page-writeback.c 76.2 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 * mm/page-writeback.c
L
Linus Torvalds 已提交
3 4
 *
 * Copyright (C) 2002, Linus Torvalds.
P
Peter Zijlstra 已提交
5
 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
L
Linus Torvalds 已提交
6 7 8 9
 *
 * Contains functions related to writing back dirty pages at the
 * address_space level.
 *
10
 * 10Apr2002	Andrew Morton
L
Linus Torvalds 已提交
11 12 13 14
 *		Initial version
 */

#include <linux/kernel.h>
15
#include <linux/export.h>
L
Linus Torvalds 已提交
16 17 18 19 20 21 22 23 24
#include <linux/spinlock.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/writeback.h>
#include <linux/init.h>
#include <linux/backing-dev.h>
25
#include <linux/task_io_accounting_ops.h>
L
Linus Torvalds 已提交
26 27
#include <linux/blkdev.h>
#include <linux/mpage.h>
28
#include <linux/rmap.h>
L
Linus Torvalds 已提交
29 30 31 32 33 34
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/smp.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
A
Al Viro 已提交
35
#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36
#include <linux/pagevec.h>
37
#include <linux/timer.h>
38
#include <linux/sched/rt.h>
39
#include <linux/mm_inline.h>
40
#include <trace/events/writeback.h>
L
Linus Torvalds 已提交
41

42 43
#include "internal.h"

44 45 46 47 48
/*
 * Sleep at most 200ms at a time in balance_dirty_pages().
 */
#define MAX_PAUSE		max(HZ/5, 1)

49 50 51 52 53 54
/*
 * Try to keep balance_dirty_pages() call intervals higher than this many pages
 * by raising pause time to max_pause when falls below it.
 */
#define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))

55 56 57 58 59
/*
 * Estimate write bandwidth at 200ms intervals.
 */
#define BANDWIDTH_INTERVAL	max(HZ/5, 1)

W
Wu Fengguang 已提交
60 61
#define RATELIMIT_CALC_SHIFT	10

L
Linus Torvalds 已提交
62 63 64 65 66 67 68 69 70
/*
 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
 * will look to see if it needs to force writeback or throttling.
 */
static long ratelimit_pages = 32;

/* The following parameters are exported via /proc/sys/vm */

/*
71
 * Start background writeback (via writeback threads) at this percentage
L
Linus Torvalds 已提交
72
 */
73
int dirty_background_ratio = 10;
L
Linus Torvalds 已提交
74

75 76 77 78 79 80
/*
 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
 * dirty_background_ratio * the amount of dirtyable memory
 */
unsigned long dirty_background_bytes;

81 82 83 84 85 86
/*
 * free highmem will not be subtracted from the total free memory
 * for calculating free ratios if vm_highmem_is_dirtyable is true
 */
int vm_highmem_is_dirtyable;

L
Linus Torvalds 已提交
87 88 89
/*
 * The generator of dirty data starts writeback at this percentage
 */
90
int vm_dirty_ratio = 20;
L
Linus Torvalds 已提交
91

92 93 94 95 96 97
/*
 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
 * vm_dirty_ratio * the amount of dirtyable memory
 */
unsigned long vm_dirty_bytes;

L
Linus Torvalds 已提交
98
/*
99
 * The interval between `kupdate'-style writebacks
L
Linus Torvalds 已提交
100
 */
101
unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
L
Linus Torvalds 已提交
102

103 104
EXPORT_SYMBOL_GPL(dirty_writeback_interval);

L
Linus Torvalds 已提交
105
/*
106
 * The longest time for which data is allowed to remain dirty
L
Linus Torvalds 已提交
107
 */
108
unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
L
Linus Torvalds 已提交
109 110 111 112 113 114 115

/*
 * Flag that makes the machine dump writes/reads and block dirtyings.
 */
int block_dump;

/*
116 117
 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 * a full sync is triggered after this time elapses without any disk activity.
L
Linus Torvalds 已提交
118 119 120 121 122 123 124
 */
int laptop_mode;

EXPORT_SYMBOL(laptop_mode);

/* End of sysctl-exported parameters */

125
struct wb_domain global_wb_domain;
126

127 128
/* consolidated parameters for balance_dirty_pages() and its subroutines */
struct dirty_throttle_control {
129 130 131
#ifdef CONFIG_CGROUP_WRITEBACK
	struct wb_domain	*dom;
#endif
132
	struct bdi_writeback	*wb;
133
	struct fprop_local_percpu *wb_completions;
134 135 136 137 138 139 140

	unsigned long		dirty;		/* file_dirty + write + nfs */
	unsigned long		thresh;		/* dirty threshold */
	unsigned long		bg_thresh;	/* dirty background threshold */

	unsigned long		wb_dirty;	/* per-wb counterparts */
	unsigned long		wb_thresh;
141
	unsigned long		wb_bg_thresh;
142 143

	unsigned long		pos_ratio;
144 145
};

146
#define DTC_INIT_COMMON(__wb)	.wb = (__wb),				\
147
				.wb_completions = &(__wb)->completions
148

149 150 151 152 153 154
/*
 * Length of period for aging writeout fractions of bdis. This is an
 * arbitrarily chosen number. The longer the period, the slower fractions will
 * reflect changes in current writeout rate.
 */
#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
P
Peter Zijlstra 已提交
155

156 157
#ifdef CONFIG_CGROUP_WRITEBACK

158 159 160 161 162 163 164 165
#define GDTC_INIT(__wb)		.dom = &global_wb_domain,		\
				DTC_INIT_COMMON(__wb)

static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
{
	return dtc->dom;
}

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
static void wb_min_max_ratio(struct bdi_writeback *wb,
			     unsigned long *minp, unsigned long *maxp)
{
	unsigned long this_bw = wb->avg_write_bandwidth;
	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
	unsigned long long min = wb->bdi->min_ratio;
	unsigned long long max = wb->bdi->max_ratio;

	/*
	 * @wb may already be clean by the time control reaches here and
	 * the total may not include its bw.
	 */
	if (this_bw < tot_bw) {
		if (min) {
			min *= this_bw;
			do_div(min, tot_bw);
		}
		if (max < 100) {
			max *= this_bw;
			do_div(max, tot_bw);
		}
	}

	*minp = min;
	*maxp = max;
}

#else	/* CONFIG_CGROUP_WRITEBACK */

195 196 197 198 199 200 201
#define GDTC_INIT(__wb)		DTC_INIT_COMMON(__wb)

static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
{
	return &global_wb_domain;
}

202 203 204 205 206 207 208 209 210
static void wb_min_max_ratio(struct bdi_writeback *wb,
			     unsigned long *minp, unsigned long *maxp)
{
	*minp = wb->bdi->min_ratio;
	*maxp = wb->bdi->max_ratio;
}

#endif	/* CONFIG_CGROUP_WRITEBACK */

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
/*
 * In a memory zone, there is a certain amount of pages we consider
 * available for the page cache, which is essentially the number of
 * free and reclaimable pages, minus some zone reserves to protect
 * lowmem and the ability to uphold the zone's watermarks without
 * requiring writeback.
 *
 * This number of dirtyable pages is the base value of which the
 * user-configurable dirty ratio is the effictive number of pages that
 * are allowed to be actually dirtied.  Per individual zone, or
 * globally by using the sum of dirtyable pages over all zones.
 *
 * Because the user is allowed to specify the dirty limit globally as
 * absolute number of bytes, calculating the per-zone dirty limit can
 * require translating the configured limit into a percentage of
 * global dirtyable memory first.
 */

229 230 231 232 233 234 235 236 237 238 239 240 241 242
/**
 * zone_dirtyable_memory - number of dirtyable pages in a zone
 * @zone: the zone
 *
 * Returns the zone's number of pages potentially available for dirty
 * page cache.  This is the base value for the per-zone dirty limits.
 */
static unsigned long zone_dirtyable_memory(struct zone *zone)
{
	unsigned long nr_pages;

	nr_pages = zone_page_state(zone, NR_FREE_PAGES);
	nr_pages -= min(nr_pages, zone->dirty_balance_reserve);

243 244
	nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
	nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
245 246 247 248

	return nr_pages;
}

249 250 251 252 253 254 255
static unsigned long highmem_dirtyable_memory(unsigned long total)
{
#ifdef CONFIG_HIGHMEM
	int node;
	unsigned long x = 0;

	for_each_node_state(node, N_HIGH_MEMORY) {
256
		struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
257

258
		x += zone_dirtyable_memory(z);
259
	}
260 261 262 263 264 265 266 267 268 269 270 271
	/*
	 * Unreclaimable memory (kernel memory or anonymous memory
	 * without swap) can bring down the dirtyable pages below
	 * the zone's dirty balance reserve and the above calculation
	 * will underflow.  However we still want to add in nodes
	 * which are below threshold (negative values) to get a more
	 * accurate calculation but make sure that the total never
	 * underflows.
	 */
	if ((long)x < 0)
		x = 0;

272 273 274 275 276 277 278 279 280 281 282 283 284
	/*
	 * Make sure that the number of highmem pages is never larger
	 * than the number of the total dirtyable memory. This can only
	 * occur in very strange VM situations but we want to make sure
	 * that this does not occur.
	 */
	return min(x, total);
#else
	return 0;
#endif
}

/**
285
 * global_dirtyable_memory - number of globally dirtyable pages
286
 *
287 288
 * Returns the global number of pages potentially available for dirty
 * page cache.  This is the base value for the global dirty limits.
289
 */
290
static unsigned long global_dirtyable_memory(void)
291 292 293
{
	unsigned long x;

294
	x = global_page_state(NR_FREE_PAGES);
295
	x -= min(x, dirty_balance_reserve);
296

297 298
	x += global_page_state(NR_INACTIVE_FILE);
	x += global_page_state(NR_ACTIVE_FILE);
299

300 301 302 303 304 305
	if (!vm_highmem_is_dirtyable)
		x -= highmem_dirtyable_memory(x);

	return x + 1;	/* Ensure that we never return 0 */
}

306 307 308 309 310 311 312 313 314 315 316
/*
 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 *
 * Calculate the dirty thresholds based on sysctl parameters
 * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
 * - vm.dirty_ratio             or  vm.dirty_bytes
 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
 * real-time tasks.
 */
void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
{
317
	const unsigned long available_memory = global_dirtyable_memory();
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
	unsigned long background;
	unsigned long dirty;
	struct task_struct *tsk;

	if (vm_dirty_bytes)
		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
	else
		dirty = (vm_dirty_ratio * available_memory) / 100;

	if (dirty_background_bytes)
		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
	else
		background = (dirty_background_ratio * available_memory) / 100;

	if (background >= dirty)
		background = dirty / 2;
	tsk = current;
	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
		background += background / 4;
		dirty += dirty / 4;
	}
	*pbackground = background;
	*pdirty = dirty;
	trace_global_dirty_state(background, dirty);
}

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
/**
 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
 * @zone: the zone
 *
 * Returns the maximum number of dirty pages allowed in a zone, based
 * on the zone's dirtyable memory.
 */
static unsigned long zone_dirty_limit(struct zone *zone)
{
	unsigned long zone_memory = zone_dirtyable_memory(zone);
	struct task_struct *tsk = current;
	unsigned long dirty;

	if (vm_dirty_bytes)
		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
			zone_memory / global_dirtyable_memory();
	else
		dirty = vm_dirty_ratio * zone_memory / 100;

	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
		dirty += dirty / 4;

	return dirty;
}

/**
 * zone_dirty_ok - tells whether a zone is within its dirty limits
 * @zone: the zone to check
 *
 * Returns %true when the dirty pages in @zone are within the zone's
 * dirty limit, %false if the limit is exceeded.
 */
bool zone_dirty_ok(struct zone *zone)
{
	unsigned long limit = zone_dirty_limit(zone);

	return zone_page_state(zone, NR_FILE_DIRTY) +
	       zone_page_state(zone, NR_UNSTABLE_NFS) +
	       zone_page_state(zone, NR_WRITEBACK) <= limit;
}

385
int dirty_background_ratio_handler(struct ctl_table *table, int write,
386
		void __user *buffer, size_t *lenp,
387 388 389 390
		loff_t *ppos)
{
	int ret;

391
	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
392 393 394 395 396 397
	if (ret == 0 && write)
		dirty_background_bytes = 0;
	return ret;
}

int dirty_background_bytes_handler(struct ctl_table *table, int write,
398
		void __user *buffer, size_t *lenp,
399 400 401 402
		loff_t *ppos)
{
	int ret;

403
	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
404 405 406 407 408
	if (ret == 0 && write)
		dirty_background_ratio = 0;
	return ret;
}

P
Peter Zijlstra 已提交
409
int dirty_ratio_handler(struct ctl_table *table, int write,
410
		void __user *buffer, size_t *lenp,
P
Peter Zijlstra 已提交
411 412 413
		loff_t *ppos)
{
	int old_ratio = vm_dirty_ratio;
414 415
	int ret;

416
	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
417
	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
418
		writeback_set_ratelimit();
419 420 421 422 423 424
		vm_dirty_bytes = 0;
	}
	return ret;
}

int dirty_bytes_handler(struct ctl_table *table, int write,
425
		void __user *buffer, size_t *lenp,
426 427
		loff_t *ppos)
{
428
	unsigned long old_bytes = vm_dirty_bytes;
429 430
	int ret;

431
	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
432
	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
433
		writeback_set_ratelimit();
434
		vm_dirty_ratio = 0;
P
Peter Zijlstra 已提交
435 436 437 438
	}
	return ret;
}

439 440 441 442 443 444 445 446 447
static unsigned long wp_next_time(unsigned long cur_time)
{
	cur_time += VM_COMPLETIONS_PERIOD_LEN;
	/* 0 has a special meaning... */
	if (!cur_time)
		return 1;
	return cur_time;
}

P
Peter Zijlstra 已提交
448
/*
T
Tejun Heo 已提交
449
 * Increment the wb's writeout completion count and the global writeout
P
Peter Zijlstra 已提交
450 451
 * completion count. Called from test_clear_page_writeback().
 */
452
static inline void __wb_writeout_inc(struct bdi_writeback *wb)
P
Peter Zijlstra 已提交
453
{
T
Tejun Heo 已提交
454 455
	struct wb_domain *dom = &global_wb_domain;

456
	__inc_wb_stat(wb, WB_WRITTEN);
T
Tejun Heo 已提交
457
	__fprop_inc_percpu_max(&dom->completions, &wb->completions,
458
			       wb->bdi->max_prop_frac);
459
	/* First event after period switching was turned off? */
T
Tejun Heo 已提交
460
	if (!unlikely(dom->period_time)) {
461 462 463 464 465 466
		/*
		 * We can race with other __bdi_writeout_inc calls here but
		 * it does not cause any harm since the resulting time when
		 * timer will fire and what is in writeout_period_time will be
		 * roughly the same.
		 */
T
Tejun Heo 已提交
467 468
		dom->period_time = wp_next_time(jiffies);
		mod_timer(&dom->period_timer, dom->period_time);
469
	}
P
Peter Zijlstra 已提交
470 471
}

472
void wb_writeout_inc(struct bdi_writeback *wb)
473 474 475 476
{
	unsigned long flags;

	local_irq_save(flags);
477
	__wb_writeout_inc(wb);
478 479
	local_irq_restore(flags);
}
480
EXPORT_SYMBOL_GPL(wb_writeout_inc);
481

482 483 484 485 486 487
/*
 * On idle system, we can be called long after we scheduled because we use
 * deferred timers so count with missed periods.
 */
static void writeout_period(unsigned long t)
{
T
Tejun Heo 已提交
488 489
	struct wb_domain *dom = (void *)t;
	int miss_periods = (jiffies - dom->period_time) /
490 491
						 VM_COMPLETIONS_PERIOD_LEN;

T
Tejun Heo 已提交
492 493
	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
		dom->period_time = wp_next_time(dom->period_time +
494
				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
T
Tejun Heo 已提交
495
		mod_timer(&dom->period_timer, dom->period_time);
496 497 498 499 500
	} else {
		/*
		 * Aging has zeroed all fractions. Stop wasting CPU on period
		 * updates.
		 */
T
Tejun Heo 已提交
501
		dom->period_time = 0;
502 503 504
	}
}

T
Tejun Heo 已提交
505 506 507
int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
{
	memset(dom, 0, sizeof(*dom));
508 509 510

	spin_lock_init(&dom->lock);

T
Tejun Heo 已提交
511 512 513
	init_timer_deferrable(&dom->period_timer);
	dom->period_timer.function = writeout_period;
	dom->period_timer.data = (unsigned long)dom;
514 515 516

	dom->dirty_limit_tstamp = jiffies;

T
Tejun Heo 已提交
517 518 519
	return fprop_global_init(&dom->completions, gfp);
}

520
/*
521 522 523
 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 * registered backing devices, which, for obvious reasons, can not
 * exceed 100%.
524 525 526 527 528 529 530
 */
static unsigned int bdi_min_ratio;

int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
{
	int ret = 0;

531
	spin_lock_bh(&bdi_lock);
532
	if (min_ratio > bdi->max_ratio) {
533
		ret = -EINVAL;
534 535 536 537 538 539 540 541 542
	} else {
		min_ratio -= bdi->min_ratio;
		if (bdi_min_ratio + min_ratio < 100) {
			bdi_min_ratio += min_ratio;
			bdi->min_ratio += min_ratio;
		} else {
			ret = -EINVAL;
		}
	}
543
	spin_unlock_bh(&bdi_lock);
544 545 546 547 548 549 550 551 552 553 554

	return ret;
}

int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
{
	int ret = 0;

	if (max_ratio > 100)
		return -EINVAL;

555
	spin_lock_bh(&bdi_lock);
556 557 558 559
	if (bdi->min_ratio > max_ratio) {
		ret = -EINVAL;
	} else {
		bdi->max_ratio = max_ratio;
560
		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
561
	}
562
	spin_unlock_bh(&bdi_lock);
563 564 565

	return ret;
}
566
EXPORT_SYMBOL(bdi_set_max_ratio);
567

W
Wu Fengguang 已提交
568 569 570 571 572 573
static unsigned long dirty_freerun_ceiling(unsigned long thresh,
					   unsigned long bg_thresh)
{
	return (thresh + bg_thresh) / 2;
}

574 575
static unsigned long hard_dirty_limit(unsigned long thresh)
{
576 577 578
	struct wb_domain *dom = &global_wb_domain;

	return max(thresh, dom->dirty_limit);
579 580
}

581
/**
582 583
 * __wb_calc_thresh - @wb's share of dirty throttling threshold
 * @dtc: dirty_throttle_context of interest
584
 *
585
 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
586
 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
587 588 589 590 591 592
 *
 * Note that balance_dirty_pages() will only seriously take it as a hard limit
 * when sleeping max_pause per page is not enough to keep the dirty pages under
 * control. For example, when the device is completely stalled due to some error
 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 * In the other normal situations, it acts more gently by throttling the tasks
593
 * more (rather than completely block them) when the wb dirty pages go high.
594
 *
595
 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
596 597 598
 * - starving fast devices
 * - piling up dirty pages (that will take long time to sync) on slow devices
 *
599
 * The wb's share of dirty limit will be adapting to its throughput and
600 601
 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 */
602
static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
603
{
604
	struct wb_domain *dom = dtc_dom(dtc);
605
	unsigned long thresh = dtc->thresh;
T
Tejun Heo 已提交
606
	u64 wb_thresh;
607
	long numerator, denominator;
608
	unsigned long wb_min_ratio, wb_max_ratio;
P
Peter Zijlstra 已提交
609

610
	/*
T
Tejun Heo 已提交
611
	 * Calculate this BDI's share of the thresh ratio.
612
	 */
613
	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
T
Tejun Heo 已提交
614
			      &numerator, &denominator);
P
Peter Zijlstra 已提交
615

T
Tejun Heo 已提交
616 617 618
	wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
	wb_thresh *= numerator;
	do_div(wb_thresh, denominator);
P
Peter Zijlstra 已提交
619

620
	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
621

T
Tejun Heo 已提交
622 623 624
	wb_thresh += (thresh * wb_min_ratio) / 100;
	if (wb_thresh > (thresh * wb_max_ratio) / 100)
		wb_thresh = thresh * wb_max_ratio / 100;
625

T
Tejun Heo 已提交
626
	return wb_thresh;
L
Linus Torvalds 已提交
627 628
}

629 630 631 632 633 634 635
unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
{
	struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
					       .thresh = thresh };
	return __wb_calc_thresh(&gdtc);
}

636 637 638 639 640 641 642 643 644 645 646 647 648 649
/*
 *                           setpoint - dirty 3
 *        f(dirty) := 1.0 + (----------------)
 *                           limit - setpoint
 *
 * it's a 3rd order polynomial that subjects to
 *
 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 * (2) f(setpoint) = 1.0 => the balance point
 * (3) f(limit)    = 0   => the hard limit
 * (4) df/dx      <= 0	 => negative feedback control
 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 *     => fast response on large errors; small oscillation near setpoint
 */
650
static long long pos_ratio_polynom(unsigned long setpoint,
651 652 653 654 655 656
					  unsigned long dirty,
					  unsigned long limit)
{
	long long pos_ratio;
	long x;

657
	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
658 659 660 661 662 663 664 665 666
		    limit - setpoint + 1);
	pos_ratio = x;
	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;

	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
}

W
Wu Fengguang 已提交
667 668 669 670 671
/*
 * Dirty position control.
 *
 * (o) global/bdi setpoints
 *
672
 * We want the dirty pages be balanced around the global/wb setpoints.
W
Wu Fengguang 已提交
673 674 675 676 677 678 679 680 681
 * When the number of dirty pages is higher/lower than the setpoint, the
 * dirty position control ratio (and hence task dirty ratelimit) will be
 * decreased/increased to bring the dirty pages back to the setpoint.
 *
 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 *
 *     if (dirty < setpoint) scale up   pos_ratio
 *     if (dirty > setpoint) scale down pos_ratio
 *
682 683
 *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
 *     if (wb_dirty > wb_setpoint) scale down pos_ratio
W
Wu Fengguang 已提交
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
 *
 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 *
 * (o) global control line
 *
 *     ^ pos_ratio
 *     |
 *     |            |<===== global dirty control scope ======>|
 * 2.0 .............*
 *     |            .*
 *     |            . *
 *     |            .   *
 *     |            .     *
 *     |            .        *
 *     |            .            *
 * 1.0 ................................*
 *     |            .                  .     *
 *     |            .                  .          *
 *     |            .                  .              *
 *     |            .                  .                 *
 *     |            .                  .                    *
 *   0 +------------.------------------.----------------------*------------->
 *           freerun^          setpoint^                 limit^   dirty pages
 *
708
 * (o) wb control line
W
Wu Fengguang 已提交
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
 *
 *     ^ pos_ratio
 *     |
 *     |            *
 *     |              *
 *     |                *
 *     |                  *
 *     |                    * |<=========== span ============>|
 * 1.0 .......................*
 *     |                      . *
 *     |                      .   *
 *     |                      .     *
 *     |                      .       *
 *     |                      .         *
 *     |                      .           *
 *     |                      .             *
 *     |                      .               *
 *     |                      .                 *
 *     |                      .                   *
 *     |                      .                     *
 * 1/4 ...............................................* * * * * * * * * * * *
 *     |                      .                         .
 *     |                      .                           .
 *     |                      .                             .
 *   0 +----------------------.-------------------------------.------------->
734
 *                wb_setpoint^                    x_intercept^
W
Wu Fengguang 已提交
735
 *
736
 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
W
Wu Fengguang 已提交
737 738
 * be smoothly throttled down to normal if it starts high in situations like
 * - start writing to a slow SD card and a fast disk at the same time. The SD
739 740
 *   card's wb_dirty may rush to many times higher than wb_setpoint.
 * - the wb dirty thresh drops quickly due to change of JBOD workload
W
Wu Fengguang 已提交
741
 */
742
static void wb_position_ratio(struct dirty_throttle_control *dtc)
W
Wu Fengguang 已提交
743
{
744
	struct bdi_writeback *wb = dtc->wb;
745
	unsigned long write_bw = wb->avg_write_bandwidth;
746 747 748
	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
	unsigned long limit = hard_dirty_limit(dtc->thresh);
	unsigned long wb_thresh = dtc->wb_thresh;
W
Wu Fengguang 已提交
749 750
	unsigned long x_intercept;
	unsigned long setpoint;		/* dirty pages' target balance point */
751
	unsigned long wb_setpoint;
W
Wu Fengguang 已提交
752 753 754 755
	unsigned long span;
	long long pos_ratio;		/* for scaling up/down the rate limit */
	long x;

756 757
	dtc->pos_ratio = 0;

758
	if (unlikely(dtc->dirty >= limit))
759
		return;
W
Wu Fengguang 已提交
760 761 762 763

	/*
	 * global setpoint
	 *
764 765 766
	 * See comment for pos_ratio_polynom().
	 */
	setpoint = (freerun + limit) / 2;
767
	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
768 769 770 771

	/*
	 * The strictlimit feature is a tool preventing mistrusted filesystems
	 * from growing a large number of dirty pages before throttling. For
772 773
	 * such filesystems balance_dirty_pages always checks wb counters
	 * against wb limits. Even if global "nr_dirty" is under "freerun".
774 775 776 777
	 * This is especially important for fuse which sets bdi->max_ratio to
	 * 1% by default. Without strictlimit feature, fuse writeback may
	 * consume arbitrary amount of RAM because it is accounted in
	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
W
Wu Fengguang 已提交
778
	 *
779
	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
780
	 * two values: wb_dirty and wb_thresh. Let's consider an example:
781 782
	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
	 * limits are set by default to 10% and 20% (background and throttle).
783
	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
T
Tejun Heo 已提交
784
	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
785
	 * about ~6K pages (as the average of background and throttle wb
786
	 * limits). The 3rd order polynomial will provide positive feedback if
787
	 * wb_dirty is under wb_setpoint and vice versa.
W
Wu Fengguang 已提交
788
	 *
789
	 * Note, that we cannot use global counters in these calculations
790
	 * because we want to throttle process writing to a strictlimit wb
791 792
	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
	 * in the example above).
W
Wu Fengguang 已提交
793
	 */
794
	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
795
		long long wb_pos_ratio;
796

797 798 799 800 801
		if (dtc->wb_dirty < 8) {
			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
					   2 << RATELIMIT_CALC_SHIFT);
			return;
		}
802

803
		if (dtc->wb_dirty >= wb_thresh)
804
			return;
805

806 807
		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
						    dtc->wb_bg_thresh);
808

809
		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
810
			return;
811

812
		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
813
						 wb_thresh);
814 815

		/*
816 817
		 * Typically, for strictlimit case, wb_setpoint << setpoint
		 * and pos_ratio >> wb_pos_ratio. In the other words global
818
		 * state ("dirty") is not limiting factor and we have to
819
		 * make decision based on wb counters. But there is an
820 821
		 * important case when global pos_ratio should get precedence:
		 * global limits are exceeded (e.g. due to activities on other
822
		 * wb's) while given strictlimit wb is below limit.
823
		 *
824
		 * "pos_ratio * wb_pos_ratio" would work for the case above,
825
		 * but it would look too non-natural for the case of all
826
		 * activity in the system coming from a single strictlimit wb
827 828 829 830
		 * with bdi->max_ratio == 100%.
		 *
		 * Note that min() below somewhat changes the dynamics of the
		 * control system. Normally, pos_ratio value can be well over 3
831
		 * (when globally we are at freerun and wb is well below wb
832 833 834 835
		 * setpoint). Now the maximum pos_ratio in the same situation
		 * is 2. We might want to tweak this if we observe the control
		 * system is too slow to adapt.
		 */
836 837
		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
		return;
838
	}
W
Wu Fengguang 已提交
839 840 841

	/*
	 * We have computed basic pos_ratio above based on global situation. If
842
	 * the wb is over/under its share of dirty pages, we want to scale
W
Wu Fengguang 已提交
843 844 845 846
	 * pos_ratio further down/up. That is done by the following mechanism.
	 */

	/*
847
	 * wb setpoint
W
Wu Fengguang 已提交
848
	 *
849
	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
W
Wu Fengguang 已提交
850
	 *
851
	 *                        x_intercept - wb_dirty
W
Wu Fengguang 已提交
852
	 *                     := --------------------------
853
	 *                        x_intercept - wb_setpoint
W
Wu Fengguang 已提交
854
	 *
855
	 * The main wb control line is a linear function that subjects to
W
Wu Fengguang 已提交
856
	 *
857 858 859
	 * (1) f(wb_setpoint) = 1.0
	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
W
Wu Fengguang 已提交
860
	 *
861
	 * For single wb case, the dirty pages are observed to fluctuate
W
Wu Fengguang 已提交
862
	 * regularly within range
863
	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
W
Wu Fengguang 已提交
864 865 866
	 * for various filesystems, where (2) can yield in a reasonable 12.5%
	 * fluctuation range for pos_ratio.
	 *
867
	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
W
Wu Fengguang 已提交
868
	 * own size, so move the slope over accordingly and choose a slope that
869
	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
W
Wu Fengguang 已提交
870
	 */
871 872
	if (unlikely(wb_thresh > dtc->thresh))
		wb_thresh = dtc->thresh;
873
	/*
874
	 * It's very possible that wb_thresh is close to 0 not because the
875 876 877 878 879
	 * device is slow, but that it has remained inactive for long time.
	 * Honour such devices a reasonable good (hopefully IO efficient)
	 * threshold, so that the occasional writes won't be blocked and active
	 * writes can rampup the threshold quickly.
	 */
880
	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
W
Wu Fengguang 已提交
881
	/*
882 883
	 * scale global setpoint to wb's:
	 *	wb_setpoint = setpoint * wb_thresh / thresh
W
Wu Fengguang 已提交
884
	 */
885
	x = div_u64((u64)wb_thresh << 16, dtc->thresh + 1);
886
	wb_setpoint = setpoint * (u64)x >> 16;
W
Wu Fengguang 已提交
887
	/*
888 889
	 * Use span=(8*write_bw) in single wb case as indicated by
	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
W
Wu Fengguang 已提交
890
	 *
891 892 893
	 *        wb_thresh                    thresh - wb_thresh
	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
	 *         thresh                           thresh
W
Wu Fengguang 已提交
894
	 */
895
	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
896
	x_intercept = wb_setpoint + span;
W
Wu Fengguang 已提交
897

898 899 900
	if (dtc->wb_dirty < x_intercept - span / 4) {
		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
				      x_intercept - wb_setpoint + 1);
W
Wu Fengguang 已提交
901 902 903
	} else
		pos_ratio /= 4;

904
	/*
905
	 * wb reserve area, safeguard against dirty pool underrun and disk idle
906 907 908
	 * It may push the desired control point of global dirty pages higher
	 * than setpoint.
	 */
909
	x_intercept = wb_thresh / 2;
910 911 912 913
	if (dtc->wb_dirty < x_intercept) {
		if (dtc->wb_dirty > x_intercept / 8)
			pos_ratio = div_u64(pos_ratio * x_intercept,
					    dtc->wb_dirty);
914
		else
915 916 917
			pos_ratio *= 8;
	}

918
	dtc->pos_ratio = pos_ratio;
W
Wu Fengguang 已提交
919 920
}

921 922 923
static void wb_update_write_bandwidth(struct bdi_writeback *wb,
				      unsigned long elapsed,
				      unsigned long written)
924 925
{
	const unsigned long period = roundup_pow_of_two(3 * HZ);
926 927
	unsigned long avg = wb->avg_write_bandwidth;
	unsigned long old = wb->write_bandwidth;
928 929 930 931 932 933 934 935
	u64 bw;

	/*
	 * bw = written * HZ / elapsed
	 *
	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
	 * write_bandwidth = ---------------------------------------------------
	 *                                          period
936 937 938
	 *
	 * @written may have decreased due to account_page_redirty().
	 * Avoid underflowing @bw calculation.
939
	 */
940
	bw = written - min(written, wb->written_stamp);
941 942 943 944 945 946
	bw *= HZ;
	if (unlikely(elapsed > period)) {
		do_div(bw, elapsed);
		avg = bw;
		goto out;
	}
947
	bw += (u64)wb->write_bandwidth * (period - elapsed);
948 949 950 951 952 953 954 955 956 957 958 959
	bw >>= ilog2(period);

	/*
	 * one more level of smoothing, for filtering out sudden spikes
	 */
	if (avg > old && old >= (unsigned long)bw)
		avg -= (avg - old) >> 3;

	if (avg < old && old <= (unsigned long)bw)
		avg += (old - avg) >> 3;

out:
960 961 962 963 964 965 966
	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
	avg = max(avg, 1LU);
	if (wb_has_dirty_io(wb)) {
		long delta = avg - wb->avg_write_bandwidth;
		WARN_ON_ONCE(atomic_long_add_return(delta,
					&wb->bdi->tot_write_bandwidth) <= 0);
	}
967 968
	wb->write_bandwidth = bw;
	wb->avg_write_bandwidth = avg;
969 970
}

971
static void update_dirty_limit(struct dirty_throttle_control *dtc)
972
{
973
	struct wb_domain *dom = dtc_dom(dtc);
974
	unsigned long thresh = dtc->thresh;
975
	unsigned long limit = dom->dirty_limit;
976 977 978 979 980 981 982 983 984 985 986 987

	/*
	 * Follow up in one step.
	 */
	if (limit < thresh) {
		limit = thresh;
		goto update;
	}

	/*
	 * Follow down slowly. Use the higher one as the target, because thresh
	 * may drop below dirty. This is exactly the reason to introduce
988
	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
989
	 */
990
	thresh = max(thresh, dtc->dirty);
991 992 993 994 995 996
	if (limit > thresh) {
		limit -= (limit - thresh) >> 5;
		goto update;
	}
	return;
update:
997
	dom->dirty_limit = limit;
998 999
}

1000
static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1001 1002
				    unsigned long now)
{
1003
	struct wb_domain *dom = dtc_dom(dtc);
1004 1005 1006 1007

	/*
	 * check locklessly first to optimize away locking for the most time
	 */
1008
	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1009 1010
		return;

1011 1012
	spin_lock(&dom->lock);
	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1013
		update_dirty_limit(dtc);
1014
		dom->dirty_limit_tstamp = now;
1015
	}
1016
	spin_unlock(&dom->lock);
1017 1018
}

W
Wu Fengguang 已提交
1019
/*
1020
 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
W
Wu Fengguang 已提交
1021
 *
1022
 * Normal wb tasks will be curbed at or below it in long term.
W
Wu Fengguang 已提交
1023 1024
 * Obviously it should be around (write_bw / N) when there are N dd tasks.
 */
1025
static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1026 1027
				      unsigned long dirtied,
				      unsigned long elapsed)
W
Wu Fengguang 已提交
1028
{
1029 1030 1031 1032
	struct bdi_writeback *wb = dtc->wb;
	unsigned long dirty = dtc->dirty;
	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
	unsigned long limit = hard_dirty_limit(dtc->thresh);
1033
	unsigned long setpoint = (freerun + limit) / 2;
1034 1035
	unsigned long write_bw = wb->avg_write_bandwidth;
	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
W
Wu Fengguang 已提交
1036 1037 1038
	unsigned long dirty_rate;
	unsigned long task_ratelimit;
	unsigned long balanced_dirty_ratelimit;
1039 1040
	unsigned long step;
	unsigned long x;
W
Wu Fengguang 已提交
1041 1042 1043 1044 1045

	/*
	 * The dirty rate will match the writeout rate in long term, except
	 * when dirty pages are truncated by userspace or re-dirtied by FS.
	 */
1046
	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
W
Wu Fengguang 已提交
1047 1048 1049 1050 1051

	/*
	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
	 */
	task_ratelimit = (u64)dirty_ratelimit *
1052
					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
W
Wu Fengguang 已提交
1053 1054 1055 1056
	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */

	/*
	 * A linear estimation of the "balanced" throttle rate. The theory is,
1057
	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
W
Wu Fengguang 已提交
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
	 * formula will yield the balanced rate limit (write_bw / N).
	 *
	 * Note that the expanded form is not a pure rate feedback:
	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
	 * but also takes pos_ratio into account:
	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
	 *
	 * (1) is not realistic because pos_ratio also takes part in balancing
	 * the dirty rate.  Consider the state
	 *	pos_ratio = 0.5						     (3)
	 *	rate = 2 * (write_bw / N)				     (4)
	 * If (1) is used, it will stuck in that state! Because each dd will
	 * be throttled at
	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
	 * yielding
	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
	 * put (6) into (1) we get
	 *	rate_(i+1) = rate_(i)					     (7)
	 *
	 * So we end up using (2) to always keep
	 *	rate_(i+1) ~= (write_bw / N)				     (8)
	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
	 * pos_ratio is able to drive itself to 1.0, which is not only where
	 * the dirty count meet the setpoint, but also where the slope of
	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
	 */
	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
					   dirty_rate | 1);
1087 1088 1089 1090 1091
	/*
	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
	 */
	if (unlikely(balanced_dirty_ratelimit > write_bw))
		balanced_dirty_ratelimit = write_bw;
W
Wu Fengguang 已提交
1092

1093 1094 1095
	/*
	 * We could safely do this and return immediately:
	 *
1096
	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1097 1098
	 *
	 * However to get a more stable dirty_ratelimit, the below elaborated
W
Wanpeng Li 已提交
1099
	 * code makes use of task_ratelimit to filter out singular points and
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
	 * limit the step size.
	 *
	 * The below code essentially only uses the relative value of
	 *
	 *	task_ratelimit - dirty_ratelimit
	 *	= (pos_ratio - 1) * dirty_ratelimit
	 *
	 * which reflects the direction and size of dirty position error.
	 */

	/*
	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
	 * task_ratelimit is on the same side of dirty_ratelimit, too.
	 * For example, when
	 * - dirty_ratelimit > balanced_dirty_ratelimit
	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
	 * lowering dirty_ratelimit will help meet both the position and rate
	 * control targets. Otherwise, don't update dirty_ratelimit if it will
	 * only help meet the rate target. After all, what the users ultimately
	 * feel and care are stable dirty rate and small position error.
	 *
	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
W
Wanpeng Li 已提交
1122
	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1123 1124 1125 1126 1127
	 * keeps jumping around randomly and can even leap far away at times
	 * due to the small 200ms estimation period of dirty_rate (we want to
	 * keep that period small to reduce time lags).
	 */
	step = 0;
1128 1129

	/*
1130
	 * For strictlimit case, calculations above were based on wb counters
1131
	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1132
	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1133 1134
	 * Hence, to calculate "step" properly, we have to use wb_dirty as
	 * "dirty" and wb_setpoint as "setpoint".
1135
	 *
1136 1137
	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
	 * it's possible that wb_thresh is close to zero due to inactivity
1138
	 * of backing device.
1139
	 */
1140
	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1141 1142 1143
		dirty = dtc->wb_dirty;
		if (dtc->wb_dirty < 8)
			setpoint = dtc->wb_dirty + 1;
1144
		else
1145
			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1146 1147
	}

1148
	if (dirty < setpoint) {
1149
		x = min3(wb->balanced_dirty_ratelimit,
1150
			 balanced_dirty_ratelimit, task_ratelimit);
1151 1152 1153
		if (dirty_ratelimit < x)
			step = x - dirty_ratelimit;
	} else {
1154
		x = max3(wb->balanced_dirty_ratelimit,
1155
			 balanced_dirty_ratelimit, task_ratelimit);
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
		if (dirty_ratelimit > x)
			step = dirty_ratelimit - x;
	}

	/*
	 * Don't pursue 100% rate matching. It's impossible since the balanced
	 * rate itself is constantly fluctuating. So decrease the track speed
	 * when it gets close to the target. Helps eliminate pointless tremors.
	 */
	step >>= dirty_ratelimit / (2 * step + 1);
	/*
	 * Limit the tracking speed to avoid overshooting.
	 */
	step = (step + 7) / 8;

	if (dirty_ratelimit < balanced_dirty_ratelimit)
		dirty_ratelimit += step;
	else
		dirty_ratelimit -= step;

1176 1177
	wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1178

1179
	trace_bdi_dirty_ratelimit(wb->bdi, dirty_rate, task_ratelimit);
W
Wu Fengguang 已提交
1180 1181
}

1182
static void __wb_update_bandwidth(struct dirty_throttle_control *dtc,
1183 1184
				  unsigned long start_time,
				  bool update_ratelimit)
1185
{
1186
	struct bdi_writeback *wb = dtc->wb;
1187
	unsigned long now = jiffies;
1188
	unsigned long elapsed = now - wb->bw_time_stamp;
W
Wu Fengguang 已提交
1189
	unsigned long dirtied;
1190 1191
	unsigned long written;

1192 1193
	lockdep_assert_held(&wb->list_lock);

1194 1195 1196 1197 1198 1199
	/*
	 * rate-limit, only update once every 200ms.
	 */
	if (elapsed < BANDWIDTH_INTERVAL)
		return;

1200 1201
	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1202 1203 1204 1205 1206

	/*
	 * Skip quiet periods when disk bandwidth is under-utilized.
	 * (at least 1s idle time between two flusher runs)
	 */
1207
	if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1208 1209
		goto snapshot;

1210
	if (update_ratelimit) {
1211
		domain_update_bandwidth(dtc, now);
1212
		wb_update_dirty_ratelimit(dtc, dirtied, elapsed);
W
Wu Fengguang 已提交
1213
	}
1214
	wb_update_write_bandwidth(wb, elapsed, written);
1215 1216

snapshot:
1217 1218 1219
	wb->dirtied_stamp = dirtied;
	wb->written_stamp = written;
	wb->bw_time_stamp = now;
1220 1221
}

1222
void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1223
{
1224 1225 1226
	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };

	__wb_update_bandwidth(&gdtc, start_time, false);
1227 1228
}

1229
/*
1230
 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
 * will look to see if it needs to start dirty throttling.
 *
 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
 * global_page_state() too often. So scale it near-sqrt to the safety margin
 * (the number of pages we may dirty without exceeding the dirty limits).
 */
static unsigned long dirty_poll_interval(unsigned long dirty,
					 unsigned long thresh)
{
	if (thresh > dirty)
		return 1UL << (ilog2(thresh - dirty) >> 1);

	return 1;
}

1246
static unsigned long wb_max_pause(struct bdi_writeback *wb,
1247
				  unsigned long wb_dirty)
1248
{
1249
	unsigned long bw = wb->avg_write_bandwidth;
1250
	unsigned long t;
1251

1252 1253 1254 1255 1256 1257 1258
	/*
	 * Limit pause time for small memory systems. If sleeping for too long
	 * time, a small pool of dirty/writeback pages may go empty and disk go
	 * idle.
	 *
	 * 8 serves as the safety ratio.
	 */
1259
	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1260 1261
	t++;

1262
	return min_t(unsigned long, t, MAX_PAUSE);
1263 1264
}

1265 1266 1267 1268 1269
static long wb_min_pause(struct bdi_writeback *wb,
			 long max_pause,
			 unsigned long task_ratelimit,
			 unsigned long dirty_ratelimit,
			 int *nr_dirtied_pause)
1270
{
1271 1272
	long hi = ilog2(wb->avg_write_bandwidth);
	long lo = ilog2(wb->dirty_ratelimit);
1273 1274 1275
	long t;		/* target pause */
	long pause;	/* estimated next pause */
	int pages;	/* target nr_dirtied_pause */
1276

1277 1278
	/* target for 10ms pause on 1-dd case */
	t = max(1, HZ / 100);
1279 1280 1281 1282 1283

	/*
	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
	 * overheads.
	 *
1284
	 * (N * 10ms) on 2^N concurrent tasks.
1285 1286
	 */
	if (hi > lo)
1287
		t += (hi - lo) * (10 * HZ) / 1024;
1288 1289

	/*
1290 1291 1292 1293 1294 1295 1296 1297
	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
	 * on the much more stable dirty_ratelimit. However the next pause time
	 * will be computed based on task_ratelimit and the two rate limits may
	 * depart considerably at some time. Especially if task_ratelimit goes
	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
	 * result task_ratelimit won't be executed faithfully, which could
	 * eventually bring down dirty_ratelimit.
1298
	 *
1299 1300 1301 1302 1303 1304 1305
	 * We apply two rules to fix it up:
	 * 1) try to estimate the next pause time and if necessary, use a lower
	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
	 * 2) limit the target pause time to max_pause/2, so that the normal
	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1306
	 */
1307 1308
	t = min(t, 1 + max_pause / 2);
	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1309 1310

	/*
1311 1312 1313 1314 1315 1316
	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
	 * When the 16 consecutive reads are often interrupted by some dirty
	 * throttling pause during the async writes, cfq will go into idles
	 * (deadline is fine). So push nr_dirtied_pause as high as possible
	 * until reaches DIRTY_POLL_THRESH=32 pages.
1317
	 */
1318 1319 1320 1321 1322 1323 1324 1325 1326
	if (pages < DIRTY_POLL_THRESH) {
		t = max_pause;
		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
		if (pages > DIRTY_POLL_THRESH) {
			pages = DIRTY_POLL_THRESH;
			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
		}
	}

1327 1328 1329 1330 1331
	pause = HZ * pages / (task_ratelimit + 1);
	if (pause > max_pause) {
		t = max_pause;
		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
	}
1332

1333
	*nr_dirtied_pause = pages;
1334
	/*
1335
	 * The minimal pause time will normally be half the target pause time.
1336
	 */
1337
	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1338 1339
}

1340
static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1341
{
1342
	struct bdi_writeback *wb = dtc->wb;
1343
	unsigned long wb_reclaimable;
1344 1345

	/*
1346
	 * wb_thresh is not treated as some limiting factor as
1347
	 * dirty_thresh, due to reasons
1348
	 * - in JBOD setup, wb_thresh can fluctuate a lot
1349
	 * - in a system with HDD and USB key, the USB key may somehow
1350 1351
	 *   go into state (wb_dirty >> wb_thresh) either because
	 *   wb_dirty starts high, or because wb_thresh drops low.
1352
	 *   In this case we don't want to hard throttle the USB key
1353 1354
	 *   dirtiers for 100 seconds until wb_dirty drops under
	 *   wb_thresh. Instead the auxiliary wb control line in
1355
	 *   wb_position_ratio() will let the dirtier task progress
1356
	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1357
	 */
1358
	dtc->wb_thresh = __wb_calc_thresh(dtc);
1359 1360
	dtc->wb_bg_thresh = dtc->thresh ?
		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371

	/*
	 * In order to avoid the stacked BDI deadlock we need
	 * to ensure we accurately count the 'dirty' pages when
	 * the threshold is low.
	 *
	 * Otherwise it would be possible to get thresh+n pages
	 * reported dirty, even though there are thresh-m pages
	 * actually dirty; with m+n sitting in the percpu
	 * deltas.
	 */
1372
	if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1373
		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1374
		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1375
	} else {
1376
		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1377
		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1378 1379 1380
	}
}

L
Linus Torvalds 已提交
1381 1382 1383
/*
 * balance_dirty_pages() must be called by processes which are generating dirty
 * data.  It looks at the number of dirty pages in the machine and will force
1384
 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1385 1386
 * If we're over `background_thresh' then the writeback threads are woken to
 * perform some writeout.
L
Linus Torvalds 已提交
1387
 */
1388
static void balance_dirty_pages(struct address_space *mapping,
1389
				struct bdi_writeback *wb,
1390
				unsigned long pages_dirtied)
L
Linus Torvalds 已提交
1391
{
1392 1393
	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1394
	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1395
	long period;
1396 1397 1398 1399
	long pause;
	long max_pause;
	long min_pause;
	int nr_dirtied_pause;
1400
	bool dirty_exceeded = false;
1401
	unsigned long task_ratelimit;
1402
	unsigned long dirty_ratelimit;
1403
	struct backing_dev_info *bdi = wb->bdi;
1404
	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1405
	unsigned long start_time = jiffies;
L
Linus Torvalds 已提交
1406 1407

	for (;;) {
1408
		unsigned long now = jiffies;
1409
		unsigned long dirty, thresh, bg_thresh;
1410

1411 1412 1413 1414 1415 1416
		/*
		 * Unstable writes are a feature of certain networked
		 * filesystems (i.e. NFS) in which data may have been
		 * written to the server's write cache, but has not yet
		 * been flushed to permanent storage.
		 */
1417 1418
		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
					global_page_state(NR_UNSTABLE_NFS);
1419
		gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1420

1421
		global_dirty_limits(&gdtc->bg_thresh, &gdtc->thresh);
1422

1423
		if (unlikely(strictlimit)) {
1424
			wb_dirty_limits(gdtc);
1425

1426 1427
			dirty = gdtc->wb_dirty;
			thresh = gdtc->wb_thresh;
1428
			bg_thresh = gdtc->wb_bg_thresh;
1429
		} else {
1430 1431 1432
			dirty = gdtc->dirty;
			thresh = gdtc->thresh;
			bg_thresh = gdtc->bg_thresh;
1433 1434
		}

1435 1436 1437
		/*
		 * Throttle it only when the background writeback cannot
		 * catch-up. This avoids (excessively) small writeouts
1438
		 * when the wb limits are ramping up in case of !strictlimit.
1439
		 *
1440 1441
		 * In strictlimit case make decision based on the wb counters
		 * and limits. Small writeouts when the wb limits are ramping
1442
		 * up are the price we consciously pay for strictlimit-ing.
1443
		 */
1444
		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) {
1445 1446
			current->dirty_paused_when = now;
			current->nr_dirtied = 0;
1447
			current->nr_dirtied_pause =
1448
				dirty_poll_interval(dirty, thresh);
1449
			break;
1450
		}
1451

1452
		if (unlikely(!writeback_in_progress(wb)))
1453
			wb_start_background_writeback(wb);
1454

1455
		if (!strictlimit)
1456
			wb_dirty_limits(gdtc);
1457

1458 1459
		dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
			((gdtc->dirty > gdtc->thresh) || strictlimit);
1460 1461 1462

		wb_position_ratio(gdtc);

1463 1464
		if (dirty_exceeded && !wb->dirty_exceeded)
			wb->dirty_exceeded = 1;
L
Linus Torvalds 已提交
1465

1466 1467 1468
		if (time_is_before_jiffies(wb->bw_time_stamp +
					   BANDWIDTH_INTERVAL)) {
			spin_lock(&wb->list_lock);
1469
			__wb_update_bandwidth(gdtc, start_time, true);
1470 1471
			spin_unlock(&wb->list_lock);
		}
1472

1473
		dirty_ratelimit = wb->dirty_ratelimit;
1474
		task_ratelimit = ((u64)dirty_ratelimit * gdtc->pos_ratio) >>
1475
							RATELIMIT_CALC_SHIFT;
1476
		max_pause = wb_max_pause(wb, gdtc->wb_dirty);
1477 1478 1479
		min_pause = wb_min_pause(wb, max_pause,
					 task_ratelimit, dirty_ratelimit,
					 &nr_dirtied_pause);
1480

1481
		if (unlikely(task_ratelimit == 0)) {
1482
			period = max_pause;
1483
			pause = max_pause;
1484
			goto pause;
P
Peter Zijlstra 已提交
1485
		}
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
		period = HZ * pages_dirtied / task_ratelimit;
		pause = period;
		if (current->dirty_paused_when)
			pause -= now - current->dirty_paused_when;
		/*
		 * For less than 1s think time (ext3/4 may block the dirtier
		 * for up to 800ms from time to time on 1-HDD; so does xfs,
		 * however at much less frequency), try to compensate it in
		 * future periods by updating the virtual time; otherwise just
		 * do a reset, as it may be a light dirtier.
		 */
1497
		if (pause < min_pause) {
1498
			trace_balance_dirty_pages(bdi,
1499 1500 1501 1502 1503
						  gdtc->thresh,
						  gdtc->bg_thresh,
						  gdtc->dirty,
						  gdtc->wb_thresh,
						  gdtc->wb_dirty,
1504 1505 1506
						  dirty_ratelimit,
						  task_ratelimit,
						  pages_dirtied,
1507
						  period,
1508
						  min(pause, 0L),
1509
						  start_time);
1510 1511 1512 1513 1514 1515
			if (pause < -HZ) {
				current->dirty_paused_when = now;
				current->nr_dirtied = 0;
			} else if (period) {
				current->dirty_paused_when += period;
				current->nr_dirtied = 0;
1516 1517
			} else if (current->nr_dirtied_pause <= pages_dirtied)
				current->nr_dirtied_pause += pages_dirtied;
W
Wu Fengguang 已提交
1518
			break;
P
Peter Zijlstra 已提交
1519
		}
1520 1521 1522 1523 1524
		if (unlikely(pause > max_pause)) {
			/* for occasional dropped task_ratelimit */
			now += min(pause - max_pause, max_pause);
			pause = max_pause;
		}
1525 1526

pause:
1527
		trace_balance_dirty_pages(bdi,
1528 1529 1530 1531 1532
					  gdtc->thresh,
					  gdtc->bg_thresh,
					  gdtc->dirty,
					  gdtc->wb_thresh,
					  gdtc->wb_dirty,
1533 1534 1535
					  dirty_ratelimit,
					  task_ratelimit,
					  pages_dirtied,
1536
					  period,
1537 1538
					  pause,
					  start_time);
1539
		__set_current_state(TASK_KILLABLE);
1540
		io_schedule_timeout(pause);
1541

1542 1543
		current->dirty_paused_when = now + pause;
		current->nr_dirtied = 0;
1544
		current->nr_dirtied_pause = nr_dirtied_pause;
1545

1546
		/*
1547 1548
		 * This is typically equal to (dirty < thresh) and can also
		 * keep "1000+ dd on a slow USB stick" under control.
1549
		 */
1550
		if (task_ratelimit)
1551
			break;
1552

1553 1554
		/*
		 * In the case of an unresponding NFS server and the NFS dirty
1555
		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1556 1557 1558 1559
		 * to go through, so that tasks on them still remain responsive.
		 *
		 * In theory 1 page is enough to keep the comsumer-producer
		 * pipe going: the flusher cleans 1 page => the task dirties 1
1560
		 * more page. However wb_dirty has accounting errors.  So use
1561
		 * the larger and more IO friendly wb_stat_error.
1562
		 */
1563
		if (gdtc->wb_dirty <= wb_stat_error(wb))
1564 1565
			break;

1566 1567
		if (fatal_signal_pending(current))
			break;
L
Linus Torvalds 已提交
1568 1569
	}

1570 1571
	if (!dirty_exceeded && wb->dirty_exceeded)
		wb->dirty_exceeded = 0;
L
Linus Torvalds 已提交
1572

1573
	if (writeback_in_progress(wb))
1574
		return;
L
Linus Torvalds 已提交
1575 1576 1577 1578 1579 1580 1581 1582 1583

	/*
	 * In laptop mode, we wait until hitting the higher threshold before
	 * starting background writeout, and then write out all the way down
	 * to the lower threshold.  So slow writers cause minimal disk activity.
	 *
	 * In normal mode, we start background writeout at the lower
	 * background_thresh, to keep the amount of dirty memory low.
	 */
1584 1585 1586
	if (laptop_mode)
		return;

1587
	if (nr_reclaimable > gdtc->bg_thresh)
1588
		wb_start_background_writeback(wb);
L
Linus Torvalds 已提交
1589 1590
}

1591
static DEFINE_PER_CPU(int, bdp_ratelimits);
1592

1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
/*
 * Normal tasks are throttled by
 *	loop {
 *		dirty tsk->nr_dirtied_pause pages;
 *		take a snap in balance_dirty_pages();
 *	}
 * However there is a worst case. If every task exit immediately when dirtied
 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
 * called to throttle the page dirties. The solution is to save the not yet
 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
 * randomly into the running tasks. This works well for the above worst case,
 * as the new task will pick up and accumulate the old task's leaked dirty
 * count and eventually get throttled.
 */
DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;

L
Linus Torvalds 已提交
1609
/**
1610
 * balance_dirty_pages_ratelimited - balance dirty memory state
1611
 * @mapping: address_space which was dirtied
L
Linus Torvalds 已提交
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
 *
 * Processes which are dirtying memory should call in here once for each page
 * which was newly dirtied.  The function will periodically check the system's
 * dirty state and will initiate writeback if needed.
 *
 * On really big machines, get_writeback_state is expensive, so try to avoid
 * calling it too often (ratelimiting).  But once we're over the dirty memory
 * limit we decrease the ratelimiting by a lot, to prevent individual processes
 * from overshooting the limit by (ratelimit_pages) each.
 */
1622
void balance_dirty_pages_ratelimited(struct address_space *mapping)
L
Linus Torvalds 已提交
1623
{
1624 1625 1626
	struct inode *inode = mapping->host;
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct bdi_writeback *wb = NULL;
1627 1628
	int ratelimit;
	int *p;
L
Linus Torvalds 已提交
1629

1630 1631 1632
	if (!bdi_cap_account_dirty(bdi))
		return;

1633 1634 1635 1636 1637
	if (inode_cgwb_enabled(inode))
		wb = wb_get_create_current(bdi, GFP_KERNEL);
	if (!wb)
		wb = &bdi->wb;

1638
	ratelimit = current->nr_dirtied_pause;
1639
	if (wb->dirty_exceeded)
1640 1641 1642
		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));

	preempt_disable();
L
Linus Torvalds 已提交
1643
	/*
1644 1645 1646 1647
	 * This prevents one CPU to accumulate too many dirtied pages without
	 * calling into balance_dirty_pages(), which can happen when there are
	 * 1000+ tasks, all of them start dirtying pages at exactly the same
	 * time, hence all honoured too large initial task->nr_dirtied_pause.
L
Linus Torvalds 已提交
1648
	 */
1649
	p =  this_cpu_ptr(&bdp_ratelimits);
1650
	if (unlikely(current->nr_dirtied >= ratelimit))
1651
		*p = 0;
1652 1653 1654
	else if (unlikely(*p >= ratelimit_pages)) {
		*p = 0;
		ratelimit = 0;
L
Linus Torvalds 已提交
1655
	}
1656 1657 1658 1659 1660
	/*
	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
	 * the dirty throttling and livelock other long-run dirtiers.
	 */
1661
	p = this_cpu_ptr(&dirty_throttle_leaks);
1662
	if (*p > 0 && current->nr_dirtied < ratelimit) {
1663
		unsigned long nr_pages_dirtied;
1664 1665 1666
		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
		*p -= nr_pages_dirtied;
		current->nr_dirtied += nr_pages_dirtied;
L
Linus Torvalds 已提交
1667
	}
1668
	preempt_enable();
1669 1670

	if (unlikely(current->nr_dirtied >= ratelimit))
1671 1672 1673
		balance_dirty_pages(mapping, wb, current->nr_dirtied);

	wb_put(wb);
L
Linus Torvalds 已提交
1674
}
1675
EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
L
Linus Torvalds 已提交
1676

1677
void throttle_vm_writeout(gfp_t gfp_mask)
L
Linus Torvalds 已提交
1678
{
1679 1680
	unsigned long background_thresh;
	unsigned long dirty_thresh;
L
Linus Torvalds 已提交
1681 1682

        for ( ; ; ) {
1683
		global_dirty_limits(&background_thresh, &dirty_thresh);
1684
		dirty_thresh = hard_dirty_limit(dirty_thresh);
L
Linus Torvalds 已提交
1685 1686 1687 1688 1689 1690 1691

                /*
                 * Boost the allowable dirty threshold a bit for page
                 * allocators so they don't get DoS'ed by heavy writers
                 */
                dirty_thresh += dirty_thresh / 10;      /* wheeee... */

1692 1693 1694
                if (global_page_state(NR_UNSTABLE_NFS) +
			global_page_state(NR_WRITEBACK) <= dirty_thresh)
                        	break;
1695
                congestion_wait(BLK_RW_ASYNC, HZ/10);
1696 1697 1698 1699 1700 1701 1702 1703

		/*
		 * The caller might hold locks which can prevent IO completion
		 * or progress in the filesystem.  So we cannot just sit here
		 * waiting for IO to complete.
		 */
		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
			break;
L
Linus Torvalds 已提交
1704 1705 1706 1707 1708 1709
        }
}

/*
 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
 */
1710
int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1711
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
1712
{
1713
	proc_dointvec(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
1714 1715 1716
	return 0;
}

1717
#ifdef CONFIG_BLOCK
1718
void laptop_mode_timer_fn(unsigned long data)
L
Linus Torvalds 已提交
1719
{
1720 1721 1722
	struct request_queue *q = (struct request_queue *)data;
	int nr_pages = global_page_state(NR_FILE_DIRTY) +
		global_page_state(NR_UNSTABLE_NFS);
1723 1724
	struct bdi_writeback *wb;
	struct wb_iter iter;
L
Linus Torvalds 已提交
1725

1726 1727 1728 1729
	/*
	 * We want to write everything out, not just down to the dirty
	 * threshold
	 */
1730 1731 1732 1733 1734 1735 1736
	if (!bdi_has_dirty_io(&q->backing_dev_info))
		return;

	bdi_for_each_wb(wb, &q->backing_dev_info, &iter, 0)
		if (wb_has_dirty_io(wb))
			wb_start_writeback(wb, nr_pages, true,
					   WB_REASON_LAPTOP_TIMER);
L
Linus Torvalds 已提交
1737 1738 1739 1740 1741 1742 1743
}

/*
 * We've spun up the disk and we're in laptop mode: schedule writeback
 * of all dirty data a few seconds from now.  If the flush is already scheduled
 * then push it back - the user is still using the disk.
 */
1744
void laptop_io_completion(struct backing_dev_info *info)
L
Linus Torvalds 已提交
1745
{
1746
	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
L
Linus Torvalds 已提交
1747 1748 1749 1750 1751 1752 1753 1754 1755
}

/*
 * We're in laptop mode and we've just synced. The sync's writes will have
 * caused another writeback to be scheduled by laptop_io_completion.
 * Nothing needs to be written back anymore, so we unschedule the writeback.
 */
void laptop_sync_completion(void)
{
1756 1757 1758 1759 1760 1761 1762 1763
	struct backing_dev_info *bdi;

	rcu_read_lock();

	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
		del_timer(&bdi->laptop_mode_wb_timer);

	rcu_read_unlock();
L
Linus Torvalds 已提交
1764
}
1765
#endif
L
Linus Torvalds 已提交
1766 1767 1768 1769 1770 1771 1772 1773 1774

/*
 * If ratelimit_pages is too high then we can get into dirty-data overload
 * if a large number of processes all perform writes at the same time.
 * If it is too low then SMP machines will call the (expensive)
 * get_writeback_state too often.
 *
 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1775
 * thresholds.
L
Linus Torvalds 已提交
1776 1777
 */

1778
void writeback_set_ratelimit(void)
L
Linus Torvalds 已提交
1779
{
1780
	struct wb_domain *dom = &global_wb_domain;
1781 1782
	unsigned long background_thresh;
	unsigned long dirty_thresh;
1783

1784
	global_dirty_limits(&background_thresh, &dirty_thresh);
1785
	dom->dirty_limit = dirty_thresh;
1786
	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
L
Linus Torvalds 已提交
1787 1788 1789 1790
	if (ratelimit_pages < 16)
		ratelimit_pages = 16;
}

1791
static int
1792 1793
ratelimit_handler(struct notifier_block *self, unsigned long action,
		  void *hcpu)
L
Linus Torvalds 已提交
1794
{
1795 1796 1797 1798 1799 1800 1801 1802 1803

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
	case CPU_DEAD:
		writeback_set_ratelimit();
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
L
Linus Torvalds 已提交
1804 1805
}

1806
static struct notifier_block ratelimit_nb = {
L
Linus Torvalds 已提交
1807 1808 1809 1810 1811
	.notifier_call	= ratelimit_handler,
	.next		= NULL,
};

/*
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
 * Called early on to tune the page writeback dirty limits.
 *
 * We used to scale dirty pages according to how total memory
 * related to pages that could be allocated for buffers (by
 * comparing nr_free_buffer_pages() to vm_total_pages.
 *
 * However, that was when we used "dirty_ratio" to scale with
 * all memory, and we don't do that any more. "dirty_ratio"
 * is now applied to total non-HIGHPAGE memory (by subtracting
 * totalhigh_pages from vm_total_pages), and as such we can't
 * get into the old insane situation any more where we had
 * large amounts of dirty pages compared to a small amount of
 * non-HIGHMEM memory.
 *
 * But we might still want to scale the dirty_ratio by how
 * much memory the box has..
L
Linus Torvalds 已提交
1828 1829 1830
 */
void __init page_writeback_init(void)
{
1831
	writeback_set_ratelimit();
L
Linus Torvalds 已提交
1832
	register_cpu_notifier(&ratelimit_nb);
P
Peter Zijlstra 已提交
1833

T
Tejun Heo 已提交
1834
	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
L
Linus Torvalds 已提交
1835 1836
}

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
/**
 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
 * @mapping: address space structure to write
 * @start: starting page index
 * @end: ending page index (inclusive)
 *
 * This function scans the page range from @start to @end (inclusive) and tags
 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
 * that write_cache_pages (or whoever calls this function) will then use
 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
 * used to avoid livelocking of writeback by a process steadily creating new
 * dirty pages in the file (thus it is important for this function to be quick
 * so that it can tag pages faster than a dirtying process can create them).
 */
/*
 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
 */
void tag_pages_for_writeback(struct address_space *mapping,
			     pgoff_t start, pgoff_t end)
{
R
Randy Dunlap 已提交
1857
#define WRITEBACK_TAG_BATCH 4096
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
	unsigned long tagged;

	do {
		spin_lock_irq(&mapping->tree_lock);
		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
				&start, end, WRITEBACK_TAG_BATCH,
				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
		spin_unlock_irq(&mapping->tree_lock);
		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
		cond_resched();
1868 1869
		/* We check 'start' to handle wrapping when end == ~0UL */
	} while (tagged >= WRITEBACK_TAG_BATCH && start);
1870 1871 1872
}
EXPORT_SYMBOL(tag_pages_for_writeback);

1873
/**
1874
 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1875 1876
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1877 1878
 * @writepage: function called for each page
 * @data: data passed to writepage function
1879
 *
1880
 * If a page is already under I/O, write_cache_pages() skips it, even
1881 1882 1883 1884 1885 1886
 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 * and msync() need to guarantee that all the data which was dirty at the time
 * the call was made get new I/O started against them.  If wbc->sync_mode is
 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 * existing IO to complete.
1887 1888 1889 1890 1891 1892 1893
 *
 * To avoid livelocks (when other process dirties new pages), we first tag
 * pages which should be written back with TOWRITE tag and only then start
 * writing them. For data-integrity sync we have to be careful so that we do
 * not miss some pages (e.g., because some other process has cleared TOWRITE
 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
 * by the process clearing the DIRTY tag (and submitting the page for IO).
1894
 */
1895 1896 1897
int write_cache_pages(struct address_space *mapping,
		      struct writeback_control *wbc, writepage_t writepage,
		      void *data)
1898 1899 1900 1901 1902
{
	int ret = 0;
	int done = 0;
	struct pagevec pvec;
	int nr_pages;
N
Nick Piggin 已提交
1903
	pgoff_t uninitialized_var(writeback_index);
1904 1905
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
1906
	pgoff_t done_index;
N
Nick Piggin 已提交
1907
	int cycled;
1908
	int range_whole = 0;
1909
	int tag;
1910 1911 1912

	pagevec_init(&pvec, 0);
	if (wbc->range_cyclic) {
N
Nick Piggin 已提交
1913 1914 1915 1916 1917 1918
		writeback_index = mapping->writeback_index; /* prev offset */
		index = writeback_index;
		if (index == 0)
			cycled = 1;
		else
			cycled = 0;
1919 1920 1921 1922 1923 1924
		end = -1;
	} else {
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
			range_whole = 1;
N
Nick Piggin 已提交
1925
		cycled = 1; /* ignore range_cyclic tests */
1926
	}
1927
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1928 1929 1930
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
1931
retry:
1932
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1933
		tag_pages_for_writeback(mapping, index, end);
1934
	done_index = index;
N
Nick Piggin 已提交
1935 1936 1937
	while (!done && (index <= end)) {
		int i;

1938
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
N
Nick Piggin 已提交
1939 1940 1941
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
			break;
1942 1943 1944 1945 1946

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
1947 1948 1949 1950 1951
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
1952
			 */
1953 1954 1955 1956 1957 1958 1959 1960 1961
			if (page->index > end) {
				/*
				 * can't be range_cyclic (1st pass) because
				 * end == -1 in that case.
				 */
				done = 1;
				break;
			}

1962
			done_index = page->index;
1963

1964 1965
			lock_page(page);

N
Nick Piggin 已提交
1966 1967 1968 1969 1970 1971 1972 1973
			/*
			 * Page truncated or invalidated. We can freely skip it
			 * then, even for data integrity operations: the page
			 * has disappeared concurrently, so there could be no
			 * real expectation of this data interity operation
			 * even if there is now a new, dirty page at the same
			 * pagecache address.
			 */
1974
			if (unlikely(page->mapping != mapping)) {
N
Nick Piggin 已提交
1975
continue_unlock:
1976 1977 1978 1979
				unlock_page(page);
				continue;
			}

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
			if (!PageDirty(page)) {
				/* someone wrote it for us */
				goto continue_unlock;
			}

			if (PageWriteback(page)) {
				if (wbc->sync_mode != WB_SYNC_NONE)
					wait_on_page_writeback(page);
				else
					goto continue_unlock;
			}
1991

1992 1993
			BUG_ON(PageWriteback(page));
			if (!clear_page_dirty_for_io(page))
N
Nick Piggin 已提交
1994
				goto continue_unlock;
1995

1996
			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
1997
			ret = (*writepage)(page, wbc, data);
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
			if (unlikely(ret)) {
				if (ret == AOP_WRITEPAGE_ACTIVATE) {
					unlock_page(page);
					ret = 0;
				} else {
					/*
					 * done_index is set past this page,
					 * so media errors will not choke
					 * background writeout for the entire
					 * file. This has consequences for
					 * range_cyclic semantics (ie. it may
					 * not be suitable for data integrity
					 * writeout).
					 */
2012
					done_index = page->index + 1;
2013 2014 2015
					done = 1;
					break;
				}
2016
			}
2017

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
			/*
			 * We stop writing back only if we are not doing
			 * integrity sync. In case of integrity sync we have to
			 * keep going until we have written all the pages
			 * we tagged for writeback prior to entering this loop.
			 */
			if (--wbc->nr_to_write <= 0 &&
			    wbc->sync_mode == WB_SYNC_NONE) {
				done = 1;
				break;
2028
			}
2029 2030 2031 2032
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2033
	if (!cycled && !done) {
2034
		/*
N
Nick Piggin 已提交
2035
		 * range_cyclic:
2036 2037 2038
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
N
Nick Piggin 已提交
2039
		cycled = 1;
2040
		index = 0;
N
Nick Piggin 已提交
2041
		end = writeback_index - 1;
2042 2043
		goto retry;
	}
2044 2045
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		mapping->writeback_index = done_index;
2046

2047 2048
	return ret;
}
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
EXPORT_SYMBOL(write_cache_pages);

/*
 * Function used by generic_writepages to call the real writepage
 * function and set the mapping flags on error
 */
static int __writepage(struct page *page, struct writeback_control *wbc,
		       void *data)
{
	struct address_space *mapping = data;
	int ret = mapping->a_ops->writepage(page, wbc);
	mapping_set_error(mapping, ret);
	return ret;
}

/**
 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 *
 * This is a library function, which implements the writepages()
 * address_space_operation.
 */
int generic_writepages(struct address_space *mapping,
		       struct writeback_control *wbc)
{
2075 2076 2077
	struct blk_plug plug;
	int ret;

2078 2079 2080 2081
	/* deal with chardevs and other special file */
	if (!mapping->a_ops->writepage)
		return 0;

2082 2083 2084 2085
	blk_start_plug(&plug);
	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
	blk_finish_plug(&plug);
	return ret;
2086
}
2087 2088 2089

EXPORT_SYMBOL(generic_writepages);

L
Linus Torvalds 已提交
2090 2091
int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
{
2092 2093
	int ret;

L
Linus Torvalds 已提交
2094 2095 2096
	if (wbc->nr_to_write <= 0)
		return 0;
	if (mapping->a_ops->writepages)
2097
		ret = mapping->a_ops->writepages(mapping, wbc);
2098 2099 2100
	else
		ret = generic_writepages(mapping, wbc);
	return ret;
L
Linus Torvalds 已提交
2101 2102 2103 2104
}

/**
 * write_one_page - write out a single page and optionally wait on I/O
2105 2106
 * @page: the page to write
 * @wait: if true, wait on writeout
L
Linus Torvalds 已提交
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
 *
 * The page must be locked by the caller and will be unlocked upon return.
 *
 * write_one_page() returns a negative error code if I/O failed.
 */
int write_one_page(struct page *page, int wait)
{
	struct address_space *mapping = page->mapping;
	int ret = 0;
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_ALL,
		.nr_to_write = 1,
	};

	BUG_ON(!PageLocked(page));

	if (wait)
		wait_on_page_writeback(page);

	if (clear_page_dirty_for_io(page)) {
		page_cache_get(page);
		ret = mapping->a_ops->writepage(page, &wbc);
		if (ret == 0 && wait) {
			wait_on_page_writeback(page);
			if (PageError(page))
				ret = -EIO;
		}
		page_cache_release(page);
	} else {
		unlock_page(page);
	}
	return ret;
}
EXPORT_SYMBOL(write_one_page);

2142 2143 2144 2145 2146 2147
/*
 * For address_spaces which do not use buffers nor write back.
 */
int __set_page_dirty_no_writeback(struct page *page)
{
	if (!PageDirty(page))
2148
		return !TestSetPageDirty(page);
2149 2150 2151
	return 0;
}

2152 2153
/*
 * Helper function for set_page_dirty family.
2154 2155 2156
 *
 * Caller must hold mem_cgroup_begin_page_stat().
 *
2157 2158
 * NOTE: This relies on being atomic wrt interrupts.
 */
2159 2160
void account_page_dirtied(struct page *page, struct address_space *mapping,
			  struct mem_cgroup *memcg)
2161
{
2162 2163
	struct inode *inode = mapping->host;

T
Tejun Heo 已提交
2164 2165
	trace_writeback_dirty_page(page, mapping);

2166
	if (mapping_cap_account_dirty(mapping)) {
2167 2168 2169 2170
		struct bdi_writeback *wb;

		inode_attach_wb(inode, page);
		wb = inode_to_wb(inode);
2171

2172
		mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2173
		__inc_zone_page_state(page, NR_FILE_DIRTY);
2174
		__inc_zone_page_state(page, NR_DIRTIED);
2175 2176
		__inc_wb_stat(wb, WB_RECLAIMABLE);
		__inc_wb_stat(wb, WB_DIRTIED);
2177
		task_io_account_write(PAGE_CACHE_SIZE);
2178 2179
		current->nr_dirtied++;
		this_cpu_inc(bdp_ratelimits);
2180 2181
	}
}
M
Michael Rubin 已提交
2182
EXPORT_SYMBOL(account_page_dirtied);
2183

2184 2185
/*
 * Helper function for deaccounting dirty page without writeback.
2186 2187
 *
 * Caller must hold mem_cgroup_begin_page_stat().
2188
 */
2189 2190
void account_page_cleaned(struct page *page, struct address_space *mapping,
			  struct mem_cgroup *memcg)
2191 2192
{
	if (mapping_cap_account_dirty(mapping)) {
2193
		mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2194
		dec_zone_page_state(page, NR_FILE_DIRTY);
2195
		dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
2196 2197 2198 2199
		task_io_account_cancelled_write(PAGE_CACHE_SIZE);
	}
}

L
Linus Torvalds 已提交
2200 2201 2202 2203 2204 2205 2206 2207
/*
 * For address_spaces which do not use buffers.  Just tag the page as dirty in
 * its radix tree.
 *
 * This is also used when a single buffer is being dirtied: we want to set the
 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
 *
2208 2209 2210
 * The caller must ensure this doesn't race with truncation.  Most will simply
 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
 * the pte lock held, which also locks out truncation.
L
Linus Torvalds 已提交
2211 2212 2213
 */
int __set_page_dirty_nobuffers(struct page *page)
{
2214 2215 2216
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_begin_page_stat(page);
L
Linus Torvalds 已提交
2217 2218
	if (!TestSetPageDirty(page)) {
		struct address_space *mapping = page_mapping(page);
2219
		unsigned long flags;
L
Linus Torvalds 已提交
2220

2221 2222
		if (!mapping) {
			mem_cgroup_end_page_stat(memcg);
2223
			return 1;
2224
		}
2225

2226
		spin_lock_irqsave(&mapping->tree_lock, flags);
2227 2228
		BUG_ON(page_mapping(page) != mapping);
		WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2229
		account_page_dirtied(page, mapping, memcg);
2230 2231
		radix_tree_tag_set(&mapping->page_tree, page_index(page),
				   PAGECACHE_TAG_DIRTY);
2232
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2233 2234
		mem_cgroup_end_page_stat(memcg);

2235 2236 2237
		if (mapping->host) {
			/* !PageAnon && !swapper_space */
			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
L
Linus Torvalds 已提交
2238
		}
2239
		return 1;
L
Linus Torvalds 已提交
2240
	}
2241
	mem_cgroup_end_page_stat(memcg);
2242
	return 0;
L
Linus Torvalds 已提交
2243 2244 2245
}
EXPORT_SYMBOL(__set_page_dirty_nobuffers);

2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
/*
 * Call this whenever redirtying a page, to de-account the dirty counters
 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
 * control.
 */
void account_page_redirty(struct page *page)
{
	struct address_space *mapping = page->mapping;
2256

2257
	if (mapping && mapping_cap_account_dirty(mapping)) {
2258 2259
		struct bdi_writeback *wb = inode_to_wb(mapping->host);

2260 2261
		current->nr_dirtied--;
		dec_zone_page_state(page, NR_DIRTIED);
2262
		dec_wb_stat(wb, WB_DIRTIED);
2263 2264 2265 2266
	}
}
EXPORT_SYMBOL(account_page_redirty);

L
Linus Torvalds 已提交
2267 2268 2269 2270 2271 2272 2273
/*
 * When a writepage implementation decides that it doesn't want to write this
 * page for some reason, it should redirty the locked page via
 * redirty_page_for_writepage() and it should then unlock the page and return 0
 */
int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
{
2274 2275
	int ret;

L
Linus Torvalds 已提交
2276
	wbc->pages_skipped++;
2277
	ret = __set_page_dirty_nobuffers(page);
2278
	account_page_redirty(page);
2279
	return ret;
L
Linus Torvalds 已提交
2280 2281 2282 2283
}
EXPORT_SYMBOL(redirty_page_for_writepage);

/*
2284 2285 2286 2287 2288 2289 2290
 * Dirty a page.
 *
 * For pages with a mapping this should be done under the page lock
 * for the benefit of asynchronous memory errors who prefer a consistent
 * dirty state. This rule can be broken in some special cases,
 * but should be better not to.
 *
L
Linus Torvalds 已提交
2291 2292 2293
 * If the mapping doesn't provide a set_page_dirty a_op, then
 * just fall through and assume that it wants buffer_heads.
 */
N
Nick Piggin 已提交
2294
int set_page_dirty(struct page *page)
L
Linus Torvalds 已提交
2295 2296 2297 2298 2299
{
	struct address_space *mapping = page_mapping(page);

	if (likely(mapping)) {
		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
M
Minchan Kim 已提交
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
		/*
		 * readahead/lru_deactivate_page could remain
		 * PG_readahead/PG_reclaim due to race with end_page_writeback
		 * About readahead, if the page is written, the flags would be
		 * reset. So no problem.
		 * About lru_deactivate_page, if the page is redirty, the flag
		 * will be reset. So no problem. but if the page is used by readahead
		 * it will confuse readahead and make it restart the size rampup
		 * process. But it's a trivial problem.
		 */
2310 2311
		if (PageReclaim(page))
			ClearPageReclaim(page);
2312 2313 2314 2315 2316
#ifdef CONFIG_BLOCK
		if (!spd)
			spd = __set_page_dirty_buffers;
#endif
		return (*spd)(page);
L
Linus Torvalds 已提交
2317
	}
2318 2319 2320 2321
	if (!PageDirty(page)) {
		if (!TestSetPageDirty(page))
			return 1;
	}
L
Linus Torvalds 已提交
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
	return 0;
}
EXPORT_SYMBOL(set_page_dirty);

/*
 * set_page_dirty() is racy if the caller has no reference against
 * page->mapping->host, and if the page is unlocked.  This is because another
 * CPU could truncate the page off the mapping and then free the mapping.
 *
 * Usually, the page _is_ locked, or the caller is a user-space process which
 * holds a reference on the inode by having an open file.
 *
 * In other cases, the page should be locked before running set_page_dirty().
 */
int set_page_dirty_lock(struct page *page)
{
	int ret;

J
Jens Axboe 已提交
2340
	lock_page(page);
L
Linus Torvalds 已提交
2341 2342 2343 2344 2345 2346
	ret = set_page_dirty(page);
	unlock_page(page);
	return ret;
}
EXPORT_SYMBOL(set_page_dirty_lock);

2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
/*
 * This cancels just the dirty bit on the kernel page itself, it does NOT
 * actually remove dirty bits on any mmap's that may be around. It also
 * leaves the page tagged dirty, so any sync activity will still find it on
 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
 * look at the dirty bits in the VM.
 *
 * Doing this should *normally* only ever be done when a page is truncated,
 * and is not actually mapped anywhere at all. However, fs/buffer.c does
 * this when it notices that somebody has cleaned out all the buffers on a
 * page without actually doing it through the VM. Can you say "ext3 is
 * horribly ugly"? Thought you could.
 */
void cancel_dirty_page(struct page *page)
{
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
	struct address_space *mapping = page_mapping(page);

	if (mapping_cap_account_dirty(mapping)) {
		struct mem_cgroup *memcg;

		memcg = mem_cgroup_begin_page_stat(page);

		if (TestClearPageDirty(page))
			account_page_cleaned(page, mapping, memcg);

		mem_cgroup_end_page_stat(memcg);
	} else {
		ClearPageDirty(page);
	}
2376 2377 2378
}
EXPORT_SYMBOL(cancel_dirty_page);

L
Linus Torvalds 已提交
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
/*
 * Clear a page's dirty flag, while caring for dirty memory accounting.
 * Returns true if the page was previously dirty.
 *
 * This is for preparing to put the page under writeout.  We leave the page
 * tagged as dirty in the radix tree so that a concurrent write-for-sync
 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
 * implementation will run either set_page_writeback() or set_page_dirty(),
 * at which stage we bring the page's dirty flag and radix-tree dirty tag
 * back into sync.
 *
 * This incoherency between the page's dirty flag and radix-tree tag is
 * unfortunate, but it only exists while the page is locked.
 */
int clear_page_dirty_for_io(struct page *page)
{
	struct address_space *mapping = page_mapping(page);
2396 2397
	struct mem_cgroup *memcg;
	int ret = 0;
L
Linus Torvalds 已提交
2398

2399 2400
	BUG_ON(!PageLocked(page));

2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
	if (mapping && mapping_cap_account_dirty(mapping)) {
		/*
		 * Yes, Virginia, this is indeed insane.
		 *
		 * We use this sequence to make sure that
		 *  (a) we account for dirty stats properly
		 *  (b) we tell the low-level filesystem to
		 *      mark the whole page dirty if it was
		 *      dirty in a pagetable. Only to then
		 *  (c) clean the page again and return 1 to
		 *      cause the writeback.
		 *
		 * This way we avoid all nasty races with the
		 * dirty bit in multiple places and clearing
		 * them concurrently from different threads.
		 *
		 * Note! Normally the "set_page_dirty(page)"
		 * has no effect on the actual dirty bit - since
		 * that will already usually be set. But we
		 * need the side effects, and it can help us
		 * avoid races.
		 *
		 * We basically use the page "master dirty bit"
		 * as a serialization point for all the different
		 * threads doing their things.
		 */
		if (page_mkclean(page))
			set_page_dirty(page);
2429 2430 2431
		/*
		 * We carefully synchronise fault handlers against
		 * installing a dirty pte and marking the page dirty
2432 2433 2434 2435
		 * at this point.  We do this by having them hold the
		 * page lock while dirtying the page, and pages are
		 * always locked coming in here, so we get the desired
		 * exclusion.
2436
		 */
2437
		memcg = mem_cgroup_begin_page_stat(page);
2438
		if (TestClearPageDirty(page)) {
2439
			mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2440
			dec_zone_page_state(page, NR_FILE_DIRTY);
2441
			dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
2442
			ret = 1;
L
Linus Torvalds 已提交
2443
		}
2444 2445
		mem_cgroup_end_page_stat(memcg);
		return ret;
L
Linus Torvalds 已提交
2446
	}
2447
	return TestClearPageDirty(page);
L
Linus Torvalds 已提交
2448
}
2449
EXPORT_SYMBOL(clear_page_dirty_for_io);
L
Linus Torvalds 已提交
2450 2451 2452 2453

int test_clear_page_writeback(struct page *page)
{
	struct address_space *mapping = page_mapping(page);
2454 2455
	struct mem_cgroup *memcg;
	int ret;
L
Linus Torvalds 已提交
2456

2457
	memcg = mem_cgroup_begin_page_stat(page);
L
Linus Torvalds 已提交
2458
	if (mapping) {
2459 2460
		struct inode *inode = mapping->host;
		struct backing_dev_info *bdi = inode_to_bdi(inode);
L
Linus Torvalds 已提交
2461 2462
		unsigned long flags;

N
Nick Piggin 已提交
2463
		spin_lock_irqsave(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2464
		ret = TestClearPageWriteback(page);
P
Peter Zijlstra 已提交
2465
		if (ret) {
L
Linus Torvalds 已提交
2466 2467 2468
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_WRITEBACK);
2469
			if (bdi_cap_account_writeback(bdi)) {
2470 2471 2472 2473
				struct bdi_writeback *wb = inode_to_wb(inode);

				__dec_wb_stat(wb, WB_WRITEBACK);
				__wb_writeout_inc(wb);
P
Peter Zijlstra 已提交
2474
			}
P
Peter Zijlstra 已提交
2475
		}
N
Nick Piggin 已提交
2476
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2477 2478 2479
	} else {
		ret = TestClearPageWriteback(page);
	}
2480
	if (ret) {
2481
		mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2482
		dec_zone_page_state(page, NR_WRITEBACK);
2483 2484
		inc_zone_page_state(page, NR_WRITTEN);
	}
2485
	mem_cgroup_end_page_stat(memcg);
L
Linus Torvalds 已提交
2486 2487 2488
	return ret;
}

2489
int __test_set_page_writeback(struct page *page, bool keep_write)
L
Linus Torvalds 已提交
2490 2491
{
	struct address_space *mapping = page_mapping(page);
2492 2493
	struct mem_cgroup *memcg;
	int ret;
L
Linus Torvalds 已提交
2494

2495
	memcg = mem_cgroup_begin_page_stat(page);
L
Linus Torvalds 已提交
2496
	if (mapping) {
2497 2498
		struct inode *inode = mapping->host;
		struct backing_dev_info *bdi = inode_to_bdi(inode);
L
Linus Torvalds 已提交
2499 2500
		unsigned long flags;

N
Nick Piggin 已提交
2501
		spin_lock_irqsave(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2502
		ret = TestSetPageWriteback(page);
P
Peter Zijlstra 已提交
2503
		if (!ret) {
L
Linus Torvalds 已提交
2504 2505 2506
			radix_tree_tag_set(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_WRITEBACK);
2507
			if (bdi_cap_account_writeback(bdi))
2508
				__inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
P
Peter Zijlstra 已提交
2509
		}
L
Linus Torvalds 已提交
2510 2511 2512 2513
		if (!PageDirty(page))
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_DIRTY);
2514 2515 2516 2517
		if (!keep_write)
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_TOWRITE);
N
Nick Piggin 已提交
2518
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2519 2520 2521
	} else {
		ret = TestSetPageWriteback(page);
	}
2522
	if (!ret) {
2523
		mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2524 2525
		inc_zone_page_state(page, NR_WRITEBACK);
	}
2526
	mem_cgroup_end_page_stat(memcg);
L
Linus Torvalds 已提交
2527 2528 2529
	return ret;

}
2530
EXPORT_SYMBOL(__test_set_page_writeback);
L
Linus Torvalds 已提交
2531 2532

/*
N
Nick Piggin 已提交
2533
 * Return true if any of the pages in the mapping are marked with the
L
Linus Torvalds 已提交
2534 2535 2536 2537
 * passed tag.
 */
int mapping_tagged(struct address_space *mapping, int tag)
{
2538
	return radix_tree_tagged(&mapping->page_tree, tag);
L
Linus Torvalds 已提交
2539 2540
}
EXPORT_SYMBOL(mapping_tagged);
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551

/**
 * wait_for_stable_page() - wait for writeback to finish, if necessary.
 * @page:	The page to wait on.
 *
 * This function determines if the given page is related to a backing device
 * that requires page contents to be held stable during writeback.  If so, then
 * it will wait for any pending writeback to complete.
 */
void wait_for_stable_page(struct page *page)
{
2552 2553
	if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
		wait_on_page_writeback(page);
2554 2555
}
EXPORT_SYMBOL_GPL(wait_for_stable_page);