page-writeback.c 83.7 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 * mm/page-writeback.c
L
Linus Torvalds 已提交
3 4
 *
 * Copyright (C) 2002, Linus Torvalds.
5
 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
L
Linus Torvalds 已提交
6 7 8 9
 *
 * Contains functions related to writing back dirty pages at the
 * address_space level.
 *
10
 * 10Apr2002	Andrew Morton
L
Linus Torvalds 已提交
11 12 13 14
 *		Initial version
 */

#include <linux/kernel.h>
15
#include <linux/export.h>
L
Linus Torvalds 已提交
16 17 18 19 20 21 22 23 24
#include <linux/spinlock.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/writeback.h>
#include <linux/init.h>
#include <linux/backing-dev.h>
25
#include <linux/task_io_accounting_ops.h>
L
Linus Torvalds 已提交
26 27
#include <linux/blkdev.h>
#include <linux/mpage.h>
28
#include <linux/rmap.h>
L
Linus Torvalds 已提交
29 30 31 32 33 34
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/smp.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
A
Al Viro 已提交
35
#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36
#include <linux/pagevec.h>
37
#include <linux/timer.h>
38
#include <linux/sched/rt.h>
39
#include <linux/mm_inline.h>
40
#include <trace/events/writeback.h>
L
Linus Torvalds 已提交
41

42 43
#include "internal.h"

44 45 46 47 48
/*
 * Sleep at most 200ms at a time in balance_dirty_pages().
 */
#define MAX_PAUSE		max(HZ/5, 1)

49 50 51 52 53 54
/*
 * Try to keep balance_dirty_pages() call intervals higher than this many pages
 * by raising pause time to max_pause when falls below it.
 */
#define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))

55 56 57 58 59
/*
 * Estimate write bandwidth at 200ms intervals.
 */
#define BANDWIDTH_INTERVAL	max(HZ/5, 1)

W
Wu Fengguang 已提交
60 61
#define RATELIMIT_CALC_SHIFT	10

L
Linus Torvalds 已提交
62 63 64 65 66 67 68 69 70
/*
 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
 * will look to see if it needs to force writeback or throttling.
 */
static long ratelimit_pages = 32;

/* The following parameters are exported via /proc/sys/vm */

/*
71
 * Start background writeback (via writeback threads) at this percentage
L
Linus Torvalds 已提交
72
 */
73
int dirty_background_ratio = 10;
L
Linus Torvalds 已提交
74

75 76 77 78 79 80
/*
 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
 * dirty_background_ratio * the amount of dirtyable memory
 */
unsigned long dirty_background_bytes;

81 82 83 84 85 86
/*
 * free highmem will not be subtracted from the total free memory
 * for calculating free ratios if vm_highmem_is_dirtyable is true
 */
int vm_highmem_is_dirtyable;

L
Linus Torvalds 已提交
87 88 89
/*
 * The generator of dirty data starts writeback at this percentage
 */
90
int vm_dirty_ratio = 20;
L
Linus Torvalds 已提交
91

92 93 94 95 96 97
/*
 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
 * vm_dirty_ratio * the amount of dirtyable memory
 */
unsigned long vm_dirty_bytes;

L
Linus Torvalds 已提交
98
/*
99
 * The interval between `kupdate'-style writebacks
L
Linus Torvalds 已提交
100
 */
101
unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
L
Linus Torvalds 已提交
102

103 104
EXPORT_SYMBOL_GPL(dirty_writeback_interval);

L
Linus Torvalds 已提交
105
/*
106
 * The longest time for which data is allowed to remain dirty
L
Linus Torvalds 已提交
107
 */
108
unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
L
Linus Torvalds 已提交
109 110 111 112 113 114 115

/*
 * Flag that makes the machine dump writes/reads and block dirtyings.
 */
int block_dump;

/*
116 117
 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 * a full sync is triggered after this time elapses without any disk activity.
L
Linus Torvalds 已提交
118 119 120 121 122 123 124
 */
int laptop_mode;

EXPORT_SYMBOL(laptop_mode);

/* End of sysctl-exported parameters */

125
struct wb_domain global_wb_domain;
L
Linus Torvalds 已提交
126

127 128
/* consolidated parameters for balance_dirty_pages() and its subroutines */
struct dirty_throttle_control {
129 130
#ifdef CONFIG_CGROUP_WRITEBACK
	struct wb_domain	*dom;
131
	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
132
#endif
133
	struct bdi_writeback	*wb;
134
	struct fprop_local_percpu *wb_completions;
135

136
	unsigned long		avail;		/* dirtyable */
137 138 139 140 141 142
	unsigned long		dirty;		/* file_dirty + write + nfs */
	unsigned long		thresh;		/* dirty threshold */
	unsigned long		bg_thresh;	/* dirty background threshold */

	unsigned long		wb_dirty;	/* per-wb counterparts */
	unsigned long		wb_thresh;
143
	unsigned long		wb_bg_thresh;
144 145

	unsigned long		pos_ratio;
146 147
};

148 149 150 151 152 153
/*
 * Length of period for aging writeout fractions of bdis. This is an
 * arbitrarily chosen number. The longer the period, the slower fractions will
 * reflect changes in current writeout rate.
 */
#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
P
Peter Zijlstra 已提交
154

155 156
#ifdef CONFIG_CGROUP_WRITEBACK

157 158 159 160
#define GDTC_INIT(__wb)		.wb = (__wb),				\
				.dom = &global_wb_domain,		\
				.wb_completions = &(__wb)->completions

161
#define GDTC_INIT_NO_WB		.dom = &global_wb_domain
162 163 164 165 166

#define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
				.dom = mem_cgroup_wb_domain(__wb),	\
				.wb_completions = &(__wb)->memcg_completions, \
				.gdtc = __gdtc
167 168 169 170 171

static bool mdtc_valid(struct dirty_throttle_control *dtc)
{
	return dtc->dom;
}
172 173 174 175 176 177

static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
{
	return dtc->dom;
}

178 179 180 181 182
static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
{
	return mdtc->gdtc;
}

T
Tejun Heo 已提交
183 184 185 186 187
static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
{
	return &wb->memcg_completions;
}

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
static void wb_min_max_ratio(struct bdi_writeback *wb,
			     unsigned long *minp, unsigned long *maxp)
{
	unsigned long this_bw = wb->avg_write_bandwidth;
	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
	unsigned long long min = wb->bdi->min_ratio;
	unsigned long long max = wb->bdi->max_ratio;

	/*
	 * @wb may already be clean by the time control reaches here and
	 * the total may not include its bw.
	 */
	if (this_bw < tot_bw) {
		if (min) {
			min *= this_bw;
			do_div(min, tot_bw);
		}
		if (max < 100) {
			max *= this_bw;
			do_div(max, tot_bw);
		}
	}

	*minp = min;
	*maxp = max;
}

#else	/* CONFIG_CGROUP_WRITEBACK */

217 218
#define GDTC_INIT(__wb)		.wb = (__wb),                           \
				.wb_completions = &(__wb)->completions
219
#define GDTC_INIT_NO_WB
220 221 222 223 224 225
#define MDTC_INIT(__wb, __gdtc)

static bool mdtc_valid(struct dirty_throttle_control *dtc)
{
	return false;
}
226 227 228 229 230 231

static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
{
	return &global_wb_domain;
}

232 233 234 235 236
static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
{
	return NULL;
}

T
Tejun Heo 已提交
237 238 239 240 241
static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
{
	return NULL;
}

242 243 244 245 246 247 248 249 250
static void wb_min_max_ratio(struct bdi_writeback *wb,
			     unsigned long *minp, unsigned long *maxp)
{
	*minp = wb->bdi->min_ratio;
	*maxp = wb->bdi->max_ratio;
}

#endif	/* CONFIG_CGROUP_WRITEBACK */

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
/*
 * In a memory zone, there is a certain amount of pages we consider
 * available for the page cache, which is essentially the number of
 * free and reclaimable pages, minus some zone reserves to protect
 * lowmem and the ability to uphold the zone's watermarks without
 * requiring writeback.
 *
 * This number of dirtyable pages is the base value of which the
 * user-configurable dirty ratio is the effictive number of pages that
 * are allowed to be actually dirtied.  Per individual zone, or
 * globally by using the sum of dirtyable pages over all zones.
 *
 * Because the user is allowed to specify the dirty limit globally as
 * absolute number of bytes, calculating the per-zone dirty limit can
 * require translating the configured limit into a percentage of
 * global dirtyable memory first.
 */

269 270 271 272 273 274 275 276 277 278 279 280
/**
 * zone_dirtyable_memory - number of dirtyable pages in a zone
 * @zone: the zone
 *
 * Returns the zone's number of pages potentially available for dirty
 * page cache.  This is the base value for the per-zone dirty limits.
 */
static unsigned long zone_dirtyable_memory(struct zone *zone)
{
	unsigned long nr_pages;

	nr_pages = zone_page_state(zone, NR_FREE_PAGES);
281 282 283 284 285 286
	/*
	 * Pages reserved for the kernel should not be considered
	 * dirtyable, to prevent a situation where reclaim has to
	 * clean pages in order to balance the zones.
	 */
	nr_pages -= min(nr_pages, zone->totalreserve_pages);
287

288 289
	nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
	nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
290 291 292 293

	return nr_pages;
}

294 295 296 297 298
static unsigned long highmem_dirtyable_memory(unsigned long total)
{
#ifdef CONFIG_HIGHMEM
	int node;
	unsigned long x = 0;
299
	int i;
300 301

	for_each_node_state(node, N_HIGH_MEMORY) {
302 303
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *z = &NODE_DATA(node)->node_zones[i];
304

305 306 307
			if (is_highmem(z))
				x += zone_dirtyable_memory(z);
		}
308
	}
309 310 311 312 313 314 315 316 317 318 319 320
	/*
	 * Unreclaimable memory (kernel memory or anonymous memory
	 * without swap) can bring down the dirtyable pages below
	 * the zone's dirty balance reserve and the above calculation
	 * will underflow.  However we still want to add in nodes
	 * which are below threshold (negative values) to get a more
	 * accurate calculation but make sure that the total never
	 * underflows.
	 */
	if ((long)x < 0)
		x = 0;

321 322 323 324 325 326 327 328 329 330 331 332 333
	/*
	 * Make sure that the number of highmem pages is never larger
	 * than the number of the total dirtyable memory. This can only
	 * occur in very strange VM situations but we want to make sure
	 * that this does not occur.
	 */
	return min(x, total);
#else
	return 0;
#endif
}

/**
334
 * global_dirtyable_memory - number of globally dirtyable pages
335
 *
336 337
 * Returns the global number of pages potentially available for dirty
 * page cache.  This is the base value for the global dirty limits.
338
 */
339
static unsigned long global_dirtyable_memory(void)
340 341 342
{
	unsigned long x;

343
	x = global_page_state(NR_FREE_PAGES);
344 345 346 347 348 349
	/*
	 * Pages reserved for the kernel should not be considered
	 * dirtyable, to prevent a situation where reclaim has to
	 * clean pages in order to balance the zones.
	 */
	x -= min(x, totalreserve_pages);
350

351 352
	x += global_page_state(NR_INACTIVE_FILE);
	x += global_page_state(NR_ACTIVE_FILE);
353

354 355 356 357 358 359
	if (!vm_highmem_is_dirtyable)
		x -= highmem_dirtyable_memory(x);

	return x + 1;	/* Ensure that we never return 0 */
}

360 361 362
/**
 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
 * @dtc: dirty_throttle_control of interest
363
 *
364 365 366 367
 * Calculate @dtc->thresh and ->bg_thresh considering
 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
 * must ensure that @dtc->avail is set before calling this function.  The
 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
368 369
 * real-time tasks.
 */
370
static void domain_dirty_limits(struct dirty_throttle_control *dtc)
371
{
372 373 374 375 376 377 378 379
	const unsigned long available_memory = dtc->avail;
	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
	unsigned long bytes = vm_dirty_bytes;
	unsigned long bg_bytes = dirty_background_bytes;
	unsigned long ratio = vm_dirty_ratio;
	unsigned long bg_ratio = dirty_background_ratio;
	unsigned long thresh;
	unsigned long bg_thresh;
380 381
	struct task_struct *tsk;

382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
	/* gdtc is !NULL iff @dtc is for memcg domain */
	if (gdtc) {
		unsigned long global_avail = gdtc->avail;

		/*
		 * The byte settings can't be applied directly to memcg
		 * domains.  Convert them to ratios by scaling against
		 * globally available memory.
		 */
		if (bytes)
			ratio = min(DIV_ROUND_UP(bytes, PAGE_SIZE) * 100 /
				    global_avail, 100UL);
		if (bg_bytes)
			bg_ratio = min(DIV_ROUND_UP(bg_bytes, PAGE_SIZE) * 100 /
				       global_avail, 100UL);
		bytes = bg_bytes = 0;
	}

	if (bytes)
		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
402
	else
403
		thresh = (ratio * available_memory) / 100;
404

405 406
	if (bg_bytes)
		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
407
	else
408
		bg_thresh = (bg_ratio * available_memory) / 100;
409

410 411
	if (bg_thresh >= thresh)
		bg_thresh = thresh / 2;
412 413
	tsk = current;
	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
414 415
		bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
		thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
416
	}
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
	dtc->thresh = thresh;
	dtc->bg_thresh = bg_thresh;

	/* we should eventually report the domain in the TP */
	if (!gdtc)
		trace_global_dirty_state(bg_thresh, thresh);
}

/**
 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 * @pbackground: out parameter for bg_thresh
 * @pdirty: out parameter for thresh
 *
 * Calculate bg_thresh and thresh for global_wb_domain.  See
 * domain_dirty_limits() for details.
 */
void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
{
	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };

	gdtc.avail = global_dirtyable_memory();
	domain_dirty_limits(&gdtc);

	*pbackground = gdtc.bg_thresh;
	*pdirty = gdtc.thresh;
442 443
}

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
/**
 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
 * @zone: the zone
 *
 * Returns the maximum number of dirty pages allowed in a zone, based
 * on the zone's dirtyable memory.
 */
static unsigned long zone_dirty_limit(struct zone *zone)
{
	unsigned long zone_memory = zone_dirtyable_memory(zone);
	struct task_struct *tsk = current;
	unsigned long dirty;

	if (vm_dirty_bytes)
		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
			zone_memory / global_dirtyable_memory();
	else
		dirty = vm_dirty_ratio * zone_memory / 100;

	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
		dirty += dirty / 4;

	return dirty;
}

/**
 * zone_dirty_ok - tells whether a zone is within its dirty limits
 * @zone: the zone to check
 *
 * Returns %true when the dirty pages in @zone are within the zone's
 * dirty limit, %false if the limit is exceeded.
 */
bool zone_dirty_ok(struct zone *zone)
{
	unsigned long limit = zone_dirty_limit(zone);

	return zone_page_state(zone, NR_FILE_DIRTY) +
	       zone_page_state(zone, NR_UNSTABLE_NFS) +
	       zone_page_state(zone, NR_WRITEBACK) <= limit;
}

485
int dirty_background_ratio_handler(struct ctl_table *table, int write,
486
		void __user *buffer, size_t *lenp,
487 488 489 490
		loff_t *ppos)
{
	int ret;

491
	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
492 493 494 495 496 497
	if (ret == 0 && write)
		dirty_background_bytes = 0;
	return ret;
}

int dirty_background_bytes_handler(struct ctl_table *table, int write,
498
		void __user *buffer, size_t *lenp,
499 500 501 502
		loff_t *ppos)
{
	int ret;

503
	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
504 505 506 507 508
	if (ret == 0 && write)
		dirty_background_ratio = 0;
	return ret;
}

P
Peter Zijlstra 已提交
509
int dirty_ratio_handler(struct ctl_table *table, int write,
510
		void __user *buffer, size_t *lenp,
P
Peter Zijlstra 已提交
511 512 513
		loff_t *ppos)
{
	int old_ratio = vm_dirty_ratio;
514 515
	int ret;

516
	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
517
	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
518
		writeback_set_ratelimit();
519 520 521 522 523 524
		vm_dirty_bytes = 0;
	}
	return ret;
}

int dirty_bytes_handler(struct ctl_table *table, int write,
525
		void __user *buffer, size_t *lenp,
526 527
		loff_t *ppos)
{
528
	unsigned long old_bytes = vm_dirty_bytes;
529 530
	int ret;

531
	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
532
	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
533
		writeback_set_ratelimit();
534
		vm_dirty_ratio = 0;
P
Peter Zijlstra 已提交
535 536 537 538
	}
	return ret;
}

539 540 541 542 543 544 545 546 547
static unsigned long wp_next_time(unsigned long cur_time)
{
	cur_time += VM_COMPLETIONS_PERIOD_LEN;
	/* 0 has a special meaning... */
	if (!cur_time)
		return 1;
	return cur_time;
}

548 549 550
static void wb_domain_writeout_inc(struct wb_domain *dom,
				   struct fprop_local_percpu *completions,
				   unsigned int max_prop_frac)
P
Peter Zijlstra 已提交
551
{
552 553
	__fprop_inc_percpu_max(&dom->completions, completions,
			       max_prop_frac);
554
	/* First event after period switching was turned off? */
T
Tejun Heo 已提交
555
	if (!unlikely(dom->period_time)) {
556 557 558 559 560 561
		/*
		 * We can race with other __bdi_writeout_inc calls here but
		 * it does not cause any harm since the resulting time when
		 * timer will fire and what is in writeout_period_time will be
		 * roughly the same.
		 */
T
Tejun Heo 已提交
562 563
		dom->period_time = wp_next_time(jiffies);
		mod_timer(&dom->period_timer, dom->period_time);
564
	}
P
Peter Zijlstra 已提交
565 566
}

567 568 569 570 571
/*
 * Increment @wb's writeout completion count and the global writeout
 * completion count. Called from test_clear_page_writeback().
 */
static inline void __wb_writeout_inc(struct bdi_writeback *wb)
572
{
T
Tejun Heo 已提交
573
	struct wb_domain *cgdom;
574

575 576 577
	__inc_wb_stat(wb, WB_WRITTEN);
	wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
			       wb->bdi->max_prop_frac);
T
Tejun Heo 已提交
578 579 580 581 582

	cgdom = mem_cgroup_wb_domain(wb);
	if (cgdom)
		wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
				       wb->bdi->max_prop_frac);
583 584
}

585
void wb_writeout_inc(struct bdi_writeback *wb)
P
Peter Zijlstra 已提交
586
{
587 588 589
	unsigned long flags;

	local_irq_save(flags);
590
	__wb_writeout_inc(wb);
591
	local_irq_restore(flags);
P
Peter Zijlstra 已提交
592
}
593
EXPORT_SYMBOL_GPL(wb_writeout_inc);
P
Peter Zijlstra 已提交
594

595 596 597 598 599 600
/*
 * On idle system, we can be called long after we scheduled because we use
 * deferred timers so count with missed periods.
 */
static void writeout_period(unsigned long t)
{
T
Tejun Heo 已提交
601 602
	struct wb_domain *dom = (void *)t;
	int miss_periods = (jiffies - dom->period_time) /
603 604
						 VM_COMPLETIONS_PERIOD_LEN;

T
Tejun Heo 已提交
605 606
	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
		dom->period_time = wp_next_time(dom->period_time +
607
				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
T
Tejun Heo 已提交
608
		mod_timer(&dom->period_timer, dom->period_time);
609 610 611 612 613
	} else {
		/*
		 * Aging has zeroed all fractions. Stop wasting CPU on period
		 * updates.
		 */
T
Tejun Heo 已提交
614
		dom->period_time = 0;
615 616 617
	}
}

T
Tejun Heo 已提交
618 619 620
int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
{
	memset(dom, 0, sizeof(*dom));
621 622 623

	spin_lock_init(&dom->lock);

T
Tejun Heo 已提交
624 625 626
	init_timer_deferrable(&dom->period_timer);
	dom->period_timer.function = writeout_period;
	dom->period_timer.data = (unsigned long)dom;
627 628 629

	dom->dirty_limit_tstamp = jiffies;

T
Tejun Heo 已提交
630 631 632
	return fprop_global_init(&dom->completions, gfp);
}

T
Tejun Heo 已提交
633 634 635 636 637 638 639 640
#ifdef CONFIG_CGROUP_WRITEBACK
void wb_domain_exit(struct wb_domain *dom)
{
	del_timer_sync(&dom->period_timer);
	fprop_global_destroy(&dom->completions);
}
#endif

641
/*
642 643 644
 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 * registered backing devices, which, for obvious reasons, can not
 * exceed 100%.
645 646 647 648 649 650 651
 */
static unsigned int bdi_min_ratio;

int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
{
	int ret = 0;

652
	spin_lock_bh(&bdi_lock);
653
	if (min_ratio > bdi->max_ratio) {
654
		ret = -EINVAL;
655 656 657 658 659 660 661 662 663
	} else {
		min_ratio -= bdi->min_ratio;
		if (bdi_min_ratio + min_ratio < 100) {
			bdi_min_ratio += min_ratio;
			bdi->min_ratio += min_ratio;
		} else {
			ret = -EINVAL;
		}
	}
664
	spin_unlock_bh(&bdi_lock);
665 666 667 668 669 670 671 672 673 674 675

	return ret;
}

int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
{
	int ret = 0;

	if (max_ratio > 100)
		return -EINVAL;

676
	spin_lock_bh(&bdi_lock);
677 678 679 680
	if (bdi->min_ratio > max_ratio) {
		ret = -EINVAL;
	} else {
		bdi->max_ratio = max_ratio;
681
		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
682
	}
683
	spin_unlock_bh(&bdi_lock);
684 685 686

	return ret;
}
687
EXPORT_SYMBOL(bdi_set_max_ratio);
688

W
Wu Fengguang 已提交
689 690 691 692 693 694
static unsigned long dirty_freerun_ceiling(unsigned long thresh,
					   unsigned long bg_thresh)
{
	return (thresh + bg_thresh) / 2;
}

695 696
static unsigned long hard_dirty_limit(struct wb_domain *dom,
				      unsigned long thresh)
697
{
698
	return max(thresh, dom->dirty_limit);
699 700
}

701 702 703 704 705 706
/*
 * Memory which can be further allocated to a memcg domain is capped by
 * system-wide clean memory excluding the amount being used in the domain.
 */
static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
			    unsigned long filepages, unsigned long headroom)
707 708
{
	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
709 710 711
	unsigned long clean = filepages - min(filepages, mdtc->dirty);
	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
	unsigned long other_clean = global_clean - min(global_clean, clean);
712

713
	mdtc->avail = filepages + min(headroom, other_clean);
714 715
}

716
/**
717 718
 * __wb_calc_thresh - @wb's share of dirty throttling threshold
 * @dtc: dirty_throttle_context of interest
719
 *
720
 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
721
 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
722 723 724 725 726 727
 *
 * Note that balance_dirty_pages() will only seriously take it as a hard limit
 * when sleeping max_pause per page is not enough to keep the dirty pages under
 * control. For example, when the device is completely stalled due to some error
 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 * In the other normal situations, it acts more gently by throttling the tasks
728
 * more (rather than completely block them) when the wb dirty pages go high.
729
 *
730
 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
731 732 733
 * - starving fast devices
 * - piling up dirty pages (that will take long time to sync) on slow devices
 *
734
 * The wb's share of dirty limit will be adapting to its throughput and
735 736
 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 */
737
static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
738
{
739
	struct wb_domain *dom = dtc_dom(dtc);
740
	unsigned long thresh = dtc->thresh;
T
Tejun Heo 已提交
741
	u64 wb_thresh;
742
	long numerator, denominator;
743
	unsigned long wb_min_ratio, wb_max_ratio;
P
Peter Zijlstra 已提交
744

745
	/*
T
Tejun Heo 已提交
746
	 * Calculate this BDI's share of the thresh ratio.
747
	 */
748
	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
T
Tejun Heo 已提交
749
			      &numerator, &denominator);
P
Peter Zijlstra 已提交
750

T
Tejun Heo 已提交
751 752 753
	wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
	wb_thresh *= numerator;
	do_div(wb_thresh, denominator);
P
Peter Zijlstra 已提交
754

755
	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
P
Peter Zijlstra 已提交
756

T
Tejun Heo 已提交
757 758 759
	wb_thresh += (thresh * wb_min_ratio) / 100;
	if (wb_thresh > (thresh * wb_max_ratio) / 100)
		wb_thresh = thresh * wb_max_ratio / 100;
760

T
Tejun Heo 已提交
761
	return wb_thresh;
L
Linus Torvalds 已提交
762 763
}

764 765 766 767 768
unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
{
	struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
					       .thresh = thresh };
	return __wb_calc_thresh(&gdtc);
L
Linus Torvalds 已提交
769 770
}

771 772 773 774 775 776 777 778 779 780 781 782 783 784
/*
 *                           setpoint - dirty 3
 *        f(dirty) := 1.0 + (----------------)
 *                           limit - setpoint
 *
 * it's a 3rd order polynomial that subjects to
 *
 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 * (2) f(setpoint) = 1.0 => the balance point
 * (3) f(limit)    = 0   => the hard limit
 * (4) df/dx      <= 0	 => negative feedback control
 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 *     => fast response on large errors; small oscillation near setpoint
 */
785
static long long pos_ratio_polynom(unsigned long setpoint,
786 787 788 789 790 791
					  unsigned long dirty,
					  unsigned long limit)
{
	long long pos_ratio;
	long x;

792
	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
793
		      (limit - setpoint) | 1);
794 795 796 797 798 799 800 801
	pos_ratio = x;
	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;

	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
}

W
Wu Fengguang 已提交
802 803 804 805 806
/*
 * Dirty position control.
 *
 * (o) global/bdi setpoints
 *
807
 * We want the dirty pages be balanced around the global/wb setpoints.
W
Wu Fengguang 已提交
808 809 810 811 812 813 814 815 816
 * When the number of dirty pages is higher/lower than the setpoint, the
 * dirty position control ratio (and hence task dirty ratelimit) will be
 * decreased/increased to bring the dirty pages back to the setpoint.
 *
 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 *
 *     if (dirty < setpoint) scale up   pos_ratio
 *     if (dirty > setpoint) scale down pos_ratio
 *
817 818
 *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
 *     if (wb_dirty > wb_setpoint) scale down pos_ratio
W
Wu Fengguang 已提交
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
 *
 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 *
 * (o) global control line
 *
 *     ^ pos_ratio
 *     |
 *     |            |<===== global dirty control scope ======>|
 * 2.0 .............*
 *     |            .*
 *     |            . *
 *     |            .   *
 *     |            .     *
 *     |            .        *
 *     |            .            *
 * 1.0 ................................*
 *     |            .                  .     *
 *     |            .                  .          *
 *     |            .                  .              *
 *     |            .                  .                 *
 *     |            .                  .                    *
 *   0 +------------.------------------.----------------------*------------->
 *           freerun^          setpoint^                 limit^   dirty pages
 *
843
 * (o) wb control line
W
Wu Fengguang 已提交
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
 *
 *     ^ pos_ratio
 *     |
 *     |            *
 *     |              *
 *     |                *
 *     |                  *
 *     |                    * |<=========== span ============>|
 * 1.0 .......................*
 *     |                      . *
 *     |                      .   *
 *     |                      .     *
 *     |                      .       *
 *     |                      .         *
 *     |                      .           *
 *     |                      .             *
 *     |                      .               *
 *     |                      .                 *
 *     |                      .                   *
 *     |                      .                     *
 * 1/4 ...............................................* * * * * * * * * * * *
 *     |                      .                         .
 *     |                      .                           .
 *     |                      .                             .
 *   0 +----------------------.-------------------------------.------------->
869
 *                wb_setpoint^                    x_intercept^
W
Wu Fengguang 已提交
870
 *
871
 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
W
Wu Fengguang 已提交
872 873
 * be smoothly throttled down to normal if it starts high in situations like
 * - start writing to a slow SD card and a fast disk at the same time. The SD
874 875
 *   card's wb_dirty may rush to many times higher than wb_setpoint.
 * - the wb dirty thresh drops quickly due to change of JBOD workload
W
Wu Fengguang 已提交
876
 */
877
static void wb_position_ratio(struct dirty_throttle_control *dtc)
W
Wu Fengguang 已提交
878
{
879
	struct bdi_writeback *wb = dtc->wb;
880
	unsigned long write_bw = wb->avg_write_bandwidth;
881
	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
882
	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
883
	unsigned long wb_thresh = dtc->wb_thresh;
W
Wu Fengguang 已提交
884 885
	unsigned long x_intercept;
	unsigned long setpoint;		/* dirty pages' target balance point */
886
	unsigned long wb_setpoint;
W
Wu Fengguang 已提交
887 888 889 890
	unsigned long span;
	long long pos_ratio;		/* for scaling up/down the rate limit */
	long x;

891 892
	dtc->pos_ratio = 0;

893
	if (unlikely(dtc->dirty >= limit))
894
		return;
W
Wu Fengguang 已提交
895 896 897 898

	/*
	 * global setpoint
	 *
899 900 901
	 * See comment for pos_ratio_polynom().
	 */
	setpoint = (freerun + limit) / 2;
902
	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
903 904 905 906

	/*
	 * The strictlimit feature is a tool preventing mistrusted filesystems
	 * from growing a large number of dirty pages before throttling. For
907 908
	 * such filesystems balance_dirty_pages always checks wb counters
	 * against wb limits. Even if global "nr_dirty" is under "freerun".
909 910 911 912
	 * This is especially important for fuse which sets bdi->max_ratio to
	 * 1% by default. Without strictlimit feature, fuse writeback may
	 * consume arbitrary amount of RAM because it is accounted in
	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
W
Wu Fengguang 已提交
913
	 *
914
	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
915
	 * two values: wb_dirty and wb_thresh. Let's consider an example:
916 917
	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
	 * limits are set by default to 10% and 20% (background and throttle).
918
	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
T
Tejun Heo 已提交
919
	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
920
	 * about ~6K pages (as the average of background and throttle wb
921
	 * limits). The 3rd order polynomial will provide positive feedback if
922
	 * wb_dirty is under wb_setpoint and vice versa.
W
Wu Fengguang 已提交
923
	 *
924
	 * Note, that we cannot use global counters in these calculations
925
	 * because we want to throttle process writing to a strictlimit wb
926 927
	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
	 * in the example above).
W
Wu Fengguang 已提交
928
	 */
929
	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
930
		long long wb_pos_ratio;
931

932 933 934 935 936
		if (dtc->wb_dirty < 8) {
			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
					   2 << RATELIMIT_CALC_SHIFT);
			return;
		}
937

938
		if (dtc->wb_dirty >= wb_thresh)
939
			return;
940

941 942
		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
						    dtc->wb_bg_thresh);
943

944
		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
945
			return;
946

947
		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
948
						 wb_thresh);
949 950

		/*
951 952
		 * Typically, for strictlimit case, wb_setpoint << setpoint
		 * and pos_ratio >> wb_pos_ratio. In the other words global
953
		 * state ("dirty") is not limiting factor and we have to
954
		 * make decision based on wb counters. But there is an
955 956
		 * important case when global pos_ratio should get precedence:
		 * global limits are exceeded (e.g. due to activities on other
957
		 * wb's) while given strictlimit wb is below limit.
958
		 *
959
		 * "pos_ratio * wb_pos_ratio" would work for the case above,
960
		 * but it would look too non-natural for the case of all
961
		 * activity in the system coming from a single strictlimit wb
962 963 964 965
		 * with bdi->max_ratio == 100%.
		 *
		 * Note that min() below somewhat changes the dynamics of the
		 * control system. Normally, pos_ratio value can be well over 3
966
		 * (when globally we are at freerun and wb is well below wb
967 968 969 970
		 * setpoint). Now the maximum pos_ratio in the same situation
		 * is 2. We might want to tweak this if we observe the control
		 * system is too slow to adapt.
		 */
971 972
		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
		return;
973
	}
W
Wu Fengguang 已提交
974 975 976

	/*
	 * We have computed basic pos_ratio above based on global situation. If
977
	 * the wb is over/under its share of dirty pages, we want to scale
W
Wu Fengguang 已提交
978 979 980 981
	 * pos_ratio further down/up. That is done by the following mechanism.
	 */

	/*
982
	 * wb setpoint
W
Wu Fengguang 已提交
983
	 *
984
	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
W
Wu Fengguang 已提交
985
	 *
986
	 *                        x_intercept - wb_dirty
W
Wu Fengguang 已提交
987
	 *                     := --------------------------
988
	 *                        x_intercept - wb_setpoint
W
Wu Fengguang 已提交
989
	 *
990
	 * The main wb control line is a linear function that subjects to
W
Wu Fengguang 已提交
991
	 *
992 993 994
	 * (1) f(wb_setpoint) = 1.0
	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
W
Wu Fengguang 已提交
995
	 *
996
	 * For single wb case, the dirty pages are observed to fluctuate
W
Wu Fengguang 已提交
997
	 * regularly within range
998
	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
W
Wu Fengguang 已提交
999 1000 1001
	 * for various filesystems, where (2) can yield in a reasonable 12.5%
	 * fluctuation range for pos_ratio.
	 *
1002
	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
W
Wu Fengguang 已提交
1003
	 * own size, so move the slope over accordingly and choose a slope that
1004
	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
W
Wu Fengguang 已提交
1005
	 */
1006 1007
	if (unlikely(wb_thresh > dtc->thresh))
		wb_thresh = dtc->thresh;
1008
	/*
1009
	 * It's very possible that wb_thresh is close to 0 not because the
1010 1011 1012 1013 1014
	 * device is slow, but that it has remained inactive for long time.
	 * Honour such devices a reasonable good (hopefully IO efficient)
	 * threshold, so that the occasional writes won't be blocked and active
	 * writes can rampup the threshold quickly.
	 */
1015
	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
W
Wu Fengguang 已提交
1016
	/*
1017 1018
	 * scale global setpoint to wb's:
	 *	wb_setpoint = setpoint * wb_thresh / thresh
W
Wu Fengguang 已提交
1019
	 */
1020
	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1021
	wb_setpoint = setpoint * (u64)x >> 16;
W
Wu Fengguang 已提交
1022
	/*
1023 1024
	 * Use span=(8*write_bw) in single wb case as indicated by
	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
W
Wu Fengguang 已提交
1025
	 *
1026 1027 1028
	 *        wb_thresh                    thresh - wb_thresh
	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
	 *         thresh                           thresh
W
Wu Fengguang 已提交
1029
	 */
1030
	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1031
	x_intercept = wb_setpoint + span;
W
Wu Fengguang 已提交
1032

1033 1034
	if (dtc->wb_dirty < x_intercept - span / 4) {
		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1035
				      (x_intercept - wb_setpoint) | 1);
W
Wu Fengguang 已提交
1036 1037 1038
	} else
		pos_ratio /= 4;

1039
	/*
1040
	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1041 1042 1043
	 * It may push the desired control point of global dirty pages higher
	 * than setpoint.
	 */
1044
	x_intercept = wb_thresh / 2;
1045 1046 1047 1048
	if (dtc->wb_dirty < x_intercept) {
		if (dtc->wb_dirty > x_intercept / 8)
			pos_ratio = div_u64(pos_ratio * x_intercept,
					    dtc->wb_dirty);
1049
		else
1050 1051 1052
			pos_ratio *= 8;
	}

1053
	dtc->pos_ratio = pos_ratio;
W
Wu Fengguang 已提交
1054 1055
}

1056 1057 1058
static void wb_update_write_bandwidth(struct bdi_writeback *wb,
				      unsigned long elapsed,
				      unsigned long written)
1059 1060
{
	const unsigned long period = roundup_pow_of_two(3 * HZ);
1061 1062
	unsigned long avg = wb->avg_write_bandwidth;
	unsigned long old = wb->write_bandwidth;
1063 1064 1065 1066 1067 1068 1069 1070
	u64 bw;

	/*
	 * bw = written * HZ / elapsed
	 *
	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
	 * write_bandwidth = ---------------------------------------------------
	 *                                          period
1071 1072 1073
	 *
	 * @written may have decreased due to account_page_redirty().
	 * Avoid underflowing @bw calculation.
1074
	 */
1075
	bw = written - min(written, wb->written_stamp);
1076 1077 1078 1079 1080 1081
	bw *= HZ;
	if (unlikely(elapsed > period)) {
		do_div(bw, elapsed);
		avg = bw;
		goto out;
	}
1082
	bw += (u64)wb->write_bandwidth * (period - elapsed);
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
	bw >>= ilog2(period);

	/*
	 * one more level of smoothing, for filtering out sudden spikes
	 */
	if (avg > old && old >= (unsigned long)bw)
		avg -= (avg - old) >> 3;

	if (avg < old && old <= (unsigned long)bw)
		avg += (old - avg) >> 3;

out:
1095 1096 1097 1098 1099 1100 1101
	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
	avg = max(avg, 1LU);
	if (wb_has_dirty_io(wb)) {
		long delta = avg - wb->avg_write_bandwidth;
		WARN_ON_ONCE(atomic_long_add_return(delta,
					&wb->bdi->tot_write_bandwidth) <= 0);
	}
1102 1103
	wb->write_bandwidth = bw;
	wb->avg_write_bandwidth = avg;
1104 1105
}

1106
static void update_dirty_limit(struct dirty_throttle_control *dtc)
1107
{
1108
	struct wb_domain *dom = dtc_dom(dtc);
1109
	unsigned long thresh = dtc->thresh;
1110
	unsigned long limit = dom->dirty_limit;
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122

	/*
	 * Follow up in one step.
	 */
	if (limit < thresh) {
		limit = thresh;
		goto update;
	}

	/*
	 * Follow down slowly. Use the higher one as the target, because thresh
	 * may drop below dirty. This is exactly the reason to introduce
1123
	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1124
	 */
1125
	thresh = max(thresh, dtc->dirty);
1126 1127 1128 1129 1130 1131
	if (limit > thresh) {
		limit -= (limit - thresh) >> 5;
		goto update;
	}
	return;
update:
1132
	dom->dirty_limit = limit;
1133 1134
}

1135
static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1136 1137
				    unsigned long now)
{
1138
	struct wb_domain *dom = dtc_dom(dtc);
1139 1140 1141 1142

	/*
	 * check locklessly first to optimize away locking for the most time
	 */
1143
	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1144 1145
		return;

1146 1147
	spin_lock(&dom->lock);
	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1148
		update_dirty_limit(dtc);
1149
		dom->dirty_limit_tstamp = now;
1150
	}
1151
	spin_unlock(&dom->lock);
1152 1153
}

W
Wu Fengguang 已提交
1154
/*
1155
 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
W
Wu Fengguang 已提交
1156
 *
1157
 * Normal wb tasks will be curbed at or below it in long term.
W
Wu Fengguang 已提交
1158 1159
 * Obviously it should be around (write_bw / N) when there are N dd tasks.
 */
1160
static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1161 1162
				      unsigned long dirtied,
				      unsigned long elapsed)
W
Wu Fengguang 已提交
1163
{
1164 1165 1166
	struct bdi_writeback *wb = dtc->wb;
	unsigned long dirty = dtc->dirty;
	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1167
	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1168
	unsigned long setpoint = (freerun + limit) / 2;
1169 1170
	unsigned long write_bw = wb->avg_write_bandwidth;
	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
W
Wu Fengguang 已提交
1171 1172 1173
	unsigned long dirty_rate;
	unsigned long task_ratelimit;
	unsigned long balanced_dirty_ratelimit;
1174 1175
	unsigned long step;
	unsigned long x;
1176
	unsigned long shift;
W
Wu Fengguang 已提交
1177 1178 1179 1180 1181

	/*
	 * The dirty rate will match the writeout rate in long term, except
	 * when dirty pages are truncated by userspace or re-dirtied by FS.
	 */
1182
	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
W
Wu Fengguang 已提交
1183 1184 1185 1186 1187

	/*
	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
	 */
	task_ratelimit = (u64)dirty_ratelimit *
1188
					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
W
Wu Fengguang 已提交
1189 1190 1191 1192
	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */

	/*
	 * A linear estimation of the "balanced" throttle rate. The theory is,
1193
	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
W
Wu Fengguang 已提交
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
	 * formula will yield the balanced rate limit (write_bw / N).
	 *
	 * Note that the expanded form is not a pure rate feedback:
	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
	 * but also takes pos_ratio into account:
	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
	 *
	 * (1) is not realistic because pos_ratio also takes part in balancing
	 * the dirty rate.  Consider the state
	 *	pos_ratio = 0.5						     (3)
	 *	rate = 2 * (write_bw / N)				     (4)
	 * If (1) is used, it will stuck in that state! Because each dd will
	 * be throttled at
	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
	 * yielding
	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
	 * put (6) into (1) we get
	 *	rate_(i+1) = rate_(i)					     (7)
	 *
	 * So we end up using (2) to always keep
	 *	rate_(i+1) ~= (write_bw / N)				     (8)
	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
	 * pos_ratio is able to drive itself to 1.0, which is not only where
	 * the dirty count meet the setpoint, but also where the slope of
	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
	 */
	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
					   dirty_rate | 1);
1223 1224 1225 1226 1227
	/*
	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
	 */
	if (unlikely(balanced_dirty_ratelimit > write_bw))
		balanced_dirty_ratelimit = write_bw;
W
Wu Fengguang 已提交
1228

1229 1230 1231
	/*
	 * We could safely do this and return immediately:
	 *
1232
	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1233 1234
	 *
	 * However to get a more stable dirty_ratelimit, the below elaborated
W
Wanpeng Li 已提交
1235
	 * code makes use of task_ratelimit to filter out singular points and
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
	 * limit the step size.
	 *
	 * The below code essentially only uses the relative value of
	 *
	 *	task_ratelimit - dirty_ratelimit
	 *	= (pos_ratio - 1) * dirty_ratelimit
	 *
	 * which reflects the direction and size of dirty position error.
	 */

	/*
	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
	 * task_ratelimit is on the same side of dirty_ratelimit, too.
	 * For example, when
	 * - dirty_ratelimit > balanced_dirty_ratelimit
	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
	 * lowering dirty_ratelimit will help meet both the position and rate
	 * control targets. Otherwise, don't update dirty_ratelimit if it will
	 * only help meet the rate target. After all, what the users ultimately
	 * feel and care are stable dirty rate and small position error.
	 *
	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
W
Wanpeng Li 已提交
1258
	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1259 1260 1261 1262 1263
	 * keeps jumping around randomly and can even leap far away at times
	 * due to the small 200ms estimation period of dirty_rate (we want to
	 * keep that period small to reduce time lags).
	 */
	step = 0;
1264 1265

	/*
1266
	 * For strictlimit case, calculations above were based on wb counters
1267
	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1268
	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1269 1270
	 * Hence, to calculate "step" properly, we have to use wb_dirty as
	 * "dirty" and wb_setpoint as "setpoint".
1271
	 *
1272 1273
	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
	 * it's possible that wb_thresh is close to zero due to inactivity
1274
	 * of backing device.
1275
	 */
1276
	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1277 1278 1279
		dirty = dtc->wb_dirty;
		if (dtc->wb_dirty < 8)
			setpoint = dtc->wb_dirty + 1;
1280
		else
1281
			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1282 1283
	}

1284
	if (dirty < setpoint) {
1285
		x = min3(wb->balanced_dirty_ratelimit,
1286
			 balanced_dirty_ratelimit, task_ratelimit);
1287 1288 1289
		if (dirty_ratelimit < x)
			step = x - dirty_ratelimit;
	} else {
1290
		x = max3(wb->balanced_dirty_ratelimit,
1291
			 balanced_dirty_ratelimit, task_ratelimit);
1292 1293 1294 1295 1296 1297 1298 1299 1300
		if (dirty_ratelimit > x)
			step = dirty_ratelimit - x;
	}

	/*
	 * Don't pursue 100% rate matching. It's impossible since the balanced
	 * rate itself is constantly fluctuating. So decrease the track speed
	 * when it gets close to the target. Helps eliminate pointless tremors.
	 */
1301 1302 1303 1304 1305
	shift = dirty_ratelimit / (2 * step + 1);
	if (shift < BITS_PER_LONG)
		step = DIV_ROUND_UP(step >> shift, 8);
	else
		step = 0;
1306 1307 1308 1309 1310 1311

	if (dirty_ratelimit < balanced_dirty_ratelimit)
		dirty_ratelimit += step;
	else
		dirty_ratelimit -= step;

1312 1313
	wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1314

1315
	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
W
Wu Fengguang 已提交
1316 1317
}

1318 1319
static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
				  struct dirty_throttle_control *mdtc,
1320 1321
				  unsigned long start_time,
				  bool update_ratelimit)
1322
{
1323
	struct bdi_writeback *wb = gdtc->wb;
1324
	unsigned long now = jiffies;
1325
	unsigned long elapsed = now - wb->bw_time_stamp;
W
Wu Fengguang 已提交
1326
	unsigned long dirtied;
1327 1328
	unsigned long written;

1329 1330
	lockdep_assert_held(&wb->list_lock);

1331 1332 1333 1334 1335 1336
	/*
	 * rate-limit, only update once every 200ms.
	 */
	if (elapsed < BANDWIDTH_INTERVAL)
		return;

1337 1338
	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1339 1340 1341 1342 1343

	/*
	 * Skip quiet periods when disk bandwidth is under-utilized.
	 * (at least 1s idle time between two flusher runs)
	 */
1344
	if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1345 1346
		goto snapshot;

1347
	if (update_ratelimit) {
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
		domain_update_bandwidth(gdtc, now);
		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);

		/*
		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
		 * compiler has no way to figure that out.  Help it.
		 */
		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
			domain_update_bandwidth(mdtc, now);
			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
		}
W
Wu Fengguang 已提交
1359
	}
1360
	wb_update_write_bandwidth(wb, elapsed, written);
1361 1362

snapshot:
1363 1364 1365
	wb->dirtied_stamp = dirtied;
	wb->written_stamp = written;
	wb->bw_time_stamp = now;
1366 1367
}

1368
void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1369
{
1370 1371
	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };

1372
	__wb_update_bandwidth(&gdtc, NULL, start_time, false);
1373 1374
}

1375
/*
1376
 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
 * will look to see if it needs to start dirty throttling.
 *
 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
 * global_page_state() too often. So scale it near-sqrt to the safety margin
 * (the number of pages we may dirty without exceeding the dirty limits).
 */
static unsigned long dirty_poll_interval(unsigned long dirty,
					 unsigned long thresh)
{
	if (thresh > dirty)
		return 1UL << (ilog2(thresh - dirty) >> 1);

	return 1;
}

1392
static unsigned long wb_max_pause(struct bdi_writeback *wb,
1393
				  unsigned long wb_dirty)
1394
{
1395
	unsigned long bw = wb->avg_write_bandwidth;
1396
	unsigned long t;
1397

1398 1399 1400 1401 1402 1403 1404
	/*
	 * Limit pause time for small memory systems. If sleeping for too long
	 * time, a small pool of dirty/writeback pages may go empty and disk go
	 * idle.
	 *
	 * 8 serves as the safety ratio.
	 */
1405
	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1406 1407
	t++;

1408
	return min_t(unsigned long, t, MAX_PAUSE);
1409 1410
}

1411 1412 1413 1414 1415
static long wb_min_pause(struct bdi_writeback *wb,
			 long max_pause,
			 unsigned long task_ratelimit,
			 unsigned long dirty_ratelimit,
			 int *nr_dirtied_pause)
1416
{
1417 1418
	long hi = ilog2(wb->avg_write_bandwidth);
	long lo = ilog2(wb->dirty_ratelimit);
1419 1420 1421
	long t;		/* target pause */
	long pause;	/* estimated next pause */
	int pages;	/* target nr_dirtied_pause */
1422

1423 1424
	/* target for 10ms pause on 1-dd case */
	t = max(1, HZ / 100);
1425 1426 1427 1428 1429

	/*
	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
	 * overheads.
	 *
1430
	 * (N * 10ms) on 2^N concurrent tasks.
1431 1432
	 */
	if (hi > lo)
1433
		t += (hi - lo) * (10 * HZ) / 1024;
1434 1435

	/*
1436 1437 1438 1439 1440 1441 1442 1443
	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
	 * on the much more stable dirty_ratelimit. However the next pause time
	 * will be computed based on task_ratelimit and the two rate limits may
	 * depart considerably at some time. Especially if task_ratelimit goes
	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
	 * result task_ratelimit won't be executed faithfully, which could
	 * eventually bring down dirty_ratelimit.
1444
	 *
1445 1446 1447 1448 1449 1450 1451
	 * We apply two rules to fix it up:
	 * 1) try to estimate the next pause time and if necessary, use a lower
	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
	 * 2) limit the target pause time to max_pause/2, so that the normal
	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1452
	 */
1453 1454
	t = min(t, 1 + max_pause / 2);
	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1455 1456

	/*
1457 1458 1459 1460 1461 1462
	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
	 * When the 16 consecutive reads are often interrupted by some dirty
	 * throttling pause during the async writes, cfq will go into idles
	 * (deadline is fine). So push nr_dirtied_pause as high as possible
	 * until reaches DIRTY_POLL_THRESH=32 pages.
1463
	 */
1464 1465 1466 1467 1468 1469 1470 1471 1472
	if (pages < DIRTY_POLL_THRESH) {
		t = max_pause;
		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
		if (pages > DIRTY_POLL_THRESH) {
			pages = DIRTY_POLL_THRESH;
			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
		}
	}

1473 1474 1475 1476 1477
	pause = HZ * pages / (task_ratelimit + 1);
	if (pause > max_pause) {
		t = max_pause;
		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
	}
1478

1479
	*nr_dirtied_pause = pages;
1480
	/*
1481
	 * The minimal pause time will normally be half the target pause time.
1482
	 */
1483
	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1484 1485
}

1486
static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1487
{
1488
	struct bdi_writeback *wb = dtc->wb;
1489
	unsigned long wb_reclaimable;
1490 1491

	/*
1492
	 * wb_thresh is not treated as some limiting factor as
1493
	 * dirty_thresh, due to reasons
1494
	 * - in JBOD setup, wb_thresh can fluctuate a lot
1495
	 * - in a system with HDD and USB key, the USB key may somehow
1496 1497
	 *   go into state (wb_dirty >> wb_thresh) either because
	 *   wb_dirty starts high, or because wb_thresh drops low.
1498
	 *   In this case we don't want to hard throttle the USB key
1499 1500
	 *   dirtiers for 100 seconds until wb_dirty drops under
	 *   wb_thresh. Instead the auxiliary wb control line in
1501
	 *   wb_position_ratio() will let the dirtier task progress
1502
	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1503
	 */
1504
	dtc->wb_thresh = __wb_calc_thresh(dtc);
1505 1506
	dtc->wb_bg_thresh = dtc->thresh ?
		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517

	/*
	 * In order to avoid the stacked BDI deadlock we need
	 * to ensure we accurately count the 'dirty' pages when
	 * the threshold is low.
	 *
	 * Otherwise it would be possible to get thresh+n pages
	 * reported dirty, even though there are thresh-m pages
	 * actually dirty; with m+n sitting in the percpu
	 * deltas.
	 */
1518
	if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1519
		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1520
		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1521
	} else {
1522
		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1523
		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1524 1525 1526
	}
}

L
Linus Torvalds 已提交
1527 1528 1529
/*
 * balance_dirty_pages() must be called by processes which are generating dirty
 * data.  It looks at the number of dirty pages in the machine and will force
1530
 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1531 1532
 * If we're over `background_thresh' then the writeback threads are woken to
 * perform some writeout.
L
Linus Torvalds 已提交
1533
 */
1534
static void balance_dirty_pages(struct address_space *mapping,
1535
				struct bdi_writeback *wb,
1536
				unsigned long pages_dirtied)
L
Linus Torvalds 已提交
1537
{
1538
	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1539
	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1540
	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1541 1542 1543
	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
						     &mdtc_stor : NULL;
	struct dirty_throttle_control *sdtc;
1544
	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1545
	long period;
1546 1547 1548 1549
	long pause;
	long max_pause;
	long min_pause;
	int nr_dirtied_pause;
1550
	bool dirty_exceeded = false;
1551
	unsigned long task_ratelimit;
1552
	unsigned long dirty_ratelimit;
1553
	struct backing_dev_info *bdi = wb->bdi;
1554
	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1555
	unsigned long start_time = jiffies;
L
Linus Torvalds 已提交
1556 1557

	for (;;) {
1558
		unsigned long now = jiffies;
1559
		unsigned long dirty, thresh, bg_thresh;
1560 1561 1562
		unsigned long m_dirty = 0;	/* stop bogus uninit warnings */
		unsigned long m_thresh = 0;
		unsigned long m_bg_thresh = 0;
1563

1564 1565 1566 1567 1568 1569
		/*
		 * Unstable writes are a feature of certain networked
		 * filesystems (i.e. NFS) in which data may have been
		 * written to the server's write cache, but has not yet
		 * been flushed to permanent storage.
		 */
1570 1571
		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
					global_page_state(NR_UNSTABLE_NFS);
1572
		gdtc->avail = global_dirtyable_memory();
1573
		gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1574

1575
		domain_dirty_limits(gdtc);
1576

1577
		if (unlikely(strictlimit)) {
1578
			wb_dirty_limits(gdtc);
1579

1580 1581
			dirty = gdtc->wb_dirty;
			thresh = gdtc->wb_thresh;
1582
			bg_thresh = gdtc->wb_bg_thresh;
1583
		} else {
1584 1585 1586
			dirty = gdtc->dirty;
			thresh = gdtc->thresh;
			bg_thresh = gdtc->bg_thresh;
1587 1588
		}

1589
		if (mdtc) {
1590
			unsigned long filepages, headroom, writeback;
1591 1592 1593 1594 1595

			/*
			 * If @wb belongs to !root memcg, repeat the same
			 * basic calculations for the memcg domain.
			 */
1596 1597
			mem_cgroup_wb_stats(wb, &filepages, &headroom,
					    &mdtc->dirty, &writeback);
1598
			mdtc->dirty += writeback;
1599
			mdtc_calc_avail(mdtc, filepages, headroom);
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612

			domain_dirty_limits(mdtc);

			if (unlikely(strictlimit)) {
				wb_dirty_limits(mdtc);
				m_dirty = mdtc->wb_dirty;
				m_thresh = mdtc->wb_thresh;
				m_bg_thresh = mdtc->wb_bg_thresh;
			} else {
				m_dirty = mdtc->dirty;
				m_thresh = mdtc->thresh;
				m_bg_thresh = mdtc->bg_thresh;
			}
1613 1614
		}

1615 1616 1617
		/*
		 * Throttle it only when the background writeback cannot
		 * catch-up. This avoids (excessively) small writeouts
1618
		 * when the wb limits are ramping up in case of !strictlimit.
1619
		 *
1620 1621
		 * In strictlimit case make decision based on the wb counters
		 * and limits. Small writeouts when the wb limits are ramping
1622
		 * up are the price we consciously pay for strictlimit-ing.
1623 1624 1625
		 *
		 * If memcg domain is in effect, @dirty should be under
		 * both global and memcg freerun ceilings.
1626
		 */
1627 1628 1629 1630 1631 1632
		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
		    (!mdtc ||
		     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
			unsigned long intv = dirty_poll_interval(dirty, thresh);
			unsigned long m_intv = ULONG_MAX;

1633 1634
			current->dirty_paused_when = now;
			current->nr_dirtied = 0;
1635 1636 1637
			if (mdtc)
				m_intv = dirty_poll_interval(m_dirty, m_thresh);
			current->nr_dirtied_pause = min(intv, m_intv);
1638
			break;
1639
		}
1640

1641
		if (unlikely(!writeback_in_progress(wb)))
1642
			wb_start_background_writeback(wb);
1643

1644 1645 1646 1647
		/*
		 * Calculate global domain's pos_ratio and select the
		 * global dtc by default.
		 */
1648
		if (!strictlimit)
1649
			wb_dirty_limits(gdtc);
1650

1651 1652
		dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
			((gdtc->dirty > gdtc->thresh) || strictlimit);
1653 1654

		wb_position_ratio(gdtc);
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
		sdtc = gdtc;

		if (mdtc) {
			/*
			 * If memcg domain is in effect, calculate its
			 * pos_ratio.  @wb should satisfy constraints from
			 * both global and memcg domains.  Choose the one
			 * w/ lower pos_ratio.
			 */
			if (!strictlimit)
				wb_dirty_limits(mdtc);

			dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
				((mdtc->dirty > mdtc->thresh) || strictlimit);

			wb_position_ratio(mdtc);
			if (mdtc->pos_ratio < gdtc->pos_ratio)
				sdtc = mdtc;
		}
1674

1675 1676
		if (dirty_exceeded && !wb->dirty_exceeded)
			wb->dirty_exceeded = 1;
L
Linus Torvalds 已提交
1677

1678 1679 1680
		if (time_is_before_jiffies(wb->bw_time_stamp +
					   BANDWIDTH_INTERVAL)) {
			spin_lock(&wb->list_lock);
1681
			__wb_update_bandwidth(gdtc, mdtc, start_time, true);
1682 1683
			spin_unlock(&wb->list_lock);
		}
1684

1685
		/* throttle according to the chosen dtc */
1686
		dirty_ratelimit = wb->dirty_ratelimit;
1687
		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1688
							RATELIMIT_CALC_SHIFT;
1689
		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1690 1691 1692
		min_pause = wb_min_pause(wb, max_pause,
					 task_ratelimit, dirty_ratelimit,
					 &nr_dirtied_pause);
1693

1694
		if (unlikely(task_ratelimit == 0)) {
1695
			period = max_pause;
1696
			pause = max_pause;
1697
			goto pause;
P
Peter Zijlstra 已提交
1698
		}
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
		period = HZ * pages_dirtied / task_ratelimit;
		pause = period;
		if (current->dirty_paused_when)
			pause -= now - current->dirty_paused_when;
		/*
		 * For less than 1s think time (ext3/4 may block the dirtier
		 * for up to 800ms from time to time on 1-HDD; so does xfs,
		 * however at much less frequency), try to compensate it in
		 * future periods by updating the virtual time; otherwise just
		 * do a reset, as it may be a light dirtier.
		 */
1710
		if (pause < min_pause) {
1711
			trace_balance_dirty_pages(wb,
1712 1713 1714 1715 1716
						  sdtc->thresh,
						  sdtc->bg_thresh,
						  sdtc->dirty,
						  sdtc->wb_thresh,
						  sdtc->wb_dirty,
1717 1718 1719
						  dirty_ratelimit,
						  task_ratelimit,
						  pages_dirtied,
1720
						  period,
1721
						  min(pause, 0L),
1722
						  start_time);
1723 1724 1725 1726 1727 1728
			if (pause < -HZ) {
				current->dirty_paused_when = now;
				current->nr_dirtied = 0;
			} else if (period) {
				current->dirty_paused_when += period;
				current->nr_dirtied = 0;
1729 1730
			} else if (current->nr_dirtied_pause <= pages_dirtied)
				current->nr_dirtied_pause += pages_dirtied;
W
Wu Fengguang 已提交
1731
			break;
P
Peter Zijlstra 已提交
1732
		}
1733 1734 1735 1736 1737
		if (unlikely(pause > max_pause)) {
			/* for occasional dropped task_ratelimit */
			now += min(pause - max_pause, max_pause);
			pause = max_pause;
		}
1738 1739

pause:
1740
		trace_balance_dirty_pages(wb,
1741 1742 1743 1744 1745
					  sdtc->thresh,
					  sdtc->bg_thresh,
					  sdtc->dirty,
					  sdtc->wb_thresh,
					  sdtc->wb_dirty,
1746 1747 1748
					  dirty_ratelimit,
					  task_ratelimit,
					  pages_dirtied,
1749
					  period,
1750 1751
					  pause,
					  start_time);
1752
		__set_current_state(TASK_KILLABLE);
1753
		io_schedule_timeout(pause);
1754

1755 1756
		current->dirty_paused_when = now + pause;
		current->nr_dirtied = 0;
1757
		current->nr_dirtied_pause = nr_dirtied_pause;
1758

1759
		/*
1760 1761
		 * This is typically equal to (dirty < thresh) and can also
		 * keep "1000+ dd on a slow USB stick" under control.
1762
		 */
1763
		if (task_ratelimit)
1764
			break;
1765

1766 1767
		/*
		 * In the case of an unresponding NFS server and the NFS dirty
1768
		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1769 1770 1771 1772
		 * to go through, so that tasks on them still remain responsive.
		 *
		 * In theory 1 page is enough to keep the comsumer-producer
		 * pipe going: the flusher cleans 1 page => the task dirties 1
1773
		 * more page. However wb_dirty has accounting errors.  So use
1774
		 * the larger and more IO friendly wb_stat_error.
1775
		 */
1776
		if (sdtc->wb_dirty <= wb_stat_error(wb))
1777 1778
			break;

1779 1780
		if (fatal_signal_pending(current))
			break;
L
Linus Torvalds 已提交
1781 1782
	}

1783 1784
	if (!dirty_exceeded && wb->dirty_exceeded)
		wb->dirty_exceeded = 0;
L
Linus Torvalds 已提交
1785

1786
	if (writeback_in_progress(wb))
1787
		return;
L
Linus Torvalds 已提交
1788 1789 1790 1791 1792 1793 1794 1795 1796

	/*
	 * In laptop mode, we wait until hitting the higher threshold before
	 * starting background writeout, and then write out all the way down
	 * to the lower threshold.  So slow writers cause minimal disk activity.
	 *
	 * In normal mode, we start background writeout at the lower
	 * background_thresh, to keep the amount of dirty memory low.
	 */
1797 1798 1799
	if (laptop_mode)
		return;

1800
	if (nr_reclaimable > gdtc->bg_thresh)
1801
		wb_start_background_writeback(wb);
L
Linus Torvalds 已提交
1802 1803
}

1804
static DEFINE_PER_CPU(int, bdp_ratelimits);
1805

1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
/*
 * Normal tasks are throttled by
 *	loop {
 *		dirty tsk->nr_dirtied_pause pages;
 *		take a snap in balance_dirty_pages();
 *	}
 * However there is a worst case. If every task exit immediately when dirtied
 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
 * called to throttle the page dirties. The solution is to save the not yet
 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
 * randomly into the running tasks. This works well for the above worst case,
 * as the new task will pick up and accumulate the old task's leaked dirty
 * count and eventually get throttled.
 */
DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;

L
Linus Torvalds 已提交
1822
/**
1823
 * balance_dirty_pages_ratelimited - balance dirty memory state
1824
 * @mapping: address_space which was dirtied
L
Linus Torvalds 已提交
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
 *
 * Processes which are dirtying memory should call in here once for each page
 * which was newly dirtied.  The function will periodically check the system's
 * dirty state and will initiate writeback if needed.
 *
 * On really big machines, get_writeback_state is expensive, so try to avoid
 * calling it too often (ratelimiting).  But once we're over the dirty memory
 * limit we decrease the ratelimiting by a lot, to prevent individual processes
 * from overshooting the limit by (ratelimit_pages) each.
 */
1835
void balance_dirty_pages_ratelimited(struct address_space *mapping)
L
Linus Torvalds 已提交
1836
{
1837 1838 1839
	struct inode *inode = mapping->host;
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct bdi_writeback *wb = NULL;
1840 1841
	int ratelimit;
	int *p;
L
Linus Torvalds 已提交
1842

1843 1844 1845
	if (!bdi_cap_account_dirty(bdi))
		return;

1846 1847 1848 1849 1850
	if (inode_cgwb_enabled(inode))
		wb = wb_get_create_current(bdi, GFP_KERNEL);
	if (!wb)
		wb = &bdi->wb;

1851
	ratelimit = current->nr_dirtied_pause;
1852
	if (wb->dirty_exceeded)
1853 1854 1855
		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));

	preempt_disable();
L
Linus Torvalds 已提交
1856
	/*
1857 1858 1859 1860
	 * This prevents one CPU to accumulate too many dirtied pages without
	 * calling into balance_dirty_pages(), which can happen when there are
	 * 1000+ tasks, all of them start dirtying pages at exactly the same
	 * time, hence all honoured too large initial task->nr_dirtied_pause.
L
Linus Torvalds 已提交
1861
	 */
1862
	p =  this_cpu_ptr(&bdp_ratelimits);
1863
	if (unlikely(current->nr_dirtied >= ratelimit))
1864
		*p = 0;
1865 1866 1867
	else if (unlikely(*p >= ratelimit_pages)) {
		*p = 0;
		ratelimit = 0;
L
Linus Torvalds 已提交
1868
	}
1869 1870 1871 1872 1873
	/*
	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
	 * the dirty throttling and livelock other long-run dirtiers.
	 */
1874
	p = this_cpu_ptr(&dirty_throttle_leaks);
1875
	if (*p > 0 && current->nr_dirtied < ratelimit) {
1876
		unsigned long nr_pages_dirtied;
1877 1878 1879
		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
		*p -= nr_pages_dirtied;
		current->nr_dirtied += nr_pages_dirtied;
L
Linus Torvalds 已提交
1880
	}
1881
	preempt_enable();
1882 1883

	if (unlikely(current->nr_dirtied >= ratelimit))
1884 1885 1886
		balance_dirty_pages(mapping, wb, current->nr_dirtied);

	wb_put(wb);
L
Linus Torvalds 已提交
1887
}
1888
EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
L
Linus Torvalds 已提交
1889

1890 1891 1892 1893 1894 1895 1896 1897 1898
/**
 * wb_over_bg_thresh - does @wb need to be written back?
 * @wb: bdi_writeback of interest
 *
 * Determines whether background writeback should keep writing @wb or it's
 * clean enough.  Returns %true if writeback should continue.
 */
bool wb_over_bg_thresh(struct bdi_writeback *wb)
{
1899
	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1900
	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1901
	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1902 1903
	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
						     &mdtc_stor : NULL;
1904

1905 1906 1907 1908 1909 1910 1911 1912
	/*
	 * Similar to balance_dirty_pages() but ignores pages being written
	 * as we're trying to decide whether to put more under writeback.
	 */
	gdtc->avail = global_dirtyable_memory();
	gdtc->dirty = global_page_state(NR_FILE_DIRTY) +
		      global_page_state(NR_UNSTABLE_NFS);
	domain_dirty_limits(gdtc);
1913

1914
	if (gdtc->dirty > gdtc->bg_thresh)
1915 1916
		return true;

1917 1918
	if (wb_stat(wb, WB_RECLAIMABLE) >
	    wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1919 1920
		return true;

1921
	if (mdtc) {
1922
		unsigned long filepages, headroom, writeback;
1923

1924 1925 1926
		mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
				    &writeback);
		mdtc_calc_avail(mdtc, filepages, headroom);
1927 1928 1929 1930 1931
		domain_dirty_limits(mdtc);	/* ditto, ignore writeback */

		if (mdtc->dirty > mdtc->bg_thresh)
			return true;

1932 1933
		if (wb_stat(wb, WB_RECLAIMABLE) >
		    wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1934 1935 1936
			return true;
	}

1937 1938 1939
	return false;
}

1940
void throttle_vm_writeout(gfp_t gfp_mask)
L
Linus Torvalds 已提交
1941
{
1942 1943
	unsigned long background_thresh;
	unsigned long dirty_thresh;
L
Linus Torvalds 已提交
1944 1945

        for ( ; ; ) {
1946
		global_dirty_limits(&background_thresh, &dirty_thresh);
1947
		dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
L
Linus Torvalds 已提交
1948 1949 1950 1951 1952 1953 1954

                /*
                 * Boost the allowable dirty threshold a bit for page
                 * allocators so they don't get DoS'ed by heavy writers
                 */
                dirty_thresh += dirty_thresh / 10;      /* wheeee... */

1955 1956 1957
                if (global_page_state(NR_UNSTABLE_NFS) +
			global_page_state(NR_WRITEBACK) <= dirty_thresh)
                        	break;
1958
                congestion_wait(BLK_RW_ASYNC, HZ/10);
1959 1960 1961 1962 1963 1964 1965 1966

		/*
		 * The caller might hold locks which can prevent IO completion
		 * or progress in the filesystem.  So we cannot just sit here
		 * waiting for IO to complete.
		 */
		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
			break;
L
Linus Torvalds 已提交
1967 1968 1969 1970 1971 1972
        }
}

/*
 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
 */
1973
int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1974
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
1975
{
1976
	proc_dointvec(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
1977 1978 1979
	return 0;
}

1980
#ifdef CONFIG_BLOCK
1981
void laptop_mode_timer_fn(unsigned long data)
L
Linus Torvalds 已提交
1982
{
1983 1984 1985
	struct request_queue *q = (struct request_queue *)data;
	int nr_pages = global_page_state(NR_FILE_DIRTY) +
		global_page_state(NR_UNSTABLE_NFS);
1986
	struct bdi_writeback *wb;
L
Linus Torvalds 已提交
1987

1988 1989 1990 1991
	/*
	 * We want to write everything out, not just down to the dirty
	 * threshold
	 */
1992 1993 1994
	if (!bdi_has_dirty_io(&q->backing_dev_info))
		return;

1995
	rcu_read_lock();
1996
	list_for_each_entry_rcu(wb, &q->backing_dev_info.wb_list, bdi_node)
1997 1998 1999
		if (wb_has_dirty_io(wb))
			wb_start_writeback(wb, nr_pages, true,
					   WB_REASON_LAPTOP_TIMER);
2000
	rcu_read_unlock();
L
Linus Torvalds 已提交
2001 2002 2003 2004 2005 2006 2007
}

/*
 * We've spun up the disk and we're in laptop mode: schedule writeback
 * of all dirty data a few seconds from now.  If the flush is already scheduled
 * then push it back - the user is still using the disk.
 */
2008
void laptop_io_completion(struct backing_dev_info *info)
L
Linus Torvalds 已提交
2009
{
2010
	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
L
Linus Torvalds 已提交
2011 2012 2013 2014 2015 2016 2017 2018 2019
}

/*
 * We're in laptop mode and we've just synced. The sync's writes will have
 * caused another writeback to be scheduled by laptop_io_completion.
 * Nothing needs to be written back anymore, so we unschedule the writeback.
 */
void laptop_sync_completion(void)
{
2020 2021 2022 2023 2024 2025 2026 2027
	struct backing_dev_info *bdi;

	rcu_read_lock();

	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
		del_timer(&bdi->laptop_mode_wb_timer);

	rcu_read_unlock();
L
Linus Torvalds 已提交
2028
}
2029
#endif
L
Linus Torvalds 已提交
2030 2031 2032 2033 2034 2035 2036 2037 2038

/*
 * If ratelimit_pages is too high then we can get into dirty-data overload
 * if a large number of processes all perform writes at the same time.
 * If it is too low then SMP machines will call the (expensive)
 * get_writeback_state too often.
 *
 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2039
 * thresholds.
L
Linus Torvalds 已提交
2040 2041
 */

2042
void writeback_set_ratelimit(void)
L
Linus Torvalds 已提交
2043
{
2044
	struct wb_domain *dom = &global_wb_domain;
2045 2046
	unsigned long background_thresh;
	unsigned long dirty_thresh;
2047

2048
	global_dirty_limits(&background_thresh, &dirty_thresh);
2049
	dom->dirty_limit = dirty_thresh;
2050
	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
L
Linus Torvalds 已提交
2051 2052 2053 2054
	if (ratelimit_pages < 16)
		ratelimit_pages = 16;
}

2055
static int
2056 2057
ratelimit_handler(struct notifier_block *self, unsigned long action,
		  void *hcpu)
L
Linus Torvalds 已提交
2058
{
2059 2060 2061 2062 2063 2064 2065 2066 2067

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
	case CPU_DEAD:
		writeback_set_ratelimit();
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
L
Linus Torvalds 已提交
2068 2069
}

2070
static struct notifier_block ratelimit_nb = {
L
Linus Torvalds 已提交
2071 2072 2073 2074 2075
	.notifier_call	= ratelimit_handler,
	.next		= NULL,
};

/*
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
 * Called early on to tune the page writeback dirty limits.
 *
 * We used to scale dirty pages according to how total memory
 * related to pages that could be allocated for buffers (by
 * comparing nr_free_buffer_pages() to vm_total_pages.
 *
 * However, that was when we used "dirty_ratio" to scale with
 * all memory, and we don't do that any more. "dirty_ratio"
 * is now applied to total non-HIGHPAGE memory (by subtracting
 * totalhigh_pages from vm_total_pages), and as such we can't
 * get into the old insane situation any more where we had
 * large amounts of dirty pages compared to a small amount of
 * non-HIGHMEM memory.
 *
 * But we might still want to scale the dirty_ratio by how
 * much memory the box has..
L
Linus Torvalds 已提交
2092 2093 2094
 */
void __init page_writeback_init(void)
{
2095 2096
	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));

2097
	writeback_set_ratelimit();
L
Linus Torvalds 已提交
2098 2099 2100
	register_cpu_notifier(&ratelimit_nb);
}

2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
/**
 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
 * @mapping: address space structure to write
 * @start: starting page index
 * @end: ending page index (inclusive)
 *
 * This function scans the page range from @start to @end (inclusive) and tags
 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
 * that write_cache_pages (or whoever calls this function) will then use
 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
 * used to avoid livelocking of writeback by a process steadily creating new
 * dirty pages in the file (thus it is important for this function to be quick
 * so that it can tag pages faster than a dirtying process can create them).
 */
/*
 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
 */
void tag_pages_for_writeback(struct address_space *mapping,
			     pgoff_t start, pgoff_t end)
{
R
Randy Dunlap 已提交
2121
#define WRITEBACK_TAG_BATCH 4096
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
	unsigned long tagged;

	do {
		spin_lock_irq(&mapping->tree_lock);
		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
				&start, end, WRITEBACK_TAG_BATCH,
				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
		spin_unlock_irq(&mapping->tree_lock);
		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
		cond_resched();
2132 2133
		/* We check 'start' to handle wrapping when end == ~0UL */
	} while (tagged >= WRITEBACK_TAG_BATCH && start);
2134 2135 2136
}
EXPORT_SYMBOL(tag_pages_for_writeback);

2137
/**
2138
 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2139 2140
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2141 2142
 * @writepage: function called for each page
 * @data: data passed to writepage function
2143
 *
2144
 * If a page is already under I/O, write_cache_pages() skips it, even
2145 2146 2147 2148 2149 2150
 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 * and msync() need to guarantee that all the data which was dirty at the time
 * the call was made get new I/O started against them.  If wbc->sync_mode is
 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 * existing IO to complete.
2151 2152 2153 2154 2155 2156 2157
 *
 * To avoid livelocks (when other process dirties new pages), we first tag
 * pages which should be written back with TOWRITE tag and only then start
 * writing them. For data-integrity sync we have to be careful so that we do
 * not miss some pages (e.g., because some other process has cleared TOWRITE
 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
 * by the process clearing the DIRTY tag (and submitting the page for IO).
2158
 */
2159 2160 2161
int write_cache_pages(struct address_space *mapping,
		      struct writeback_control *wbc, writepage_t writepage,
		      void *data)
2162 2163 2164 2165 2166
{
	int ret = 0;
	int done = 0;
	struct pagevec pvec;
	int nr_pages;
N
Nick Piggin 已提交
2167
	pgoff_t uninitialized_var(writeback_index);
2168 2169
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
2170
	pgoff_t done_index;
N
Nick Piggin 已提交
2171
	int cycled;
2172
	int range_whole = 0;
2173
	int tag;
2174 2175 2176

	pagevec_init(&pvec, 0);
	if (wbc->range_cyclic) {
N
Nick Piggin 已提交
2177 2178 2179 2180 2181 2182
		writeback_index = mapping->writeback_index; /* prev offset */
		index = writeback_index;
		if (index == 0)
			cycled = 1;
		else
			cycled = 0;
2183 2184
		end = -1;
	} else {
2185 2186
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
2187 2188
		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
			range_whole = 1;
N
Nick Piggin 已提交
2189
		cycled = 1; /* ignore range_cyclic tests */
2190
	}
2191
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2192 2193 2194
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
2195
retry:
2196
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2197
		tag_pages_for_writeback(mapping, index, end);
2198
	done_index = index;
N
Nick Piggin 已提交
2199 2200 2201
	while (!done && (index <= end)) {
		int i;

2202
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
N
Nick Piggin 已提交
2203 2204 2205
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
			break;
2206 2207 2208 2209 2210

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
2211 2212 2213 2214 2215
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
2216
			 */
2217 2218 2219 2220 2221 2222 2223 2224 2225
			if (page->index > end) {
				/*
				 * can't be range_cyclic (1st pass) because
				 * end == -1 in that case.
				 */
				done = 1;
				break;
			}

2226
			done_index = page->index;
2227

2228 2229
			lock_page(page);

N
Nick Piggin 已提交
2230 2231 2232 2233 2234 2235 2236 2237
			/*
			 * Page truncated or invalidated. We can freely skip it
			 * then, even for data integrity operations: the page
			 * has disappeared concurrently, so there could be no
			 * real expectation of this data interity operation
			 * even if there is now a new, dirty page at the same
			 * pagecache address.
			 */
2238
			if (unlikely(page->mapping != mapping)) {
N
Nick Piggin 已提交
2239
continue_unlock:
2240 2241 2242 2243
				unlock_page(page);
				continue;
			}

2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
			if (!PageDirty(page)) {
				/* someone wrote it for us */
				goto continue_unlock;
			}

			if (PageWriteback(page)) {
				if (wbc->sync_mode != WB_SYNC_NONE)
					wait_on_page_writeback(page);
				else
					goto continue_unlock;
			}
2255

2256 2257
			BUG_ON(PageWriteback(page));
			if (!clear_page_dirty_for_io(page))
N
Nick Piggin 已提交
2258
				goto continue_unlock;
2259

2260
			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2261
			ret = (*writepage)(page, wbc, data);
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
			if (unlikely(ret)) {
				if (ret == AOP_WRITEPAGE_ACTIVATE) {
					unlock_page(page);
					ret = 0;
				} else {
					/*
					 * done_index is set past this page,
					 * so media errors will not choke
					 * background writeout for the entire
					 * file. This has consequences for
					 * range_cyclic semantics (ie. it may
					 * not be suitable for data integrity
					 * writeout).
					 */
2276
					done_index = page->index + 1;
2277 2278 2279
					done = 1;
					break;
				}
2280
			}
2281

2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
			/*
			 * We stop writing back only if we are not doing
			 * integrity sync. In case of integrity sync we have to
			 * keep going until we have written all the pages
			 * we tagged for writeback prior to entering this loop.
			 */
			if (--wbc->nr_to_write <= 0 &&
			    wbc->sync_mode == WB_SYNC_NONE) {
				done = 1;
				break;
2292
			}
2293 2294 2295 2296
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2297
	if (!cycled && !done) {
2298
		/*
N
Nick Piggin 已提交
2299
		 * range_cyclic:
2300 2301 2302
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
N
Nick Piggin 已提交
2303
		cycled = 1;
2304
		index = 0;
N
Nick Piggin 已提交
2305
		end = writeback_index - 1;
2306 2307
		goto retry;
	}
2308 2309
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		mapping->writeback_index = done_index;
2310

2311 2312
	return ret;
}
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
EXPORT_SYMBOL(write_cache_pages);

/*
 * Function used by generic_writepages to call the real writepage
 * function and set the mapping flags on error
 */
static int __writepage(struct page *page, struct writeback_control *wbc,
		       void *data)
{
	struct address_space *mapping = data;
	int ret = mapping->a_ops->writepage(page, wbc);
	mapping_set_error(mapping, ret);
	return ret;
}

/**
 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 *
 * This is a library function, which implements the writepages()
 * address_space_operation.
 */
int generic_writepages(struct address_space *mapping,
		       struct writeback_control *wbc)
{
2339 2340 2341
	struct blk_plug plug;
	int ret;

2342 2343 2344 2345
	/* deal with chardevs and other special file */
	if (!mapping->a_ops->writepage)
		return 0;

2346 2347 2348 2349
	blk_start_plug(&plug);
	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
	blk_finish_plug(&plug);
	return ret;
2350
}
2351 2352 2353

EXPORT_SYMBOL(generic_writepages);

L
Linus Torvalds 已提交
2354 2355
int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
{
2356 2357
	int ret;

L
Linus Torvalds 已提交
2358 2359 2360
	if (wbc->nr_to_write <= 0)
		return 0;
	if (mapping->a_ops->writepages)
2361
		ret = mapping->a_ops->writepages(mapping, wbc);
2362 2363 2364
	else
		ret = generic_writepages(mapping, wbc);
	return ret;
L
Linus Torvalds 已提交
2365 2366 2367 2368
}

/**
 * write_one_page - write out a single page and optionally wait on I/O
2369 2370
 * @page: the page to write
 * @wait: if true, wait on writeout
L
Linus Torvalds 已提交
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
 *
 * The page must be locked by the caller and will be unlocked upon return.
 *
 * write_one_page() returns a negative error code if I/O failed.
 */
int write_one_page(struct page *page, int wait)
{
	struct address_space *mapping = page->mapping;
	int ret = 0;
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_ALL,
		.nr_to_write = 1,
	};

	BUG_ON(!PageLocked(page));

	if (wait)
		wait_on_page_writeback(page);

	if (clear_page_dirty_for_io(page)) {
2391
		get_page(page);
L
Linus Torvalds 已提交
2392 2393 2394 2395 2396 2397
		ret = mapping->a_ops->writepage(page, &wbc);
		if (ret == 0 && wait) {
			wait_on_page_writeback(page);
			if (PageError(page))
				ret = -EIO;
		}
2398
		put_page(page);
L
Linus Torvalds 已提交
2399 2400 2401 2402 2403 2404 2405
	} else {
		unlock_page(page);
	}
	return ret;
}
EXPORT_SYMBOL(write_one_page);

2406 2407 2408 2409 2410 2411
/*
 * For address_spaces which do not use buffers nor write back.
 */
int __set_page_dirty_no_writeback(struct page *page)
{
	if (!PageDirty(page))
2412
		return !TestSetPageDirty(page);
2413 2414 2415
	return 0;
}

2416 2417
/*
 * Helper function for set_page_dirty family.
2418
 *
2419
 * Caller must hold lock_page_memcg().
2420
 *
2421 2422
 * NOTE: This relies on being atomic wrt interrupts.
 */
J
Johannes Weiner 已提交
2423
void account_page_dirtied(struct page *page, struct address_space *mapping)
2424
{
2425 2426
	struct inode *inode = mapping->host;

T
Tejun Heo 已提交
2427 2428
	trace_writeback_dirty_page(page, mapping);

2429
	if (mapping_cap_account_dirty(mapping)) {
2430
		struct bdi_writeback *wb;
2431

2432 2433
		inode_attach_wb(inode, page);
		wb = inode_to_wb(inode);
2434

J
Johannes Weiner 已提交
2435
		mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2436
		__inc_zone_page_state(page, NR_FILE_DIRTY);
2437
		__inc_zone_page_state(page, NR_DIRTIED);
2438 2439
		__inc_wb_stat(wb, WB_RECLAIMABLE);
		__inc_wb_stat(wb, WB_DIRTIED);
2440
		task_io_account_write(PAGE_SIZE);
2441 2442
		current->nr_dirtied++;
		this_cpu_inc(bdp_ratelimits);
2443 2444
	}
}
M
Michael Rubin 已提交
2445
EXPORT_SYMBOL(account_page_dirtied);
2446

2447 2448 2449
/*
 * Helper function for deaccounting dirty page without writeback.
 *
2450
 * Caller must hold lock_page_memcg().
2451
 */
2452
void account_page_cleaned(struct page *page, struct address_space *mapping,
J
Johannes Weiner 已提交
2453
			  struct bdi_writeback *wb)
2454 2455
{
	if (mapping_cap_account_dirty(mapping)) {
J
Johannes Weiner 已提交
2456
		mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2457
		dec_zone_page_state(page, NR_FILE_DIRTY);
2458
		dec_wb_stat(wb, WB_RECLAIMABLE);
2459
		task_io_account_cancelled_write(PAGE_SIZE);
2460 2461 2462
	}
}

L
Linus Torvalds 已提交
2463 2464 2465 2466 2467 2468 2469 2470
/*
 * For address_spaces which do not use buffers.  Just tag the page as dirty in
 * its radix tree.
 *
 * This is also used when a single buffer is being dirtied: we want to set the
 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
 *
2471 2472 2473
 * The caller must ensure this doesn't race with truncation.  Most will simply
 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
 * the pte lock held, which also locks out truncation.
L
Linus Torvalds 已提交
2474 2475 2476
 */
int __set_page_dirty_nobuffers(struct page *page)
{
J
Johannes Weiner 已提交
2477
	lock_page_memcg(page);
L
Linus Torvalds 已提交
2478 2479
	if (!TestSetPageDirty(page)) {
		struct address_space *mapping = page_mapping(page);
2480
		unsigned long flags;
L
Linus Torvalds 已提交
2481

2482
		if (!mapping) {
J
Johannes Weiner 已提交
2483
			unlock_page_memcg(page);
2484
			return 1;
2485
		}
2486

2487
		spin_lock_irqsave(&mapping->tree_lock, flags);
2488 2489
		BUG_ON(page_mapping(page) != mapping);
		WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
J
Johannes Weiner 已提交
2490
		account_page_dirtied(page, mapping);
2491 2492
		radix_tree_tag_set(&mapping->page_tree, page_index(page),
				   PAGECACHE_TAG_DIRTY);
2493
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
J
Johannes Weiner 已提交
2494
		unlock_page_memcg(page);
2495

2496 2497 2498
		if (mapping->host) {
			/* !PageAnon && !swapper_space */
			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
L
Linus Torvalds 已提交
2499
		}
2500
		return 1;
L
Linus Torvalds 已提交
2501
	}
J
Johannes Weiner 已提交
2502
	unlock_page_memcg(page);
2503
	return 0;
L
Linus Torvalds 已提交
2504 2505 2506
}
EXPORT_SYMBOL(__set_page_dirty_nobuffers);

2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
/*
 * Call this whenever redirtying a page, to de-account the dirty counters
 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
 * control.
 */
void account_page_redirty(struct page *page)
{
	struct address_space *mapping = page->mapping;
2517

2518
	if (mapping && mapping_cap_account_dirty(mapping)) {
2519 2520 2521
		struct inode *inode = mapping->host;
		struct bdi_writeback *wb;
		bool locked;
2522

2523
		wb = unlocked_inode_to_wb_begin(inode, &locked);
2524 2525
		current->nr_dirtied--;
		dec_zone_page_state(page, NR_DIRTIED);
2526
		dec_wb_stat(wb, WB_DIRTIED);
2527
		unlocked_inode_to_wb_end(inode, locked);
2528 2529 2530 2531
	}
}
EXPORT_SYMBOL(account_page_redirty);

L
Linus Torvalds 已提交
2532 2533 2534 2535 2536 2537 2538
/*
 * When a writepage implementation decides that it doesn't want to write this
 * page for some reason, it should redirty the locked page via
 * redirty_page_for_writepage() and it should then unlock the page and return 0
 */
int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
{
2539 2540
	int ret;

L
Linus Torvalds 已提交
2541
	wbc->pages_skipped++;
2542
	ret = __set_page_dirty_nobuffers(page);
2543
	account_page_redirty(page);
2544
	return ret;
L
Linus Torvalds 已提交
2545 2546 2547 2548
}
EXPORT_SYMBOL(redirty_page_for_writepage);

/*
2549 2550 2551 2552 2553 2554 2555
 * Dirty a page.
 *
 * For pages with a mapping this should be done under the page lock
 * for the benefit of asynchronous memory errors who prefer a consistent
 * dirty state. This rule can be broken in some special cases,
 * but should be better not to.
 *
L
Linus Torvalds 已提交
2556 2557 2558
 * If the mapping doesn't provide a set_page_dirty a_op, then
 * just fall through and assume that it wants buffer_heads.
 */
N
Nick Piggin 已提交
2559
int set_page_dirty(struct page *page)
L
Linus Torvalds 已提交
2560 2561 2562 2563 2564
{
	struct address_space *mapping = page_mapping(page);

	if (likely(mapping)) {
		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
M
Minchan Kim 已提交
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
		/*
		 * readahead/lru_deactivate_page could remain
		 * PG_readahead/PG_reclaim due to race with end_page_writeback
		 * About readahead, if the page is written, the flags would be
		 * reset. So no problem.
		 * About lru_deactivate_page, if the page is redirty, the flag
		 * will be reset. So no problem. but if the page is used by readahead
		 * it will confuse readahead and make it restart the size rampup
		 * process. But it's a trivial problem.
		 */
2575 2576
		if (PageReclaim(page))
			ClearPageReclaim(page);
2577 2578 2579 2580 2581
#ifdef CONFIG_BLOCK
		if (!spd)
			spd = __set_page_dirty_buffers;
#endif
		return (*spd)(page);
L
Linus Torvalds 已提交
2582
	}
2583 2584 2585 2586
	if (!PageDirty(page)) {
		if (!TestSetPageDirty(page))
			return 1;
	}
L
Linus Torvalds 已提交
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
	return 0;
}
EXPORT_SYMBOL(set_page_dirty);

/*
 * set_page_dirty() is racy if the caller has no reference against
 * page->mapping->host, and if the page is unlocked.  This is because another
 * CPU could truncate the page off the mapping and then free the mapping.
 *
 * Usually, the page _is_ locked, or the caller is a user-space process which
 * holds a reference on the inode by having an open file.
 *
 * In other cases, the page should be locked before running set_page_dirty().
 */
int set_page_dirty_lock(struct page *page)
{
	int ret;

J
Jens Axboe 已提交
2605
	lock_page(page);
L
Linus Torvalds 已提交
2606 2607 2608 2609 2610 2611
	ret = set_page_dirty(page);
	unlock_page(page);
	return ret;
}
EXPORT_SYMBOL(set_page_dirty_lock);

2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
/*
 * This cancels just the dirty bit on the kernel page itself, it does NOT
 * actually remove dirty bits on any mmap's that may be around. It also
 * leaves the page tagged dirty, so any sync activity will still find it on
 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
 * look at the dirty bits in the VM.
 *
 * Doing this should *normally* only ever be done when a page is truncated,
 * and is not actually mapped anywhere at all. However, fs/buffer.c does
 * this when it notices that somebody has cleaned out all the buffers on a
 * page without actually doing it through the VM. Can you say "ext3 is
 * horribly ugly"? Thought you could.
 */
void cancel_dirty_page(struct page *page)
{
2627 2628 2629
	struct address_space *mapping = page_mapping(page);

	if (mapping_cap_account_dirty(mapping)) {
2630 2631 2632
		struct inode *inode = mapping->host;
		struct bdi_writeback *wb;
		bool locked;
2633

J
Johannes Weiner 已提交
2634
		lock_page_memcg(page);
2635
		wb = unlocked_inode_to_wb_begin(inode, &locked);
2636 2637

		if (TestClearPageDirty(page))
J
Johannes Weiner 已提交
2638
			account_page_cleaned(page, mapping, wb);
2639

2640
		unlocked_inode_to_wb_end(inode, locked);
J
Johannes Weiner 已提交
2641
		unlock_page_memcg(page);
2642 2643 2644
	} else {
		ClearPageDirty(page);
	}
2645 2646 2647
}
EXPORT_SYMBOL(cancel_dirty_page);

L
Linus Torvalds 已提交
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
/*
 * Clear a page's dirty flag, while caring for dirty memory accounting.
 * Returns true if the page was previously dirty.
 *
 * This is for preparing to put the page under writeout.  We leave the page
 * tagged as dirty in the radix tree so that a concurrent write-for-sync
 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
 * implementation will run either set_page_writeback() or set_page_dirty(),
 * at which stage we bring the page's dirty flag and radix-tree dirty tag
 * back into sync.
 *
 * This incoherency between the page's dirty flag and radix-tree tag is
 * unfortunate, but it only exists while the page is locked.
 */
int clear_page_dirty_for_io(struct page *page)
{
	struct address_space *mapping = page_mapping(page);
2665
	int ret = 0;
L
Linus Torvalds 已提交
2666

2667 2668
	BUG_ON(!PageLocked(page));

2669
	if (mapping && mapping_cap_account_dirty(mapping)) {
2670 2671 2672 2673
		struct inode *inode = mapping->host;
		struct bdi_writeback *wb;
		bool locked;

2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
		/*
		 * Yes, Virginia, this is indeed insane.
		 *
		 * We use this sequence to make sure that
		 *  (a) we account for dirty stats properly
		 *  (b) we tell the low-level filesystem to
		 *      mark the whole page dirty if it was
		 *      dirty in a pagetable. Only to then
		 *  (c) clean the page again and return 1 to
		 *      cause the writeback.
		 *
		 * This way we avoid all nasty races with the
		 * dirty bit in multiple places and clearing
		 * them concurrently from different threads.
		 *
		 * Note! Normally the "set_page_dirty(page)"
		 * has no effect on the actual dirty bit - since
		 * that will already usually be set. But we
		 * need the side effects, and it can help us
		 * avoid races.
		 *
		 * We basically use the page "master dirty bit"
		 * as a serialization point for all the different
		 * threads doing their things.
		 */
		if (page_mkclean(page))
			set_page_dirty(page);
2701 2702 2703
		/*
		 * We carefully synchronise fault handlers against
		 * installing a dirty pte and marking the page dirty
2704 2705 2706 2707
		 * at this point.  We do this by having them hold the
		 * page lock while dirtying the page, and pages are
		 * always locked coming in here, so we get the desired
		 * exclusion.
2708
		 */
2709
		wb = unlocked_inode_to_wb_begin(inode, &locked);
2710
		if (TestClearPageDirty(page)) {
J
Johannes Weiner 已提交
2711
			mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2712
			dec_zone_page_state(page, NR_FILE_DIRTY);
2713
			dec_wb_stat(wb, WB_RECLAIMABLE);
2714
			ret = 1;
L
Linus Torvalds 已提交
2715
		}
2716
		unlocked_inode_to_wb_end(inode, locked);
2717
		return ret;
L
Linus Torvalds 已提交
2718
	}
2719
	return TestClearPageDirty(page);
L
Linus Torvalds 已提交
2720
}
2721
EXPORT_SYMBOL(clear_page_dirty_for_io);
L
Linus Torvalds 已提交
2722 2723 2724 2725

int test_clear_page_writeback(struct page *page)
{
	struct address_space *mapping = page_mapping(page);
2726
	int ret;
L
Linus Torvalds 已提交
2727

J
Johannes Weiner 已提交
2728
	lock_page_memcg(page);
L
Linus Torvalds 已提交
2729
	if (mapping) {
2730 2731
		struct inode *inode = mapping->host;
		struct backing_dev_info *bdi = inode_to_bdi(inode);
L
Linus Torvalds 已提交
2732 2733
		unsigned long flags;

N
Nick Piggin 已提交
2734
		spin_lock_irqsave(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2735
		ret = TestClearPageWriteback(page);
P
Peter Zijlstra 已提交
2736
		if (ret) {
L
Linus Torvalds 已提交
2737 2738 2739
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_WRITEBACK);
2740
			if (bdi_cap_account_writeback(bdi)) {
2741 2742 2743 2744
				struct bdi_writeback *wb = inode_to_wb(inode);

				__dec_wb_stat(wb, WB_WRITEBACK);
				__wb_writeout_inc(wb);
P
Peter Zijlstra 已提交
2745
			}
P
Peter Zijlstra 已提交
2746
		}
N
Nick Piggin 已提交
2747
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2748 2749 2750
	} else {
		ret = TestClearPageWriteback(page);
	}
2751
	if (ret) {
J
Johannes Weiner 已提交
2752
		mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2753
		dec_zone_page_state(page, NR_WRITEBACK);
2754 2755
		inc_zone_page_state(page, NR_WRITTEN);
	}
J
Johannes Weiner 已提交
2756
	unlock_page_memcg(page);
L
Linus Torvalds 已提交
2757 2758 2759
	return ret;
}

2760
int __test_set_page_writeback(struct page *page, bool keep_write)
L
Linus Torvalds 已提交
2761 2762
{
	struct address_space *mapping = page_mapping(page);
2763
	int ret;
L
Linus Torvalds 已提交
2764

J
Johannes Weiner 已提交
2765
	lock_page_memcg(page);
L
Linus Torvalds 已提交
2766
	if (mapping) {
2767 2768
		struct inode *inode = mapping->host;
		struct backing_dev_info *bdi = inode_to_bdi(inode);
L
Linus Torvalds 已提交
2769 2770
		unsigned long flags;

N
Nick Piggin 已提交
2771
		spin_lock_irqsave(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2772
		ret = TestSetPageWriteback(page);
P
Peter Zijlstra 已提交
2773
		if (!ret) {
L
Linus Torvalds 已提交
2774 2775 2776
			radix_tree_tag_set(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_WRITEBACK);
2777
			if (bdi_cap_account_writeback(bdi))
2778
				__inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
P
Peter Zijlstra 已提交
2779
		}
L
Linus Torvalds 已提交
2780 2781 2782 2783
		if (!PageDirty(page))
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_DIRTY);
2784 2785 2786 2787
		if (!keep_write)
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_TOWRITE);
N
Nick Piggin 已提交
2788
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2789 2790 2791
	} else {
		ret = TestSetPageWriteback(page);
	}
2792
	if (!ret) {
J
Johannes Weiner 已提交
2793
		mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2794 2795
		inc_zone_page_state(page, NR_WRITEBACK);
	}
J
Johannes Weiner 已提交
2796
	unlock_page_memcg(page);
L
Linus Torvalds 已提交
2797 2798 2799
	return ret;

}
2800
EXPORT_SYMBOL(__test_set_page_writeback);
L
Linus Torvalds 已提交
2801 2802

/*
N
Nick Piggin 已提交
2803
 * Return true if any of the pages in the mapping are marked with the
L
Linus Torvalds 已提交
2804 2805 2806 2807
 * passed tag.
 */
int mapping_tagged(struct address_space *mapping, int tag)
{
2808
	return radix_tree_tagged(&mapping->page_tree, tag);
L
Linus Torvalds 已提交
2809 2810
}
EXPORT_SYMBOL(mapping_tagged);
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821

/**
 * wait_for_stable_page() - wait for writeback to finish, if necessary.
 * @page:	The page to wait on.
 *
 * This function determines if the given page is related to a backing device
 * that requires page contents to be held stable during writeback.  If so, then
 * it will wait for any pending writeback to complete.
 */
void wait_for_stable_page(struct page *page)
{
2822 2823
	if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
		wait_on_page_writeback(page);
2824 2825
}
EXPORT_SYMBOL_GPL(wait_for_stable_page);