2313 2314 2315 2316
	/* deal with chardevs and other special file */
	if (!mapping->a_ops->writepage)
		return 0;

2317 2318 2319 2320
	blk_start_plug(&plug);
	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
	blk_finish_plug(&plug);
	return ret;
2321
}
2322 2323 2324

EXPORT_SYMBOL(generic_writepages);

L
Linus Torvalds 已提交
2325 2326
int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
{
2327 2328
	int ret;

L
Linus Torvalds 已提交
2329 2330 2331
	if (wbc->nr_to_write <= 0)
		return 0;
	if (mapping->a_ops->writepages)
2332
		ret = mapping->a_ops->writepages(mapping, wbc);
2333 2334 2335
	else
		ret = generic_writepages(mapping, wbc);
	return ret;
L
Linus Torvalds 已提交
2336 2337 2338 2339
}

/**
 * write_one_page - write out a single page and optionally wait on I/O
2340 2341
 * @page: the page to write
 * @wait: if true, wait on writeout
L
Linus Torvalds 已提交
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
 *
 * The page must be locked by the caller and will be unlocked upon return.
 *
 * write_one_page() returns a negative error code if I/O failed.
 */
int write_one_page(struct page *page, int wait)
{
	struct address_space *mapping = page->mapping;
	int ret = 0;
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_ALL,
		.nr_to_write = 1,
	};

	BUG_ON(!PageLocked(page));

	if (wait)
		wait_on_page_writeback(page);

	if (clear_page_dirty_for_io(page)) {
		page_cache_get(page);
		ret = mapping->a_ops->writepage(page, &wbc);
		if (ret == 0 && wait) {
			wait_on_page_writeback(page);
			if (PageError(page))
				ret = -EIO;
		}
		page_cache_release(page);
	} else {
		unlock_page(page);
	}
	return ret;
}
EXPORT_SYMBOL(write_one_page);

2377 2378 2379 2380 2381 2382
/*
 * For address_spaces which do not use buffers nor write back.
 */
int __set_page_dirty_no_writeback(struct page *page)
{
	if (!PageDirty(page))
2383
		return !TestSetPageDirty(page);
2384 2385 2386
	return 0;
}

2387 2388
/*
 * Helper function for set_page_dirty family.
2389 2390 2391
 *
 * Caller must hold mem_cgroup_begin_page_stat().
 *
2392 2393
 * NOTE: This relies on being atomic wrt interrupts.
 */
2394 2395
void account_page_dirtied(struct page *page, struct address_space *mapping,
			  struct mem_cgroup *memcg)
2396
{
2397 2398
	struct inode *inode = mapping->host;

T
Tejun Heo 已提交
2399 2400
	trace_writeback_dirty_page(page, mapping);

2401
	if (mapping_cap_account_dirty(mapping)) {
2402
		struct bdi_writeback *wb;
2403

2404 2405
		inode_attach_wb(inode, page);
		wb = inode_to_wb(inode);
2406

2407
		mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2408
		__inc_zone_page_state(page, NR_FILE_DIRTY);
2409
		__inc_zone_page_state(page, NR_DIRTIED);
2410 2411
		__inc_wb_stat(wb, WB_RECLAIMABLE);
		__inc_wb_stat(wb, WB_DIRTIED);
2412
		task_io_account_write(PAGE_CACHE_SIZE);
2413 2414
		current->nr_dirtied++;
		this_cpu_inc(bdp_ratelimits);
2415 2416
	}
}
M
Michael Rubin 已提交
2417
EXPORT_SYMBOL(account_page_dirtied);
2418

2419 2420 2421
/*
 * Helper function for deaccounting dirty page without writeback.
 *
2422
 * Caller must hold mem_cgroup_begin_page_stat().
2423
 */
2424
void account_page_cleaned(struct page *page, struct address_space *mapping,
2425
			  struct mem_cgroup *memcg, struct bdi_writeback *wb)
2426 2427
{
	if (mapping_cap_account_dirty(mapping)) {
2428
		mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2429
		dec_zone_page_state(page, NR_FILE_DIRTY);
2430
		dec_wb_stat(wb, WB_RECLAIMABLE);
2431 2432 2433 2434
		task_io_account_cancelled_write(PAGE_CACHE_SIZE);
	}
}

L
Linus Torvalds 已提交
2435 2436 2437 2438 2439 2440 2441 2442
/*
 * For address_spaces which do not use buffers.  Just tag the page as dirty in
 * its radix tree.
 *
 * This is also used when a single buffer is being dirtied: we want to set the
 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
 *
2443 2444 2445
 * The caller must ensure this doesn't race with truncation.  Most will simply
 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
 * the pte lock held, which also locks out truncation.
L
Linus Torvalds 已提交
2446 2447 2448
 */
int __set_page_dirty_nobuffers(struct page *page)
{
2449 2450 2451
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_begin_page_stat(page);
L
Linus Torvalds 已提交
2452 2453
	if (!TestSetPageDirty(page)) {
		struct address_space *mapping = page_mapping(page);
2454
		unsigned long flags;
L
Linus Torvalds 已提交
2455

2456 2457
		if (!mapping) {
			mem_cgroup_end_page_stat(memcg);
2458
			return 1;
2459
		}
2460

2461
		spin_lock_irqsave(&mapping->tree_lock, flags);
2462 2463
		BUG_ON(page_mapping(page) != mapping);
		WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2464
		account_page_dirtied(page, mapping, memcg);
2465 2466
		radix_tree_tag_set(&mapping->page_tree, page_index(page),
				   PAGECACHE_TAG_DIRTY);
2467
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2468 2469
		mem_cgroup_end_page_stat(memcg);

2470 2471 2472
		if (mapping->host) {
			/* !PageAnon && !swapper_space */
			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
L
Linus Torvalds 已提交
2473
		}
2474
		return 1;
L
Linus Torvalds 已提交
2475
	}
2476
	mem_cgroup_end_page_stat(memcg);
2477
	return 0;
L
Linus Torvalds 已提交
2478 2479 2480
}
EXPORT_SYMBOL(__set_page_dirty_nobuffers);

2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
/*
 * Call this whenever redirtying a page, to de-account the dirty counters
 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
 * control.
 */
void account_page_redirty(struct page *page)
{
	struct address_space *mapping = page->mapping;
2491

2492
	if (mapping && mapping_cap_account_dirty(mapping)) {
2493 2494 2495
		struct inode *inode = mapping->host;
		struct bdi_writeback *wb;
		bool locked;
2496

2497
		wb = unlocked_inode_to_wb_begin(inode, &locked);
2498 2499
		current->nr_dirtied--;
		dec_zone_page_state(page, NR_DIRTIED);
2500
		dec_wb_stat(wb, WB_DIRTIED);
2501
		unlocked_inode_to_wb_end(inode, locked);
2502 2503 2504 2505
	}
}
EXPORT_SYMBOL(account_page_redirty);

L
Linus Torvalds 已提交
2506 2507 2508 2509 2510 2511 2512
/*
 * When a writepage implementation decides that it doesn't want to write this
 * page for some reason, it should redirty the locked page via
 * redirty_page_for_writepage() and it should then unlock the page and return 0
 */
int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
{
2513 2514
	int ret;

L
Linus Torvalds 已提交
2515
	wbc->pages_skipped++;
2516
	ret = __set_page_dirty_nobuffers(page);
2517
	account_page_redirty(page);
2518
	return ret;
L
Linus Torvalds 已提交
2519 2520 2521 2522
}
EXPORT_SYMBOL(redirty_page_for_writepage);

/*
2523 2524 2525 2526 2527 2528 2529
 * Dirty a page.
 *
 * For pages with a mapping this should be done under the page lock
 * for the benefit of asynchronous memory errors who prefer a consistent
 * dirty state. This rule can be broken in some special cases,
 * but should be better not to.
 *
L
Linus Torvalds 已提交
2530 2531 2532
 * If the mapping doesn't provide a set_page_dirty a_op, then
 * just fall through and assume that it wants buffer_heads.
 */
N
Nick Piggin 已提交
2533
int set_page_dirty(struct page *page)
L
Linus Torvalds 已提交
2534 2535 2536 2537 2538
{
	struct address_space *mapping = page_mapping(page);

	if (likely(mapping)) {
		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
M
Minchan Kim 已提交
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
		/*
		 * readahead/lru_deactivate_page could remain
		 * PG_readahead/PG_reclaim due to race with end_page_writeback
		 * About readahead, if the page is written, the flags would be
		 * reset. So no problem.
		 * About lru_deactivate_page, if the page is redirty, the flag
		 * will be reset. So no problem. but if the page is used by readahead
		 * it will confuse readahead and make it restart the size rampup
		 * process. But it's a trivial problem.
		 */
2549 2550
		if (PageReclaim(page))
			ClearPageReclaim(page);
2551 2552 2553 2554 2555
#ifdef CONFIG_BLOCK
		if (!spd)
			spd = __set_page_dirty_buffers;
#endif
		return (*spd)(page);
L
Linus Torvalds 已提交
2556
	}
2557 2558 2559 2560
	if (!PageDirty(page)) {
		if (!TestSetPageDirty(page))
			return 1;
	}
L
Linus Torvalds 已提交
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
	return 0;
}
EXPORT_SYMBOL(set_page_dirty);

/*
 * set_page_dirty() is racy if the caller has no reference against
 * page->mapping->host, and if the page is unlocked.  This is because another
 * CPU could truncate the page off the mapping and then free the mapping.
 *
 * Usually, the page _is_ locked, or the caller is a user-space process which
 * holds a reference on the inode by having an open file.
 *
 * In other cases, the page should be locked before running set_page_dirty().
 */
int set_page_dirty_lock(struct page *page)
{
	int ret;

J
Jens Axboe 已提交
2579
	lock_page(page);
L
Linus Torvalds 已提交
2580 2581 2582 2583 2584 2585
	ret = set_page_dirty(page);
	unlock_page(page);
	return ret;
}
EXPORT_SYMBOL(set_page_dirty_lock);

2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
/*
 * This cancels just the dirty bit on the kernel page itself, it does NOT
 * actually remove dirty bits on any mmap's that may be around. It also
 * leaves the page tagged dirty, so any sync activity will still find it on
 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
 * look at the dirty bits in the VM.
 *
 * Doing this should *normally* only ever be done when a page is truncated,
 * and is not actually mapped anywhere at all. However, fs/buffer.c does
 * this when it notices that somebody has cleaned out all the buffers on a
 * page without actually doing it through the VM. Can you say "ext3 is
 * horribly ugly"? Thought you could.
 */
void cancel_dirty_page(struct page *page)
{
2601 2602 2603
	struct address_space *mapping = page_mapping(page);

	if (mapping_cap_account_dirty(mapping)) {
2604 2605
		struct inode *inode = mapping->host;
		struct bdi_writeback *wb;
2606
		struct mem_cgroup *memcg;
2607
		bool locked;
2608 2609

		memcg = mem_cgroup_begin_page_stat(page);
2610
		wb = unlocked_inode_to_wb_begin(inode, &locked);
2611 2612

		if (TestClearPageDirty(page))
2613
			account_page_cleaned(page, mapping, memcg, wb);
2614

2615
		unlocked_inode_to_wb_end(inode, locked);
2616 2617 2618 2619
		mem_cgroup_end_page_stat(memcg);
	} else {
		ClearPageDirty(page);
	}
2620 2621 2622
}
EXPORT_SYMBOL(cancel_dirty_page);

L
Linus Torvalds 已提交
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
/*
 * Clear a page's dirty flag, while caring for dirty memory accounting.
 * Returns true if the page was previously dirty.
 *
 * This is for preparing to put the page under writeout.  We leave the page
 * tagged as dirty in the radix tree so that a concurrent write-for-sync
 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
 * implementation will run either set_page_writeback() or set_page_dirty(),
 * at which stage we bring the page's dirty flag and radix-tree dirty tag
 * back into sync.
 *
 * This incoherency between the page's dirty flag and radix-tree tag is
 * unfortunate, but it only exists while the page is locked.
 */
int clear_page_dirty_for_io(struct page *page)
{
	struct address_space *mapping = page_mapping(page);
2640
	int ret = 0;
L
Linus Torvalds 已提交
2641

2642 2643
	BUG_ON(!PageLocked(page));

2644
	if (mapping && mapping_cap_account_dirty(mapping)) {
2645 2646 2647 2648 2649
		struct inode *inode = mapping->host;
		struct bdi_writeback *wb;
		struct mem_cgroup *memcg;
		bool locked;

2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
		/*
		 * Yes, Virginia, this is indeed insane.
		 *
		 * We use this sequence to make sure that
		 *  (a) we account for dirty stats properly
		 *  (b) we tell the low-level filesystem to
		 *      mark the whole page dirty if it was
		 *      dirty in a pagetable. Only to then
		 *  (c) clean the page again and return 1 to
		 *      cause the writeback.
		 *
		 * This way we avoid all nasty races with the
		 * dirty bit in multiple places and clearing
		 * them concurrently from different threads.
		 *
		 * Note! Normally the "set_page_dirty(page)"
		 * has no effect on the actual dirty bit - since
		 * that will already usually be set. But we
		 * need the side effects, and it can help us
		 * avoid races.
		 *
		 * We basically use the page "master dirty bit"
		 * as a serialization point for all the different
		 * threads doing their things.
		 */
		if (page_mkclean(page))
			set_page_dirty(page);
2677 2678 2679
		/*
		 * We carefully synchronise fault handlers against
		 * installing a dirty pte and marking the page dirty
2680 2681 2682 2683
		 * at this point.  We do this by having them hold the
		 * page lock while dirtying the page, and pages are
		 * always locked coming in here, so we get the desired
		 * exclusion.
2684
		 */
2685
		memcg = mem_cgroup_begin_page_stat(page);
2686
		wb = unlocked_inode_to_wb_begin(inode, &locked);
2687
		if (TestClearPageDirty(page)) {
2688
			mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2689
			dec_zone_page_state(page, NR_FILE_DIRTY);
2690
			dec_wb_stat(wb, WB_RECLAIMABLE);
2691
			ret = 1;
L
Linus Torvalds 已提交
2692
		}
2693
		unlocked_inode_to_wb_end(inode, locked);
2694 2695
		mem_cgroup_end_page_stat(memcg);
		return ret;
L
Linus Torvalds 已提交
2696
	}
2697
	return TestClearPageDirty(page);
L
Linus Torvalds 已提交
2698
}
2699
EXPORT_SYMBOL(clear_page_dirty_for_io);
L
Linus Torvalds 已提交
2700 2701 2702 2703

int test_clear_page_writeback(struct page *page)
{
	struct address_space *mapping = page_mapping(page);
2704 2705
	struct mem_cgroup *memcg;
	int ret;
L
Linus Torvalds 已提交
2706

2707
	memcg = mem_cgroup_begin_page_stat(page);
L
Linus Torvalds 已提交
2708
	if (mapping) {
2709 2710
		struct inode *inode = mapping->host;
		struct backing_dev_info *bdi = inode_to_bdi(inode);
L
Linus Torvalds 已提交
2711 2712
		unsigned long flags;

N
Nick Piggin 已提交
2713
		spin_lock_irqsave(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2714
		ret = TestClearPageWriteback(page);
P
Peter Zijlstra 已提交
2715
		if (ret) {
L
Linus Torvalds 已提交
2716 2717 2718
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_WRITEBACK);
2719
			if (bdi_cap_account_writeback(bdi)) {
2720 2721 2722 2723
				struct bdi_writeback *wb = inode_to_wb(inode);

				__dec_wb_stat(wb, WB_WRITEBACK);
				__wb_writeout_inc(wb);
P
Peter Zijlstra 已提交
2724
			}
P
Peter Zijlstra 已提交
2725
		}
N
Nick Piggin 已提交
2726
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2727 2728 2729
	} else {
		ret = TestClearPageWriteback(page);
	}
2730
	if (ret) {
2731
		mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2732
		dec_zone_page_state(page, NR_WRITEBACK);
2733 2734
		inc_zone_page_state(page, NR_WRITTEN);
	}
2735
	mem_cgroup_end_page_stat(memcg);
L
Linus Torvalds 已提交
2736 2737 2738
	return ret;
}

2739
int __test_set_page_writeback(struct page *page, bool keep_write)
L
Linus Torvalds 已提交
2740 2741
{
	struct address_space *mapping = page_mapping(page);
2742 2743
	struct mem_cgroup *memcg;
	int ret;
L
Linus Torvalds 已提交
2744

2745
	memcg = mem_cgroup_begin_page_stat(page);
L
Linus Torvalds 已提交
2746
	if (mapping) {
2747 2748
		struct inode *inode = mapping->host;
		struct backing_dev_info *bdi = inode_to_bdi(inode);
L
Linus Torvalds 已提交
2749 2750
		unsigned long flags;

N
Nick Piggin 已提交
2751
		spin_lock_irqsave(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2752
		ret = TestSetPageWriteback(page);
P
Peter Zijlstra 已提交
2753
		if (!ret) {
L
Linus Torvalds 已提交
2754 2755 2756
			radix_tree_tag_set(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_WRITEBACK);
2757
			if (bdi_cap_account_writeback(bdi))
2758
				__inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
P
Peter Zijlstra 已提交
2759
		}
L
Linus Torvalds 已提交
2760 2761 2762 2763
		if (!PageDirty(page))
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_DIRTY);
2764 2765 2766 2767
		if (!keep_write)
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_TOWRITE);
N
Nick Piggin 已提交
2768
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2769 2770 2771
	} else {
		ret = TestSetPageWriteback(page);
	}
2772
	if (!ret) {
2773
		mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2774 2775
		inc_zone_page_state(page, NR_WRITEBACK);
	}
2776
	mem_cgroup_end_page_stat(memcg);
L
Linus Torvalds 已提交
2777 2778 2779
	return ret;

}
2780
EXPORT_SYMBOL(__test_set_page_writeback);
L
Linus Torvalds 已提交
2781 2782

/*
N
Nick Piggin 已提交
2783
 * Return true if any of the pages in the mapping are marked with the
L
Linus Torvalds 已提交
2784 2785 2786 2787
 * passed tag.
 */
int mapping_tagged(struct address_space *mapping, int tag)
{
2788
	return radix_tree_tagged(&mapping->page_tree, tag);
L
Linus Torvalds 已提交
2789 2790
}
EXPORT_SYMBOL(mapping_tagged);
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801

/**
 * wait_for_stable_page() - wait for writeback to finish, if necessary.
 * @page:	The page to wait on.
 *
 * This function determines if the given page is related to a backing device
 * that requires page contents to be held stable during writeback.  If so, then
 * it will wait for any pending writeback to complete.
 */
void wait_for_stable_page(struct page *page)
{
2802 2803
	if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
		wait_on_page_writeback(page);
2804 2805
}
EXPORT_SYMBOL_GPL(wait_for_stable_page);