page-writeback.c 79.0 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 * mm/page-writeback.c
L
Linus Torvalds 已提交
3 4
 *
 * Copyright (C) 2002, Linus Torvalds.
P
Peter Zijlstra 已提交
5
 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
L
Linus Torvalds 已提交
6 7 8 9
 *
 * Contains functions related to writing back dirty pages at the
 * address_space level.
 *
10
 * 10Apr2002	Andrew Morton
L
Linus Torvalds 已提交
11 12 13 14
 *		Initial version
 */

#include <linux/kernel.h>
15
#include <linux/export.h>
L
Linus Torvalds 已提交
16 17 18 19 20 21 22 23 24
#include <linux/spinlock.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/writeback.h>
#include <linux/init.h>
#include <linux/backing-dev.h>
25
#include <linux/task_io_accounting_ops.h>
L
Linus Torvalds 已提交
26 27
#include <linux/blkdev.h>
#include <linux/mpage.h>
28
#include <linux/rmap.h>
L
Linus Torvalds 已提交
29 30 31 32 33 34
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/smp.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
A
Al Viro 已提交
35
#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36
#include <linux/pagevec.h>
37
#include <linux/timer.h>
38
#include <linux/sched/rt.h>
39
#include <linux/mm_inline.h>
40
#include <trace/events/writeback.h>
L
Linus Torvalds 已提交
41

42 43
#include "internal.h"

44 45 46 47 48
/*
 * Sleep at most 200ms at a time in balance_dirty_pages().
 */
#define MAX_PAUSE		max(HZ/5, 1)

49 50 51 52 53 54
/*
 * Try to keep balance_dirty_pages() call intervals higher than this many pages
 * by raising pause time to max_pause when falls below it.
 */
#define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))

55 56 57 58 59
/*
 * Estimate write bandwidth at 200ms intervals.
 */
#define BANDWIDTH_INTERVAL	max(HZ/5, 1)

W
Wu Fengguang 已提交
60 61
#define RATELIMIT_CALC_SHIFT	10

L
Linus Torvalds 已提交
62 63 64 65 66 67 68 69 70
/*
 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
 * will look to see if it needs to force writeback or throttling.
 */
static long ratelimit_pages = 32;

/* The following parameters are exported via /proc/sys/vm */

/*
71
 * Start background writeback (via writeback threads) at this percentage
L
Linus Torvalds 已提交
72
 */
73
int dirty_background_ratio = 10;
L
Linus Torvalds 已提交
74

75 76 77 78 79 80
/*
 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
 * dirty_background_ratio * the amount of dirtyable memory
 */
unsigned long dirty_background_bytes;

81 82 83 84 85 86
/*
 * free highmem will not be subtracted from the total free memory
 * for calculating free ratios if vm_highmem_is_dirtyable is true
 */
int vm_highmem_is_dirtyable;

L
Linus Torvalds 已提交
87 88 89
/*
 * The generator of dirty data starts writeback at this percentage
 */
90
int vm_dirty_ratio = 20;
L
Linus Torvalds 已提交
91

92 93 94 95 96 97
/*
 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
 * vm_dirty_ratio * the amount of dirtyable memory
 */
unsigned long vm_dirty_bytes;

L
Linus Torvalds 已提交
98
/*
99
 * The interval between `kupdate'-style writebacks
L
Linus Torvalds 已提交
100
 */
101
unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
L
Linus Torvalds 已提交
102

103 104
EXPORT_SYMBOL_GPL(dirty_writeback_interval);

L
Linus Torvalds 已提交
105
/*
106
 * The longest time for which data is allowed to remain dirty
L
Linus Torvalds 已提交
107
 */
108
unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
L
Linus Torvalds 已提交
109 110 111 112 113 114 115

/*
 * Flag that makes the machine dump writes/reads and block dirtyings.
 */
int block_dump;

/*
116 117
 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 * a full sync is triggered after this time elapses without any disk activity.
L
Linus Torvalds 已提交
118 119 120 121 122 123 124
 */
int laptop_mode;

EXPORT_SYMBOL(laptop_mode);

/* End of sysctl-exported parameters */

125
struct wb_domain global_wb_domain;
126

127 128
/* consolidated parameters for balance_dirty_pages() and its subroutines */
struct dirty_throttle_control {
129 130
#ifdef CONFIG_CGROUP_WRITEBACK
	struct wb_domain	*dom;
131
	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
132
#endif
133
	struct bdi_writeback	*wb;
134
	struct fprop_local_percpu *wb_completions;
135

136
	unsigned long		avail;		/* dirtyable */
137 138 139 140 141 142
	unsigned long		dirty;		/* file_dirty + write + nfs */
	unsigned long		thresh;		/* dirty threshold */
	unsigned long		bg_thresh;	/* dirty background threshold */

	unsigned long		wb_dirty;	/* per-wb counterparts */
	unsigned long		wb_thresh;
143
	unsigned long		wb_bg_thresh;
144 145

	unsigned long		pos_ratio;
146 147
};

148
#define DTC_INIT_COMMON(__wb)	.wb = (__wb),				\
149
				.wb_completions = &(__wb)->completions
150

151 152 153 154 155 156
/*
 * Length of period for aging writeout fractions of bdis. This is an
 * arbitrarily chosen number. The longer the period, the slower fractions will
 * reflect changes in current writeout rate.
 */
#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
P
Peter Zijlstra 已提交
157

158 159
#ifdef CONFIG_CGROUP_WRITEBACK

160 161
#define GDTC_INIT(__wb)		.dom = &global_wb_domain,		\
				DTC_INIT_COMMON(__wb)
162
#define GDTC_INIT_NO_WB		.dom = &global_wb_domain
163 164 165 166 167 168

static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
{
	return dtc->dom;
}

169 170 171 172 173
static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
{
	return mdtc->gdtc;
}

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
static void wb_min_max_ratio(struct bdi_writeback *wb,
			     unsigned long *minp, unsigned long *maxp)
{
	unsigned long this_bw = wb->avg_write_bandwidth;
	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
	unsigned long long min = wb->bdi->min_ratio;
	unsigned long long max = wb->bdi->max_ratio;

	/*
	 * @wb may already be clean by the time control reaches here and
	 * the total may not include its bw.
	 */
	if (this_bw < tot_bw) {
		if (min) {
			min *= this_bw;
			do_div(min, tot_bw);
		}
		if (max < 100) {
			max *= this_bw;
			do_div(max, tot_bw);
		}
	}

	*minp = min;
	*maxp = max;
}

#else	/* CONFIG_CGROUP_WRITEBACK */

203
#define GDTC_INIT(__wb)		DTC_INIT_COMMON(__wb)
204
#define GDTC_INIT_NO_WB
205 206 207 208 209 210

static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
{
	return &global_wb_domain;
}

211 212 213 214 215
static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
{
	return NULL;
}

216 217 218 219 220 221 222 223 224
static void wb_min_max_ratio(struct bdi_writeback *wb,
			     unsigned long *minp, unsigned long *maxp)
{
	*minp = wb->bdi->min_ratio;
	*maxp = wb->bdi->max_ratio;
}

#endif	/* CONFIG_CGROUP_WRITEBACK */

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
/*
 * In a memory zone, there is a certain amount of pages we consider
 * available for the page cache, which is essentially the number of
 * free and reclaimable pages, minus some zone reserves to protect
 * lowmem and the ability to uphold the zone's watermarks without
 * requiring writeback.
 *
 * This number of dirtyable pages is the base value of which the
 * user-configurable dirty ratio is the effictive number of pages that
 * are allowed to be actually dirtied.  Per individual zone, or
 * globally by using the sum of dirtyable pages over all zones.
 *
 * Because the user is allowed to specify the dirty limit globally as
 * absolute number of bytes, calculating the per-zone dirty limit can
 * require translating the configured limit into a percentage of
 * global dirtyable memory first.
 */

243 244 245 246 247 248 249 250 251 252 253 254 255 256
/**
 * zone_dirtyable_memory - number of dirtyable pages in a zone
 * @zone: the zone
 *
 * Returns the zone's number of pages potentially available for dirty
 * page cache.  This is the base value for the per-zone dirty limits.
 */
static unsigned long zone_dirtyable_memory(struct zone *zone)
{
	unsigned long nr_pages;

	nr_pages = zone_page_state(zone, NR_FREE_PAGES);
	nr_pages -= min(nr_pages, zone->dirty_balance_reserve);

257 258
	nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
	nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
259 260 261 262

	return nr_pages;
}

263 264 265 266 267 268 269
static unsigned long highmem_dirtyable_memory(unsigned long total)
{
#ifdef CONFIG_HIGHMEM
	int node;
	unsigned long x = 0;

	for_each_node_state(node, N_HIGH_MEMORY) {
270
		struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
271

272
		x += zone_dirtyable_memory(z);
273
	}
274 275 276 277 278 279 280 281 282 283 284 285
	/*
	 * Unreclaimable memory (kernel memory or anonymous memory
	 * without swap) can bring down the dirtyable pages below
	 * the zone's dirty balance reserve and the above calculation
	 * will underflow.  However we still want to add in nodes
	 * which are below threshold (negative values) to get a more
	 * accurate calculation but make sure that the total never
	 * underflows.
	 */
	if ((long)x < 0)
		x = 0;

286 287 288 289 290 291 292 293 294 295 296 297 298
	/*
	 * Make sure that the number of highmem pages is never larger
	 * than the number of the total dirtyable memory. This can only
	 * occur in very strange VM situations but we want to make sure
	 * that this does not occur.
	 */
	return min(x, total);
#else
	return 0;
#endif
}

/**
299
 * global_dirtyable_memory - number of globally dirtyable pages
300
 *
301 302
 * Returns the global number of pages potentially available for dirty
 * page cache.  This is the base value for the global dirty limits.
303
 */
304
static unsigned long global_dirtyable_memory(void)
305 306 307
{
	unsigned long x;

308
	x = global_page_state(NR_FREE_PAGES);
309
	x -= min(x, dirty_balance_reserve);
310

311 312
	x += global_page_state(NR_INACTIVE_FILE);
	x += global_page_state(NR_ACTIVE_FILE);
313

314 315 316 317 318 319
	if (!vm_highmem_is_dirtyable)
		x -= highmem_dirtyable_memory(x);

	return x + 1;	/* Ensure that we never return 0 */
}

320 321 322
/**
 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
 * @dtc: dirty_throttle_control of interest
323
 *
324 325 326 327
 * Calculate @dtc->thresh and ->bg_thresh considering
 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
 * must ensure that @dtc->avail is set before calling this function.  The
 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
328 329
 * real-time tasks.
 */
330
static void domain_dirty_limits(struct dirty_throttle_control *dtc)
331
{
332 333 334 335 336 337 338 339
	const unsigned long available_memory = dtc->avail;
	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
	unsigned long bytes = vm_dirty_bytes;
	unsigned long bg_bytes = dirty_background_bytes;
	unsigned long ratio = vm_dirty_ratio;
	unsigned long bg_ratio = dirty_background_ratio;
	unsigned long thresh;
	unsigned long bg_thresh;
340 341
	struct task_struct *tsk;

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
	/* gdtc is !NULL iff @dtc is for memcg domain */
	if (gdtc) {
		unsigned long global_avail = gdtc->avail;

		/*
		 * The byte settings can't be applied directly to memcg
		 * domains.  Convert them to ratios by scaling against
		 * globally available memory.
		 */
		if (bytes)
			ratio = min(DIV_ROUND_UP(bytes, PAGE_SIZE) * 100 /
				    global_avail, 100UL);
		if (bg_bytes)
			bg_ratio = min(DIV_ROUND_UP(bg_bytes, PAGE_SIZE) * 100 /
				       global_avail, 100UL);
		bytes = bg_bytes = 0;
	}

	if (bytes)
		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
362
	else
363
		thresh = (ratio * available_memory) / 100;
364

365 366
	if (bg_bytes)
		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
367
	else
368
		bg_thresh = (bg_ratio * available_memory) / 100;
369

370 371
	if (bg_thresh >= thresh)
		bg_thresh = thresh / 2;
372 373
	tsk = current;
	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
374 375
		bg_thresh += bg_thresh / 4;
		thresh += thresh / 4;
376
	}
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
	dtc->thresh = thresh;
	dtc->bg_thresh = bg_thresh;

	/* we should eventually report the domain in the TP */
	if (!gdtc)
		trace_global_dirty_state(bg_thresh, thresh);
}

/**
 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 * @pbackground: out parameter for bg_thresh
 * @pdirty: out parameter for thresh
 *
 * Calculate bg_thresh and thresh for global_wb_domain.  See
 * domain_dirty_limits() for details.
 */
void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
{
	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };

	gdtc.avail = global_dirtyable_memory();
	domain_dirty_limits(&gdtc);

	*pbackground = gdtc.bg_thresh;
	*pdirty = gdtc.thresh;
402 403
}

404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
/**
 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
 * @zone: the zone
 *
 * Returns the maximum number of dirty pages allowed in a zone, based
 * on the zone's dirtyable memory.
 */
static unsigned long zone_dirty_limit(struct zone *zone)
{
	unsigned long zone_memory = zone_dirtyable_memory(zone);
	struct task_struct *tsk = current;
	unsigned long dirty;

	if (vm_dirty_bytes)
		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
			zone_memory / global_dirtyable_memory();
	else
		dirty = vm_dirty_ratio * zone_memory / 100;

	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
		dirty += dirty / 4;

	return dirty;
}

/**
 * zone_dirty_ok - tells whether a zone is within its dirty limits
 * @zone: the zone to check
 *
 * Returns %true when the dirty pages in @zone are within the zone's
 * dirty limit, %false if the limit is exceeded.
 */
bool zone_dirty_ok(struct zone *zone)
{
	unsigned long limit = zone_dirty_limit(zone);

	return zone_page_state(zone, NR_FILE_DIRTY) +
	       zone_page_state(zone, NR_UNSTABLE_NFS) +
	       zone_page_state(zone, NR_WRITEBACK) <= limit;
}

445
int dirty_background_ratio_handler(struct ctl_table *table, int write,
446
		void __user *buffer, size_t *lenp,
447 448 449 450
		loff_t *ppos)
{
	int ret;

451
	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
452 453 454 455 456 457
	if (ret == 0 && write)
		dirty_background_bytes = 0;
	return ret;
}

int dirty_background_bytes_handler(struct ctl_table *table, int write,
458
		void __user *buffer, size_t *lenp,
459 460 461 462
		loff_t *ppos)
{
	int ret;

463
	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
464 465 466 467 468
	if (ret == 0 && write)
		dirty_background_ratio = 0;
	return ret;
}

P
Peter Zijlstra 已提交
469
int dirty_ratio_handler(struct ctl_table *table, int write,
470
		void __user *buffer, size_t *lenp,
P
Peter Zijlstra 已提交
471 472 473
		loff_t *ppos)
{
	int old_ratio = vm_dirty_ratio;
474 475
	int ret;

476
	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
477
	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
478
		writeback_set_ratelimit();
479 480 481 482 483 484
		vm_dirty_bytes = 0;
	}
	return ret;
}

int dirty_bytes_handler(struct ctl_table *table, int write,
485
		void __user *buffer, size_t *lenp,
486 487
		loff_t *ppos)
{
488
	unsigned long old_bytes = vm_dirty_bytes;
489 490
	int ret;

491
	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
492
	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
493
		writeback_set_ratelimit();
494
		vm_dirty_ratio = 0;
P
Peter Zijlstra 已提交
495 496 497 498
	}
	return ret;
}

499 500 501 502 503 504 505 506 507
static unsigned long wp_next_time(unsigned long cur_time)
{
	cur_time += VM_COMPLETIONS_PERIOD_LEN;
	/* 0 has a special meaning... */
	if (!cur_time)
		return 1;
	return cur_time;
}

508 509 510
static void wb_domain_writeout_inc(struct wb_domain *dom,
				   struct fprop_local_percpu *completions,
				   unsigned int max_prop_frac)
P
Peter Zijlstra 已提交
511
{
512 513
	__fprop_inc_percpu_max(&dom->completions, completions,
			       max_prop_frac);
514
	/* First event after period switching was turned off? */
T
Tejun Heo 已提交
515
	if (!unlikely(dom->period_time)) {
516 517 518 519 520 521
		/*
		 * We can race with other __bdi_writeout_inc calls here but
		 * it does not cause any harm since the resulting time when
		 * timer will fire and what is in writeout_period_time will be
		 * roughly the same.
		 */
T
Tejun Heo 已提交
522 523
		dom->period_time = wp_next_time(jiffies);
		mod_timer(&dom->period_timer, dom->period_time);
524
	}
P
Peter Zijlstra 已提交
525 526
}

527 528 529 530 531 532 533 534 535 536 537
/*
 * Increment @wb's writeout completion count and the global writeout
 * completion count. Called from test_clear_page_writeback().
 */
static inline void __wb_writeout_inc(struct bdi_writeback *wb)
{
	__inc_wb_stat(wb, WB_WRITTEN);
	wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
			       wb->bdi->max_prop_frac);
}

538
void wb_writeout_inc(struct bdi_writeback *wb)
539 540 541 542
{
	unsigned long flags;

	local_irq_save(flags);
543
	__wb_writeout_inc(wb);
544 545
	local_irq_restore(flags);
}
546
EXPORT_SYMBOL_GPL(wb_writeout_inc);
547

548 549 550 551 552 553
/*
 * On idle system, we can be called long after we scheduled because we use
 * deferred timers so count with missed periods.
 */
static void writeout_period(unsigned long t)
{
T
Tejun Heo 已提交
554 555
	struct wb_domain *dom = (void *)t;
	int miss_periods = (jiffies - dom->period_time) /
556 557
						 VM_COMPLETIONS_PERIOD_LEN;

T
Tejun Heo 已提交
558 559
	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
		dom->period_time = wp_next_time(dom->period_time +
560
				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
T
Tejun Heo 已提交
561
		mod_timer(&dom->period_timer, dom->period_time);
562 563 564 565 566
	} else {
		/*
		 * Aging has zeroed all fractions. Stop wasting CPU on period
		 * updates.
		 */
T
Tejun Heo 已提交
567
		dom->period_time = 0;
568 569 570
	}
}

T
Tejun Heo 已提交
571 572 573
int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
{
	memset(dom, 0, sizeof(*dom));
574 575 576

	spin_lock_init(&dom->lock);

T
Tejun Heo 已提交
577 578 579
	init_timer_deferrable(&dom->period_timer);
	dom->period_timer.function = writeout_period;
	dom->period_timer.data = (unsigned long)dom;
580 581 582

	dom->dirty_limit_tstamp = jiffies;

T
Tejun Heo 已提交
583 584 585
	return fprop_global_init(&dom->completions, gfp);
}

586
/*
587 588 589
 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 * registered backing devices, which, for obvious reasons, can not
 * exceed 100%.
590 591 592 593 594 595 596
 */
static unsigned int bdi_min_ratio;

int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
{
	int ret = 0;

597
	spin_lock_bh(&bdi_lock);
598
	if (min_ratio > bdi->max_ratio) {
599
		ret = -EINVAL;
600 601 602 603 604 605 606 607 608
	} else {
		min_ratio -= bdi->min_ratio;
		if (bdi_min_ratio + min_ratio < 100) {
			bdi_min_ratio += min_ratio;
			bdi->min_ratio += min_ratio;
		} else {
			ret = -EINVAL;
		}
	}
609
	spin_unlock_bh(&bdi_lock);
610 611 612 613 614 615 616 617 618 619 620

	return ret;
}

int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
{
	int ret = 0;

	if (max_ratio > 100)
		return -EINVAL;

621
	spin_lock_bh(&bdi_lock);
622 623 624 625
	if (bdi->min_ratio > max_ratio) {
		ret = -EINVAL;
	} else {
		bdi->max_ratio = max_ratio;
626
		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
627
	}
628
	spin_unlock_bh(&bdi_lock);
629 630 631

	return ret;
}
632
EXPORT_SYMBOL(bdi_set_max_ratio);
633

W
Wu Fengguang 已提交
634 635 636 637 638 639
static unsigned long dirty_freerun_ceiling(unsigned long thresh,
					   unsigned long bg_thresh)
{
	return (thresh + bg_thresh) / 2;
}

640 641
static unsigned long hard_dirty_limit(struct wb_domain *dom,
				      unsigned long thresh)
642
{
643
	return max(thresh, dom->dirty_limit);
644 645
}

646
/**
647 648
 * __wb_calc_thresh - @wb's share of dirty throttling threshold
 * @dtc: dirty_throttle_context of interest
649
 *
650
 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
651
 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
652 653 654 655 656 657
 *
 * Note that balance_dirty_pages() will only seriously take it as a hard limit
 * when sleeping max_pause per page is not enough to keep the dirty pages under
 * control. For example, when the device is completely stalled due to some error
 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 * In the other normal situations, it acts more gently by throttling the tasks
658
 * more (rather than completely block them) when the wb dirty pages go high.
659
 *
660
 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
661 662 663
 * - starving fast devices
 * - piling up dirty pages (that will take long time to sync) on slow devices
 *
664
 * The wb's share of dirty limit will be adapting to its throughput and
665 666
 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 */
667
static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
668
{
669
	struct wb_domain *dom = dtc_dom(dtc);
670
	unsigned long thresh = dtc->thresh;
T
Tejun Heo 已提交
671
	u64 wb_thresh;
672
	long numerator, denominator;
673
	unsigned long wb_min_ratio, wb_max_ratio;
P
Peter Zijlstra 已提交
674

675
	/*
T
Tejun Heo 已提交
676
	 * Calculate this BDI's share of the thresh ratio.
677
	 */
678
	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
T
Tejun Heo 已提交
679
			      &numerator, &denominator);
P
Peter Zijlstra 已提交
680

T
Tejun Heo 已提交
681 682 683
	wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
	wb_thresh *= numerator;
	do_div(wb_thresh, denominator);
P
Peter Zijlstra 已提交
684

685
	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
686

T
Tejun Heo 已提交
687 688 689
	wb_thresh += (thresh * wb_min_ratio) / 100;
	if (wb_thresh > (thresh * wb_max_ratio) / 100)
		wb_thresh = thresh * wb_max_ratio / 100;
690

T
Tejun Heo 已提交
691
	return wb_thresh;
L
Linus Torvalds 已提交
692 693
}

694 695 696 697 698 699 700
unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
{
	struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
					       .thresh = thresh };
	return __wb_calc_thresh(&gdtc);
}

701 702 703 704 705 706 707 708 709 710 711 712 713 714
/*
 *                           setpoint - dirty 3
 *        f(dirty) := 1.0 + (----------------)
 *                           limit - setpoint
 *
 * it's a 3rd order polynomial that subjects to
 *
 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 * (2) f(setpoint) = 1.0 => the balance point
 * (3) f(limit)    = 0   => the hard limit
 * (4) df/dx      <= 0	 => negative feedback control
 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 *     => fast response on large errors; small oscillation near setpoint
 */
715
static long long pos_ratio_polynom(unsigned long setpoint,
716 717 718 719 720 721
					  unsigned long dirty,
					  unsigned long limit)
{
	long long pos_ratio;
	long x;

722
	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
723 724 725 726 727 728 729 730 731
		    limit - setpoint + 1);
	pos_ratio = x;
	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;

	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
}

W
Wu Fengguang 已提交
732 733 734 735 736
/*
 * Dirty position control.
 *
 * (o) global/bdi setpoints
 *
737
 * We want the dirty pages be balanced around the global/wb setpoints.
W
Wu Fengguang 已提交
738 739 740 741 742 743 744 745 746
 * When the number of dirty pages is higher/lower than the setpoint, the
 * dirty position control ratio (and hence task dirty ratelimit) will be
 * decreased/increased to bring the dirty pages back to the setpoint.
 *
 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 *
 *     if (dirty < setpoint) scale up   pos_ratio
 *     if (dirty > setpoint) scale down pos_ratio
 *
747 748
 *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
 *     if (wb_dirty > wb_setpoint) scale down pos_ratio
W
Wu Fengguang 已提交
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
 *
 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 *
 * (o) global control line
 *
 *     ^ pos_ratio
 *     |
 *     |            |<===== global dirty control scope ======>|
 * 2.0 .............*
 *     |            .*
 *     |            . *
 *     |            .   *
 *     |            .     *
 *     |            .        *
 *     |            .            *
 * 1.0 ................................*
 *     |            .                  .     *
 *     |            .                  .          *
 *     |            .                  .              *
 *     |            .                  .                 *
 *     |            .                  .                    *
 *   0 +------------.------------------.----------------------*------------->
 *           freerun^          setpoint^                 limit^   dirty pages
 *
773
 * (o) wb control line
W
Wu Fengguang 已提交
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
 *
 *     ^ pos_ratio
 *     |
 *     |            *
 *     |              *
 *     |                *
 *     |                  *
 *     |                    * |<=========== span ============>|
 * 1.0 .......................*
 *     |                      . *
 *     |                      .   *
 *     |                      .     *
 *     |                      .       *
 *     |                      .         *
 *     |                      .           *
 *     |                      .             *
 *     |                      .               *
 *     |                      .                 *
 *     |                      .                   *
 *     |                      .                     *
 * 1/4 ...............................................* * * * * * * * * * * *
 *     |                      .                         .
 *     |                      .                           .
 *     |                      .                             .
 *   0 +----------------------.-------------------------------.------------->
799
 *                wb_setpoint^                    x_intercept^
W
Wu Fengguang 已提交
800
 *
801
 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
W
Wu Fengguang 已提交
802 803
 * be smoothly throttled down to normal if it starts high in situations like
 * - start writing to a slow SD card and a fast disk at the same time. The SD
804 805
 *   card's wb_dirty may rush to many times higher than wb_setpoint.
 * - the wb dirty thresh drops quickly due to change of JBOD workload
W
Wu Fengguang 已提交
806
 */
807
static void wb_position_ratio(struct dirty_throttle_control *dtc)
W
Wu Fengguang 已提交
808
{
809
	struct bdi_writeback *wb = dtc->wb;
810
	unsigned long write_bw = wb->avg_write_bandwidth;
811
	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
812
	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
813
	unsigned long wb_thresh = dtc->wb_thresh;
W
Wu Fengguang 已提交
814 815
	unsigned long x_intercept;
	unsigned long setpoint;		/* dirty pages' target balance point */
816
	unsigned long wb_setpoint;
W
Wu Fengguang 已提交
817 818 819 820
	unsigned long span;
	long long pos_ratio;		/* for scaling up/down the rate limit */
	long x;

821 822
	dtc->pos_ratio = 0;

823
	if (unlikely(dtc->dirty >= limit))
824
		return;
W
Wu Fengguang 已提交
825 826 827 828

	/*
	 * global setpoint
	 *
829 830 831
	 * See comment for pos_ratio_polynom().
	 */
	setpoint = (freerun + limit) / 2;
832
	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
833 834 835 836

	/*
	 * The strictlimit feature is a tool preventing mistrusted filesystems
	 * from growing a large number of dirty pages before throttling. For
837 838
	 * such filesystems balance_dirty_pages always checks wb counters
	 * against wb limits. Even if global "nr_dirty" is under "freerun".
839 840 841 842
	 * This is especially important for fuse which sets bdi->max_ratio to
	 * 1% by default. Without strictlimit feature, fuse writeback may
	 * consume arbitrary amount of RAM because it is accounted in
	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
W
Wu Fengguang 已提交
843
	 *
844
	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
845
	 * two values: wb_dirty and wb_thresh. Let's consider an example:
846 847
	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
	 * limits are set by default to 10% and 20% (background and throttle).
848
	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
T
Tejun Heo 已提交
849
	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
850
	 * about ~6K pages (as the average of background and throttle wb
851
	 * limits). The 3rd order polynomial will provide positive feedback if
852
	 * wb_dirty is under wb_setpoint and vice versa.
W
Wu Fengguang 已提交
853
	 *
854
	 * Note, that we cannot use global counters in these calculations
855
	 * because we want to throttle process writing to a strictlimit wb
856 857
	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
	 * in the example above).
W
Wu Fengguang 已提交
858
	 */
859
	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
860
		long long wb_pos_ratio;
861

862 863 864 865 866
		if (dtc->wb_dirty < 8) {
			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
					   2 << RATELIMIT_CALC_SHIFT);
			return;
		}
867

868
		if (dtc->wb_dirty >= wb_thresh)
869
			return;
870

871 872
		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
						    dtc->wb_bg_thresh);
873

874
		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
875
			return;
876

877
		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
878
						 wb_thresh);
879 880

		/*
881 882
		 * Typically, for strictlimit case, wb_setpoint << setpoint
		 * and pos_ratio >> wb_pos_ratio. In the other words global
883
		 * state ("dirty") is not limiting factor and we have to
884
		 * make decision based on wb counters. But there is an
885 886
		 * important case when global pos_ratio should get precedence:
		 * global limits are exceeded (e.g. due to activities on other
887
		 * wb's) while given strictlimit wb is below limit.
888
		 *
889
		 * "pos_ratio * wb_pos_ratio" would work for the case above,
890
		 * but it would look too non-natural for the case of all
891
		 * activity in the system coming from a single strictlimit wb
892 893 894 895
		 * with bdi->max_ratio == 100%.
		 *
		 * Note that min() below somewhat changes the dynamics of the
		 * control system. Normally, pos_ratio value can be well over 3
896
		 * (when globally we are at freerun and wb is well below wb
897 898 899 900
		 * setpoint). Now the maximum pos_ratio in the same situation
		 * is 2. We might want to tweak this if we observe the control
		 * system is too slow to adapt.
		 */
901 902
		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
		return;
903
	}
W
Wu Fengguang 已提交
904 905 906

	/*
	 * We have computed basic pos_ratio above based on global situation. If
907
	 * the wb is over/under its share of dirty pages, we want to scale
W
Wu Fengguang 已提交
908 909 910 911
	 * pos_ratio further down/up. That is done by the following mechanism.
	 */

	/*
912
	 * wb setpoint
W
Wu Fengguang 已提交
913
	 *
914
	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
W
Wu Fengguang 已提交
915
	 *
916
	 *                        x_intercept - wb_dirty
W
Wu Fengguang 已提交
917
	 *                     := --------------------------
918
	 *                        x_intercept - wb_setpoint
W
Wu Fengguang 已提交
919
	 *
920
	 * The main wb control line is a linear function that subjects to
W
Wu Fengguang 已提交
921
	 *
922 923 924
	 * (1) f(wb_setpoint) = 1.0
	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
W
Wu Fengguang 已提交
925
	 *
926
	 * For single wb case, the dirty pages are observed to fluctuate
W
Wu Fengguang 已提交
927
	 * regularly within range
928
	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
W
Wu Fengguang 已提交
929 930 931
	 * for various filesystems, where (2) can yield in a reasonable 12.5%
	 * fluctuation range for pos_ratio.
	 *
932
	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
W
Wu Fengguang 已提交
933
	 * own size, so move the slope over accordingly and choose a slope that
934
	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
W
Wu Fengguang 已提交
935
	 */
936 937
	if (unlikely(wb_thresh > dtc->thresh))
		wb_thresh = dtc->thresh;
938
	/*
939
	 * It's very possible that wb_thresh is close to 0 not because the
940 941 942 943 944
	 * device is slow, but that it has remained inactive for long time.
	 * Honour such devices a reasonable good (hopefully IO efficient)
	 * threshold, so that the occasional writes won't be blocked and active
	 * writes can rampup the threshold quickly.
	 */
945
	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
W
Wu Fengguang 已提交
946
	/*
947 948
	 * scale global setpoint to wb's:
	 *	wb_setpoint = setpoint * wb_thresh / thresh
W
Wu Fengguang 已提交
949
	 */
950
	x = div_u64((u64)wb_thresh << 16, dtc->thresh + 1);
951
	wb_setpoint = setpoint * (u64)x >> 16;
W
Wu Fengguang 已提交
952
	/*
953 954
	 * Use span=(8*write_bw) in single wb case as indicated by
	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
W
Wu Fengguang 已提交
955
	 *
956 957 958
	 *        wb_thresh                    thresh - wb_thresh
	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
	 *         thresh                           thresh
W
Wu Fengguang 已提交
959
	 */
960
	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
961
	x_intercept = wb_setpoint + span;
W
Wu Fengguang 已提交
962

963 964 965
	if (dtc->wb_dirty < x_intercept - span / 4) {
		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
				      x_intercept - wb_setpoint + 1);
W
Wu Fengguang 已提交
966 967 968
	} else
		pos_ratio /= 4;

969
	/*
970
	 * wb reserve area, safeguard against dirty pool underrun and disk idle
971 972 973
	 * It may push the desired control point of global dirty pages higher
	 * than setpoint.
	 */
974
	x_intercept = wb_thresh / 2;
975 976 977 978
	if (dtc->wb_dirty < x_intercept) {
		if (dtc->wb_dirty > x_intercept / 8)
			pos_ratio = div_u64(pos_ratio * x_intercept,
					    dtc->wb_dirty);
979
		else
980 981 982
			pos_ratio *= 8;
	}

983
	dtc->pos_ratio = pos_ratio;
W
Wu Fengguang 已提交
984 985
}

986 987 988
static void wb_update_write_bandwidth(struct bdi_writeback *wb,
				      unsigned long elapsed,
				      unsigned long written)
989 990
{
	const unsigned long period = roundup_pow_of_two(3 * HZ);
991 992
	unsigned long avg = wb->avg_write_bandwidth;
	unsigned long old = wb->write_bandwidth;
993 994 995 996 997 998 999 1000
	u64 bw;

	/*
	 * bw = written * HZ / elapsed
	 *
	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
	 * write_bandwidth = ---------------------------------------------------
	 *                                          period
1001 1002 1003
	 *
	 * @written may have decreased due to account_page_redirty().
	 * Avoid underflowing @bw calculation.
1004
	 */
1005
	bw = written - min(written, wb->written_stamp);
1006 1007 1008 1009 1010 1011
	bw *= HZ;
	if (unlikely(elapsed > period)) {
		do_div(bw, elapsed);
		avg = bw;
		goto out;
	}
1012
	bw += (u64)wb->write_bandwidth * (period - elapsed);
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
	bw >>= ilog2(period);

	/*
	 * one more level of smoothing, for filtering out sudden spikes
	 */
	if (avg > old && old >= (unsigned long)bw)
		avg -= (avg - old) >> 3;

	if (avg < old && old <= (unsigned long)bw)
		avg += (old - avg) >> 3;

out:
1025 1026 1027 1028 1029 1030 1031
	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
	avg = max(avg, 1LU);
	if (wb_has_dirty_io(wb)) {
		long delta = avg - wb->avg_write_bandwidth;
		WARN_ON_ONCE(atomic_long_add_return(delta,
					&wb->bdi->tot_write_bandwidth) <= 0);
	}
1032 1033
	wb->write_bandwidth = bw;
	wb->avg_write_bandwidth = avg;
1034 1035
}

1036
static void update_dirty_limit(struct dirty_throttle_control *dtc)
1037
{
1038
	struct wb_domain *dom = dtc_dom(dtc);
1039
	unsigned long thresh = dtc->thresh;
1040
	unsigned long limit = dom->dirty_limit;
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052

	/*
	 * Follow up in one step.
	 */
	if (limit < thresh) {
		limit = thresh;
		goto update;
	}

	/*
	 * Follow down slowly. Use the higher one as the target, because thresh
	 * may drop below dirty. This is exactly the reason to introduce
1053
	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1054
	 */
1055
	thresh = max(thresh, dtc->dirty);
1056 1057 1058 1059 1060 1061
	if (limit > thresh) {
		limit -= (limit - thresh) >> 5;
		goto update;
	}
	return;
update:
1062
	dom->dirty_limit = limit;
1063 1064
}

1065
static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1066 1067
				    unsigned long now)
{
1068
	struct wb_domain *dom = dtc_dom(dtc);
1069 1070 1071 1072

	/*
	 * check locklessly first to optimize away locking for the most time
	 */
1073
	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1074 1075
		return;

1076 1077
	spin_lock(&dom->lock);
	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1078
		update_dirty_limit(dtc);
1079
		dom->dirty_limit_tstamp = now;
1080
	}
1081
	spin_unlock(&dom->lock);
1082 1083
}

W
Wu Fengguang 已提交
1084
/*
1085
 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
W
Wu Fengguang 已提交
1086
 *
1087
 * Normal wb tasks will be curbed at or below it in long term.
W
Wu Fengguang 已提交
1088 1089
 * Obviously it should be around (write_bw / N) when there are N dd tasks.
 */
1090
static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1091 1092
				      unsigned long dirtied,
				      unsigned long elapsed)
W
Wu Fengguang 已提交
1093
{
1094 1095 1096
	struct bdi_writeback *wb = dtc->wb;
	unsigned long dirty = dtc->dirty;
	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1097
	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1098
	unsigned long setpoint = (freerun + limit) / 2;
1099 1100
	unsigned long write_bw = wb->avg_write_bandwidth;
	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
W
Wu Fengguang 已提交
1101 1102 1103
	unsigned long dirty_rate;
	unsigned long task_ratelimit;
	unsigned long balanced_dirty_ratelimit;
1104 1105
	unsigned long step;
	unsigned long x;
W
Wu Fengguang 已提交
1106 1107 1108 1109 1110

	/*
	 * The dirty rate will match the writeout rate in long term, except
	 * when dirty pages are truncated by userspace or re-dirtied by FS.
	 */
1111
	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
W
Wu Fengguang 已提交
1112 1113 1114 1115 1116

	/*
	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
	 */
	task_ratelimit = (u64)dirty_ratelimit *
1117
					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
W
Wu Fengguang 已提交
1118 1119 1120 1121
	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */

	/*
	 * A linear estimation of the "balanced" throttle rate. The theory is,
1122
	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
W
Wu Fengguang 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
	 * formula will yield the balanced rate limit (write_bw / N).
	 *
	 * Note that the expanded form is not a pure rate feedback:
	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
	 * but also takes pos_ratio into account:
	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
	 *
	 * (1) is not realistic because pos_ratio also takes part in balancing
	 * the dirty rate.  Consider the state
	 *	pos_ratio = 0.5						     (3)
	 *	rate = 2 * (write_bw / N)				     (4)
	 * If (1) is used, it will stuck in that state! Because each dd will
	 * be throttled at
	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
	 * yielding
	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
	 * put (6) into (1) we get
	 *	rate_(i+1) = rate_(i)					     (7)
	 *
	 * So we end up using (2) to always keep
	 *	rate_(i+1) ~= (write_bw / N)				     (8)
	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
	 * pos_ratio is able to drive itself to 1.0, which is not only where
	 * the dirty count meet the setpoint, but also where the slope of
	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
	 */
	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
					   dirty_rate | 1);
1152 1153 1154 1155 1156
	/*
	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
	 */
	if (unlikely(balanced_dirty_ratelimit > write_bw))
		balanced_dirty_ratelimit = write_bw;
W
Wu Fengguang 已提交
1157

1158 1159 1160
	/*
	 * We could safely do this and return immediately:
	 *
1161
	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1162 1163
	 *
	 * However to get a more stable dirty_ratelimit, the below elaborated
W
Wanpeng Li 已提交
1164
	 * code makes use of task_ratelimit to filter out singular points and
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
	 * limit the step size.
	 *
	 * The below code essentially only uses the relative value of
	 *
	 *	task_ratelimit - dirty_ratelimit
	 *	= (pos_ratio - 1) * dirty_ratelimit
	 *
	 * which reflects the direction and size of dirty position error.
	 */

	/*
	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
	 * task_ratelimit is on the same side of dirty_ratelimit, too.
	 * For example, when
	 * - dirty_ratelimit > balanced_dirty_ratelimit
	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
	 * lowering dirty_ratelimit will help meet both the position and rate
	 * control targets. Otherwise, don't update dirty_ratelimit if it will
	 * only help meet the rate target. After all, what the users ultimately
	 * feel and care are stable dirty rate and small position error.
	 *
	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
W
Wanpeng Li 已提交
1187
	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1188 1189 1190 1191 1192
	 * keeps jumping around randomly and can even leap far away at times
	 * due to the small 200ms estimation period of dirty_rate (we want to
	 * keep that period small to reduce time lags).
	 */
	step = 0;
1193 1194

	/*
1195
	 * For strictlimit case, calculations above were based on wb counters
1196
	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1197
	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1198 1199
	 * Hence, to calculate "step" properly, we have to use wb_dirty as
	 * "dirty" and wb_setpoint as "setpoint".
1200
	 *
1201 1202
	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
	 * it's possible that wb_thresh is close to zero due to inactivity
1203
	 * of backing device.
1204
	 */
1205
	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1206 1207 1208
		dirty = dtc->wb_dirty;
		if (dtc->wb_dirty < 8)
			setpoint = dtc->wb_dirty + 1;
1209
		else
1210
			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1211 1212
	}

1213
	if (dirty < setpoint) {
1214
		x = min3(wb->balanced_dirty_ratelimit,
1215
			 balanced_dirty_ratelimit, task_ratelimit);
1216 1217 1218
		if (dirty_ratelimit < x)
			step = x - dirty_ratelimit;
	} else {
1219
		x = max3(wb->balanced_dirty_ratelimit,
1220
			 balanced_dirty_ratelimit, task_ratelimit);
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
		if (dirty_ratelimit > x)
			step = dirty_ratelimit - x;
	}

	/*
	 * Don't pursue 100% rate matching. It's impossible since the balanced
	 * rate itself is constantly fluctuating. So decrease the track speed
	 * when it gets close to the target. Helps eliminate pointless tremors.
	 */
	step >>= dirty_ratelimit / (2 * step + 1);
	/*
	 * Limit the tracking speed to avoid overshooting.
	 */
	step = (step + 7) / 8;

	if (dirty_ratelimit < balanced_dirty_ratelimit)
		dirty_ratelimit += step;
	else
		dirty_ratelimit -= step;

1241 1242
	wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1243

1244
	trace_bdi_dirty_ratelimit(wb->bdi, dirty_rate, task_ratelimit);
W
Wu Fengguang 已提交
1245 1246
}

1247
static void __wb_update_bandwidth(struct dirty_throttle_control *dtc,
1248 1249
				  unsigned long start_time,
				  bool update_ratelimit)
1250
{
1251
	struct bdi_writeback *wb = dtc->wb;
1252
	unsigned long now = jiffies;
1253
	unsigned long elapsed = now - wb->bw_time_stamp;
W
Wu Fengguang 已提交
1254
	unsigned long dirtied;
1255 1256
	unsigned long written;

1257 1258
	lockdep_assert_held(&wb->list_lock);

1259 1260 1261 1262 1263 1264
	/*
	 * rate-limit, only update once every 200ms.
	 */
	if (elapsed < BANDWIDTH_INTERVAL)
		return;

1265 1266
	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1267 1268 1269 1270 1271

	/*
	 * Skip quiet periods when disk bandwidth is under-utilized.
	 * (at least 1s idle time between two flusher runs)
	 */
1272
	if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1273 1274
		goto snapshot;

1275
	if (update_ratelimit) {
1276
		domain_update_bandwidth(dtc, now);
1277
		wb_update_dirty_ratelimit(dtc, dirtied, elapsed);
W
Wu Fengguang 已提交
1278
	}
1279
	wb_update_write_bandwidth(wb, elapsed, written);
1280 1281

snapshot:
1282 1283 1284
	wb->dirtied_stamp = dirtied;
	wb->written_stamp = written;
	wb->bw_time_stamp = now;
1285 1286
}

1287
void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1288
{
1289 1290 1291
	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };

	__wb_update_bandwidth(&gdtc, start_time, false);
1292 1293
}

1294
/*
1295
 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
 * will look to see if it needs to start dirty throttling.
 *
 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
 * global_page_state() too often. So scale it near-sqrt to the safety margin
 * (the number of pages we may dirty without exceeding the dirty limits).
 */
static unsigned long dirty_poll_interval(unsigned long dirty,
					 unsigned long thresh)
{
	if (thresh > dirty)
		return 1UL << (ilog2(thresh - dirty) >> 1);

	return 1;
}

1311
static unsigned long wb_max_pause(struct bdi_writeback *wb,
1312
				  unsigned long wb_dirty)
1313
{
1314
	unsigned long bw = wb->avg_write_bandwidth;
1315
	unsigned long t;
1316

1317 1318 1319 1320 1321 1322 1323
	/*
	 * Limit pause time for small memory systems. If sleeping for too long
	 * time, a small pool of dirty/writeback pages may go empty and disk go
	 * idle.
	 *
	 * 8 serves as the safety ratio.
	 */
1324
	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1325 1326
	t++;

1327
	return min_t(unsigned long, t, MAX_PAUSE);
1328 1329
}

1330 1331 1332 1333 1334
static long wb_min_pause(struct bdi_writeback *wb,
			 long max_pause,
			 unsigned long task_ratelimit,
			 unsigned long dirty_ratelimit,
			 int *nr_dirtied_pause)
1335
{
1336 1337
	long hi = ilog2(wb->avg_write_bandwidth);
	long lo = ilog2(wb->dirty_ratelimit);
1338 1339 1340
	long t;		/* target pause */
	long pause;	/* estimated next pause */
	int pages;	/* target nr_dirtied_pause */
1341

1342 1343
	/* target for 10ms pause on 1-dd case */
	t = max(1, HZ / 100);
1344 1345 1346 1347 1348

	/*
	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
	 * overheads.
	 *
1349
	 * (N * 10ms) on 2^N concurrent tasks.
1350 1351
	 */
	if (hi > lo)
1352
		t += (hi - lo) * (10 * HZ) / 1024;
1353 1354

	/*
1355 1356 1357 1358 1359 1360 1361 1362
	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
	 * on the much more stable dirty_ratelimit. However the next pause time
	 * will be computed based on task_ratelimit and the two rate limits may
	 * depart considerably at some time. Especially if task_ratelimit goes
	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
	 * result task_ratelimit won't be executed faithfully, which could
	 * eventually bring down dirty_ratelimit.
1363
	 *
1364 1365 1366 1367 1368 1369 1370
	 * We apply two rules to fix it up:
	 * 1) try to estimate the next pause time and if necessary, use a lower
	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
	 * 2) limit the target pause time to max_pause/2, so that the normal
	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1371
	 */
1372 1373
	t = min(t, 1 + max_pause / 2);
	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1374 1375

	/*
1376 1377 1378 1379 1380 1381
	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
	 * When the 16 consecutive reads are often interrupted by some dirty
	 * throttling pause during the async writes, cfq will go into idles
	 * (deadline is fine). So push nr_dirtied_pause as high as possible
	 * until reaches DIRTY_POLL_THRESH=32 pages.
1382
	 */
1383 1384 1385 1386 1387 1388 1389 1390 1391
	if (pages < DIRTY_POLL_THRESH) {
		t = max_pause;
		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
		if (pages > DIRTY_POLL_THRESH) {
			pages = DIRTY_POLL_THRESH;
			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
		}
	}

1392 1393 1394 1395 1396
	pause = HZ * pages / (task_ratelimit + 1);
	if (pause > max_pause) {
		t = max_pause;
		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
	}
1397

1398
	*nr_dirtied_pause = pages;
1399
	/*
1400
	 * The minimal pause time will normally be half the target pause time.
1401
	 */
1402
	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1403 1404
}

1405
static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1406
{
1407
	struct bdi_writeback *wb = dtc->wb;
1408
	unsigned long wb_reclaimable;
1409 1410

	/*
1411
	 * wb_thresh is not treated as some limiting factor as
1412
	 * dirty_thresh, due to reasons
1413
	 * - in JBOD setup, wb_thresh can fluctuate a lot
1414
	 * - in a system with HDD and USB key, the USB key may somehow
1415 1416
	 *   go into state (wb_dirty >> wb_thresh) either because
	 *   wb_dirty starts high, or because wb_thresh drops low.
1417
	 *   In this case we don't want to hard throttle the USB key
1418 1419
	 *   dirtiers for 100 seconds until wb_dirty drops under
	 *   wb_thresh. Instead the auxiliary wb control line in
1420
	 *   wb_position_ratio() will let the dirtier task progress
1421
	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1422
	 */
1423
	dtc->wb_thresh = __wb_calc_thresh(dtc);
1424 1425
	dtc->wb_bg_thresh = dtc->thresh ?
		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436

	/*
	 * In order to avoid the stacked BDI deadlock we need
	 * to ensure we accurately count the 'dirty' pages when
	 * the threshold is low.
	 *
	 * Otherwise it would be possible to get thresh+n pages
	 * reported dirty, even though there are thresh-m pages
	 * actually dirty; with m+n sitting in the percpu
	 * deltas.
	 */
1437
	if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1438
		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1439
		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1440
	} else {
1441
		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1442
		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1443 1444 1445
	}
}

L
Linus Torvalds 已提交
1446 1447 1448
/*
 * balance_dirty_pages() must be called by processes which are generating dirty
 * data.  It looks at the number of dirty pages in the machine and will force
1449
 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1450 1451
 * If we're over `background_thresh' then the writeback threads are woken to
 * perform some writeout.
L
Linus Torvalds 已提交
1452
 */
1453
static void balance_dirty_pages(struct address_space *mapping,
1454
				struct bdi_writeback *wb,
1455
				unsigned long pages_dirtied)
L
Linus Torvalds 已提交
1456
{
1457 1458
	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1459
	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1460
	long period;
1461 1462 1463 1464
	long pause;
	long max_pause;
	long min_pause;
	int nr_dirtied_pause;
1465
	bool dirty_exceeded = false;
1466
	unsigned long task_ratelimit;
1467
	unsigned long dirty_ratelimit;
1468
	struct backing_dev_info *bdi = wb->bdi;
1469
	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1470
	unsigned long start_time = jiffies;
L
Linus Torvalds 已提交
1471 1472

	for (;;) {
1473
		unsigned long now = jiffies;
1474
		unsigned long dirty, thresh, bg_thresh;
1475

1476 1477 1478 1479 1480 1481
		/*
		 * Unstable writes are a feature of certain networked
		 * filesystems (i.e. NFS) in which data may have been
		 * written to the server's write cache, but has not yet
		 * been flushed to permanent storage.
		 */
1482 1483
		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
					global_page_state(NR_UNSTABLE_NFS);
1484
		gdtc->avail = global_dirtyable_memory();
1485
		gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1486

1487
		domain_dirty_limits(gdtc);
1488

1489
		if (unlikely(strictlimit)) {
1490
			wb_dirty_limits(gdtc);
1491

1492 1493
			dirty = gdtc->wb_dirty;
			thresh = gdtc->wb_thresh;
1494
			bg_thresh = gdtc->wb_bg_thresh;
1495
		} else {
1496 1497 1498
			dirty = gdtc->dirty;
			thresh = gdtc->thresh;
			bg_thresh = gdtc->bg_thresh;
1499 1500
		}

1501 1502 1503
		/*
		 * Throttle it only when the background writeback cannot
		 * catch-up. This avoids (excessively) small writeouts
1504
		 * when the wb limits are ramping up in case of !strictlimit.
1505
		 *
1506 1507
		 * In strictlimit case make decision based on the wb counters
		 * and limits. Small writeouts when the wb limits are ramping
1508
		 * up are the price we consciously pay for strictlimit-ing.
1509
		 */
1510
		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) {
1511 1512
			current->dirty_paused_when = now;
			current->nr_dirtied = 0;
1513
			current->nr_dirtied_pause =
1514
				dirty_poll_interval(dirty, thresh);
1515
			break;
1516
		}
1517

1518
		if (unlikely(!writeback_in_progress(wb)))
1519
			wb_start_background_writeback(wb);
1520

1521
		if (!strictlimit)
1522
			wb_dirty_limits(gdtc);
1523

1524 1525
		dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
			((gdtc->dirty > gdtc->thresh) || strictlimit);
1526 1527 1528

		wb_position_ratio(gdtc);

1529 1530
		if (dirty_exceeded && !wb->dirty_exceeded)
			wb->dirty_exceeded = 1;
L
Linus Torvalds 已提交
1531

1532 1533 1534
		if (time_is_before_jiffies(wb->bw_time_stamp +
					   BANDWIDTH_INTERVAL)) {
			spin_lock(&wb->list_lock);
1535
			__wb_update_bandwidth(gdtc, start_time, true);
1536 1537
			spin_unlock(&wb->list_lock);
		}
1538

1539
		dirty_ratelimit = wb->dirty_ratelimit;
1540
		task_ratelimit = ((u64)dirty_ratelimit * gdtc->pos_ratio) >>
1541
							RATELIMIT_CALC_SHIFT;
1542
		max_pause = wb_max_pause(wb, gdtc->wb_dirty);
1543 1544 1545
		min_pause = wb_min_pause(wb, max_pause,
					 task_ratelimit, dirty_ratelimit,
					 &nr_dirtied_pause);
1546

1547
		if (unlikely(task_ratelimit == 0)) {
1548
			period = max_pause;
1549
			pause = max_pause;
1550
			goto pause;
P
Peter Zijlstra 已提交
1551
		}
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
		period = HZ * pages_dirtied / task_ratelimit;
		pause = period;
		if (current->dirty_paused_when)
			pause -= now - current->dirty_paused_when;
		/*
		 * For less than 1s think time (ext3/4 may block the dirtier
		 * for up to 800ms from time to time on 1-HDD; so does xfs,
		 * however at much less frequency), try to compensate it in
		 * future periods by updating the virtual time; otherwise just
		 * do a reset, as it may be a light dirtier.
		 */
1563
		if (pause < min_pause) {
1564
			trace_balance_dirty_pages(bdi,
1565 1566 1567 1568 1569
						  gdtc->thresh,
						  gdtc->bg_thresh,
						  gdtc->dirty,
						  gdtc->wb_thresh,
						  gdtc->wb_dirty,
1570 1571 1572
						  dirty_ratelimit,
						  task_ratelimit,
						  pages_dirtied,
1573
						  period,
1574
						  min(pause, 0L),
1575
						  start_time);
1576 1577 1578 1579 1580 1581
			if (pause < -HZ) {
				current->dirty_paused_when = now;
				current->nr_dirtied = 0;
			} else if (period) {
				current->dirty_paused_when += period;
				current->nr_dirtied = 0;
1582 1583
			} else if (current->nr_dirtied_pause <= pages_dirtied)
				current->nr_dirtied_pause += pages_dirtied;
W
Wu Fengguang 已提交
1584
			break;
P
Peter Zijlstra 已提交
1585
		}
1586 1587 1588 1589 1590
		if (unlikely(pause > max_pause)) {
			/* for occasional dropped task_ratelimit */
			now += min(pause - max_pause, max_pause);
			pause = max_pause;
		}
1591 1592

pause:
1593
		trace_balance_dirty_pages(bdi,
1594 1595 1596 1597 1598
					  gdtc->thresh,
					  gdtc->bg_thresh,
					  gdtc->dirty,
					  gdtc->wb_thresh,
					  gdtc->wb_dirty,
1599 1600 1601
					  dirty_ratelimit,
					  task_ratelimit,
					  pages_dirtied,
1602
					  period,
1603 1604
					  pause,
					  start_time);
1605
		__set_current_state(TASK_KILLABLE);
1606
		io_schedule_timeout(pause);
1607

1608 1609
		current->dirty_paused_when = now + pause;
		current->nr_dirtied = 0;
1610
		current->nr_dirtied_pause = nr_dirtied_pause;
1611

1612
		/*
1613 1614
		 * This is typically equal to (dirty < thresh) and can also
		 * keep "1000+ dd on a slow USB stick" under control.
1615
		 */
1616
		if (task_ratelimit)
1617
			break;
1618

1619 1620
		/*
		 * In the case of an unresponding NFS server and the NFS dirty
1621
		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1622 1623 1624 1625
		 * to go through, so that tasks on them still remain responsive.
		 *
		 * In theory 1 page is enough to keep the comsumer-producer
		 * pipe going: the flusher cleans 1 page => the task dirties 1
1626
		 * more page. However wb_dirty has accounting errors.  So use
1627
		 * the larger and more IO friendly wb_stat_error.
1628
		 */
1629
		if (gdtc->wb_dirty <= wb_stat_error(wb))
1630 1631
			break;

1632 1633
		if (fatal_signal_pending(current))
			break;
L
Linus Torvalds 已提交
1634 1635
	}

1636 1637
	if (!dirty_exceeded && wb->dirty_exceeded)
		wb->dirty_exceeded = 0;
L
Linus Torvalds 已提交
1638

1639
	if (writeback_in_progress(wb))
1640
		return;
L
Linus Torvalds 已提交
1641 1642 1643 1644 1645 1646 1647 1648 1649

	/*
	 * In laptop mode, we wait until hitting the higher threshold before
	 * starting background writeout, and then write out all the way down
	 * to the lower threshold.  So slow writers cause minimal disk activity.
	 *
	 * In normal mode, we start background writeout at the lower
	 * background_thresh, to keep the amount of dirty memory low.
	 */
1650 1651 1652
	if (laptop_mode)
		return;

1653
	if (nr_reclaimable > gdtc->bg_thresh)
1654
		wb_start_background_writeback(wb);
L
Linus Torvalds 已提交
1655 1656
}

1657
static DEFINE_PER_CPU(int, bdp_ratelimits);
1658

1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
/*
 * Normal tasks are throttled by
 *	loop {
 *		dirty tsk->nr_dirtied_pause pages;
 *		take a snap in balance_dirty_pages();
 *	}
 * However there is a worst case. If every task exit immediately when dirtied
 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
 * called to throttle the page dirties. The solution is to save the not yet
 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
 * randomly into the running tasks. This works well for the above worst case,
 * as the new task will pick up and accumulate the old task's leaked dirty
 * count and eventually get throttled.
 */
DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;

L
Linus Torvalds 已提交
1675
/**
1676
 * balance_dirty_pages_ratelimited - balance dirty memory state
1677
 * @mapping: address_space which was dirtied
L
Linus Torvalds 已提交
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
 *
 * Processes which are dirtying memory should call in here once for each page
 * which was newly dirtied.  The function will periodically check the system's
 * dirty state and will initiate writeback if needed.
 *
 * On really big machines, get_writeback_state is expensive, so try to avoid
 * calling it too often (ratelimiting).  But once we're over the dirty memory
 * limit we decrease the ratelimiting by a lot, to prevent individual processes
 * from overshooting the limit by (ratelimit_pages) each.
 */
1688
void balance_dirty_pages_ratelimited(struct address_space *mapping)
L
Linus Torvalds 已提交
1689
{
1690 1691 1692
	struct inode *inode = mapping->host;
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct bdi_writeback *wb = NULL;
1693 1694
	int ratelimit;
	int *p;
L
Linus Torvalds 已提交
1695

1696 1697 1698
	if (!bdi_cap_account_dirty(bdi))
		return;

1699 1700 1701 1702 1703
	if (inode_cgwb_enabled(inode))
		wb = wb_get_create_current(bdi, GFP_KERNEL);
	if (!wb)
		wb = &bdi->wb;

1704
	ratelimit = current->nr_dirtied_pause;
1705
	if (wb->dirty_exceeded)
1706 1707 1708
		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));

	preempt_disable();
L
Linus Torvalds 已提交
1709
	/*
1710 1711 1712 1713
	 * This prevents one CPU to accumulate too many dirtied pages without
	 * calling into balance_dirty_pages(), which can happen when there are
	 * 1000+ tasks, all of them start dirtying pages at exactly the same
	 * time, hence all honoured too large initial task->nr_dirtied_pause.
L
Linus Torvalds 已提交
1714
	 */
1715
	p =  this_cpu_ptr(&bdp_ratelimits);
1716
	if (unlikely(current->nr_dirtied >= ratelimit))
1717
		*p = 0;
1718 1719 1720
	else if (unlikely(*p >= ratelimit_pages)) {
		*p = 0;
		ratelimit = 0;
L
Linus Torvalds 已提交
1721
	}
1722 1723 1724 1725 1726
	/*
	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
	 * the dirty throttling and livelock other long-run dirtiers.
	 */
1727
	p = this_cpu_ptr(&dirty_throttle_leaks);
1728
	if (*p > 0 && current->nr_dirtied < ratelimit) {
1729
		unsigned long nr_pages_dirtied;
1730 1731 1732
		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
		*p -= nr_pages_dirtied;
		current->nr_dirtied += nr_pages_dirtied;
L
Linus Torvalds 已提交
1733
	}
1734
	preempt_enable();
1735 1736

	if (unlikely(current->nr_dirtied >= ratelimit))
1737 1738 1739
		balance_dirty_pages(mapping, wb, current->nr_dirtied);

	wb_put(wb);
L
Linus Torvalds 已提交
1740
}
1741
EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
L
Linus Torvalds 已提交
1742

1743 1744 1745 1746 1747 1748 1749 1750 1751
/**
 * wb_over_bg_thresh - does @wb need to be written back?
 * @wb: bdi_writeback of interest
 *
 * Determines whether background writeback should keep writing @wb or it's
 * clean enough.  Returns %true if writeback should continue.
 */
bool wb_over_bg_thresh(struct bdi_writeback *wb)
{
1752 1753
	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1754

1755 1756 1757 1758 1759 1760 1761 1762
	/*
	 * Similar to balance_dirty_pages() but ignores pages being written
	 * as we're trying to decide whether to put more under writeback.
	 */
	gdtc->avail = global_dirtyable_memory();
	gdtc->dirty = global_page_state(NR_FILE_DIRTY) +
		      global_page_state(NR_UNSTABLE_NFS);
	domain_dirty_limits(gdtc);
1763

1764
	if (gdtc->dirty > gdtc->bg_thresh)
1765 1766
		return true;

1767
	if (wb_stat(wb, WB_RECLAIMABLE) > __wb_calc_thresh(gdtc))
1768 1769 1770 1771 1772
		return true;

	return false;
}

1773
void throttle_vm_writeout(gfp_t gfp_mask)
L
Linus Torvalds 已提交
1774
{
1775 1776
	unsigned long background_thresh;
	unsigned long dirty_thresh;
L
Linus Torvalds 已提交
1777 1778

        for ( ; ; ) {
1779
		global_dirty_limits(&background_thresh, &dirty_thresh);
1780
		dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
L
Linus Torvalds 已提交
1781 1782 1783 1784 1785 1786 1787

                /*
                 * Boost the allowable dirty threshold a bit for page
                 * allocators so they don't get DoS'ed by heavy writers
                 */
                dirty_thresh += dirty_thresh / 10;      /* wheeee... */

1788 1789 1790
                if (global_page_state(NR_UNSTABLE_NFS) +
			global_page_state(NR_WRITEBACK) <= dirty_thresh)
                        	break;
1791
                congestion_wait(BLK_RW_ASYNC, HZ/10);
1792 1793 1794 1795 1796 1797 1798 1799

		/*
		 * The caller might hold locks which can prevent IO completion
		 * or progress in the filesystem.  So we cannot just sit here
		 * waiting for IO to complete.
		 */
		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
			break;
L
Linus Torvalds 已提交
1800 1801 1802 1803 1804 1805
        }
}

/*
 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
 */
1806
int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1807
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
1808
{
1809
	proc_dointvec(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
1810 1811 1812
	return 0;
}

1813
#ifdef CONFIG_BLOCK
1814
void laptop_mode_timer_fn(unsigned long data)
L
Linus Torvalds 已提交
1815
{
1816 1817 1818
	struct request_queue *q = (struct request_queue *)data;
	int nr_pages = global_page_state(NR_FILE_DIRTY) +
		global_page_state(NR_UNSTABLE_NFS);
1819 1820
	struct bdi_writeback *wb;
	struct wb_iter iter;
L
Linus Torvalds 已提交
1821

1822 1823 1824 1825
	/*
	 * We want to write everything out, not just down to the dirty
	 * threshold
	 */
1826 1827 1828 1829 1830 1831 1832
	if (!bdi_has_dirty_io(&q->backing_dev_info))
		return;

	bdi_for_each_wb(wb, &q->backing_dev_info, &iter, 0)
		if (wb_has_dirty_io(wb))
			wb_start_writeback(wb, nr_pages, true,
					   WB_REASON_LAPTOP_TIMER);
L
Linus Torvalds 已提交
1833 1834 1835 1836 1837 1838 1839
}

/*
 * We've spun up the disk and we're in laptop mode: schedule writeback
 * of all dirty data a few seconds from now.  If the flush is already scheduled
 * then push it back - the user is still using the disk.
 */
1840
void laptop_io_completion(struct backing_dev_info *info)
L
Linus Torvalds 已提交
1841
{
1842
	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
L
Linus Torvalds 已提交
1843 1844 1845 1846 1847 1848 1849 1850 1851
}

/*
 * We're in laptop mode and we've just synced. The sync's writes will have
 * caused another writeback to be scheduled by laptop_io_completion.
 * Nothing needs to be written back anymore, so we unschedule the writeback.
 */
void laptop_sync_completion(void)
{
1852 1853 1854 1855 1856 1857 1858 1859
	struct backing_dev_info *bdi;

	rcu_read_lock();

	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
		del_timer(&bdi->laptop_mode_wb_timer);

	rcu_read_unlock();
L
Linus Torvalds 已提交
1860
}
1861
#endif
L
Linus Torvalds 已提交
1862 1863 1864 1865 1866 1867 1868 1869 1870

/*
 * If ratelimit_pages is too high then we can get into dirty-data overload
 * if a large number of processes all perform writes at the same time.
 * If it is too low then SMP machines will call the (expensive)
 * get_writeback_state too often.
 *
 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1871
 * thresholds.
L
Linus Torvalds 已提交
1872 1873
 */

1874
void writeback_set_ratelimit(void)
L
Linus Torvalds 已提交
1875
{
1876
	struct wb_domain *dom = &global_wb_domain;
1877 1878
	unsigned long background_thresh;
	unsigned long dirty_thresh;
1879

1880
	global_dirty_limits(&background_thresh, &dirty_thresh);
1881
	dom->dirty_limit = dirty_thresh;
1882
	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
L
Linus Torvalds 已提交
1883 1884 1885 1886
	if (ratelimit_pages < 16)
		ratelimit_pages = 16;
}

1887
static int
1888 1889
ratelimit_handler(struct notifier_block *self, unsigned long action,
		  void *hcpu)
L
Linus Torvalds 已提交
1890
{
1891 1892 1893 1894 1895 1896 1897 1898 1899

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
	case CPU_DEAD:
		writeback_set_ratelimit();
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
L
Linus Torvalds 已提交
1900 1901
}

1902
static struct notifier_block ratelimit_nb = {
L
Linus Torvalds 已提交
1903 1904 1905 1906 1907
	.notifier_call	= ratelimit_handler,
	.next		= NULL,
};

/*
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
 * Called early on to tune the page writeback dirty limits.
 *
 * We used to scale dirty pages according to how total memory
 * related to pages that could be allocated for buffers (by
 * comparing nr_free_buffer_pages() to vm_total_pages.
 *
 * However, that was when we used "dirty_ratio" to scale with
 * all memory, and we don't do that any more. "dirty_ratio"
 * is now applied to total non-HIGHPAGE memory (by subtracting
 * totalhigh_pages from vm_total_pages), and as such we can't
 * get into the old insane situation any more where we had
 * large amounts of dirty pages compared to a small amount of
 * non-HIGHMEM memory.
 *
 * But we might still want to scale the dirty_ratio by how
 * much memory the box has..
L
Linus Torvalds 已提交
1924 1925 1926
 */
void __init page_writeback_init(void)
{
1927
	writeback_set_ratelimit();
L
Linus Torvalds 已提交
1928
	register_cpu_notifier(&ratelimit_nb);
P
Peter Zijlstra 已提交
1929

T
Tejun Heo 已提交
1930
	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
L
Linus Torvalds 已提交
1931 1932
}

1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
/**
 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
 * @mapping: address space structure to write
 * @start: starting page index
 * @end: ending page index (inclusive)
 *
 * This function scans the page range from @start to @end (inclusive) and tags
 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
 * that write_cache_pages (or whoever calls this function) will then use
 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
 * used to avoid livelocking of writeback by a process steadily creating new
 * dirty pages in the file (thus it is important for this function to be quick
 * so that it can tag pages faster than a dirtying process can create them).
 */
/*
 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
 */
void tag_pages_for_writeback(struct address_space *mapping,
			     pgoff_t start, pgoff_t end)
{
R
Randy Dunlap 已提交
1953
#define WRITEBACK_TAG_BATCH 4096
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
	unsigned long tagged;

	do {
		spin_lock_irq(&mapping->tree_lock);
		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
				&start, end, WRITEBACK_TAG_BATCH,
				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
		spin_unlock_irq(&mapping->tree_lock);
		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
		cond_resched();
1964 1965
		/* We check 'start' to handle wrapping when end == ~0UL */
	} while (tagged >= WRITEBACK_TAG_BATCH && start);
1966 1967 1968
}
EXPORT_SYMBOL(tag_pages_for_writeback);

1969
/**
1970
 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1971 1972
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1973 1974
 * @writepage: function called for each page
 * @data: data passed to writepage function
1975
 *
1976
 * If a page is already under I/O, write_cache_pages() skips it, even
1977 1978 1979 1980 1981 1982
 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 * and msync() need to guarantee that all the data which was dirty at the time
 * the call was made get new I/O started against them.  If wbc->sync_mode is
 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 * existing IO to complete.
1983 1984 1985 1986 1987 1988 1989
 *
 * To avoid livelocks (when other process dirties new pages), we first tag
 * pages which should be written back with TOWRITE tag and only then start
 * writing them. For data-integrity sync we have to be careful so that we do
 * not miss some pages (e.g., because some other process has cleared TOWRITE
 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
 * by the process clearing the DIRTY tag (and submitting the page for IO).
1990
 */
1991 1992 1993
int write_cache_pages(struct address_space *mapping,
		      struct writeback_control *wbc, writepage_t writepage,
		      void *data)
1994 1995 1996 1997 1998
{
	int ret = 0;
	int done = 0;
	struct pagevec pvec;
	int nr_pages;
N
Nick Piggin 已提交
1999
	pgoff_t uninitialized_var(writeback_index);
2000 2001
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
2002
	pgoff_t done_index;
N
Nick Piggin 已提交
2003
	int cycled;
2004
	int range_whole = 0;
2005
	int tag;
2006 2007 2008

	pagevec_init(&pvec, 0);
	if (wbc->range_cyclic) {
N
Nick Piggin 已提交
2009 2010 2011 2012 2013 2014
		writeback_index = mapping->writeback_index; /* prev offset */
		index = writeback_index;
		if (index == 0)
			cycled = 1;
		else
			cycled = 0;
2015 2016 2017 2018 2019 2020
		end = -1;
	} else {
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
			range_whole = 1;
N
Nick Piggin 已提交
2021
		cycled = 1; /* ignore range_cyclic tests */
2022
	}
2023
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2024 2025 2026
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
2027
retry:
2028
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2029
		tag_pages_for_writeback(mapping, index, end);
2030
	done_index = index;
N
Nick Piggin 已提交
2031 2032 2033
	while (!done && (index <= end)) {
		int i;

2034
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
N
Nick Piggin 已提交
2035 2036 2037
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
			break;
2038 2039 2040 2041 2042

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
2043 2044 2045 2046 2047
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
2048
			 */
2049 2050 2051 2052 2053 2054 2055 2056 2057
			if (page->index > end) {
				/*
				 * can't be range_cyclic (1st pass) because
				 * end == -1 in that case.
				 */
				done = 1;
				break;
			}

2058
			done_index = page->index;
2059

2060 2061
			lock_page(page);

N
Nick Piggin 已提交
2062 2063 2064 2065 2066 2067 2068 2069
			/*
			 * Page truncated or invalidated. We can freely skip it
			 * then, even for data integrity operations: the page
			 * has disappeared concurrently, so there could be no
			 * real expectation of this data interity operation
			 * even if there is now a new, dirty page at the same
			 * pagecache address.
			 */
2070
			if (unlikely(page->mapping != mapping)) {
N
Nick Piggin 已提交
2071
continue_unlock:
2072 2073 2074 2075
				unlock_page(page);
				continue;
			}

2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
			if (!PageDirty(page)) {
				/* someone wrote it for us */
				goto continue_unlock;
			}

			if (PageWriteback(page)) {
				if (wbc->sync_mode != WB_SYNC_NONE)
					wait_on_page_writeback(page);
				else
					goto continue_unlock;
			}
2087

2088 2089
			BUG_ON(PageWriteback(page));
			if (!clear_page_dirty_for_io(page))
N
Nick Piggin 已提交
2090
				goto continue_unlock;
2091

2092
			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2093
			ret = (*writepage)(page, wbc, data);
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
			if (unlikely(ret)) {
				if (ret == AOP_WRITEPAGE_ACTIVATE) {
					unlock_page(page);
					ret = 0;
				} else {
					/*
					 * done_index is set past this page,
					 * so media errors will not choke
					 * background writeout for the entire
					 * file. This has consequences for
					 * range_cyclic semantics (ie. it may
					 * not be suitable for data integrity
					 * writeout).
					 */
2108
					done_index = page->index + 1;
2109 2110 2111
					done = 1;
					break;
				}
2112
			}
2113

2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
			/*
			 * We stop writing back only if we are not doing
			 * integrity sync. In case of integrity sync we have to
			 * keep going until we have written all the pages
			 * we tagged for writeback prior to entering this loop.
			 */
			if (--wbc->nr_to_write <= 0 &&
			    wbc->sync_mode == WB_SYNC_NONE) {
				done = 1;
				break;
2124
			}
2125 2126 2127 2128
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2129
	if (!cycled && !done) {
2130
		/*
N
Nick Piggin 已提交
2131
		 * range_cyclic:
2132 2133 2134
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
N
Nick Piggin 已提交
2135
		cycled = 1;
2136
		index = 0;
N
Nick Piggin 已提交
2137
		end = writeback_index - 1;
2138 2139
		goto retry;
	}
2140 2141
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		mapping->writeback_index = done_index;
2142

2143 2144
	return ret;
}
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
EXPORT_SYMBOL(write_cache_pages);

/*
 * Function used by generic_writepages to call the real writepage
 * function and set the mapping flags on error
 */
static int __writepage(struct page *page, struct writeback_control *wbc,
		       void *data)
{
	struct address_space *mapping = data;
	int ret = mapping->a_ops->writepage(page, wbc);
	mapping_set_error(mapping, ret);
	return ret;
}

/**
 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 *
 * This is a library function, which implements the writepages()
 * address_space_operation.
 */
int generic_writepages(struct address_space *mapping,
		       struct writeback_control *wbc)
{
2171 2172 2173
	struct blk_plug plug;
	int ret;

2174 2175 2176 2177
	/* deal with chardevs and other special file */
	if (!mapping->a_ops->writepage)
		return 0;

2178 2179 2180 2181
	blk_start_plug(&plug);
	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
	blk_finish_plug(&plug);
	return ret;
2182
}
2183 2184 2185

EXPORT_SYMBOL(generic_writepages);

L
Linus Torvalds 已提交
2186 2187
int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
{
2188 2189
	int ret;

L
Linus Torvalds 已提交
2190 2191 2192
	if (wbc->nr_to_write <= 0)
		return 0;
	if (mapping->a_ops->writepages)
2193
		ret = mapping->a_ops->writepages(mapping, wbc);
2194 2195 2196
	else
		ret = generic_writepages(mapping, wbc);
	return ret;
L
Linus Torvalds 已提交
2197 2198 2199 2200
}

/**
 * write_one_page - write out a single page and optionally wait on I/O
2201 2202
 * @page: the page to write
 * @wait: if true, wait on writeout
L
Linus Torvalds 已提交
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
 *
 * The page must be locked by the caller and will be unlocked upon return.
 *
 * write_one_page() returns a negative error code if I/O failed.
 */
int write_one_page(struct page *page, int wait)
{
	struct address_space *mapping = page->mapping;
	int ret = 0;
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_ALL,
		.nr_to_write = 1,
	};

	BUG_ON(!PageLocked(page));

	if (wait)
		wait_on_page_writeback(page);

	if (clear_page_dirty_for_io(page)) {
		page_cache_get(page);
		ret = mapping->a_ops->writepage(page, &wbc);
		if (ret == 0 && wait) {
			wait_on_page_writeback(page);
			if (PageError(page))
				ret = -EIO;
		}
		page_cache_release(page);
	} else {
		unlock_page(page);
	}
	return ret;
}
EXPORT_SYMBOL(write_one_page);

2238 2239 2240 2241 2242 2243
/*
 * For address_spaces which do not use buffers nor write back.
 */
int __set_page_dirty_no_writeback(struct page *page)
{
	if (!PageDirty(page))
2244
		return !TestSetPageDirty(page);
2245 2246 2247
	return 0;
}

2248 2249
/*
 * Helper function for set_page_dirty family.
2250 2251 2252
 *
 * Caller must hold mem_cgroup_begin_page_stat().
 *
2253 2254
 * NOTE: This relies on being atomic wrt interrupts.
 */
2255 2256
void account_page_dirtied(struct page *page, struct address_space *mapping,
			  struct mem_cgroup *memcg)
2257
{
2258 2259
	struct inode *inode = mapping->host;

T
Tejun Heo 已提交
2260 2261
	trace_writeback_dirty_page(page, mapping);

2262
	if (mapping_cap_account_dirty(mapping)) {
2263 2264 2265 2266
		struct bdi_writeback *wb;

		inode_attach_wb(inode, page);
		wb = inode_to_wb(inode);
2267

2268
		mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2269
		__inc_zone_page_state(page, NR_FILE_DIRTY);
2270
		__inc_zone_page_state(page, NR_DIRTIED);
2271 2272
		__inc_wb_stat(wb, WB_RECLAIMABLE);
		__inc_wb_stat(wb, WB_DIRTIED);
2273
		task_io_account_write(PAGE_CACHE_SIZE);
2274 2275
		current->nr_dirtied++;
		this_cpu_inc(bdp_ratelimits);
2276 2277
	}
}
M
Michael Rubin 已提交
2278
EXPORT_SYMBOL(account_page_dirtied);
2279

2280 2281
/*
 * Helper function for deaccounting dirty page without writeback.
2282 2283
 *
 * Caller must hold mem_cgroup_begin_page_stat().
2284
 */
2285 2286
void account_page_cleaned(struct page *page, struct address_space *mapping,
			  struct mem_cgroup *memcg)
2287 2288
{
	if (mapping_cap_account_dirty(mapping)) {
2289
		mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2290
		dec_zone_page_state(page, NR_FILE_DIRTY);
2291
		dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
2292 2293 2294 2295
		task_io_account_cancelled_write(PAGE_CACHE_SIZE);
	}
}

L
Linus Torvalds 已提交
2296 2297 2298 2299 2300 2301 2302 2303
/*
 * For address_spaces which do not use buffers.  Just tag the page as dirty in
 * its radix tree.
 *
 * This is also used when a single buffer is being dirtied: we want to set the
 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
 *
2304 2305 2306
 * The caller must ensure this doesn't race with truncation.  Most will simply
 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
 * the pte lock held, which also locks out truncation.
L
Linus Torvalds 已提交
2307 2308 2309
 */
int __set_page_dirty_nobuffers(struct page *page)
{
2310 2311 2312
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_begin_page_stat(page);
L
Linus Torvalds 已提交
2313 2314
	if (!TestSetPageDirty(page)) {
		struct address_space *mapping = page_mapping(page);
2315
		unsigned long flags;
L
Linus Torvalds 已提交
2316

2317 2318
		if (!mapping) {
			mem_cgroup_end_page_stat(memcg);
2319
			return 1;
2320
		}
2321

2322
		spin_lock_irqsave(&mapping->tree_lock, flags);
2323 2324
		BUG_ON(page_mapping(page) != mapping);
		WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2325
		account_page_dirtied(page, mapping, memcg);
2326 2327
		radix_tree_tag_set(&mapping->page_tree, page_index(page),
				   PAGECACHE_TAG_DIRTY);
2328
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2329 2330
		mem_cgroup_end_page_stat(memcg);

2331 2332 2333
		if (mapping->host) {
			/* !PageAnon && !swapper_space */
			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
L
Linus Torvalds 已提交
2334
		}
2335
		return 1;
L
Linus Torvalds 已提交
2336
	}
2337
	mem_cgroup_end_page_stat(memcg);
2338
	return 0;
L
Linus Torvalds 已提交
2339 2340 2341
}
EXPORT_SYMBOL(__set_page_dirty_nobuffers);

2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
/*
 * Call this whenever redirtying a page, to de-account the dirty counters
 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
 * control.
 */
void account_page_redirty(struct page *page)
{
	struct address_space *mapping = page->mapping;
2352

2353
	if (mapping && mapping_cap_account_dirty(mapping)) {
2354 2355
		struct bdi_writeback *wb = inode_to_wb(mapping->host);

2356 2357
		current->nr_dirtied--;
		dec_zone_page_state(page, NR_DIRTIED);
2358
		dec_wb_stat(wb, WB_DIRTIED);
2359 2360 2361 2362
	}
}
EXPORT_SYMBOL(account_page_redirty);

L
Linus Torvalds 已提交
2363 2364 2365 2366 2367 2368 2369
/*
 * When a writepage implementation decides that it doesn't want to write this
 * page for some reason, it should redirty the locked page via
 * redirty_page_for_writepage() and it should then unlock the page and return 0
 */
int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
{
2370 2371
	int ret;

L
Linus Torvalds 已提交
2372
	wbc->pages_skipped++;
2373
	ret = __set_page_dirty_nobuffers(page);
2374
	account_page_redirty(page);
2375
	return ret;
L
Linus Torvalds 已提交
2376 2377 2378 2379
}
EXPORT_SYMBOL(redirty_page_for_writepage);

/*
2380 2381 2382 2383 2384 2385 2386
 * Dirty a page.
 *
 * For pages with a mapping this should be done under the page lock
 * for the benefit of asynchronous memory errors who prefer a consistent
 * dirty state. This rule can be broken in some special cases,
 * but should be better not to.
 *
L
Linus Torvalds 已提交
2387 2388 2389
 * If the mapping doesn't provide a set_page_dirty a_op, then
 * just fall through and assume that it wants buffer_heads.
 */
N
Nick Piggin 已提交
2390
int set_page_dirty(struct page *page)
L
Linus Torvalds 已提交
2391 2392 2393 2394 2395
{
	struct address_space *mapping = page_mapping(page);

	if (likely(mapping)) {
		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
M
Minchan Kim 已提交
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
		/*
		 * readahead/lru_deactivate_page could remain
		 * PG_readahead/PG_reclaim due to race with end_page_writeback
		 * About readahead, if the page is written, the flags would be
		 * reset. So no problem.
		 * About lru_deactivate_page, if the page is redirty, the flag
		 * will be reset. So no problem. but if the page is used by readahead
		 * it will confuse readahead and make it restart the size rampup
		 * process. But it's a trivial problem.
		 */
2406 2407
		if (PageReclaim(page))
			ClearPageReclaim(page);
2408 2409 2410 2411 2412
#ifdef CONFIG_BLOCK
		if (!spd)
			spd = __set_page_dirty_buffers;
#endif
		return (*spd)(page);
L
Linus Torvalds 已提交
2413
	}
2414 2415 2416 2417
	if (!PageDirty(page)) {
		if (!TestSetPageDirty(page))
			return 1;
	}
L
Linus Torvalds 已提交
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
	return 0;
}
EXPORT_SYMBOL(set_page_dirty);

/*
 * set_page_dirty() is racy if the caller has no reference against
 * page->mapping->host, and if the page is unlocked.  This is because another
 * CPU could truncate the page off the mapping and then free the mapping.
 *
 * Usually, the page _is_ locked, or the caller is a user-space process which
 * holds a reference on the inode by having an open file.
 *
 * In other cases, the page should be locked before running set_page_dirty().
 */
int set_page_dirty_lock(struct page *page)
{
	int ret;

J
Jens Axboe 已提交
2436
	lock_page(page);
L
Linus Torvalds 已提交
2437 2438 2439 2440 2441 2442
	ret = set_page_dirty(page);
	unlock_page(page);
	return ret;
}
EXPORT_SYMBOL(set_page_dirty_lock);

2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
/*
 * This cancels just the dirty bit on the kernel page itself, it does NOT
 * actually remove dirty bits on any mmap's that may be around. It also
 * leaves the page tagged dirty, so any sync activity will still find it on
 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
 * look at the dirty bits in the VM.
 *
 * Doing this should *normally* only ever be done when a page is truncated,
 * and is not actually mapped anywhere at all. However, fs/buffer.c does
 * this when it notices that somebody has cleaned out all the buffers on a
 * page without actually doing it through the VM. Can you say "ext3 is
 * horribly ugly"? Thought you could.
 */
void cancel_dirty_page(struct page *page)
{
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
	struct address_space *mapping = page_mapping(page);

	if (mapping_cap_account_dirty(mapping)) {
		struct mem_cgroup *memcg;

		memcg = mem_cgroup_begin_page_stat(page);

		if (TestClearPageDirty(page))
			account_page_cleaned(page, mapping, memcg);

		mem_cgroup_end_page_stat(memcg);
	} else {
		ClearPageDirty(page);
	}
2472 2473 2474
}
EXPORT_SYMBOL(cancel_dirty_page);

L
Linus Torvalds 已提交
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
/*
 * Clear a page's dirty flag, while caring for dirty memory accounting.
 * Returns true if the page was previously dirty.
 *
 * This is for preparing to put the page under writeout.  We leave the page
 * tagged as dirty in the radix tree so that a concurrent write-for-sync
 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
 * implementation will run either set_page_writeback() or set_page_dirty(),
 * at which stage we bring the page's dirty flag and radix-tree dirty tag
 * back into sync.
 *
 * This incoherency between the page's dirty flag and radix-tree tag is
 * unfortunate, but it only exists while the page is locked.
 */
int clear_page_dirty_for_io(struct page *page)
{
	struct address_space *mapping = page_mapping(page);
2492 2493
	struct mem_cgroup *memcg;
	int ret = 0;
L
Linus Torvalds 已提交
2494

2495 2496
	BUG_ON(!PageLocked(page));

2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
	if (mapping && mapping_cap_account_dirty(mapping)) {
		/*
		 * Yes, Virginia, this is indeed insane.
		 *
		 * We use this sequence to make sure that
		 *  (a) we account for dirty stats properly
		 *  (b) we tell the low-level filesystem to
		 *      mark the whole page dirty if it was
		 *      dirty in a pagetable. Only to then
		 *  (c) clean the page again and return 1 to
		 *      cause the writeback.
		 *
		 * This way we avoid all nasty races with the
		 * dirty bit in multiple places and clearing
		 * them concurrently from different threads.
		 *
		 * Note! Normally the "set_page_dirty(page)"
		 * has no effect on the actual dirty bit - since
		 * that will already usually be set. But we
		 * need the side effects, and it can help us
		 * avoid races.
		 *
		 * We basically use the page "master dirty bit"
		 * as a serialization point for all the different
		 * threads doing their things.
		 */
		if (page_mkclean(page))
			set_page_dirty(page);
2525 2526 2527
		/*
		 * We carefully synchronise fault handlers against
		 * installing a dirty pte and marking the page dirty
2528 2529 2530 2531
		 * at this point.  We do this by having them hold the
		 * page lock while dirtying the page, and pages are
		 * always locked coming in here, so we get the desired
		 * exclusion.
2532
		 */
2533
		memcg = mem_cgroup_begin_page_stat(page);
2534
		if (TestClearPageDirty(page)) {
2535
			mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2536
			dec_zone_page_state(page, NR_FILE_DIRTY);
2537
			dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
2538
			ret = 1;
L
Linus Torvalds 已提交
2539
		}
2540 2541
		mem_cgroup_end_page_stat(memcg);
		return ret;
L
Linus Torvalds 已提交
2542
	}
2543
	return TestClearPageDirty(page);
L
Linus Torvalds 已提交
2544
}
2545
EXPORT_SYMBOL(clear_page_dirty_for_io);
L
Linus Torvalds 已提交
2546 2547 2548 2549

int test_clear_page_writeback(struct page *page)
{
	struct address_space *mapping = page_mapping(page);
2550 2551
	struct mem_cgroup *memcg;
	int ret;
L
Linus Torvalds 已提交
2552

2553
	memcg = mem_cgroup_begin_page_stat(page);
L
Linus Torvalds 已提交
2554
	if (mapping) {
2555 2556
		struct inode *inode = mapping->host;
		struct backing_dev_info *bdi = inode_to_bdi(inode);
L
Linus Torvalds 已提交
2557 2558
		unsigned long flags;

N
Nick Piggin 已提交
2559
		spin_lock_irqsave(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2560
		ret = TestClearPageWriteback(page);
P
Peter Zijlstra 已提交
2561
		if (ret) {
L
Linus Torvalds 已提交
2562 2563 2564
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_WRITEBACK);
2565
			if (bdi_cap_account_writeback(bdi)) {
2566 2567 2568 2569
				struct bdi_writeback *wb = inode_to_wb(inode);

				__dec_wb_stat(wb, WB_WRITEBACK);
				__wb_writeout_inc(wb);
P
Peter Zijlstra 已提交
2570
			}
P
Peter Zijlstra 已提交
2571
		}
N
Nick Piggin 已提交
2572
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2573 2574 2575
	} else {
		ret = TestClearPageWriteback(page);
	}
2576
	if (ret) {
2577
		mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2578
		dec_zone_page_state(page, NR_WRITEBACK);
2579 2580
		inc_zone_page_state(page, NR_WRITTEN);
	}
2581
	mem_cgroup_end_page_stat(memcg);
L
Linus Torvalds 已提交
2582 2583 2584
	return ret;
}

2585
int __test_set_page_writeback(struct page *page, bool keep_write)
L
Linus Torvalds 已提交
2586 2587
{
	struct address_space *mapping = page_mapping(page);
2588 2589
	struct mem_cgroup *memcg;
	int ret;
L
Linus Torvalds 已提交
2590

2591
	memcg = mem_cgroup_begin_page_stat(page);
L
Linus Torvalds 已提交
2592
	if (mapping) {
2593 2594
		struct inode *inode = mapping->host;
		struct backing_dev_info *bdi = inode_to_bdi(inode);
L
Linus Torvalds 已提交
2595 2596
		unsigned long flags;

N
Nick Piggin 已提交
2597
		spin_lock_irqsave(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2598
		ret = TestSetPageWriteback(page);
P
Peter Zijlstra 已提交
2599
		if (!ret) {
L
Linus Torvalds 已提交
2600 2601 2602
			radix_tree_tag_set(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_WRITEBACK);
2603
			if (bdi_cap_account_writeback(bdi))
2604
				__inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
P
Peter Zijlstra 已提交
2605
		}
L
Linus Torvalds 已提交
2606 2607 2608 2609
		if (!PageDirty(page))
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_DIRTY);
2610 2611 2612 2613
		if (!keep_write)
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_TOWRITE);
N
Nick Piggin 已提交
2614
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2615 2616 2617
	} else {
		ret = TestSetPageWriteback(page);
	}
2618
	if (!ret) {
2619
		mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2620 2621
		inc_zone_page_state(page, NR_WRITEBACK);
	}
2622
	mem_cgroup_end_page_stat(memcg);
L
Linus Torvalds 已提交
2623 2624 2625
	return ret;

}
2626
EXPORT_SYMBOL(__test_set_page_writeback);
L
Linus Torvalds 已提交
2627 2628

/*
N
Nick Piggin 已提交
2629
 * Return true if any of the pages in the mapping are marked with the
L
Linus Torvalds 已提交
2630 2631 2632 2633
 * passed tag.
 */
int mapping_tagged(struct address_space *mapping, int tag)
{
2634
	return radix_tree_tagged(&mapping->page_tree, tag);
L
Linus Torvalds 已提交
2635 2636
}
EXPORT_SYMBOL(mapping_tagged);
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647

/**
 * wait_for_stable_page() - wait for writeback to finish, if necessary.
 * @page:	The page to wait on.
 *
 * This function determines if the given page is related to a backing device
 * that requires page contents to be held stable during writeback.  If so, then
 * it will wait for any pending writeback to complete.
 */
void wait_for_stable_page(struct page *page)
{
2648 2649
	if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
		wait_on_page_writeback(page);
2650 2651
}
EXPORT_SYMBOL_GPL(wait_for_stable_page);