ste_dma40.c 94.1 KB
Newer Older
1
/*
2 3
 * Copyright (C) Ericsson AB 2007-2008
 * Copyright (C) ST-Ericsson SA 2008-2010
4
 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5
 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6 7 8
 * License terms: GNU General Public License (GPL) version 2
 */

9
#include <linux/dma-mapping.h>
10 11
#include <linux/kernel.h>
#include <linux/slab.h>
12
#include <linux/export.h>
13 14 15 16
#include <linux/dmaengine.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/delay.h>
17 18
#include <linux/pm.h>
#include <linux/pm_runtime.h>
19
#include <linux/err.h>
20
#include <linux/amba/bus.h>
21
#include <linux/regulator/consumer.h>
22
#include <linux/platform_data/dma-ste-dma40.h>
23

24
#include "dmaengine.h"
25 26 27 28 29 30 31 32 33 34 35 36 37
#include "ste_dma40_ll.h"

#define D40_NAME "dma40"

#define D40_PHY_CHAN -1

/* For masking out/in 2 bit channel positions */
#define D40_CHAN_POS(chan)  (2 * (chan / 2))
#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))

/* Maximum iterations taken before giving up suspending a channel */
#define D40_SUSPEND_MAX_IT 500

38 39 40
/* Milliseconds */
#define DMA40_AUTOSUSPEND_DELAY	100

41 42
/* Hardware requirement on LCLA alignment */
#define LCLA_ALIGNMENT 0x40000
43 44 45 46 47

/* Max number of links per event group */
#define D40_LCLA_LINK_PER_EVENT_GRP 128
#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP

48 49 50 51
/* Attempts before giving up to trying to get pages that are aligned */
#define MAX_LCLA_ALLOC_ATTEMPTS 256

/* Bit markings for allocation map */
52 53 54 55
#define D40_ALLOC_FREE		(1 << 31)
#define D40_ALLOC_PHY		(1 << 30)
#define D40_ALLOC_LOG_FREE	0

56
/* Reserved event lines for memcpy only. */
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
#define DB8500_DMA_MEMCPY_EV_0	51
#define DB8500_DMA_MEMCPY_EV_1	56
#define DB8500_DMA_MEMCPY_EV_2	57
#define DB8500_DMA_MEMCPY_EV_3	58
#define DB8500_DMA_MEMCPY_EV_4	59
#define DB8500_DMA_MEMCPY_EV_5	60

static int dma40_memcpy_channels[] = {
	DB8500_DMA_MEMCPY_EV_0,
	DB8500_DMA_MEMCPY_EV_1,
	DB8500_DMA_MEMCPY_EV_2,
	DB8500_DMA_MEMCPY_EV_3,
	DB8500_DMA_MEMCPY_EV_4,
	DB8500_DMA_MEMCPY_EV_5,
};
72

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/* Default configuration for physcial memcpy */
struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
	.mode = STEDMA40_MODE_PHYSICAL,
	.dir = STEDMA40_MEM_TO_MEM,

	.src_info.data_width = STEDMA40_BYTE_WIDTH,
	.src_info.psize = STEDMA40_PSIZE_PHY_1,
	.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,

	.dst_info.data_width = STEDMA40_BYTE_WIDTH,
	.dst_info.psize = STEDMA40_PSIZE_PHY_1,
	.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
};

/* Default configuration for logical memcpy */
struct stedma40_chan_cfg dma40_memcpy_conf_log = {
	.mode = STEDMA40_MODE_LOGICAL,
	.dir = STEDMA40_MEM_TO_MEM,

	.src_info.data_width = STEDMA40_BYTE_WIDTH,
	.src_info.psize = STEDMA40_PSIZE_LOG_1,
	.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,

	.dst_info.data_width = STEDMA40_BYTE_WIDTH,
	.dst_info.psize = STEDMA40_PSIZE_LOG_1,
	.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
};

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
/**
 * enum 40_command - The different commands and/or statuses.
 *
 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
 */
enum d40_command {
	D40_DMA_STOP		= 0,
	D40_DMA_RUN		= 1,
	D40_DMA_SUSPEND_REQ	= 2,
	D40_DMA_SUSPENDED	= 3
};

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
/*
 * enum d40_events - The different Event Enables for the event lines.
 *
 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
 * @D40_ROUND_EVENTLINE: Status check for event line.
 */

enum d40_events {
	D40_DEACTIVATE_EVENTLINE	= 0,
	D40_ACTIVATE_EVENTLINE		= 1,
	D40_SUSPEND_REQ_EVENTLINE	= 2,
	D40_ROUND_EVENTLINE		= 3
};

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
/*
 * These are the registers that has to be saved and later restored
 * when the DMA hw is powered off.
 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
 */
static u32 d40_backup_regs[] = {
	D40_DREG_LCPA,
	D40_DREG_LCLA,
	D40_DREG_PRMSE,
	D40_DREG_PRMSO,
	D40_DREG_PRMOE,
	D40_DREG_PRMOO,
};

#define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)

148 149 150 151 152 153 154 155 156 157 158 159 160
/*
 * since 9540 and 8540 has the same HW revision
 * use v4a for 9540 or ealier
 * use v4b for 8540 or later
 * HW revision:
 * DB8500ed has revision 0
 * DB8500v1 has revision 2
 * DB8500v2 has revision 3
 * AP9540v1 has revision 4
 * DB8540v1 has revision 4
 * TODO: Check if all these registers have to be saved/restored on dma40 v4a
 */
static u32 d40_backup_regs_v4a[] = {
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
	D40_DREG_PSEG1,
	D40_DREG_PSEG2,
	D40_DREG_PSEG3,
	D40_DREG_PSEG4,
	D40_DREG_PCEG1,
	D40_DREG_PCEG2,
	D40_DREG_PCEG3,
	D40_DREG_PCEG4,
	D40_DREG_RSEG1,
	D40_DREG_RSEG2,
	D40_DREG_RSEG3,
	D40_DREG_RSEG4,
	D40_DREG_RCEG1,
	D40_DREG_RCEG2,
	D40_DREG_RCEG3,
	D40_DREG_RCEG4,
};

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
#define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)

static u32 d40_backup_regs_v4b[] = {
	D40_DREG_CPSEG1,
	D40_DREG_CPSEG2,
	D40_DREG_CPSEG3,
	D40_DREG_CPSEG4,
	D40_DREG_CPSEG5,
	D40_DREG_CPCEG1,
	D40_DREG_CPCEG2,
	D40_DREG_CPCEG3,
	D40_DREG_CPCEG4,
	D40_DREG_CPCEG5,
	D40_DREG_CRSEG1,
	D40_DREG_CRSEG2,
	D40_DREG_CRSEG3,
	D40_DREG_CRSEG4,
	D40_DREG_CRSEG5,
	D40_DREG_CRCEG1,
	D40_DREG_CRCEG2,
	D40_DREG_CRCEG3,
	D40_DREG_CRCEG4,
	D40_DREG_CRCEG5,
};

#define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
205 206 207 208 209 210 211 212 213 214 215 216

static u32 d40_backup_regs_chan[] = {
	D40_CHAN_REG_SSCFG,
	D40_CHAN_REG_SSELT,
	D40_CHAN_REG_SSPTR,
	D40_CHAN_REG_SSLNK,
	D40_CHAN_REG_SDCFG,
	D40_CHAN_REG_SDELT,
	D40_CHAN_REG_SDPTR,
	D40_CHAN_REG_SDLNK,
};

217 218 219
#define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
			     BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)

220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
/**
 * struct d40_interrupt_lookup - lookup table for interrupt handler
 *
 * @src: Interrupt mask register.
 * @clr: Interrupt clear register.
 * @is_error: true if this is an error interrupt.
 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
 */
struct d40_interrupt_lookup {
	u32 src;
	u32 clr;
	bool is_error;
	int offset;
};


static struct d40_interrupt_lookup il_v4a[] = {
	{D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
	{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
	{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
	{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
	{D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
	{D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
	{D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
	{D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
	{D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
	{D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
};

static struct d40_interrupt_lookup il_v4b[] = {
	{D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false,  0},
	{D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
	{D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
	{D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
	{D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
	{D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true,   0},
	{D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true,  32},
	{D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true,  64},
	{D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true,  96},
	{D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true,  128},
	{D40_DREG_CPCTIS,  D40_DREG_CPCICR,  false, D40_PHY_CHAN},
	{D40_DREG_CPCEIS,  D40_DREG_CPCICR,  true,  D40_PHY_CHAN},
};

/**
 * struct d40_reg_val - simple lookup struct
 *
 * @reg: The register.
 * @val: The value that belongs to the register in reg.
 */
struct d40_reg_val {
	unsigned int reg;
	unsigned int val;
};

static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
	/* Clock every part of the DMA block from start */
	{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},

	/* Interrupts on all logical channels */
	{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
};
static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
	/* Clock every part of the DMA block from start */
	{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},

	/* Interrupts on all logical channels */
	{ .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
};

316 317 318 319 320 321
/**
 * struct d40_lli_pool - Structure for keeping LLIs in memory
 *
 * @base: Pointer to memory area when the pre_alloc_lli's are not large
 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
 * pre_alloc_lli is used.
322
 * @dma_addr: DMA address, if mapped
323 324 325 326 327 328
 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
 * one buffer to one buffer.
 */
struct d40_lli_pool {
	void	*base;
329
	int	 size;
330
	dma_addr_t	dma_addr;
331
	/* Space for dst and src, plus an extra for padding */
332
	u8	 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
333 334 335 336 337 338 339 340 341 342
};

/**
 * struct d40_desc - A descriptor is one DMA job.
 *
 * @lli_phy: LLI settings for physical channel. Both src and dst=
 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
 * lli_len equals one.
 * @lli_log: Same as above but for logical channels.
 * @lli_pool: The pool with two entries pre-allocated.
343
 * @lli_len: Number of llis of current descriptor.
L
Lucas De Marchi 已提交
344
 * @lli_current: Number of transferred llis.
345
 * @lcla_alloc: Number of LCLA entries allocated.
346 347 348 349
 * @txd: DMA engine struct. Used for among other things for communication
 * during a transfer.
 * @node: List entry.
 * @is_in_client_list: true if the client owns this descriptor.
350
 * @cyclic: true if this is a cyclic job
351 352 353 354 355 356 357 358 359 360
 *
 * This descriptor is used for both logical and physical transfers.
 */
struct d40_desc {
	/* LLI physical */
	struct d40_phy_lli_bidir	 lli_phy;
	/* LLI logical */
	struct d40_log_lli_bidir	 lli_log;

	struct d40_lli_pool		 lli_pool;
361
	int				 lli_len;
362 363
	int				 lli_current;
	int				 lcla_alloc;
364 365 366 367 368

	struct dma_async_tx_descriptor	 txd;
	struct list_head		 node;

	bool				 is_in_client_list;
R
Rabin Vincent 已提交
369
	bool				 cyclic;
370 371 372 373 374
};

/**
 * struct d40_lcla_pool - LCLA pool settings and data.
 *
375 376 377 378 379
 * @base: The virtual address of LCLA. 18 bit aligned.
 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
 * This pointer is only there for clean-up on error.
 * @pages: The number of pages needed for all physical channels.
 * Only used later for clean-up on error
380
 * @lock: Lock to protect the content in this struct.
381
 * @alloc_map: big map over which LCLA entry is own by which job.
382 383 384
 */
struct d40_lcla_pool {
	void		*base;
385
	dma_addr_t	dma_addr;
386 387
	void		*base_unaligned;
	int		 pages;
388
	spinlock_t	 lock;
389
	struct d40_desc	**alloc_map;
390 391 392 393 394 395 396
};

/**
 * struct d40_phy_res - struct for handling eventlines mapped to physical
 * channels.
 *
 * @lock: A lock protection this entity.
397
 * @reserved: True if used by secure world or otherwise.
398 399 400 401 402
 * @num: The physical channel number of this entity.
 * @allocated_src: Bit mapped to show which src event line's are mapped to
 * this physical channel. Can also be free or physically allocated.
 * @allocated_dst: Same as for src but is dst.
 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
403
 * event line number.
404
 * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
405 406 407
 */
struct d40_phy_res {
	spinlock_t lock;
408
	bool	   reserved;
409 410 411
	int	   num;
	u32	   allocated_src;
	u32	   allocated_dst;
412
	bool	   use_soft_lli;
413 414 415 416 417 418 419 420 421 422 423 424
};

struct d40_base;

/**
 * struct d40_chan - Struct that describes a channel.
 *
 * @lock: A spinlock to protect this struct.
 * @log_num: The logical number, if any of this channel.
 * @pending_tx: The number of pending transfers. Used between interrupt handler
 * and tasklet.
 * @busy: Set to true when transfer is ongoing on this channel.
425 426
 * @phy_chan: Pointer to physical channel which this instance runs on. If this
 * point is NULL, then the channel is not allocated.
427 428 429 430
 * @chan: DMA engine handle.
 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
 * transfer and call client callback.
 * @client: Cliented owned descriptor list.
431
 * @pending_queue: Submitted jobs, to be issued by issue_pending()
432
 * @active: Active descriptor.
433
 * @done: Completed jobs
434
 * @queue: Queued jobs.
435
 * @prepare_queue: Prepared jobs.
436
 * @dma_cfg: The client configuration of this dma channel.
437
 * @configured: whether the dma_cfg configuration is valid
438 439 440 441 442
 * @base: Pointer to the device instance struct.
 * @src_def_cfg: Default cfg register setting for src.
 * @dst_def_cfg: Default cfg register setting for dst.
 * @log_def: Default logical channel settings.
 * @lcpa: Pointer to dst and src lcpa settings.
443 444
 * @runtime_addr: runtime configured address.
 * @runtime_direction: runtime configured direction.
445 446 447 448 449 450 451 452 453 454 455 456
 *
 * This struct can either "be" a logical or a physical channel.
 */
struct d40_chan {
	spinlock_t			 lock;
	int				 log_num;
	int				 pending_tx;
	bool				 busy;
	struct d40_phy_res		*phy_chan;
	struct dma_chan			 chan;
	struct tasklet_struct		 tasklet;
	struct list_head		 client;
457
	struct list_head		 pending_queue;
458
	struct list_head		 active;
459
	struct list_head		 done;
460
	struct list_head		 queue;
461
	struct list_head		 prepare_queue;
462
	struct stedma40_chan_cfg	 dma_cfg;
463
	bool				 configured;
464 465 466 467 468 469
	struct d40_base			*base;
	/* Default register configurations */
	u32				 src_def_cfg;
	u32				 dst_def_cfg;
	struct d40_def_lcsp		 log_def;
	struct d40_log_lli_full		*lcpa;
470 471
	/* Runtime reconfiguration */
	dma_addr_t			runtime_addr;
472
	enum dma_transfer_direction	runtime_direction;
473 474
};

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
/**
 * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
 * controller
 *
 * @backup: the pointer to the registers address array for backup
 * @backup_size: the size of the registers address array for backup
 * @realtime_en: the realtime enable register
 * @realtime_clear: the realtime clear register
 * @high_prio_en: the high priority enable register
 * @high_prio_clear: the high priority clear register
 * @interrupt_en: the interrupt enable register
 * @interrupt_clear: the interrupt clear register
 * @il: the pointer to struct d40_interrupt_lookup
 * @il_size: the size of d40_interrupt_lookup array
 * @init_reg: the pointer to the struct d40_reg_val
 * @init_reg_size: the size of d40_reg_val array
 */
struct d40_gen_dmac {
	u32				*backup;
	u32				 backup_size;
	u32				 realtime_en;
	u32				 realtime_clear;
	u32				 high_prio_en;
	u32				 high_prio_clear;
	u32				 interrupt_en;
	u32				 interrupt_clear;
	struct d40_interrupt_lookup	*il;
	u32				 il_size;
	struct d40_reg_val		*init_reg;
	u32				 init_reg_size;
};

507 508 509 510 511 512 513 514
/**
 * struct d40_base - The big global struct, one for each probe'd instance.
 *
 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
 * @execmd_lock: Lock for execute command usage since several channels share
 * the same physical register.
 * @dev: The device structure.
 * @virtbase: The virtual base address of the DMA's register.
515
 * @rev: silicon revision detected.
516 517 518 519 520 521 522 523 524 525 526 527
 * @clk: Pointer to the DMA clock structure.
 * @phy_start: Physical memory start of the DMA registers.
 * @phy_size: Size of the DMA register map.
 * @irq: The IRQ number.
 * @num_phy_chans: The number of physical channels. Read from HW. This
 * is the number of available channels for this driver, not counting "Secure
 * mode" allocated physical channels.
 * @num_log_chans: The number of logical channels. Calculated from
 * num_phy_chans.
 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
 * @dma_slave: dma_device channels that can do only do slave transfers.
 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
528
 * @phy_chans: Room for all possible physical channels in system.
529 530 531 532 533 534 535
 * @log_chans: Room for all possible logical channels in system.
 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
 * to log_chans entries.
 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
 * to phy_chans entries.
 * @plat_data: Pointer to provided platform_data which is the driver
 * configuration.
536
 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
537 538 539 540 541
 * @phy_res: Vector containing all physical channels.
 * @lcla_pool: lcla pool settings and data.
 * @lcpa_base: The virtual mapped address of LCPA.
 * @phy_lcpa: The physical address of the LCPA.
 * @lcpa_size: The size of the LCPA area.
542
 * @desc_slab: cache for descriptors.
543 544
 * @reg_val_backup: Here the values of some hardware registers are stored
 * before the DMA is powered off. They are restored when the power is back on.
545 546
 * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
 * later
547 548 549
 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
 * @initialized: true if the dma has been initialized
550 551
 * @gen_dmac: the struct for generic registers values to represent u8500/8540
 * DMA controller
552 553 554 555 556 557
 */
struct d40_base {
	spinlock_t			 interrupt_lock;
	spinlock_t			 execmd_lock;
	struct device			 *dev;
	void __iomem			 *virtbase;
558
	u8				  rev:4;
559 560 561 562 563 564
	struct clk			 *clk;
	phys_addr_t			  phy_start;
	resource_size_t			  phy_size;
	int				  irq;
	int				  num_phy_chans;
	int				  num_log_chans;
565
	struct device_dma_parameters	  dma_parms;
566 567 568 569 570 571 572 573
	struct dma_device		  dma_both;
	struct dma_device		  dma_slave;
	struct dma_device		  dma_memcpy;
	struct d40_chan			 *phy_chans;
	struct d40_chan			 *log_chans;
	struct d40_chan			**lookup_log_chans;
	struct d40_chan			**lookup_phy_chans;
	struct stedma40_platform_data	 *plat_data;
574
	struct regulator		 *lcpa_regulator;
575 576 577 578 579 580
	/* Physical half channels */
	struct d40_phy_res		 *phy_res;
	struct d40_lcla_pool		  lcla_pool;
	void				 *lcpa_base;
	dma_addr_t			  phy_lcpa;
	resource_size_t			  lcpa_size;
581
	struct kmem_cache		 *desc_slab;
582
	u32				  reg_val_backup[BACKUP_REGS_SZ];
583
	u32				  reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
584 585 586
	u32				 *reg_val_backup_chan;
	u16				  gcc_pwr_off_mask;
	bool				  initialized;
587
	struct d40_gen_dmac		  gen_dmac;
588 589
};

590 591 592 593 594
static struct device *chan2dev(struct d40_chan *d40c)
{
	return &d40c->chan.dev->device;
}

595 596 597 598 599 600 601 602 603 604
static bool chan_is_physical(struct d40_chan *chan)
{
	return chan->log_num == D40_PHY_CHAN;
}

static bool chan_is_logical(struct d40_chan *chan)
{
	return !chan_is_physical(chan);
}

605 606 607 608 609 610
static void __iomem *chan_base(struct d40_chan *chan)
{
	return chan->base->virtbase + D40_DREG_PCBASE +
	       chan->phy_chan->num * D40_DREG_PCDELTA;
}

611 612 613 614 615 616
#define d40_err(dev, format, arg...)		\
	dev_err(dev, "[%s] " format, __func__, ## arg)

#define chan_err(d40c, format, arg...)		\
	d40_err(chan2dev(d40c), format, ## arg)

617
static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
618
			      int lli_len)
619
{
620
	bool is_log = chan_is_logical(d40c);
621 622 623 624 625 626 627 628 629 630 631 632 633
	u32 align;
	void *base;

	if (is_log)
		align = sizeof(struct d40_log_lli);
	else
		align = sizeof(struct d40_phy_lli);

	if (lli_len == 1) {
		base = d40d->lli_pool.pre_alloc_lli;
		d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
		d40d->lli_pool.base = NULL;
	} else {
634
		d40d->lli_pool.size = lli_len * 2 * align;
635 636 637 638 639 640 641 642 643

		base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
		d40d->lli_pool.base = base;

		if (d40d->lli_pool.base == NULL)
			return -ENOMEM;
	}

	if (is_log) {
R
Rabin Vincent 已提交
644
		d40d->lli_log.src = PTR_ALIGN(base, align);
645
		d40d->lli_log.dst = d40d->lli_log.src + lli_len;
646 647

		d40d->lli_pool.dma_addr = 0;
648
	} else {
R
Rabin Vincent 已提交
649
		d40d->lli_phy.src = PTR_ALIGN(base, align);
650
		d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
651 652 653 654 655 656 657 658 659 660 661 662 663

		d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
							 d40d->lli_phy.src,
							 d40d->lli_pool.size,
							 DMA_TO_DEVICE);

		if (dma_mapping_error(d40c->base->dev,
				      d40d->lli_pool.dma_addr)) {
			kfree(d40d->lli_pool.base);
			d40d->lli_pool.base = NULL;
			d40d->lli_pool.dma_addr = 0;
			return -ENOMEM;
		}
664 665 666 667 668
	}

	return 0;
}

669
static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
670
{
671 672 673 674
	if (d40d->lli_pool.dma_addr)
		dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
				 d40d->lli_pool.size, DMA_TO_DEVICE);

675 676 677 678 679 680 681 682 683
	kfree(d40d->lli_pool.base);
	d40d->lli_pool.base = NULL;
	d40d->lli_pool.size = 0;
	d40d->lli_log.src = NULL;
	d40d->lli_log.dst = NULL;
	d40d->lli_phy.src = NULL;
	d40d->lli_phy.dst = NULL;
}

684 685 686 687 688 689 690 691 692 693 694 695 696 697
static int d40_lcla_alloc_one(struct d40_chan *d40c,
			      struct d40_desc *d40d)
{
	unsigned long flags;
	int i;
	int ret = -EINVAL;

	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);

	/*
	 * Allocate both src and dst at the same time, therefore the half
	 * start on 1 since 0 can't be used since zero is used as end marker.
	 */
	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
698 699 700 701
		int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;

		if (!d40c->base->lcla_pool.alloc_map[idx]) {
			d40c->base->lcla_pool.alloc_map[idx] = d40d;
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
			d40d->lcla_alloc++;
			ret = i;
			break;
		}
	}

	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);

	return ret;
}

static int d40_lcla_free_all(struct d40_chan *d40c,
			     struct d40_desc *d40d)
{
	unsigned long flags;
	int i;
	int ret = -EINVAL;

720
	if (chan_is_physical(d40c))
721 722 723 724 725
		return 0;

	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);

	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
726 727 728 729
		int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;

		if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
			d40c->base->lcla_pool.alloc_map[idx] = NULL;
730 731 732 733 734 735 736 737 738 739 740 741 742 743
			d40d->lcla_alloc--;
			if (d40d->lcla_alloc == 0) {
				ret = 0;
				break;
			}
		}
	}

	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);

	return ret;

}

744 745 746 747 748 749 750
static void d40_desc_remove(struct d40_desc *d40d)
{
	list_del(&d40d->node);
}

static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
{
R
Rabin Vincent 已提交
751
	struct d40_desc *desc = NULL;
752 753

	if (!list_empty(&d40c->client)) {
R
Rabin Vincent 已提交
754 755 756
		struct d40_desc *d;
		struct d40_desc *_d;

757
		list_for_each_entry_safe(d, _d, &d40c->client, node) {
758 759
			if (async_tx_test_ack(&d->txd)) {
				d40_desc_remove(d);
R
Rabin Vincent 已提交
760 761
				desc = d;
				memset(desc, 0, sizeof(*desc));
762
				break;
763
			}
764
		}
765
	}
R
Rabin Vincent 已提交
766 767 768 769 770 771 772 773

	if (!desc)
		desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);

	if (desc)
		INIT_LIST_HEAD(&desc->node);

	return desc;
774 775 776 777
}

static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
{
778

779
	d40_pool_lli_free(d40c, d40d);
780
	d40_lcla_free_all(d40c, d40d);
781
	kmem_cache_free(d40c->base->desc_slab, d40d);
782 783 784 785 786 787 788
}

static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
{
	list_add_tail(&desc->node, &d40c->active);
}

789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
{
	struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
	struct d40_phy_lli *lli_src = desc->lli_phy.src;
	void __iomem *base = chan_base(chan);

	writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
	writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
	writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
	writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);

	writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
	writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
	writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
	writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
}

806 807 808 809 810
static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
{
	list_add_tail(&desc->node, &d40c->done);
}

811
static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
812
{
813 814 815 816
	struct d40_lcla_pool *pool = &chan->base->lcla_pool;
	struct d40_log_lli_bidir *lli = &desc->lli_log;
	int lli_current = desc->lli_current;
	int lli_len = desc->lli_len;
R
Rabin Vincent 已提交
817
	bool cyclic = desc->cyclic;
818
	int curr_lcla = -EINVAL;
R
Rabin Vincent 已提交
819
	int first_lcla = 0;
820
	bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
R
Rabin Vincent 已提交
821
	bool linkback;
822

R
Rabin Vincent 已提交
823 824 825 826 827 828 829 830 831 832 833
	/*
	 * We may have partially running cyclic transfers, in case we did't get
	 * enough LCLA entries.
	 */
	linkback = cyclic && lli_current == 0;

	/*
	 * For linkback, we need one LCLA even with only one link, because we
	 * can't link back to the one in LCPA space
	 */
	if (linkback || (lli_len - lli_current > 1)) {
834 835 836 837 838 839 840 841 842 843
		/*
		 * If the channel is expected to use only soft_lli don't
		 * allocate a lcla. This is to avoid a HW issue that exists
		 * in some controller during a peripheral to memory transfer
		 * that uses linked lists.
		 */
		if (!(chan->phy_chan->use_soft_lli &&
			chan->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM))
			curr_lcla = d40_lcla_alloc_one(chan, desc);

R
Rabin Vincent 已提交
844 845 846 847 848 849 850 851 852 853 854
		first_lcla = curr_lcla;
	}

	/*
	 * For linkback, we normally load the LCPA in the loop since we need to
	 * link it to the second LCLA and not the first.  However, if we
	 * couldn't even get a first LCLA, then we have to run in LCPA and
	 * reload manually.
	 */
	if (!linkback || curr_lcla == -EINVAL) {
		unsigned int flags = 0;
855

R
Rabin Vincent 已提交
856 857
		if (curr_lcla == -EINVAL)
			flags |= LLI_TERM_INT;
858

R
Rabin Vincent 已提交
859 860 861 862 863 864 865
		d40_log_lli_lcpa_write(chan->lcpa,
				       &lli->dst[lli_current],
				       &lli->src[lli_current],
				       curr_lcla,
				       flags);
		lli_current++;
	}
866 867 868 869

	if (curr_lcla < 0)
		goto out;

870 871 872 873
	for (; lli_current < lli_len; lli_current++) {
		unsigned int lcla_offset = chan->phy_chan->num * 1024 +
					   8 * curr_lcla * 2;
		struct d40_log_lli *lcla = pool->base + lcla_offset;
R
Rabin Vincent 已提交
874
		unsigned int flags = 0;
875 876 877 878 879
		int next_lcla;

		if (lli_current + 1 < lli_len)
			next_lcla = d40_lcla_alloc_one(chan, desc);
		else
R
Rabin Vincent 已提交
880 881 882 883
			next_lcla = linkback ? first_lcla : -EINVAL;

		if (cyclic || next_lcla == -EINVAL)
			flags |= LLI_TERM_INT;
884

R
Rabin Vincent 已提交
885 886 887 888 889 890 891 892 893 894 895 896
		if (linkback && curr_lcla == first_lcla) {
			/* First link goes in both LCPA and LCLA */
			d40_log_lli_lcpa_write(chan->lcpa,
					       &lli->dst[lli_current],
					       &lli->src[lli_current],
					       next_lcla, flags);
		}

		/*
		 * One unused LCLA in the cyclic case if the very first
		 * next_lcla fails...
		 */
897 898 899
		d40_log_lli_lcla_write(lcla,
				       &lli->dst[lli_current],
				       &lli->src[lli_current],
R
Rabin Vincent 已提交
900
				       next_lcla, flags);
901

902 903 904 905 906 907 908 909 910 911
		/*
		 * Cache maintenance is not needed if lcla is
		 * mapped in esram
		 */
		if (!use_esram_lcla) {
			dma_sync_single_range_for_device(chan->base->dev,
						pool->dma_addr, lcla_offset,
						2 * sizeof(struct d40_log_lli),
						DMA_TO_DEVICE);
		}
912 913
		curr_lcla = next_lcla;

R
Rabin Vincent 已提交
914
		if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
915 916 917 918 919
			lli_current++;
			break;
		}
	}

920
out:
921 922
	desc->lli_current = lli_current;
}
923

924 925
static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
{
926
	if (chan_is_physical(d40c)) {
927
		d40_phy_lli_load(d40c, d40d);
928
		d40d->lli_current = d40d->lli_len;
929 930
	} else
		d40_log_lli_to_lcxa(d40c, d40d);
931 932
}

933 934 935 936 937 938 939 940 941 942 943 944 945
static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
{
	struct d40_desc *d;

	if (list_empty(&d40c->active))
		return NULL;

	d = list_first_entry(&d40c->active,
			     struct d40_desc,
			     node);
	return d;
}

946
/* remove desc from current queue and add it to the pending_queue */
947 948
static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
{
949 950
	d40_desc_remove(desc);
	desc->is_in_client_list = false;
951 952 953 954 955 956 957 958 959 960 961 962 963 964
	list_add_tail(&desc->node, &d40c->pending_queue);
}

static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
{
	struct d40_desc *d;

	if (list_empty(&d40c->pending_queue))
		return NULL;

	d = list_first_entry(&d40c->pending_queue,
			     struct d40_desc,
			     node);
	return d;
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
}

static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
{
	struct d40_desc *d;

	if (list_empty(&d40c->queue))
		return NULL;

	d = list_first_entry(&d40c->queue,
			     struct d40_desc,
			     node);
	return d;
}

980 981 982 983 984 985 986 987
static struct d40_desc *d40_first_done(struct d40_chan *d40c)
{
	if (list_empty(&d40c->done))
		return NULL;

	return list_first_entry(&d40c->done, struct d40_desc, node);
}

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
static int d40_psize_2_burst_size(bool is_log, int psize)
{
	if (is_log) {
		if (psize == STEDMA40_PSIZE_LOG_1)
			return 1;
	} else {
		if (psize == STEDMA40_PSIZE_PHY_1)
			return 1;
	}

	return 2 << psize;
}

/*
 * The dma only supports transmitting packages up to
 * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
 * dma elements required to send the entire sg list
 */
static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
{
	int dmalen;
	u32 max_w = max(data_width1, data_width2);
	u32 min_w = min(data_width1, data_width2);
	u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);

	if (seg_max > STEDMA40_MAX_SEG_SIZE)
		seg_max -= (1 << max_w);

	if (!IS_ALIGNED(size, 1 << max_w))
		return -EINVAL;

	if (size <= seg_max)
		dmalen = 1;
	else {
		dmalen = size / seg_max;
		if (dmalen * seg_max < size)
			dmalen++;
	}
	return dmalen;
}

static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
			   u32 data_width1, u32 data_width2)
{
	struct scatterlist *sg;
	int i;
	int len = 0;
	int ret;

	for_each_sg(sgl, sg, sg_len, i) {
		ret = d40_size_2_dmalen(sg_dma_len(sg),
					data_width1, data_width2);
		if (ret < 0)
			return ret;
		len += ret;
	}
	return len;
}
1046

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090

#ifdef CONFIG_PM
static void dma40_backup(void __iomem *baseaddr, u32 *backup,
			 u32 *regaddr, int num, bool save)
{
	int i;

	for (i = 0; i < num; i++) {
		void __iomem *addr = baseaddr + regaddr[i];

		if (save)
			backup[i] = readl_relaxed(addr);
		else
			writel_relaxed(backup[i], addr);
	}
}

static void d40_save_restore_registers(struct d40_base *base, bool save)
{
	int i;

	/* Save/Restore channel specific registers */
	for (i = 0; i < base->num_phy_chans; i++) {
		void __iomem *addr;
		int idx;

		if (base->phy_res[i].reserved)
			continue;

		addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
		idx = i * ARRAY_SIZE(d40_backup_regs_chan);

		dma40_backup(addr, &base->reg_val_backup_chan[idx],
			     d40_backup_regs_chan,
			     ARRAY_SIZE(d40_backup_regs_chan),
			     save);
	}

	/* Save/Restore global registers */
	dma40_backup(base->virtbase, base->reg_val_backup,
		     d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
		     save);

	/* Save/Restore registers only existing on dma40 v3 and later */
1091 1092 1093 1094 1095
	if (base->gen_dmac.backup)
		dma40_backup(base->virtbase, base->reg_val_backup_v4,
			     base->gen_dmac.backup,
			base->gen_dmac.backup_size,
			save);
1096 1097 1098 1099 1100 1101
}
#else
static void d40_save_restore_registers(struct d40_base *base, bool save)
{
}
#endif
1102

1103 1104
static int __d40_execute_command_phy(struct d40_chan *d40c,
				     enum d40_command command)
1105
{
1106 1107
	u32 status;
	int i;
1108 1109 1110
	void __iomem *active_reg;
	int ret = 0;
	unsigned long flags;
1111
	u32 wmask;
1112

1113 1114 1115 1116 1117 1118
	if (command == D40_DMA_STOP) {
		ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
		if (ret)
			return ret;
	}

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	spin_lock_irqsave(&d40c->base->execmd_lock, flags);

	if (d40c->phy_chan->num % 2 == 0)
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
	else
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;

	if (command == D40_DMA_SUSPEND_REQ) {
		status = (readl(active_reg) &
			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
			D40_CHAN_POS(d40c->phy_chan->num);

		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
			goto done;
	}

1135 1136 1137
	wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
	writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
	       active_reg);
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158

	if (command == D40_DMA_SUSPEND_REQ) {

		for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
			status = (readl(active_reg) &
				  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
				D40_CHAN_POS(d40c->phy_chan->num);

			cpu_relax();
			/*
			 * Reduce the number of bus accesses while
			 * waiting for the DMA to suspend.
			 */
			udelay(3);

			if (status == D40_DMA_STOP ||
			    status == D40_DMA_SUSPENDED)
				break;
		}

		if (i == D40_SUSPEND_MAX_IT) {
1159 1160 1161
			chan_err(d40c,
				"unable to suspend the chl %d (log: %d) status %x\n",
				d40c->phy_chan->num, d40c->log_num,
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
				status);
			dump_stack();
			ret = -EBUSY;
		}

	}
done:
	spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
	return ret;
}

static void d40_term_all(struct d40_chan *d40c)
{
	struct d40_desc *d40d;
1176
	struct d40_desc *_d;
1177

1178 1179 1180 1181 1182 1183
	/* Release completed descriptors */
	while ((d40d = d40_first_done(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
	/* Release active descriptors */
	while ((d40d = d40_first_active_get(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}

	/* Release queued descriptors waiting for transfer */
	while ((d40d = d40_first_queued(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}

1196 1197 1198 1199 1200
	/* Release pending descriptors */
	while ((d40d = d40_first_pending(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}
1201

1202 1203 1204 1205 1206 1207 1208
	/* Release client owned descriptors */
	if (!list_empty(&d40c->client))
		list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
			d40_desc_remove(d40d);
			d40_desc_free(d40c, d40d);
		}

1209 1210 1211 1212 1213 1214 1215
	/* Release descriptors in prepare queue */
	if (!list_empty(&d40c->prepare_queue))
		list_for_each_entry_safe(d40d, _d,
					 &d40c->prepare_queue, node) {
			d40_desc_remove(d40d);
			d40_desc_free(d40c, d40d);
		}
1216

1217 1218 1219
	d40c->pending_tx = 0;
}

1220 1221 1222
static void __d40_config_set_event(struct d40_chan *d40c,
				   enum d40_events event_type, u32 event,
				   int reg)
1223
{
1224
	void __iomem *addr = chan_base(d40c) + reg;
1225
	int tries;
1226 1227 1228 1229 1230
	u32 status;

	switch (event_type) {

	case D40_DEACTIVATE_EVENTLINE:
1231 1232 1233

		writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
		       | ~D40_EVENTLINE_MASK(event), addr);
1234 1235 1236 1237 1238 1239 1240 1241 1242
		break;

	case D40_SUSPEND_REQ_EVENTLINE:
		status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
			  D40_EVENTLINE_POS(event);

		if (status == D40_DEACTIVATE_EVENTLINE ||
		    status == D40_SUSPEND_REQ_EVENTLINE)
			break;
1243

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
		writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
		       | ~D40_EVENTLINE_MASK(event), addr);

		for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {

			status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
				  D40_EVENTLINE_POS(event);

			cpu_relax();
			/*
			 * Reduce the number of bus accesses while
			 * waiting for the DMA to suspend.
			 */
			udelay(3);

			if (status == D40_DEACTIVATE_EVENTLINE)
				break;
		}

		if (tries == D40_SUSPEND_MAX_IT) {
			chan_err(d40c,
				"unable to stop the event_line chl %d (log: %d)"
				"status %x\n", d40c->phy_chan->num,
				 d40c->log_num, status);
		}
		break;

	case D40_ACTIVATE_EVENTLINE:
1272 1273 1274 1275 1276
	/*
	 * The hardware sometimes doesn't register the enable when src and dst
	 * event lines are active on the same logical channel.  Retry to ensure
	 * it does.  Usually only one retry is sufficient.
	 */
1277 1278 1279 1280 1281
		tries = 100;
		while (--tries) {
			writel((D40_ACTIVATE_EVENTLINE <<
				D40_EVENTLINE_POS(event)) |
				~D40_EVENTLINE_MASK(event), addr);
1282

1283 1284 1285
			if (readl(addr) & D40_EVENTLINE_MASK(event))
				break;
		}
1286

1287 1288 1289 1290 1291
		if (tries != 99)
			dev_dbg(chan2dev(d40c),
				"[%s] workaround enable S%cLNK (%d tries)\n",
				__func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
				100 - tries);
1292

1293 1294
		WARN_ON(!tries);
		break;
1295

1296 1297 1298
	case D40_ROUND_EVENTLINE:
		BUG();
		break;
1299

1300 1301
	}
}
1302

1303 1304 1305
static void d40_config_set_event(struct d40_chan *d40c,
				 enum d40_events event_type)
{
1306 1307
	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);

1308 1309
	/* Enable event line connected to device (or memcpy) */
	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
1310
	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
1311
		__d40_config_set_event(d40c, event_type, event,
1312
				       D40_CHAN_REG_SSLNK);
1313

1314
	if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM)
1315
		__d40_config_set_event(d40c, event_type, event,
1316
				       D40_CHAN_REG_SDLNK);
1317 1318
}

1319
static u32 d40_chan_has_events(struct d40_chan *d40c)
1320
{
1321
	void __iomem *chanbase = chan_base(d40c);
1322
	u32 val;
1323

1324 1325
	val = readl(chanbase + D40_CHAN_REG_SSLNK);
	val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1326

1327
	return val;
1328 1329
}

1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
static int
__d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
{
	unsigned long flags;
	int ret = 0;
	u32 active_status;
	void __iomem *active_reg;

	if (d40c->phy_chan->num % 2 == 0)
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
	else
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;


	spin_lock_irqsave(&d40c->phy_chan->lock, flags);

	switch (command) {
	case D40_DMA_STOP:
	case D40_DMA_SUSPEND_REQ:

		active_status = (readl(active_reg) &
				 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
				 D40_CHAN_POS(d40c->phy_chan->num);

		if (active_status == D40_DMA_RUN)
			d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
		else
			d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);

		if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
			ret = __d40_execute_command_phy(d40c, command);

		break;

	case D40_DMA_RUN:

		d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
		ret = __d40_execute_command_phy(d40c, command);
		break;

	case D40_DMA_SUSPENDED:
		BUG();
		break;
	}

	spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
	return ret;
}

static int d40_channel_execute_command(struct d40_chan *d40c,
				       enum d40_command command)
{
	if (chan_is_logical(d40c))
		return __d40_execute_command_log(d40c, command);
	else
		return __d40_execute_command_phy(d40c, command);
}

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
static u32 d40_get_prmo(struct d40_chan *d40c)
{
	static const unsigned int phy_map[] = {
		[STEDMA40_PCHAN_BASIC_MODE]
			= D40_DREG_PRMO_PCHAN_BASIC,
		[STEDMA40_PCHAN_MODULO_MODE]
			= D40_DREG_PRMO_PCHAN_MODULO,
		[STEDMA40_PCHAN_DOUBLE_DST_MODE]
			= D40_DREG_PRMO_PCHAN_DOUBLE_DST,
	};
	static const unsigned int log_map[] = {
		[STEDMA40_LCHAN_SRC_PHY_DST_LOG]
			= D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
		[STEDMA40_LCHAN_SRC_LOG_DST_PHY]
			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
		[STEDMA40_LCHAN_SRC_LOG_DST_LOG]
			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
	};

1407
	if (chan_is_physical(d40c))
1408 1409 1410 1411 1412
		return phy_map[d40c->dma_cfg.mode_opt];
	else
		return log_map[d40c->dma_cfg.mode_opt];
}

1413
static void d40_config_write(struct d40_chan *d40c)
1414 1415 1416 1417 1418 1419 1420
{
	u32 addr_base;
	u32 var;

	/* Odd addresses are even addresses + 4 */
	addr_base = (d40c->phy_chan->num % 2) * 4;
	/* Setup channel mode to logical or physical */
1421
	var = ((u32)(chan_is_logical(d40c)) + 1) <<
1422 1423 1424 1425
		D40_CHAN_POS(d40c->phy_chan->num);
	writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);

	/* Setup operational mode option register */
1426
	var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1427 1428 1429

	writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);

1430
	if (chan_is_logical(d40c)) {
1431 1432 1433 1434
		int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
			   & D40_SREG_ELEM_LOG_LIDX_MASK;
		void __iomem *chanbase = chan_base(d40c);

1435
		/* Set default config for CFG reg */
1436 1437
		writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
		writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1438

1439
		/* Set LIDX for lcla */
1440 1441
		writel(lidx, chanbase + D40_CHAN_REG_SSELT);
		writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1442 1443 1444 1445

		/* Clear LNK which will be used by d40_chan_has_events() */
		writel(0, chanbase + D40_CHAN_REG_SSLNK);
		writel(0, chanbase + D40_CHAN_REG_SDLNK);
1446 1447 1448
	}
}

1449 1450 1451 1452
static u32 d40_residue(struct d40_chan *d40c)
{
	u32 num_elt;

1453
	if (chan_is_logical(d40c))
1454 1455
		num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
			>> D40_MEM_LCSP2_ECNT_POS;
1456 1457 1458 1459 1460 1461
	else {
		u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
		num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
			  >> D40_SREG_ELEM_PHY_ECNT_POS;
	}

1462 1463 1464 1465 1466 1467 1468
	return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
}

static bool d40_tx_is_linked(struct d40_chan *d40c)
{
	bool is_link;

1469
	if (chan_is_logical(d40c))
1470 1471
		is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
	else
1472 1473 1474
		is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
			  & D40_SREG_LNK_PHYS_LNK_MASK;

1475 1476 1477
	return is_link;
}

1478
static int d40_pause(struct d40_chan *d40c)
1479 1480 1481 1482
{
	int res = 0;
	unsigned long flags;

1483 1484 1485
	if (!d40c->busy)
		return 0;

1486
	pm_runtime_get_sync(d40c->base->dev);
1487 1488 1489
	spin_lock_irqsave(&d40c->lock, flags);

	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1490

1491 1492
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
1493 1494 1495 1496
	spin_unlock_irqrestore(&d40c->lock, flags);
	return res;
}

1497
static int d40_resume(struct d40_chan *d40c)
1498 1499 1500 1501
{
	int res = 0;
	unsigned long flags;

1502 1503 1504
	if (!d40c->busy)
		return 0;

1505
	spin_lock_irqsave(&d40c->lock, flags);
1506
	pm_runtime_get_sync(d40c->base->dev);
1507 1508

	/* If bytes left to transfer or linked tx resume job */
1509
	if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1510 1511
		res = d40_channel_execute_command(d40c, D40_DMA_RUN);

1512 1513
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
1514 1515 1516 1517
	spin_unlock_irqrestore(&d40c->lock, flags);
	return res;
}

1518 1519 1520 1521 1522 1523 1524
static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
{
	struct d40_chan *d40c = container_of(tx->chan,
					     struct d40_chan,
					     chan);
	struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
	unsigned long flags;
1525
	dma_cookie_t cookie;
1526 1527

	spin_lock_irqsave(&d40c->lock, flags);
1528
	cookie = dma_cookie_assign(tx);
1529 1530 1531
	d40_desc_queue(d40c, d40d);
	spin_unlock_irqrestore(&d40c->lock, flags);

1532
	return cookie;
1533 1534 1535 1536
}

static int d40_start(struct d40_chan *d40c)
{
1537
	return d40_channel_execute_command(d40c, D40_DMA_RUN);
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
}

static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
{
	struct d40_desc *d40d;
	int err;

	/* Start queued jobs, if any */
	d40d = d40_first_queued(d40c);

	if (d40d != NULL) {
1549
		if (!d40c->busy) {
1550
			d40c->busy = true;
1551 1552
			pm_runtime_get_sync(d40c->base->dev);
		}
1553 1554 1555 1556 1557 1558 1559

		/* Remove from queue */
		d40_desc_remove(d40d);

		/* Add to active queue */
		d40_desc_submit(d40c, d40d);

1560 1561
		/* Initiate DMA job */
		d40_desc_load(d40c, d40d);
1562

1563 1564
		/* Start dma job */
		err = d40_start(d40c);
1565

1566 1567
		if (err)
			return NULL;
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
	}

	return d40d;
}

/* called from interrupt context */
static void dma_tc_handle(struct d40_chan *d40c)
{
	struct d40_desc *d40d;

	/* Get first active entry from list */
	d40d = d40_first_active_get(d40c);

	if (d40d == NULL)
		return;

R
Rabin Vincent 已提交
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
	if (d40d->cyclic) {
		/*
		 * If this was a paritially loaded list, we need to reloaded
		 * it, and only when the list is completed.  We need to check
		 * for done because the interrupt will hit for every link, and
		 * not just the last one.
		 */
		if (d40d->lli_current < d40d->lli_len
		    && !d40_tx_is_linked(d40c)
		    && !d40_residue(d40c)) {
			d40_lcla_free_all(d40c, d40d);
			d40_desc_load(d40c, d40d);
			(void) d40_start(d40c);
1597

R
Rabin Vincent 已提交
1598 1599 1600 1601 1602
			if (d40d->lli_current == d40d->lli_len)
				d40d->lli_current = 0;
		}
	} else {
		d40_lcla_free_all(d40c, d40d);
1603

R
Rabin Vincent 已提交
1604 1605 1606 1607 1608 1609 1610 1611 1612
		if (d40d->lli_current < d40d->lli_len) {
			d40_desc_load(d40c, d40d);
			/* Start dma job */
			(void) d40_start(d40c);
			return;
		}

		if (d40_queue_start(d40c) == NULL)
			d40c->busy = false;
1613 1614
		pm_runtime_mark_last_busy(d40c->base->dev);
		pm_runtime_put_autosuspend(d40c->base->dev);
1615

1616 1617 1618
		d40_desc_remove(d40d);
		d40_desc_done(d40c, d40d);
	}
1619

1620 1621 1622 1623 1624 1625 1626 1627
	d40c->pending_tx++;
	tasklet_schedule(&d40c->tasklet);

}

static void dma_tasklet(unsigned long data)
{
	struct d40_chan *d40c = (struct d40_chan *) data;
1628
	struct d40_desc *d40d;
1629 1630 1631 1632 1633 1634
	unsigned long flags;
	dma_async_tx_callback callback;
	void *callback_param;

	spin_lock_irqsave(&d40c->lock, flags);

1635 1636 1637 1638 1639 1640 1641 1642
	/* Get first entry from the done list */
	d40d = d40_first_done(d40c);
	if (d40d == NULL) {
		/* Check if we have reached here for cyclic job */
		d40d = d40_first_active_get(d40c);
		if (d40d == NULL || !d40d->cyclic)
			goto err;
	}
1643

R
Rabin Vincent 已提交
1644
	if (!d40d->cyclic)
1645
		dma_cookie_complete(&d40d->txd);
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656

	/*
	 * If terminating a channel pending_tx is set to zero.
	 * This prevents any finished active jobs to return to the client.
	 */
	if (d40c->pending_tx == 0) {
		spin_unlock_irqrestore(&d40c->lock, flags);
		return;
	}

	/* Callback to client */
1657 1658 1659
	callback = d40d->txd.callback;
	callback_param = d40d->txd.callback_param;

R
Rabin Vincent 已提交
1660 1661
	if (!d40d->cyclic) {
		if (async_tx_test_ack(&d40d->txd)) {
1662
			d40_desc_remove(d40d);
R
Rabin Vincent 已提交
1663
			d40_desc_free(d40c, d40d);
1664 1665 1666 1667 1668
		} else if (!d40d->is_in_client_list) {
			d40_desc_remove(d40d);
			d40_lcla_free_all(d40c, d40d);
			list_add_tail(&d40d->node, &d40c->client);
			d40d->is_in_client_list = true;
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
		}
	}

	d40c->pending_tx--;

	if (d40c->pending_tx)
		tasklet_schedule(&d40c->tasklet);

	spin_unlock_irqrestore(&d40c->lock, flags);

1679
	if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1680 1681 1682 1683
		callback(callback_param);

	return;

1684 1685
err:
	/* Rescue manouver if receiving double interrupts */
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
	if (d40c->pending_tx > 0)
		d40c->pending_tx--;
	spin_unlock_irqrestore(&d40c->lock, flags);
}

static irqreturn_t d40_handle_interrupt(int irq, void *data)
{
	int i;
	u32 idx;
	u32 row;
	long chan = -1;
	struct d40_chan *d40c;
	unsigned long flags;
	struct d40_base *base = data;
1700 1701 1702
	u32 regs[base->gen_dmac.il_size];
	struct d40_interrupt_lookup *il = base->gen_dmac.il;
	u32 il_size = base->gen_dmac.il_size;
1703 1704 1705 1706

	spin_lock_irqsave(&base->interrupt_lock, flags);

	/* Read interrupt status of both logical and physical channels */
1707
	for (i = 0; i < il_size; i++)
1708 1709 1710 1711 1712
		regs[i] = readl(base->virtbase + il[i].src);

	for (;;) {

		chan = find_next_bit((unsigned long *)regs,
1713
				     BITS_PER_LONG * il_size, chan + 1);
1714 1715

		/* No more set bits found? */
1716
		if (chan == BITS_PER_LONG * il_size)
1717 1718 1719 1720 1721 1722 1723 1724 1725
			break;

		row = chan / BITS_PER_LONG;
		idx = chan & (BITS_PER_LONG - 1);

		if (il[row].offset == D40_PHY_CHAN)
			d40c = base->lookup_phy_chans[idx];
		else
			d40c = base->lookup_log_chans[il[row].offset + idx];
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737

		if (!d40c) {
			/*
			 * No error because this can happen if something else
			 * in the system is using the channel.
			 */
			continue;
		}

		/* ACK interrupt */
		writel(1 << idx, base->virtbase + il[row].clr);

1738 1739 1740 1741 1742
		spin_lock(&d40c->lock);

		if (!il[row].is_error)
			dma_tc_handle(d40c);
		else
1743 1744
			d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
				chan, il[row].offset, idx);
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757

		spin_unlock(&d40c->lock);
	}

	spin_unlock_irqrestore(&base->interrupt_lock, flags);

	return IRQ_HANDLED;
}

static int d40_validate_conf(struct d40_chan *d40c,
			     struct stedma40_chan_cfg *conf)
{
	int res = 0;
1758
	bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1759

1760
	if (!conf->dir) {
1761
		chan_err(d40c, "Invalid direction.\n");
1762 1763 1764
		res = -EINVAL;
	}

1765 1766 1767 1768
	if ((is_log && conf->dev_type > d40c->base->num_log_chans)  ||
	    (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
	    (conf->dev_type < 0)) {
		chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
1769 1770 1771 1772
		res = -EINVAL;
	}

	if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1773 1774 1775 1776
	    d40c->base->plat_data->dev_tx[conf->dev_type] == 0 &&
	    d40c->runtime_addr == 0) {
		chan_err(d40c, "Invalid TX channel address (%d)\n",
			 conf->dev_type);
1777 1778 1779
		res = -EINVAL;
	}

1780
	if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1781 1782 1783 1784
	    d40c->base->plat_data->dev_rx[conf->dev_type] == 0 &&
	    d40c->runtime_addr == 0) {
		chan_err(d40c, "Invalid RX channel address (%d)\n",
			 conf->dev_type);
1785 1786 1787 1788 1789 1790 1791 1792
		res = -EINVAL;
	}

	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
		/*
		 * DMAC HW supports it. Will be added to this driver,
		 * in case any dma client requires it.
		 */
1793
		chan_err(d40c, "periph to periph not supported\n");
1794 1795 1796
		res = -EINVAL;
	}

1797 1798 1799 1800 1801 1802 1803 1804 1805
	if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
	    (1 << conf->src_info.data_width) !=
	    d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
	    (1 << conf->dst_info.data_width)) {
		/*
		 * The DMAC hardware only supports
		 * src (burst x width) == dst (burst x width)
		 */

1806
		chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1807 1808 1809
		res = -EINVAL;
	}

1810 1811 1812
	return res;
}

1813 1814 1815
static bool d40_alloc_mask_set(struct d40_phy_res *phy,
			       bool is_src, int log_event_line, bool is_log,
			       bool *first_user)
1816 1817 1818
{
	unsigned long flags;
	spin_lock_irqsave(&phy->lock, flags);
1819 1820 1821 1822

	*first_user = ((phy->allocated_src | phy->allocated_dst)
			== D40_ALLOC_FREE);

1823
	if (!is_log) {
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
		/* Physical interrupts are masked per physical full channel */
		if (phy->allocated_src == D40_ALLOC_FREE &&
		    phy->allocated_dst == D40_ALLOC_FREE) {
			phy->allocated_dst = D40_ALLOC_PHY;
			phy->allocated_src = D40_ALLOC_PHY;
			goto found;
		} else
			goto not_found;
	}

	/* Logical channel */
	if (is_src) {
		if (phy->allocated_src == D40_ALLOC_PHY)
			goto not_found;

		if (phy->allocated_src == D40_ALLOC_FREE)
			phy->allocated_src = D40_ALLOC_LOG_FREE;

		if (!(phy->allocated_src & (1 << log_event_line))) {
			phy->allocated_src |= 1 << log_event_line;
			goto found;
		} else
			goto not_found;
	} else {
		if (phy->allocated_dst == D40_ALLOC_PHY)
			goto not_found;

		if (phy->allocated_dst == D40_ALLOC_FREE)
			phy->allocated_dst = D40_ALLOC_LOG_FREE;

		if (!(phy->allocated_dst & (1 << log_event_line))) {
			phy->allocated_dst |= 1 << log_event_line;
			goto found;
		} else
			goto not_found;
	}

not_found:
	spin_unlock_irqrestore(&phy->lock, flags);
	return false;
found:
	spin_unlock_irqrestore(&phy->lock, flags);
	return true;
}

static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
			       int log_event_line)
{
	unsigned long flags;
	bool is_free = false;

	spin_lock_irqsave(&phy->lock, flags);
	if (!log_event_line) {
		phy->allocated_dst = D40_ALLOC_FREE;
		phy->allocated_src = D40_ALLOC_FREE;
		is_free = true;
		goto out;
	}

	/* Logical channel */
	if (is_src) {
		phy->allocated_src &= ~(1 << log_event_line);
		if (phy->allocated_src == D40_ALLOC_LOG_FREE)
			phy->allocated_src = D40_ALLOC_FREE;
	} else {
		phy->allocated_dst &= ~(1 << log_event_line);
		if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
			phy->allocated_dst = D40_ALLOC_FREE;
	}

	is_free = ((phy->allocated_src | phy->allocated_dst) ==
		   D40_ALLOC_FREE);

out:
	spin_unlock_irqrestore(&phy->lock, flags);

	return is_free;
}

1903
static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1904
{
1905
	int dev_type = d40c->dma_cfg.dev_type;
1906 1907 1908 1909 1910 1911
	int event_group;
	int event_line;
	struct d40_phy_res *phys;
	int i;
	int j;
	int log_num;
1912
	int num_phy_chans;
1913
	bool is_src;
1914
	bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1915 1916

	phys = d40c->base->phy_res;
1917
	num_phy_chans = d40c->base->num_phy_chans;
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935

	if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
		log_num = 2 * dev_type;
		is_src = true;
	} else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
		   d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
		/* dst event lines are used for logical memcpy */
		log_num = 2 * dev_type + 1;
		is_src = false;
	} else
		return -EINVAL;

	event_group = D40_TYPE_TO_GROUP(dev_type);
	event_line = D40_TYPE_TO_EVENT(dev_type);

	if (!is_log) {
		if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
			/* Find physical half channel */
1936 1937
			if (d40c->dma_cfg.use_fixed_channel) {
				i = d40c->dma_cfg.phy_channel;
1938
				if (d40_alloc_mask_set(&phys[i], is_src,
1939 1940
						       0, is_log,
						       first_phy_user))
1941
					goto found_phy;
1942 1943 1944 1945 1946 1947 1948
			} else {
				for (i = 0; i < num_phy_chans; i++) {
					if (d40_alloc_mask_set(&phys[i], is_src,
						       0, is_log,
						       first_phy_user))
						goto found_phy;
				}
1949 1950 1951 1952 1953
			}
		} else
			for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
				int phy_num = j  + event_group * 2;
				for (i = phy_num; i < phy_num + 2; i++) {
1954 1955 1956
					if (d40_alloc_mask_set(&phys[i],
							       is_src,
							       0,
1957 1958
							       is_log,
							       first_phy_user))
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
						goto found_phy;
				}
			}
		return -EINVAL;
found_phy:
		d40c->phy_chan = &phys[i];
		d40c->log_num = D40_PHY_CHAN;
		goto out;
	}
	if (dev_type == -1)
		return -EINVAL;

	/* Find logical channel */
	for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
		int phy_num = j + event_group * 2;
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992

		if (d40c->dma_cfg.use_fixed_channel) {
			i = d40c->dma_cfg.phy_channel;

			if ((i != phy_num) && (i != phy_num + 1)) {
				dev_err(chan2dev(d40c),
					"invalid fixed phy channel %d\n", i);
				return -EINVAL;
			}

			if (d40_alloc_mask_set(&phys[i], is_src, event_line,
					       is_log, first_phy_user))
				goto found_log;

			dev_err(chan2dev(d40c),
				"could not allocate fixed phy channel %d\n", i);
			return -EINVAL;
		}

1993 1994 1995 1996 1997 1998 1999 2000
		/*
		 * Spread logical channels across all available physical rather
		 * than pack every logical channel at the first available phy
		 * channels.
		 */
		if (is_src) {
			for (i = phy_num; i < phy_num + 2; i++) {
				if (d40_alloc_mask_set(&phys[i], is_src,
2001 2002
						       event_line, is_log,
						       first_phy_user))
2003 2004 2005 2006 2007
					goto found_log;
			}
		} else {
			for (i = phy_num + 1; i >= phy_num; i--) {
				if (d40_alloc_mask_set(&phys[i], is_src,
2008 2009
						       event_line, is_log,
						       first_phy_user))
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
					goto found_log;
			}
		}
	}
	return -EINVAL;

found_log:
	d40c->phy_chan = &phys[i];
	d40c->log_num = log_num;
out:

	if (is_log)
		d40c->base->lookup_log_chans[d40c->log_num] = d40c;
	else
		d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;

	return 0;

}

static int d40_config_memcpy(struct d40_chan *d40c)
{
	dma_cap_mask_t cap = d40c->chan.device->cap_mask;

	if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
2035
		d40c->dma_cfg = dma40_memcpy_conf_log;
2036
		d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
2037 2038 2039

	} else if (dma_has_cap(DMA_MEMCPY, cap) &&
		   dma_has_cap(DMA_SLAVE, cap)) {
2040
		d40c->dma_cfg = dma40_memcpy_conf_phy;
2041
	} else {
2042
		chan_err(d40c, "No memcpy\n");
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
		return -EINVAL;
	}

	return 0;
}

static int d40_free_dma(struct d40_chan *d40c)
{

	int res = 0;
2053
	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2054 2055 2056 2057 2058 2059 2060
	struct d40_phy_res *phy = d40c->phy_chan;
	bool is_src;

	/* Terminate all queued and active transfers */
	d40_term_all(d40c);

	if (phy == NULL) {
2061
		chan_err(d40c, "phy == null\n");
2062 2063 2064 2065 2066
		return -EINVAL;
	}

	if (phy->allocated_src == D40_ALLOC_FREE &&
	    phy->allocated_dst == D40_ALLOC_FREE) {
2067
		chan_err(d40c, "channel already free\n");
2068 2069 2070 2071
		return -EINVAL;
	}

	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
2072
	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM)
2073
		is_src = false;
2074
	else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
2075
		is_src = true;
2076
	else {
2077
		chan_err(d40c, "Unknown direction\n");
2078 2079 2080
		return -EINVAL;
	}

2081
	pm_runtime_get_sync(d40c->base->dev);
2082
	res = d40_channel_execute_command(d40c, D40_DMA_STOP);
2083
	if (res) {
2084
		chan_err(d40c, "stop failed\n");
2085
		goto out;
2086 2087
	}

2088
	d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
2089

2090
	if (chan_is_logical(d40c))
2091
		d40c->base->lookup_log_chans[d40c->log_num] = NULL;
2092 2093
	else
		d40c->base->lookup_phy_chans[phy->num] = NULL;
2094 2095 2096 2097 2098 2099 2100

	if (d40c->busy) {
		pm_runtime_mark_last_busy(d40c->base->dev);
		pm_runtime_put_autosuspend(d40c->base->dev);
	}

	d40c->busy = false;
2101
	d40c->phy_chan = NULL;
2102
	d40c->configured = false;
2103
out:
2104

2105 2106 2107
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
	return res;
2108 2109
}

2110 2111
static bool d40_is_paused(struct d40_chan *d40c)
{
2112
	void __iomem *chanbase = chan_base(d40c);
2113 2114 2115 2116
	bool is_paused = false;
	unsigned long flags;
	void __iomem *active_reg;
	u32 status;
2117
	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2118 2119 2120

	spin_lock_irqsave(&d40c->lock, flags);

2121
	if (chan_is_physical(d40c)) {
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
		if (d40c->phy_chan->num % 2 == 0)
			active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
		else
			active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;

		status = (readl(active_reg) &
			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
			D40_CHAN_POS(d40c->phy_chan->num);
		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
			is_paused = true;

		goto _exit;
	}

	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
2137
	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
2138
		status = readl(chanbase + D40_CHAN_REG_SDLNK);
2139
	} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
2140
		status = readl(chanbase + D40_CHAN_REG_SSLNK);
2141
	} else {
2142
		chan_err(d40c, "Unknown direction\n");
2143 2144
		goto _exit;
	}
2145

2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
	status = (status & D40_EVENTLINE_MASK(event)) >>
		D40_EVENTLINE_POS(event);

	if (status != D40_DMA_RUN)
		is_paused = true;
_exit:
	spin_unlock_irqrestore(&d40c->lock, flags);
	return is_paused;

}

2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
static u32 stedma40_residue(struct dma_chan *chan)
{
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	u32 bytes_left;
	unsigned long flags;

	spin_lock_irqsave(&d40c->lock, flags);
	bytes_left = d40_residue(d40c);
	spin_unlock_irqrestore(&d40c->lock, flags);

	return bytes_left;
}

2171 2172 2173
static int
d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
		struct scatterlist *sg_src, struct scatterlist *sg_dst,
R
Rabin Vincent 已提交
2174 2175
		unsigned int sg_len, dma_addr_t src_dev_addr,
		dma_addr_t dst_dev_addr)
2176 2177 2178 2179
{
	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
	struct stedma40_half_channel_info *src_info = &cfg->src_info;
	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2180
	int ret;
2181

2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
	ret = d40_log_sg_to_lli(sg_src, sg_len,
				src_dev_addr,
				desc->lli_log.src,
				chan->log_def.lcsp1,
				src_info->data_width,
				dst_info->data_width);

	ret = d40_log_sg_to_lli(sg_dst, sg_len,
				dst_dev_addr,
				desc->lli_log.dst,
				chan->log_def.lcsp3,
				dst_info->data_width,
				src_info->data_width);

	return ret < 0 ? ret : 0;
2197 2198 2199 2200 2201
}

static int
d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
		struct scatterlist *sg_src, struct scatterlist *sg_dst,
R
Rabin Vincent 已提交
2202 2203
		unsigned int sg_len, dma_addr_t src_dev_addr,
		dma_addr_t dst_dev_addr)
2204 2205 2206 2207
{
	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
	struct stedma40_half_channel_info *src_info = &cfg->src_info;
	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
R
Rabin Vincent 已提交
2208
	unsigned long flags = 0;
2209 2210
	int ret;

R
Rabin Vincent 已提交
2211 2212 2213
	if (desc->cyclic)
		flags |= LLI_CYCLIC | LLI_TERM_INT;

2214 2215 2216 2217
	ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
				desc->lli_phy.src,
				virt_to_phys(desc->lli_phy.src),
				chan->src_def_cfg,
R
Rabin Vincent 已提交
2218
				src_info, dst_info, flags);
2219 2220 2221 2222 2223

	ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
				desc->lli_phy.dst,
				virt_to_phys(desc->lli_phy.dst),
				chan->dst_def_cfg,
R
Rabin Vincent 已提交
2224
				dst_info, src_info, flags);
2225 2226 2227 2228 2229 2230 2231

	dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
				   desc->lli_pool.size, DMA_TO_DEVICE);

	return ret < 0 ? ret : 0;
}

2232 2233 2234 2235 2236 2237
static struct d40_desc *
d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
	      unsigned int sg_len, unsigned long dma_flags)
{
	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
	struct d40_desc *desc;
2238
	int ret;
2239 2240 2241 2242 2243 2244 2245 2246 2247

	desc = d40_desc_get(chan);
	if (!desc)
		return NULL;

	desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
					cfg->dst_info.data_width);
	if (desc->lli_len < 0) {
		chan_err(chan, "Unaligned size\n");
2248 2249
		goto err;
	}
2250

2251 2252 2253 2254
	ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
	if (ret < 0) {
		chan_err(chan, "Could not allocate lli\n");
		goto err;
2255 2256 2257 2258 2259 2260 2261 2262 2263
	}

	desc->lli_current = 0;
	desc->txd.flags = dma_flags;
	desc->txd.tx_submit = d40_tx_submit;

	dma_async_tx_descriptor_init(&desc->txd, &chan->chan);

	return desc;
2264 2265 2266 2267

err:
	d40_desc_free(chan, desc);
	return NULL;
2268 2269
}

2270
static dma_addr_t
2271
d40_get_dev_addr(struct d40_chan *chan, enum dma_transfer_direction direction)
2272
{
2273 2274
	struct stedma40_platform_data *plat = chan->base->plat_data;
	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2275
	dma_addr_t addr = 0;
2276 2277 2278 2279

	if (chan->runtime_addr)
		return chan->runtime_addr;

2280
	if (direction == DMA_DEV_TO_MEM)
2281
		addr = plat->dev_rx[cfg->dev_type];
2282
	else if (direction == DMA_MEM_TO_DEV)
2283
		addr = plat->dev_tx[cfg->dev_type];
2284 2285 2286 2287 2288 2289 2290

	return addr;
}

static struct dma_async_tx_descriptor *
d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
	    struct scatterlist *sg_dst, unsigned int sg_len,
2291
	    enum dma_transfer_direction direction, unsigned long dma_flags)
2292 2293
{
	struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
R
Rabin Vincent 已提交
2294 2295
	dma_addr_t src_dev_addr = 0;
	dma_addr_t dst_dev_addr = 0;
2296
	struct d40_desc *desc;
2297
	unsigned long flags;
2298
	int ret;
2299

2300 2301 2302
	if (!chan->phy_chan) {
		chan_err(chan, "Cannot prepare unallocated channel\n");
		return NULL;
2303 2304
	}

2305
	spin_lock_irqsave(&chan->lock, flags);
2306

2307 2308
	desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
	if (desc == NULL)
2309 2310
		goto err;

R
Rabin Vincent 已提交
2311 2312 2313
	if (sg_next(&sg_src[sg_len - 1]) == sg_src)
		desc->cyclic = true;

2314
	if (direction != DMA_TRANS_NONE) {
R
Rabin Vincent 已提交
2315 2316
		dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);

2317
		if (direction == DMA_DEV_TO_MEM)
R
Rabin Vincent 已提交
2318
			src_dev_addr = dev_addr;
2319
		else if (direction == DMA_MEM_TO_DEV)
R
Rabin Vincent 已提交
2320 2321
			dst_dev_addr = dev_addr;
	}
2322 2323 2324

	if (chan_is_logical(chan))
		ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
R
Rabin Vincent 已提交
2325
				      sg_len, src_dev_addr, dst_dev_addr);
2326 2327
	else
		ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
R
Rabin Vincent 已提交
2328
				      sg_len, src_dev_addr, dst_dev_addr);
2329 2330 2331 2332 2333

	if (ret) {
		chan_err(chan, "Failed to prepare %s sg job: %d\n",
			 chan_is_logical(chan) ? "log" : "phy", ret);
		goto err;
2334 2335
	}

2336 2337 2338 2339 2340 2341
	/*
	 * add descriptor to the prepare queue in order to be able
	 * to free them later in terminate_all
	 */
	list_add_tail(&desc->node, &chan->prepare_queue);

2342 2343 2344
	spin_unlock_irqrestore(&chan->lock, flags);

	return &desc->txd;
2345 2346

err:
2347 2348 2349
	if (desc)
		d40_desc_free(chan, desc);
	spin_unlock_irqrestore(&chan->lock, flags);
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
	return NULL;
}

bool stedma40_filter(struct dma_chan *chan, void *data)
{
	struct stedma40_chan_cfg *info = data;
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	int err;

	if (data) {
		err = d40_validate_conf(d40c, info);
		if (!err)
			d40c->dma_cfg = *info;
	} else
		err = d40_config_memcpy(d40c);

2367 2368 2369
	if (!err)
		d40c->configured = true;

2370 2371 2372 2373
	return err == 0;
}
EXPORT_SYMBOL(stedma40_filter);

2374 2375 2376 2377
static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
{
	bool realtime = d40c->dma_cfg.realtime;
	bool highprio = d40c->dma_cfg.high_priority;
2378
	u32 rtreg;
2379 2380 2381
	u32 event = D40_TYPE_TO_EVENT(dev_type);
	u32 group = D40_TYPE_TO_GROUP(dev_type);
	u32 bit = 1 << event;
2382
	u32 prioreg;
2383
	struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
2384

2385
	rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
	/*
	 * Due to a hardware bug, in some cases a logical channel triggered by
	 * a high priority destination event line can generate extra packet
	 * transactions.
	 *
	 * The workaround is to not set the high priority level for the
	 * destination event lines that trigger logical channels.
	 */
	if (!src && chan_is_logical(d40c))
		highprio = false;

2397
	prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413

	/* Destination event lines are stored in the upper halfword */
	if (!src)
		bit <<= 16;

	writel(bit, d40c->base->virtbase + prioreg + group * 4);
	writel(bit, d40c->base->virtbase + rtreg + group * 4);
}

static void d40_set_prio_realtime(struct d40_chan *d40c)
{
	if (d40c->base->rev < 3)
		return;

	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
2414
		__d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
2415 2416 2417

	if ((d40c->dma_cfg.dir ==  STEDMA40_MEM_TO_PERIPH) ||
	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
2418
		__d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
2419 2420
}

2421 2422 2423 2424 2425 2426 2427
/* DMA ENGINE functions */
static int d40_alloc_chan_resources(struct dma_chan *chan)
{
	int err;
	unsigned long flags;
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
2428
	bool is_free_phy;
2429 2430
	spin_lock_irqsave(&d40c->lock, flags);

2431
	dma_cookie_init(chan);
2432

2433 2434
	/* If no dma configuration is set use default configuration (memcpy) */
	if (!d40c->configured) {
2435
		err = d40_config_memcpy(d40c);
2436
		if (err) {
2437
			chan_err(d40c, "Failed to configure memcpy channel\n");
2438 2439
			goto fail;
		}
2440 2441
	}

2442
	err = d40_allocate_channel(d40c, &is_free_phy);
2443
	if (err) {
2444
		chan_err(d40c, "Failed to allocate channel\n");
2445
		d40c->configured = false;
2446
		goto fail;
2447 2448
	}

2449
	pm_runtime_get_sync(d40c->base->dev);
2450 2451
	/* Fill in basic CFG register values */
	d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
2452
		    &d40c->dst_def_cfg, chan_is_logical(d40c));
2453

2454 2455
	d40_set_prio_realtime(d40c);

2456
	if (chan_is_logical(d40c)) {
2457 2458 2459 2460 2461
		d40_log_cfg(&d40c->dma_cfg,
			    &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);

		if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
			d40c->lcpa = d40c->base->lcpa_base +
2462
				d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
2463 2464
		else
			d40c->lcpa = d40c->base->lcpa_base +
2465
				d40c->dma_cfg.dev_type *
2466
				D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2467 2468
	}

2469 2470 2471 2472 2473 2474
	dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
		 chan_is_logical(d40c) ? "logical" : "physical",
		 d40c->phy_chan->num,
		 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");


2475 2476 2477 2478 2479
	/*
	 * Only write channel configuration to the DMA if the physical
	 * resource is free. In case of multiple logical channels
	 * on the same physical resource, only the first write is necessary.
	 */
2480 2481
	if (is_free_phy)
		d40_config_write(d40c);
2482
fail:
2483 2484
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
2485
	spin_unlock_irqrestore(&d40c->lock, flags);
2486
	return err;
2487 2488 2489 2490 2491 2492 2493 2494 2495
}

static void d40_free_chan_resources(struct dma_chan *chan)
{
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	int err;
	unsigned long flags;

2496
	if (d40c->phy_chan == NULL) {
2497
		chan_err(d40c, "Cannot free unallocated channel\n");
2498 2499 2500
		return;
	}

2501 2502 2503 2504 2505
	spin_lock_irqsave(&d40c->lock, flags);

	err = d40_free_dma(d40c);

	if (err)
2506
		chan_err(d40c, "Failed to free channel\n");
2507 2508 2509 2510 2511 2512 2513
	spin_unlock_irqrestore(&d40c->lock, flags);
}

static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
						       dma_addr_t dst,
						       dma_addr_t src,
						       size_t size,
2514
						       unsigned long dma_flags)
2515
{
2516 2517
	struct scatterlist dst_sg;
	struct scatterlist src_sg;
2518

2519 2520
	sg_init_table(&dst_sg, 1);
	sg_init_table(&src_sg, 1);
2521

2522 2523
	sg_dma_address(&dst_sg) = dst;
	sg_dma_address(&src_sg) = src;
2524

2525 2526
	sg_dma_len(&dst_sg) = size;
	sg_dma_len(&src_sg) = size;
2527

2528
	return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
2529 2530
}

2531
static struct dma_async_tx_descriptor *
2532 2533 2534 2535
d40_prep_memcpy_sg(struct dma_chan *chan,
		   struct scatterlist *dst_sg, unsigned int dst_nents,
		   struct scatterlist *src_sg, unsigned int src_nents,
		   unsigned long dma_flags)
2536 2537 2538 2539
{
	if (dst_nents != src_nents)
		return NULL;

2540
	return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
2541 2542
}

2543 2544 2545 2546
static struct dma_async_tx_descriptor *
d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
		  unsigned int sg_len, enum dma_transfer_direction direction,
		  unsigned long dma_flags, void *context)
2547
{
2548
	if (!is_slave_direction(direction))
2549 2550
		return NULL;

2551
	return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2552 2553
}

R
Rabin Vincent 已提交
2554 2555 2556
static struct dma_async_tx_descriptor *
dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
		     size_t buf_len, size_t period_len,
2557 2558
		     enum dma_transfer_direction direction, unsigned long flags,
		     void *context)
R
Rabin Vincent 已提交
2559 2560 2561 2562 2563 2564
{
	unsigned int periods = buf_len / period_len;
	struct dma_async_tx_descriptor *txd;
	struct scatterlist *sg;
	int i;

2565
	sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
R
Rabin Vincent 已提交
2566 2567 2568 2569 2570 2571 2572
	for (i = 0; i < periods; i++) {
		sg_dma_address(&sg[i]) = dma_addr;
		sg_dma_len(&sg[i]) = period_len;
		dma_addr += period_len;
	}

	sg[periods].offset = 0;
2573
	sg_dma_len(&sg[periods]) = 0;
R
Rabin Vincent 已提交
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
	sg[periods].page_link =
		((unsigned long)sg | 0x01) & ~0x02;

	txd = d40_prep_sg(chan, sg, sg, periods, direction,
			  DMA_PREP_INTERRUPT);

	kfree(sg);

	return txd;
}

2585 2586 2587 2588 2589
static enum dma_status d40_tx_status(struct dma_chan *chan,
				     dma_cookie_t cookie,
				     struct dma_tx_state *txstate)
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2590
	enum dma_status ret;
2591

2592
	if (d40c->phy_chan == NULL) {
2593
		chan_err(d40c, "Cannot read status of unallocated channel\n");
2594 2595 2596
		return -EINVAL;
	}

2597 2598 2599
	ret = dma_cookie_status(chan, cookie, txstate);
	if (ret != DMA_SUCCESS)
		dma_set_residue(txstate, stedma40_residue(chan));
2600

2601 2602
	if (d40_is_paused(d40c))
		ret = DMA_PAUSED;
2603 2604 2605 2606 2607 2608 2609 2610 2611

	return ret;
}

static void d40_issue_pending(struct dma_chan *chan)
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	unsigned long flags;

2612
	if (d40c->phy_chan == NULL) {
2613
		chan_err(d40c, "Channel is not allocated!\n");
2614 2615 2616
		return;
	}

2617 2618
	spin_lock_irqsave(&d40c->lock, flags);

2619 2620 2621
	list_splice_tail_init(&d40c->pending_queue, &d40c->queue);

	/* Busy means that queued jobs are already being processed */
2622 2623 2624 2625 2626 2627
	if (!d40c->busy)
		(void) d40_queue_start(d40c);

	spin_unlock_irqrestore(&d40c->lock, flags);
}

2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
static void d40_terminate_all(struct dma_chan *chan)
{
	unsigned long flags;
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	int ret;

	spin_lock_irqsave(&d40c->lock, flags);

	pm_runtime_get_sync(d40c->base->dev);
	ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
	if (ret)
		chan_err(d40c, "Failed to stop channel\n");

	d40_term_all(d40c);
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
	if (d40c->busy) {
		pm_runtime_mark_last_busy(d40c->base->dev);
		pm_runtime_put_autosuspend(d40c->base->dev);
	}
	d40c->busy = false;

	spin_unlock_irqrestore(&d40c->lock, flags);
}

2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
static int
dma40_config_to_halfchannel(struct d40_chan *d40c,
			    struct stedma40_half_channel_info *info,
			    enum dma_slave_buswidth width,
			    u32 maxburst)
{
	enum stedma40_periph_data_width addr_width;
	int psize;

	switch (width) {
	case DMA_SLAVE_BUSWIDTH_1_BYTE:
		addr_width = STEDMA40_BYTE_WIDTH;
		break;
	case DMA_SLAVE_BUSWIDTH_2_BYTES:
		addr_width = STEDMA40_HALFWORD_WIDTH;
		break;
	case DMA_SLAVE_BUSWIDTH_4_BYTES:
		addr_width = STEDMA40_WORD_WIDTH;
		break;
	case DMA_SLAVE_BUSWIDTH_8_BYTES:
		addr_width = STEDMA40_DOUBLEWORD_WIDTH;
		break;
	default:
		dev_err(d40c->base->dev,
			"illegal peripheral address width "
			"requested (%d)\n",
			width);
		return -EINVAL;
	}

	if (chan_is_logical(d40c)) {
		if (maxburst >= 16)
			psize = STEDMA40_PSIZE_LOG_16;
		else if (maxburst >= 8)
			psize = STEDMA40_PSIZE_LOG_8;
		else if (maxburst >= 4)
			psize = STEDMA40_PSIZE_LOG_4;
		else
			psize = STEDMA40_PSIZE_LOG_1;
	} else {
		if (maxburst >= 16)
			psize = STEDMA40_PSIZE_PHY_16;
		else if (maxburst >= 8)
			psize = STEDMA40_PSIZE_PHY_8;
		else if (maxburst >= 4)
			psize = STEDMA40_PSIZE_PHY_4;
		else
			psize = STEDMA40_PSIZE_PHY_1;
	}

	info->data_width = addr_width;
	info->psize = psize;
	info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;

	return 0;
}

2710
/* Runtime reconfiguration extension */
2711 2712
static int d40_set_runtime_config(struct dma_chan *chan,
				  struct dma_slave_config *config)
2713 2714 2715
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2716
	enum dma_slave_buswidth src_addr_width, dst_addr_width;
2717
	dma_addr_t config_addr;
2718 2719 2720 2721 2722 2723 2724
	u32 src_maxburst, dst_maxburst;
	int ret;

	src_addr_width = config->src_addr_width;
	src_maxburst = config->src_maxburst;
	dst_addr_width = config->dst_addr_width;
	dst_maxburst = config->dst_maxburst;
2725

2726
	if (config->direction == DMA_DEV_TO_MEM) {
2727
		dma_addr_t dev_addr_rx =
2728
			d40c->base->plat_data->dev_rx[cfg->dev_type];
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742

		config_addr = config->src_addr;
		if (dev_addr_rx)
			dev_dbg(d40c->base->dev,
				"channel has a pre-wired RX address %08x "
				"overriding with %08x\n",
				dev_addr_rx, config_addr);
		if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
			dev_dbg(d40c->base->dev,
				"channel was not configured for peripheral "
				"to memory transfer (%d) overriding\n",
				cfg->dir);
		cfg->dir = STEDMA40_PERIPH_TO_MEM;

2743 2744 2745 2746 2747
		/* Configure the memory side */
		if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
			dst_addr_width = src_addr_width;
		if (dst_maxburst == 0)
			dst_maxburst = src_maxburst;
2748

2749
	} else if (config->direction == DMA_MEM_TO_DEV) {
2750
		dma_addr_t dev_addr_tx =
2751
			d40c->base->plat_data->dev_tx[cfg->dev_type];
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765

		config_addr = config->dst_addr;
		if (dev_addr_tx)
			dev_dbg(d40c->base->dev,
				"channel has a pre-wired TX address %08x "
				"overriding with %08x\n",
				dev_addr_tx, config_addr);
		if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
			dev_dbg(d40c->base->dev,
				"channel was not configured for memory "
				"to peripheral transfer (%d) overriding\n",
				cfg->dir);
		cfg->dir = STEDMA40_MEM_TO_PERIPH;

2766 2767 2768 2769 2770
		/* Configure the memory side */
		if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
			src_addr_width = dst_addr_width;
		if (src_maxburst == 0)
			src_maxburst = dst_maxburst;
2771 2772 2773 2774
	} else {
		dev_err(d40c->base->dev,
			"unrecognized channel direction %d\n",
			config->direction);
2775
		return -EINVAL;
2776 2777
	}

2778
	if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2779
		dev_err(d40c->base->dev,
2780 2781 2782 2783 2784 2785
			"src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
			src_maxburst,
			src_addr_width,
			dst_maxburst,
			dst_addr_width);
		return -EINVAL;
2786 2787
	}

2788 2789 2790 2791 2792 2793 2794 2795
	if (src_maxburst > 16) {
		src_maxburst = 16;
		dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
	} else if (dst_maxburst > 16) {
		dst_maxburst = 16;
		src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
	}

2796 2797 2798 2799 2800
	ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
					  src_addr_width,
					  src_maxburst);
	if (ret)
		return ret;
2801

2802 2803 2804 2805 2806
	ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
					  dst_addr_width,
					  dst_maxburst);
	if (ret)
		return ret;
2807

2808
	/* Fill in register values */
2809
	if (chan_is_logical(d40c))
2810 2811 2812 2813 2814
		d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
	else
		d40_phy_cfg(cfg, &d40c->src_def_cfg,
			    &d40c->dst_def_cfg, false);

2815 2816 2817 2818
	/* These settings will take precedence later */
	d40c->runtime_addr = config_addr;
	d40c->runtime_direction = config->direction;
	dev_dbg(d40c->base->dev,
2819 2820
		"configured channel %s for %s, data width %d/%d, "
		"maxburst %d/%d elements, LE, no flow control\n",
2821
		dma_chan_name(chan),
2822
		(config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2823 2824 2825 2826
		src_addr_width, dst_addr_width,
		src_maxburst, dst_maxburst);

	return 0;
2827 2828
}

2829 2830
static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
		       unsigned long arg)
2831 2832 2833
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);

2834
	if (d40c->phy_chan == NULL) {
2835
		chan_err(d40c, "Channel is not allocated!\n");
2836 2837 2838
		return -EINVAL;
	}

2839 2840
	switch (cmd) {
	case DMA_TERMINATE_ALL:
2841 2842
		d40_terminate_all(chan);
		return 0;
2843
	case DMA_PAUSE:
2844
		return d40_pause(d40c);
2845
	case DMA_RESUME:
2846
		return d40_resume(d40c);
2847
	case DMA_SLAVE_CONFIG:
2848
		return d40_set_runtime_config(chan,
2849 2850 2851
			(struct dma_slave_config *) arg);
	default:
		break;
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
	}

	/* Other commands are unimplemented */
	return -ENXIO;
}

/* Initialization functions */

static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
				 struct d40_chan *chans, int offset,
				 int num_chans)
{
	int i = 0;
	struct d40_chan *d40c;

	INIT_LIST_HEAD(&dma->channels);

	for (i = offset; i < offset + num_chans; i++) {
		d40c = &chans[i];
		d40c->base = base;
		d40c->chan.device = dma;

		spin_lock_init(&d40c->lock);

		d40c->log_num = D40_PHY_CHAN;

2878
		INIT_LIST_HEAD(&d40c->done);
2879 2880
		INIT_LIST_HEAD(&d40c->active);
		INIT_LIST_HEAD(&d40c->queue);
2881
		INIT_LIST_HEAD(&d40c->pending_queue);
2882
		INIT_LIST_HEAD(&d40c->client);
2883
		INIT_LIST_HEAD(&d40c->prepare_queue);
2884 2885 2886 2887 2888 2889 2890 2891 2892

		tasklet_init(&d40c->tasklet, dma_tasklet,
			     (unsigned long) d40c);

		list_add_tail(&d40c->chan.device_node,
			      &dma->channels);
	}
}

2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
{
	if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
		dev->device_prep_slave_sg = d40_prep_slave_sg;

	if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
		dev->device_prep_dma_memcpy = d40_prep_memcpy;

		/*
		 * This controller can only access address at even
		 * 32bit boundaries, i.e. 2^2
		 */
		dev->copy_align = 2;
	}

	if (dma_has_cap(DMA_SG, dev->cap_mask))
		dev->device_prep_dma_sg = d40_prep_memcpy_sg;

R
Rabin Vincent 已提交
2911 2912 2913
	if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
		dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;

2914 2915 2916 2917 2918 2919 2920 2921
	dev->device_alloc_chan_resources = d40_alloc_chan_resources;
	dev->device_free_chan_resources = d40_free_chan_resources;
	dev->device_issue_pending = d40_issue_pending;
	dev->device_tx_status = d40_tx_status;
	dev->device_control = d40_control;
	dev->dev = base->dev;
}

2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
static int __init d40_dmaengine_init(struct d40_base *base,
				     int num_reserved_chans)
{
	int err ;

	d40_chan_init(base, &base->dma_slave, base->log_chans,
		      0, base->num_log_chans);

	dma_cap_zero(base->dma_slave.cap_mask);
	dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
R
Rabin Vincent 已提交
2932
	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2933

2934
	d40_ops_init(base, &base->dma_slave);
2935 2936 2937 2938

	err = dma_async_device_register(&base->dma_slave);

	if (err) {
2939
		d40_err(base->dev, "Failed to register slave channels\n");
2940 2941 2942 2943
		goto failure1;
	}

	d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2944
		      base->num_log_chans, ARRAY_SIZE(dma40_memcpy_channels));
2945 2946 2947

	dma_cap_zero(base->dma_memcpy.cap_mask);
	dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2948 2949 2950
	dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);

	d40_ops_init(base, &base->dma_memcpy);
2951 2952 2953 2954

	err = dma_async_device_register(&base->dma_memcpy);

	if (err) {
2955 2956
		d40_err(base->dev,
			"Failed to regsiter memcpy only channels\n");
2957 2958 2959 2960 2961 2962 2963 2964 2965
		goto failure2;
	}

	d40_chan_init(base, &base->dma_both, base->phy_chans,
		      0, num_reserved_chans);

	dma_cap_zero(base->dma_both.cap_mask);
	dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
	dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2966
	dma_cap_set(DMA_SG, base->dma_both.cap_mask);
R
Rabin Vincent 已提交
2967
	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2968 2969

	d40_ops_init(base, &base->dma_both);
2970 2971 2972
	err = dma_async_device_register(&base->dma_both);

	if (err) {
2973 2974
		d40_err(base->dev,
			"Failed to register logical and physical capable channels\n");
2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
		goto failure3;
	}
	return 0;
failure3:
	dma_async_device_unregister(&base->dma_memcpy);
failure2:
	dma_async_device_unregister(&base->dma_slave);
failure1:
	return err;
}

2986 2987 2988 2989
/* Suspend resume functionality */
#ifdef CONFIG_PM
static int dma40_pm_suspend(struct device *dev)
{
2990 2991 2992
	struct platform_device *pdev = to_platform_device(dev);
	struct d40_base *base = platform_get_drvdata(pdev);
	int ret = 0;
2993

2994 2995 2996
	if (base->lcpa_regulator)
		ret = regulator_disable(base->lcpa_regulator);
	return ret;
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
}

static int dma40_runtime_suspend(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct d40_base *base = platform_get_drvdata(pdev);

	d40_save_restore_registers(base, true);

	/* Don't disable/enable clocks for v1 due to HW bugs */
	if (base->rev != 1)
		writel_relaxed(base->gcc_pwr_off_mask,
			       base->virtbase + D40_DREG_GCC);

	return 0;
}

static int dma40_runtime_resume(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct d40_base *base = platform_get_drvdata(pdev);

	if (base->initialized)
		d40_save_restore_registers(base, false);

	writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
		       base->virtbase + D40_DREG_GCC);
	return 0;
}

3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
static int dma40_resume(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct d40_base *base = platform_get_drvdata(pdev);
	int ret = 0;

	if (base->lcpa_regulator)
		ret = regulator_enable(base->lcpa_regulator);

	return ret;
}
3038 3039 3040 3041 3042

static const struct dev_pm_ops dma40_pm_ops = {
	.suspend		= dma40_pm_suspend,
	.runtime_suspend	= dma40_runtime_suspend,
	.runtime_resume		= dma40_runtime_resume,
3043
	.resume			= dma40_resume,
3044 3045 3046 3047 3048 3049
};
#define DMA40_PM_OPS	(&dma40_pm_ops)
#else
#define DMA40_PM_OPS	NULL
#endif

3050 3051 3052 3053 3054 3055 3056 3057
/* Initialization functions. */

static int __init d40_phy_res_init(struct d40_base *base)
{
	int i;
	int num_phy_chans_avail = 0;
	u32 val[2];
	int odd_even_bit = -2;
3058
	int gcc = D40_DREG_GCC_ENA;
3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069

	val[0] = readl(base->virtbase + D40_DREG_PRSME);
	val[1] = readl(base->virtbase + D40_DREG_PRSMO);

	for (i = 0; i < base->num_phy_chans; i++) {
		base->phy_res[i].num = i;
		odd_even_bit += 2 * ((i % 2) == 0);
		if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
			/* Mark security only channels as occupied */
			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
3070 3071 3072 3073 3074 3075 3076
			base->phy_res[i].reserved = true;
			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
						       D40_DREG_GCC_SRC);
			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
						       D40_DREG_GCC_DST);


3077 3078 3079
		} else {
			base->phy_res[i].allocated_src = D40_ALLOC_FREE;
			base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
3080
			base->phy_res[i].reserved = false;
3081 3082 3083 3084
			num_phy_chans_avail++;
		}
		spin_lock_init(&base->phy_res[i].lock);
	}
3085 3086 3087

	/* Mark disabled channels as occupied */
	for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
3088 3089 3090 3091
		int chan = base->plat_data->disabled_channels[i];

		base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
		base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
3092 3093 3094 3095 3096
		base->phy_res[chan].reserved = true;
		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
					       D40_DREG_GCC_SRC);
		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
					       D40_DREG_GCC_DST);
3097
		num_phy_chans_avail--;
3098 3099
	}

3100 3101 3102 3103 3104 3105 3106
	/* Mark soft_lli channels */
	for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
		int chan = base->plat_data->soft_lli_chans[i];

		base->phy_res[chan].use_soft_lli = true;
	}

3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
	dev_info(base->dev, "%d of %d physical DMA channels available\n",
		 num_phy_chans_avail, base->num_phy_chans);

	/* Verify settings extended vs standard */
	val[0] = readl(base->virtbase + D40_DREG_PRTYP);

	for (i = 0; i < base->num_phy_chans; i++) {

		if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
		    (val[0] & 0x3) != 1)
			dev_info(base->dev,
				 "[%s] INFO: channel %d is misconfigured (%d)\n",
				 __func__, i, val[0] & 0x3);

		val[0] = val[0] >> 2;
	}

3124 3125 3126 3127 3128 3129 3130 3131 3132
	/*
	 * To keep things simple, Enable all clocks initially.
	 * The clocks will get managed later post channel allocation.
	 * The clocks for the event lines on which reserved channels exists
	 * are not managed here.
	 */
	writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
	base->gcc_pwr_off_mask = gcc;

3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
	return num_phy_chans_avail;
}

static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
{
	struct stedma40_platform_data *plat_data;
	struct clk *clk = NULL;
	void __iomem *virtbase = NULL;
	struct resource *res = NULL;
	struct d40_base *base = NULL;
	int num_log_chans = 0;
	int num_phy_chans;
3145
	int clk_ret = -EINVAL;
3146
	int i;
3147 3148 3149
	u32 pid;
	u32 cid;
	u8 rev;
3150 3151 3152

	clk = clk_get(&pdev->dev, NULL);
	if (IS_ERR(clk)) {
3153
		d40_err(&pdev->dev, "No matching clock found\n");
3154 3155 3156
		goto failure;
	}

3157 3158 3159 3160 3161
	clk_ret = clk_prepare_enable(clk);
	if (clk_ret) {
		d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
		goto failure;
	}
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175

	/* Get IO for DMAC base address */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
	if (!res)
		goto failure;

	if (request_mem_region(res->start, resource_size(res),
			       D40_NAME " I/O base") == NULL)
		goto failure;

	virtbase = ioremap(res->start, resource_size(res));
	if (!virtbase)
		goto failure;

3176 3177 3178 3179 3180 3181 3182
	/* This is just a regular AMBA PrimeCell ID actually */
	for (pid = 0, i = 0; i < 4; i++)
		pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
			& 255) << (i * 8);
	for (cid = 0, i = 0; i < 4; i++)
		cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
			& 255) << (i * 8);
3183

3184 3185 3186 3187 3188
	if (cid != AMBA_CID) {
		d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
		goto failure;
	}
	if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
3189
		d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
3190 3191
			AMBA_MANF_BITS(pid),
			AMBA_VENDOR_ST);
3192 3193
		goto failure;
	}
3194 3195 3196 3197 3198 3199
	/*
	 * HW revision:
	 * DB8500ed has revision 0
	 * ? has revision 1
	 * DB8500v1 has revision 2
	 * DB8500v2 has revision 3
3200 3201
	 * AP9540v1 has revision 4
	 * DB8540v1 has revision 4
3202 3203
	 */
	rev = AMBA_REV_BITS(pid);
3204

3205 3206
	plat_data = pdev->dev.platform_data;

3207
	/* The number of physical channels on this HW */
3208 3209 3210 3211
	if (plat_data->num_of_phy_chans)
		num_phy_chans = plat_data->num_of_phy_chans;
	else
		num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
3212

3213 3214
	dev_info(&pdev->dev, "hardware revision: %d @ 0x%x with %d physical channels\n",
		 rev, res->start, num_phy_chans);
3215

3216 3217 3218 3219 3220 3221
	if (rev < 2) {
		d40_err(&pdev->dev, "hardware revision: %d is not supported",
			rev);
		goto failure;
	}

3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
	/* Count the number of logical channels in use */
	for (i = 0; i < plat_data->dev_len; i++)
		if (plat_data->dev_rx[i] != 0)
			num_log_chans++;

	for (i = 0; i < plat_data->dev_len; i++)
		if (plat_data->dev_tx[i] != 0)
			num_log_chans++;

	base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
3232
		       (num_phy_chans + num_log_chans + ARRAY_SIZE(dma40_memcpy_channels)) *
3233 3234 3235
		       sizeof(struct d40_chan), GFP_KERNEL);

	if (base == NULL) {
3236
		d40_err(&pdev->dev, "Out of memory\n");
3237 3238 3239
		goto failure;
	}

3240
	base->rev = rev;
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
	base->clk = clk;
	base->num_phy_chans = num_phy_chans;
	base->num_log_chans = num_log_chans;
	base->phy_start = res->start;
	base->phy_size = resource_size(res);
	base->virtbase = virtbase;
	base->plat_data = plat_data;
	base->dev = &pdev->dev;
	base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
	base->log_chans = &base->phy_chans[num_phy_chans];

3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
	if (base->plat_data->num_of_phy_chans == 14) {
		base->gen_dmac.backup = d40_backup_regs_v4b;
		base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
		base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
		base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
		base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
		base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
		base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
		base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
		base->gen_dmac.il = il_v4b;
		base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
		base->gen_dmac.init_reg = dma_init_reg_v4b;
		base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
	} else {
		if (base->rev >= 3) {
			base->gen_dmac.backup = d40_backup_regs_v4a;
			base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
		}
		base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
		base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
		base->gen_dmac.realtime_en = D40_DREG_RSEG1;
		base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
		base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
		base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
		base->gen_dmac.il = il_v4a;
		base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
		base->gen_dmac.init_reg = dma_init_reg_v4a;
		base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
	}

3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
	base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
				GFP_KERNEL);
	if (!base->phy_res)
		goto failure;

	base->lookup_phy_chans = kzalloc(num_phy_chans *
					 sizeof(struct d40_chan *),
					 GFP_KERNEL);
	if (!base->lookup_phy_chans)
		goto failure;

3293
	if (num_log_chans + ARRAY_SIZE(dma40_memcpy_channels)) {
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
		/*
		 * The max number of logical channels are event lines for all
		 * src devices and dst devices
		 */
		base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
						 sizeof(struct d40_chan *),
						 GFP_KERNEL);
		if (!base->lookup_log_chans)
			goto failure;
	}
3304

3305 3306
	base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
					    sizeof(d40_backup_regs_chan),
3307
					    GFP_KERNEL);
3308 3309 3310 3311 3312 3313
	if (!base->reg_val_backup_chan)
		goto failure;

	base->lcla_pool.alloc_map =
		kzalloc(num_phy_chans * sizeof(struct d40_desc *)
			* D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
3314 3315 3316
	if (!base->lcla_pool.alloc_map)
		goto failure;

3317 3318 3319 3320 3321 3322
	base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
					    0, SLAB_HWCACHE_ALIGN,
					    NULL);
	if (base->desc_slab == NULL)
		goto failure;

3323 3324 3325
	return base;

failure:
3326 3327 3328
	if (!clk_ret)
		clk_disable_unprepare(clk);
	if (!IS_ERR(clk))
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
		clk_put(clk);
	if (virtbase)
		iounmap(virtbase);
	if (res)
		release_mem_region(res->start,
				   resource_size(res));
	if (virtbase)
		iounmap(virtbase);

	if (base) {
		kfree(base->lcla_pool.alloc_map);
3340
		kfree(base->reg_val_backup_chan);
3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
		kfree(base->lookup_log_chans);
		kfree(base->lookup_phy_chans);
		kfree(base->phy_res);
		kfree(base);
	}

	return NULL;
}

static void __init d40_hw_init(struct d40_base *base)
{

	int i;
	u32 prmseo[2] = {0, 0};
	u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
	u32 pcmis = 0;
	u32 pcicr = 0;
3358 3359
	struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
	u32 reg_size = base->gen_dmac.init_reg_size;
3360

3361
	for (i = 0; i < reg_size; i++)
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
		writel(dma_init_reg[i].val,
		       base->virtbase + dma_init_reg[i].reg);

	/* Configure all our dma channels to default settings */
	for (i = 0; i < base->num_phy_chans; i++) {

		activeo[i % 2] = activeo[i % 2] << 2;

		if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
		    == D40_ALLOC_PHY) {
			activeo[i % 2] |= 3;
			continue;
		}

		/* Enable interrupt # */
		pcmis = (pcmis << 1) | 1;

		/* Clear interrupt # */
		pcicr = (pcicr << 1) | 1;

		/* Set channel to physical mode */
		prmseo[i % 2] = prmseo[i % 2] << 2;
		prmseo[i % 2] |= 1;

	}

	writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
	writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
	writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
	writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);

	/* Write which interrupt to enable */
3394
	writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
3395 3396

	/* Write which interrupt to clear */
3397
	writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
3398

3399 3400 3401
	/* These are __initdata and cannot be accessed after init */
	base->gen_dmac.init_reg = NULL;
	base->gen_dmac.init_reg_size = 0;
3402 3403
}

3404 3405
static int __init d40_lcla_allocate(struct d40_base *base)
{
3406
	struct d40_lcla_pool *pool = &base->lcla_pool;
3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
	unsigned long *page_list;
	int i, j;
	int ret = 0;

	/*
	 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
	 * To full fill this hardware requirement without wasting 256 kb
	 * we allocate pages until we get an aligned one.
	 */
	page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
			    GFP_KERNEL);

	if (!page_list) {
		ret = -ENOMEM;
		goto failure;
	}

	/* Calculating how many pages that are required */
	base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;

	for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
		page_list[i] = __get_free_pages(GFP_KERNEL,
						base->lcla_pool.pages);
		if (!page_list[i]) {

3432 3433
			d40_err(base->dev, "Failed to allocate %d pages.\n",
				base->lcla_pool.pages);
3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450

			for (j = 0; j < i; j++)
				free_pages(page_list[j], base->lcla_pool.pages);
			goto failure;
		}

		if ((virt_to_phys((void *)page_list[i]) &
		     (LCLA_ALIGNMENT - 1)) == 0)
			break;
	}

	for (j = 0; j < i; j++)
		free_pages(page_list[j], base->lcla_pool.pages);

	if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
		base->lcla_pool.base = (void *)page_list[i];
	} else {
3451 3452 3453 3454
		/*
		 * After many attempts and no succees with finding the correct
		 * alignment, try with allocating a big buffer.
		 */
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
		dev_warn(base->dev,
			 "[%s] Failed to get %d pages @ 18 bit align.\n",
			 __func__, base->lcla_pool.pages);
		base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
							 base->num_phy_chans +
							 LCLA_ALIGNMENT,
							 GFP_KERNEL);
		if (!base->lcla_pool.base_unaligned) {
			ret = -ENOMEM;
			goto failure;
		}

		base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
						 LCLA_ALIGNMENT);
	}

3471 3472 3473 3474 3475 3476 3477 3478 3479
	pool->dma_addr = dma_map_single(base->dev, pool->base,
					SZ_1K * base->num_phy_chans,
					DMA_TO_DEVICE);
	if (dma_mapping_error(base->dev, pool->dma_addr)) {
		pool->dma_addr = 0;
		ret = -ENOMEM;
		goto failure;
	}

3480 3481 3482 3483 3484 3485 3486
	writel(virt_to_phys(base->lcla_pool.base),
	       base->virtbase + D40_DREG_LCLA);
failure:
	kfree(page_list);
	return ret;
}

3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
static int __init d40_probe(struct platform_device *pdev)
{
	int err;
	int ret = -ENOENT;
	struct d40_base *base;
	struct resource *res = NULL;
	int num_reserved_chans;
	u32 val;

	base = d40_hw_detect_init(pdev);

	if (!base)
		goto failure;

	num_reserved_chans = d40_phy_res_init(base);

	platform_set_drvdata(pdev, base);

	spin_lock_init(&base->interrupt_lock);
	spin_lock_init(&base->execmd_lock);

	/* Get IO for logical channel parameter address */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
	if (!res) {
		ret = -ENOENT;
3512
		d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3513 3514 3515 3516 3517 3518 3519 3520
		goto failure;
	}
	base->lcpa_size = resource_size(res);
	base->phy_lcpa = res->start;

	if (request_mem_region(res->start, resource_size(res),
			       D40_NAME " I/O lcpa") == NULL) {
		ret = -EBUSY;
3521 3522 3523
		d40_err(&pdev->dev,
			"Failed to request LCPA region 0x%x-0x%x\n",
			res->start, res->end);
3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
		goto failure;
	}

	/* We make use of ESRAM memory for this. */
	val = readl(base->virtbase + D40_DREG_LCPA);
	if (res->start != val && val != 0) {
		dev_warn(&pdev->dev,
			 "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
			 __func__, val, res->start);
	} else
		writel(res->start, base->virtbase + D40_DREG_LCPA);

	base->lcpa_base = ioremap(res->start, resource_size(res));
	if (!base->lcpa_base) {
		ret = -ENOMEM;
3539
		d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3540 3541
		goto failure;
	}
3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
	/* If lcla has to be located in ESRAM we don't need to allocate */
	if (base->plat_data->use_esram_lcla) {
		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
							"lcla_esram");
		if (!res) {
			ret = -ENOENT;
			d40_err(&pdev->dev,
				"No \"lcla_esram\" memory resource\n");
			goto failure;
		}
		base->lcla_pool.base = ioremap(res->start,
						resource_size(res));
		if (!base->lcla_pool.base) {
			ret = -ENOMEM;
			d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
			goto failure;
		}
		writel(res->start, base->virtbase + D40_DREG_LCLA);
3560

3561 3562 3563 3564 3565 3566
	} else {
		ret = d40_lcla_allocate(base);
		if (ret) {
			d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
			goto failure;
		}
3567 3568 3569 3570 3571 3572 3573 3574
	}

	spin_lock_init(&base->lcla_pool.lock);

	base->irq = platform_get_irq(pdev, 0);

	ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
	if (ret) {
3575
		d40_err(&pdev->dev, "No IRQ defined\n");
3576 3577 3578
		goto failure;
	}

3579 3580 3581 3582 3583
	pm_runtime_irq_safe(base->dev);
	pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
	pm_runtime_use_autosuspend(base->dev);
	pm_runtime_enable(base->dev);
	pm_runtime_resume(base->dev);
3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603

	if (base->plat_data->use_esram_lcla) {

		base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
		if (IS_ERR(base->lcpa_regulator)) {
			d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
			base->lcpa_regulator = NULL;
			goto failure;
		}

		ret = regulator_enable(base->lcpa_regulator);
		if (ret) {
			d40_err(&pdev->dev,
				"Failed to enable lcpa_regulator\n");
			regulator_put(base->lcpa_regulator);
			base->lcpa_regulator = NULL;
			goto failure;
		}
	}

3604
	base->initialized = true;
3605 3606 3607 3608
	err = d40_dmaengine_init(base, num_reserved_chans);
	if (err)
		goto failure;

3609 3610 3611 3612 3613 3614 3615
	base->dev->dma_parms = &base->dma_parms;
	err = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
	if (err) {
		d40_err(&pdev->dev, "Failed to set dma max seg size\n");
		goto failure;
	}

3616 3617 3618 3619 3620 3621 3622
	d40_hw_init(base);

	dev_info(base->dev, "initialized\n");
	return 0;

failure:
	if (base) {
3623 3624
		if (base->desc_slab)
			kmem_cache_destroy(base->desc_slab);
3625 3626
		if (base->virtbase)
			iounmap(base->virtbase);
3627

3628 3629 3630 3631 3632
		if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
			iounmap(base->lcla_pool.base);
			base->lcla_pool.base = NULL;
		}

3633 3634 3635 3636 3637
		if (base->lcla_pool.dma_addr)
			dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
					 SZ_1K * base->num_phy_chans,
					 DMA_TO_DEVICE);

3638 3639 3640
		if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
			free_pages((unsigned long)base->lcla_pool.base,
				   base->lcla_pool.pages);
3641 3642 3643

		kfree(base->lcla_pool.base_unaligned);

3644 3645 3646 3647 3648 3649 3650
		if (base->phy_lcpa)
			release_mem_region(base->phy_lcpa,
					   base->lcpa_size);
		if (base->phy_start)
			release_mem_region(base->phy_start,
					   base->phy_size);
		if (base->clk) {
3651
			clk_disable_unprepare(base->clk);
3652 3653 3654
			clk_put(base->clk);
		}

3655 3656 3657 3658 3659
		if (base->lcpa_regulator) {
			regulator_disable(base->lcpa_regulator);
			regulator_put(base->lcpa_regulator);
		}

3660 3661 3662 3663 3664 3665 3666
		kfree(base->lcla_pool.alloc_map);
		kfree(base->lookup_log_chans);
		kfree(base->lookup_phy_chans);
		kfree(base->phy_res);
		kfree(base);
	}

3667
	d40_err(&pdev->dev, "probe failed\n");
3668 3669 3670 3671 3672 3673 3674
	return ret;
}

static struct platform_driver d40_driver = {
	.driver = {
		.owner = THIS_MODULE,
		.name  = D40_NAME,
3675
		.pm = DMA40_PM_OPS,
3676 3677 3678
	},
};

R
Rabin Vincent 已提交
3679
static int __init stedma40_init(void)
3680 3681 3682
{
	return platform_driver_probe(&d40_driver, d40_probe);
}
L
Linus Walleij 已提交
3683
subsys_initcall(stedma40_init);