ste_dma40.c 94.2 KB
Newer Older
1
/*
2 3
 * Copyright (C) Ericsson AB 2007-2008
 * Copyright (C) ST-Ericsson SA 2008-2010
4
 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5
 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6 7 8
 * License terms: GNU General Public License (GPL) version 2
 */

9
#include <linux/dma-mapping.h>
10 11
#include <linux/kernel.h>
#include <linux/slab.h>
12
#include <linux/export.h>
13 14 15 16
#include <linux/dmaengine.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/delay.h>
17 18
#include <linux/pm.h>
#include <linux/pm_runtime.h>
19
#include <linux/err.h>
20
#include <linux/amba/bus.h>
21
#include <linux/regulator/consumer.h>
22
#include <linux/platform_data/dma-ste-dma40.h>
23

24
#include "dmaengine.h"
25 26 27 28 29 30 31 32 33 34 35 36 37
#include "ste_dma40_ll.h"

#define D40_NAME "dma40"

#define D40_PHY_CHAN -1

/* For masking out/in 2 bit channel positions */
#define D40_CHAN_POS(chan)  (2 * (chan / 2))
#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))

/* Maximum iterations taken before giving up suspending a channel */
#define D40_SUSPEND_MAX_IT 500

38 39 40
/* Milliseconds */
#define DMA40_AUTOSUSPEND_DELAY	100

41 42
/* Hardware requirement on LCLA alignment */
#define LCLA_ALIGNMENT 0x40000
43 44 45 46 47

/* Max number of links per event group */
#define D40_LCLA_LINK_PER_EVENT_GRP 128
#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP

48 49 50 51
/* Attempts before giving up to trying to get pages that are aligned */
#define MAX_LCLA_ALLOC_ATTEMPTS 256

/* Bit markings for allocation map */
52 53 54 55
#define D40_ALLOC_FREE		(1 << 31)
#define D40_ALLOC_PHY		(1 << 30)
#define D40_ALLOC_LOG_FREE	0

56 57
#define MAX(a, b) (((a) < (b)) ? (b) : (a))

58
/* Reserved event lines for memcpy only. */
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
#define DB8500_DMA_MEMCPY_EV_0	51
#define DB8500_DMA_MEMCPY_EV_1	56
#define DB8500_DMA_MEMCPY_EV_2	57
#define DB8500_DMA_MEMCPY_EV_3	58
#define DB8500_DMA_MEMCPY_EV_4	59
#define DB8500_DMA_MEMCPY_EV_5	60

static int dma40_memcpy_channels[] = {
	DB8500_DMA_MEMCPY_EV_0,
	DB8500_DMA_MEMCPY_EV_1,
	DB8500_DMA_MEMCPY_EV_2,
	DB8500_DMA_MEMCPY_EV_3,
	DB8500_DMA_MEMCPY_EV_4,
	DB8500_DMA_MEMCPY_EV_5,
};
74

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
/**
 * enum 40_command - The different commands and/or statuses.
 *
 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
 */
enum d40_command {
	D40_DMA_STOP		= 0,
	D40_DMA_RUN		= 1,
	D40_DMA_SUSPEND_REQ	= 2,
	D40_DMA_SUSPENDED	= 3
};

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
/*
 * enum d40_events - The different Event Enables for the event lines.
 *
 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
 * @D40_ROUND_EVENTLINE: Status check for event line.
 */

enum d40_events {
	D40_DEACTIVATE_EVENTLINE	= 0,
	D40_ACTIVATE_EVENTLINE		= 1,
	D40_SUSPEND_REQ_EVENTLINE	= 2,
	D40_ROUND_EVENTLINE		= 3
};

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
/*
 * These are the registers that has to be saved and later restored
 * when the DMA hw is powered off.
 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
 */
static u32 d40_backup_regs[] = {
	D40_DREG_LCPA,
	D40_DREG_LCLA,
	D40_DREG_PRMSE,
	D40_DREG_PRMSO,
	D40_DREG_PRMOE,
	D40_DREG_PRMOO,
};

#define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)

122 123 124 125 126 127 128 129 130 131 132 133 134
/*
 * since 9540 and 8540 has the same HW revision
 * use v4a for 9540 or ealier
 * use v4b for 8540 or later
 * HW revision:
 * DB8500ed has revision 0
 * DB8500v1 has revision 2
 * DB8500v2 has revision 3
 * AP9540v1 has revision 4
 * DB8540v1 has revision 4
 * TODO: Check if all these registers have to be saved/restored on dma40 v4a
 */
static u32 d40_backup_regs_v4a[] = {
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
	D40_DREG_PSEG1,
	D40_DREG_PSEG2,
	D40_DREG_PSEG3,
	D40_DREG_PSEG4,
	D40_DREG_PCEG1,
	D40_DREG_PCEG2,
	D40_DREG_PCEG3,
	D40_DREG_PCEG4,
	D40_DREG_RSEG1,
	D40_DREG_RSEG2,
	D40_DREG_RSEG3,
	D40_DREG_RSEG4,
	D40_DREG_RCEG1,
	D40_DREG_RCEG2,
	D40_DREG_RCEG3,
	D40_DREG_RCEG4,
};

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
#define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)

static u32 d40_backup_regs_v4b[] = {
	D40_DREG_CPSEG1,
	D40_DREG_CPSEG2,
	D40_DREG_CPSEG3,
	D40_DREG_CPSEG4,
	D40_DREG_CPSEG5,
	D40_DREG_CPCEG1,
	D40_DREG_CPCEG2,
	D40_DREG_CPCEG3,
	D40_DREG_CPCEG4,
	D40_DREG_CPCEG5,
	D40_DREG_CRSEG1,
	D40_DREG_CRSEG2,
	D40_DREG_CRSEG3,
	D40_DREG_CRSEG4,
	D40_DREG_CRSEG5,
	D40_DREG_CRCEG1,
	D40_DREG_CRCEG2,
	D40_DREG_CRCEG3,
	D40_DREG_CRCEG4,
	D40_DREG_CRCEG5,
};

#define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
179 180 181 182 183 184 185 186 187 188 189 190

static u32 d40_backup_regs_chan[] = {
	D40_CHAN_REG_SSCFG,
	D40_CHAN_REG_SSELT,
	D40_CHAN_REG_SSPTR,
	D40_CHAN_REG_SSLNK,
	D40_CHAN_REG_SDCFG,
	D40_CHAN_REG_SDELT,
	D40_CHAN_REG_SDPTR,
	D40_CHAN_REG_SDLNK,
};

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
/**
 * struct d40_interrupt_lookup - lookup table for interrupt handler
 *
 * @src: Interrupt mask register.
 * @clr: Interrupt clear register.
 * @is_error: true if this is an error interrupt.
 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
 */
struct d40_interrupt_lookup {
	u32 src;
	u32 clr;
	bool is_error;
	int offset;
};


static struct d40_interrupt_lookup il_v4a[] = {
	{D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
	{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
	{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
	{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
	{D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
	{D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
	{D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
	{D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
	{D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
	{D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
};

static struct d40_interrupt_lookup il_v4b[] = {
	{D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false,  0},
	{D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
	{D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
	{D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
	{D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
	{D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true,   0},
	{D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true,  32},
	{D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true,  64},
	{D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true,  96},
	{D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true,  128},
	{D40_DREG_CPCTIS,  D40_DREG_CPCICR,  false, D40_PHY_CHAN},
	{D40_DREG_CPCEIS,  D40_DREG_CPCICR,  true,  D40_PHY_CHAN},
};

/**
 * struct d40_reg_val - simple lookup struct
 *
 * @reg: The register.
 * @val: The value that belongs to the register in reg.
 */
struct d40_reg_val {
	unsigned int reg;
	unsigned int val;
};

static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
	/* Clock every part of the DMA block from start */
	{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},

	/* Interrupts on all logical channels */
	{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
};
static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
	/* Clock every part of the DMA block from start */
	{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},

	/* Interrupts on all logical channels */
	{ .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
};

287 288 289 290 291 292
/**
 * struct d40_lli_pool - Structure for keeping LLIs in memory
 *
 * @base: Pointer to memory area when the pre_alloc_lli's are not large
 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
 * pre_alloc_lli is used.
293
 * @dma_addr: DMA address, if mapped
294 295 296 297 298 299
 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
 * one buffer to one buffer.
 */
struct d40_lli_pool {
	void	*base;
300
	int	 size;
301
	dma_addr_t	dma_addr;
302
	/* Space for dst and src, plus an extra for padding */
303
	u8	 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
304 305 306 307 308 309 310 311 312 313
};

/**
 * struct d40_desc - A descriptor is one DMA job.
 *
 * @lli_phy: LLI settings for physical channel. Both src and dst=
 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
 * lli_len equals one.
 * @lli_log: Same as above but for logical channels.
 * @lli_pool: The pool with two entries pre-allocated.
314
 * @lli_len: Number of llis of current descriptor.
L
Lucas De Marchi 已提交
315
 * @lli_current: Number of transferred llis.
316
 * @lcla_alloc: Number of LCLA entries allocated.
317 318 319 320
 * @txd: DMA engine struct. Used for among other things for communication
 * during a transfer.
 * @node: List entry.
 * @is_in_client_list: true if the client owns this descriptor.
321
 * @cyclic: true if this is a cyclic job
322 323 324 325 326 327 328 329 330 331
 *
 * This descriptor is used for both logical and physical transfers.
 */
struct d40_desc {
	/* LLI physical */
	struct d40_phy_lli_bidir	 lli_phy;
	/* LLI logical */
	struct d40_log_lli_bidir	 lli_log;

	struct d40_lli_pool		 lli_pool;
332
	int				 lli_len;
333 334
	int				 lli_current;
	int				 lcla_alloc;
335 336 337 338 339

	struct dma_async_tx_descriptor	 txd;
	struct list_head		 node;

	bool				 is_in_client_list;
R
Rabin Vincent 已提交
340
	bool				 cyclic;
341 342 343 344 345
};

/**
 * struct d40_lcla_pool - LCLA pool settings and data.
 *
346 347 348 349 350
 * @base: The virtual address of LCLA. 18 bit aligned.
 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
 * This pointer is only there for clean-up on error.
 * @pages: The number of pages needed for all physical channels.
 * Only used later for clean-up on error
351
 * @lock: Lock to protect the content in this struct.
352
 * @alloc_map: big map over which LCLA entry is own by which job.
353 354 355
 */
struct d40_lcla_pool {
	void		*base;
356
	dma_addr_t	dma_addr;
357 358
	void		*base_unaligned;
	int		 pages;
359
	spinlock_t	 lock;
360
	struct d40_desc	**alloc_map;
361 362 363 364 365 366 367
};

/**
 * struct d40_phy_res - struct for handling eventlines mapped to physical
 * channels.
 *
 * @lock: A lock protection this entity.
368
 * @reserved: True if used by secure world or otherwise.
369 370 371 372 373
 * @num: The physical channel number of this entity.
 * @allocated_src: Bit mapped to show which src event line's are mapped to
 * this physical channel. Can also be free or physically allocated.
 * @allocated_dst: Same as for src but is dst.
 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
374
 * event line number.
375
 * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
376 377 378
 */
struct d40_phy_res {
	spinlock_t lock;
379
	bool	   reserved;
380 381 382
	int	   num;
	u32	   allocated_src;
	u32	   allocated_dst;
383
	bool	   use_soft_lli;
384 385 386 387 388 389 390 391 392 393 394 395
};

struct d40_base;

/**
 * struct d40_chan - Struct that describes a channel.
 *
 * @lock: A spinlock to protect this struct.
 * @log_num: The logical number, if any of this channel.
 * @pending_tx: The number of pending transfers. Used between interrupt handler
 * and tasklet.
 * @busy: Set to true when transfer is ongoing on this channel.
396 397
 * @phy_chan: Pointer to physical channel which this instance runs on. If this
 * point is NULL, then the channel is not allocated.
398 399 400 401
 * @chan: DMA engine handle.
 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
 * transfer and call client callback.
 * @client: Cliented owned descriptor list.
402
 * @pending_queue: Submitted jobs, to be issued by issue_pending()
403
 * @active: Active descriptor.
404
 * @done: Completed jobs
405
 * @queue: Queued jobs.
406
 * @prepare_queue: Prepared jobs.
407
 * @dma_cfg: The client configuration of this dma channel.
408
 * @configured: whether the dma_cfg configuration is valid
409 410 411 412 413
 * @base: Pointer to the device instance struct.
 * @src_def_cfg: Default cfg register setting for src.
 * @dst_def_cfg: Default cfg register setting for dst.
 * @log_def: Default logical channel settings.
 * @lcpa: Pointer to dst and src lcpa settings.
414 415
 * @runtime_addr: runtime configured address.
 * @runtime_direction: runtime configured direction.
416 417 418 419 420 421 422 423 424 425 426 427
 *
 * This struct can either "be" a logical or a physical channel.
 */
struct d40_chan {
	spinlock_t			 lock;
	int				 log_num;
	int				 pending_tx;
	bool				 busy;
	struct d40_phy_res		*phy_chan;
	struct dma_chan			 chan;
	struct tasklet_struct		 tasklet;
	struct list_head		 client;
428
	struct list_head		 pending_queue;
429
	struct list_head		 active;
430
	struct list_head		 done;
431
	struct list_head		 queue;
432
	struct list_head		 prepare_queue;
433
	struct stedma40_chan_cfg	 dma_cfg;
434
	bool				 configured;
435 436 437 438 439 440
	struct d40_base			*base;
	/* Default register configurations */
	u32				 src_def_cfg;
	u32				 dst_def_cfg;
	struct d40_def_lcsp		 log_def;
	struct d40_log_lli_full		*lcpa;
441 442
	/* Runtime reconfiguration */
	dma_addr_t			runtime_addr;
443
	enum dma_transfer_direction	runtime_direction;
444 445
};

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
/**
 * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
 * controller
 *
 * @backup: the pointer to the registers address array for backup
 * @backup_size: the size of the registers address array for backup
 * @realtime_en: the realtime enable register
 * @realtime_clear: the realtime clear register
 * @high_prio_en: the high priority enable register
 * @high_prio_clear: the high priority clear register
 * @interrupt_en: the interrupt enable register
 * @interrupt_clear: the interrupt clear register
 * @il: the pointer to struct d40_interrupt_lookup
 * @il_size: the size of d40_interrupt_lookup array
 * @init_reg: the pointer to the struct d40_reg_val
 * @init_reg_size: the size of d40_reg_val array
 */
struct d40_gen_dmac {
	u32				*backup;
	u32				 backup_size;
	u32				 realtime_en;
	u32				 realtime_clear;
	u32				 high_prio_en;
	u32				 high_prio_clear;
	u32				 interrupt_en;
	u32				 interrupt_clear;
	struct d40_interrupt_lookup	*il;
	u32				 il_size;
	struct d40_reg_val		*init_reg;
	u32				 init_reg_size;
};

478 479 480 481 482 483 484 485
/**
 * struct d40_base - The big global struct, one for each probe'd instance.
 *
 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
 * @execmd_lock: Lock for execute command usage since several channels share
 * the same physical register.
 * @dev: The device structure.
 * @virtbase: The virtual base address of the DMA's register.
486
 * @rev: silicon revision detected.
487 488 489 490 491 492 493 494 495 496 497 498
 * @clk: Pointer to the DMA clock structure.
 * @phy_start: Physical memory start of the DMA registers.
 * @phy_size: Size of the DMA register map.
 * @irq: The IRQ number.
 * @num_phy_chans: The number of physical channels. Read from HW. This
 * is the number of available channels for this driver, not counting "Secure
 * mode" allocated physical channels.
 * @num_log_chans: The number of logical channels. Calculated from
 * num_phy_chans.
 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
 * @dma_slave: dma_device channels that can do only do slave transfers.
 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
499
 * @phy_chans: Room for all possible physical channels in system.
500 501 502 503 504 505 506
 * @log_chans: Room for all possible logical channels in system.
 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
 * to log_chans entries.
 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
 * to phy_chans entries.
 * @plat_data: Pointer to provided platform_data which is the driver
 * configuration.
507
 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
508 509 510 511 512
 * @phy_res: Vector containing all physical channels.
 * @lcla_pool: lcla pool settings and data.
 * @lcpa_base: The virtual mapped address of LCPA.
 * @phy_lcpa: The physical address of the LCPA.
 * @lcpa_size: The size of the LCPA area.
513
 * @desc_slab: cache for descriptors.
514 515
 * @reg_val_backup: Here the values of some hardware registers are stored
 * before the DMA is powered off. They are restored when the power is back on.
516 517
 * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
 * later
518 519 520
 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
 * @initialized: true if the dma has been initialized
521 522
 * @gen_dmac: the struct for generic registers values to represent u8500/8540
 * DMA controller
523 524 525 526 527 528
 */
struct d40_base {
	spinlock_t			 interrupt_lock;
	spinlock_t			 execmd_lock;
	struct device			 *dev;
	void __iomem			 *virtbase;
529
	u8				  rev:4;
530 531 532 533 534 535
	struct clk			 *clk;
	phys_addr_t			  phy_start;
	resource_size_t			  phy_size;
	int				  irq;
	int				  num_phy_chans;
	int				  num_log_chans;
536
	struct device_dma_parameters	  dma_parms;
537 538 539 540 541 542 543 544
	struct dma_device		  dma_both;
	struct dma_device		  dma_slave;
	struct dma_device		  dma_memcpy;
	struct d40_chan			 *phy_chans;
	struct d40_chan			 *log_chans;
	struct d40_chan			**lookup_log_chans;
	struct d40_chan			**lookup_phy_chans;
	struct stedma40_platform_data	 *plat_data;
545
	struct regulator		 *lcpa_regulator;
546 547 548 549 550 551
	/* Physical half channels */
	struct d40_phy_res		 *phy_res;
	struct d40_lcla_pool		  lcla_pool;
	void				 *lcpa_base;
	dma_addr_t			  phy_lcpa;
	resource_size_t			  lcpa_size;
552
	struct kmem_cache		 *desc_slab;
553
	u32				  reg_val_backup[BACKUP_REGS_SZ];
554
	u32				  reg_val_backup_v4[MAX(BACKUP_REGS_SZ_V4A, BACKUP_REGS_SZ_V4B)];
555 556 557
	u32				 *reg_val_backup_chan;
	u16				  gcc_pwr_off_mask;
	bool				  initialized;
558
	struct d40_gen_dmac		  gen_dmac;
559 560
};

561 562 563 564 565
static struct device *chan2dev(struct d40_chan *d40c)
{
	return &d40c->chan.dev->device;
}

566 567 568 569 570 571 572 573 574 575
static bool chan_is_physical(struct d40_chan *chan)
{
	return chan->log_num == D40_PHY_CHAN;
}

static bool chan_is_logical(struct d40_chan *chan)
{
	return !chan_is_physical(chan);
}

576 577 578 579 580 581
static void __iomem *chan_base(struct d40_chan *chan)
{
	return chan->base->virtbase + D40_DREG_PCBASE +
	       chan->phy_chan->num * D40_DREG_PCDELTA;
}

582 583 584 585 586 587
#define d40_err(dev, format, arg...)		\
	dev_err(dev, "[%s] " format, __func__, ## arg)

#define chan_err(d40c, format, arg...)		\
	d40_err(chan2dev(d40c), format, ## arg)

588
static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
589
			      int lli_len)
590
{
591
	bool is_log = chan_is_logical(d40c);
592 593 594 595 596 597 598 599 600 601 602 603 604
	u32 align;
	void *base;

	if (is_log)
		align = sizeof(struct d40_log_lli);
	else
		align = sizeof(struct d40_phy_lli);

	if (lli_len == 1) {
		base = d40d->lli_pool.pre_alloc_lli;
		d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
		d40d->lli_pool.base = NULL;
	} else {
605
		d40d->lli_pool.size = lli_len * 2 * align;
606 607 608 609 610 611 612 613 614

		base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
		d40d->lli_pool.base = base;

		if (d40d->lli_pool.base == NULL)
			return -ENOMEM;
	}

	if (is_log) {
R
Rabin Vincent 已提交
615
		d40d->lli_log.src = PTR_ALIGN(base, align);
616
		d40d->lli_log.dst = d40d->lli_log.src + lli_len;
617 618

		d40d->lli_pool.dma_addr = 0;
619
	} else {
R
Rabin Vincent 已提交
620
		d40d->lli_phy.src = PTR_ALIGN(base, align);
621
		d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
622 623 624 625 626 627 628 629 630 631 632 633 634

		d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
							 d40d->lli_phy.src,
							 d40d->lli_pool.size,
							 DMA_TO_DEVICE);

		if (dma_mapping_error(d40c->base->dev,
				      d40d->lli_pool.dma_addr)) {
			kfree(d40d->lli_pool.base);
			d40d->lli_pool.base = NULL;
			d40d->lli_pool.dma_addr = 0;
			return -ENOMEM;
		}
635 636 637 638 639
	}

	return 0;
}

640
static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
641
{
642 643 644 645
	if (d40d->lli_pool.dma_addr)
		dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
				 d40d->lli_pool.size, DMA_TO_DEVICE);

646 647 648 649 650 651 652 653 654
	kfree(d40d->lli_pool.base);
	d40d->lli_pool.base = NULL;
	d40d->lli_pool.size = 0;
	d40d->lli_log.src = NULL;
	d40d->lli_log.dst = NULL;
	d40d->lli_phy.src = NULL;
	d40d->lli_phy.dst = NULL;
}

655 656 657 658 659 660 661 662 663 664 665 666 667 668
static int d40_lcla_alloc_one(struct d40_chan *d40c,
			      struct d40_desc *d40d)
{
	unsigned long flags;
	int i;
	int ret = -EINVAL;

	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);

	/*
	 * Allocate both src and dst at the same time, therefore the half
	 * start on 1 since 0 can't be used since zero is used as end marker.
	 */
	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
669 670 671 672
		int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;

		if (!d40c->base->lcla_pool.alloc_map[idx]) {
			d40c->base->lcla_pool.alloc_map[idx] = d40d;
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
			d40d->lcla_alloc++;
			ret = i;
			break;
		}
	}

	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);

	return ret;
}

static int d40_lcla_free_all(struct d40_chan *d40c,
			     struct d40_desc *d40d)
{
	unsigned long flags;
	int i;
	int ret = -EINVAL;

691
	if (chan_is_physical(d40c))
692 693 694 695 696
		return 0;

	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);

	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
697 698 699 700
		int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;

		if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
			d40c->base->lcla_pool.alloc_map[idx] = NULL;
701 702 703 704 705 706 707 708 709 710 711 712 713 714
			d40d->lcla_alloc--;
			if (d40d->lcla_alloc == 0) {
				ret = 0;
				break;
			}
		}
	}

	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);

	return ret;

}

715 716 717 718 719 720 721
static void d40_desc_remove(struct d40_desc *d40d)
{
	list_del(&d40d->node);
}

static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
{
R
Rabin Vincent 已提交
722
	struct d40_desc *desc = NULL;
723 724

	if (!list_empty(&d40c->client)) {
R
Rabin Vincent 已提交
725 726 727
		struct d40_desc *d;
		struct d40_desc *_d;

728
		list_for_each_entry_safe(d, _d, &d40c->client, node) {
729 730
			if (async_tx_test_ack(&d->txd)) {
				d40_desc_remove(d);
R
Rabin Vincent 已提交
731 732
				desc = d;
				memset(desc, 0, sizeof(*desc));
733
				break;
734
			}
735
		}
736
	}
R
Rabin Vincent 已提交
737 738 739 740 741 742 743 744

	if (!desc)
		desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);

	if (desc)
		INIT_LIST_HEAD(&desc->node);

	return desc;
745 746 747 748
}

static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
{
749

750
	d40_pool_lli_free(d40c, d40d);
751
	d40_lcla_free_all(d40c, d40d);
752
	kmem_cache_free(d40c->base->desc_slab, d40d);
753 754 755 756 757 758 759
}

static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
{
	list_add_tail(&desc->node, &d40c->active);
}

760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
{
	struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
	struct d40_phy_lli *lli_src = desc->lli_phy.src;
	void __iomem *base = chan_base(chan);

	writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
	writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
	writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
	writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);

	writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
	writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
	writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
	writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
}

777 778 779 780 781
static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
{
	list_add_tail(&desc->node, &d40c->done);
}

782
static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
783
{
784 785 786 787
	struct d40_lcla_pool *pool = &chan->base->lcla_pool;
	struct d40_log_lli_bidir *lli = &desc->lli_log;
	int lli_current = desc->lli_current;
	int lli_len = desc->lli_len;
R
Rabin Vincent 已提交
788
	bool cyclic = desc->cyclic;
789
	int curr_lcla = -EINVAL;
R
Rabin Vincent 已提交
790
	int first_lcla = 0;
791
	bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
R
Rabin Vincent 已提交
792
	bool linkback;
793

R
Rabin Vincent 已提交
794 795 796 797 798 799 800 801 802 803 804
	/*
	 * We may have partially running cyclic transfers, in case we did't get
	 * enough LCLA entries.
	 */
	linkback = cyclic && lli_current == 0;

	/*
	 * For linkback, we need one LCLA even with only one link, because we
	 * can't link back to the one in LCPA space
	 */
	if (linkback || (lli_len - lli_current > 1)) {
805 806 807 808 809 810 811 812 813 814
		/*
		 * If the channel is expected to use only soft_lli don't
		 * allocate a lcla. This is to avoid a HW issue that exists
		 * in some controller during a peripheral to memory transfer
		 * that uses linked lists.
		 */
		if (!(chan->phy_chan->use_soft_lli &&
			chan->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM))
			curr_lcla = d40_lcla_alloc_one(chan, desc);

R
Rabin Vincent 已提交
815 816 817 818 819 820 821 822 823 824 825
		first_lcla = curr_lcla;
	}

	/*
	 * For linkback, we normally load the LCPA in the loop since we need to
	 * link it to the second LCLA and not the first.  However, if we
	 * couldn't even get a first LCLA, then we have to run in LCPA and
	 * reload manually.
	 */
	if (!linkback || curr_lcla == -EINVAL) {
		unsigned int flags = 0;
826

R
Rabin Vincent 已提交
827 828
		if (curr_lcla == -EINVAL)
			flags |= LLI_TERM_INT;
829

R
Rabin Vincent 已提交
830 831 832 833 834 835 836
		d40_log_lli_lcpa_write(chan->lcpa,
				       &lli->dst[lli_current],
				       &lli->src[lli_current],
				       curr_lcla,
				       flags);
		lli_current++;
	}
837 838 839 840

	if (curr_lcla < 0)
		goto out;

841 842 843 844
	for (; lli_current < lli_len; lli_current++) {
		unsigned int lcla_offset = chan->phy_chan->num * 1024 +
					   8 * curr_lcla * 2;
		struct d40_log_lli *lcla = pool->base + lcla_offset;
R
Rabin Vincent 已提交
845
		unsigned int flags = 0;
846 847 848 849 850
		int next_lcla;

		if (lli_current + 1 < lli_len)
			next_lcla = d40_lcla_alloc_one(chan, desc);
		else
R
Rabin Vincent 已提交
851 852 853 854
			next_lcla = linkback ? first_lcla : -EINVAL;

		if (cyclic || next_lcla == -EINVAL)
			flags |= LLI_TERM_INT;
855

R
Rabin Vincent 已提交
856 857 858 859 860 861 862 863 864 865 866 867
		if (linkback && curr_lcla == first_lcla) {
			/* First link goes in both LCPA and LCLA */
			d40_log_lli_lcpa_write(chan->lcpa,
					       &lli->dst[lli_current],
					       &lli->src[lli_current],
					       next_lcla, flags);
		}

		/*
		 * One unused LCLA in the cyclic case if the very first
		 * next_lcla fails...
		 */
868 869 870
		d40_log_lli_lcla_write(lcla,
				       &lli->dst[lli_current],
				       &lli->src[lli_current],
R
Rabin Vincent 已提交
871
				       next_lcla, flags);
872

873 874 875 876 877 878 879 880 881 882
		/*
		 * Cache maintenance is not needed if lcla is
		 * mapped in esram
		 */
		if (!use_esram_lcla) {
			dma_sync_single_range_for_device(chan->base->dev,
						pool->dma_addr, lcla_offset,
						2 * sizeof(struct d40_log_lli),
						DMA_TO_DEVICE);
		}
883 884
		curr_lcla = next_lcla;

R
Rabin Vincent 已提交
885
		if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
886 887 888 889 890
			lli_current++;
			break;
		}
	}

891
out:
892 893
	desc->lli_current = lli_current;
}
894

895 896
static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
{
897
	if (chan_is_physical(d40c)) {
898
		d40_phy_lli_load(d40c, d40d);
899
		d40d->lli_current = d40d->lli_len;
900 901
	} else
		d40_log_lli_to_lcxa(d40c, d40d);
902 903
}

904 905 906 907 908 909 910 911 912 913 914 915 916
static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
{
	struct d40_desc *d;

	if (list_empty(&d40c->active))
		return NULL;

	d = list_first_entry(&d40c->active,
			     struct d40_desc,
			     node);
	return d;
}

917
/* remove desc from current queue and add it to the pending_queue */
918 919
static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
{
920 921
	d40_desc_remove(desc);
	desc->is_in_client_list = false;
922 923 924 925 926 927 928 929 930 931 932 933 934 935
	list_add_tail(&desc->node, &d40c->pending_queue);
}

static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
{
	struct d40_desc *d;

	if (list_empty(&d40c->pending_queue))
		return NULL;

	d = list_first_entry(&d40c->pending_queue,
			     struct d40_desc,
			     node);
	return d;
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
}

static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
{
	struct d40_desc *d;

	if (list_empty(&d40c->queue))
		return NULL;

	d = list_first_entry(&d40c->queue,
			     struct d40_desc,
			     node);
	return d;
}

951 952 953 954 955 956 957 958
static struct d40_desc *d40_first_done(struct d40_chan *d40c)
{
	if (list_empty(&d40c->done))
		return NULL;

	return list_first_entry(&d40c->done, struct d40_desc, node);
}

959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
static int d40_psize_2_burst_size(bool is_log, int psize)
{
	if (is_log) {
		if (psize == STEDMA40_PSIZE_LOG_1)
			return 1;
	} else {
		if (psize == STEDMA40_PSIZE_PHY_1)
			return 1;
	}

	return 2 << psize;
}

/*
 * The dma only supports transmitting packages up to
 * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
 * dma elements required to send the entire sg list
 */
static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
{
	int dmalen;
	u32 max_w = max(data_width1, data_width2);
	u32 min_w = min(data_width1, data_width2);
	u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);

	if (seg_max > STEDMA40_MAX_SEG_SIZE)
		seg_max -= (1 << max_w);

	if (!IS_ALIGNED(size, 1 << max_w))
		return -EINVAL;

	if (size <= seg_max)
		dmalen = 1;
	else {
		dmalen = size / seg_max;
		if (dmalen * seg_max < size)
			dmalen++;
	}
	return dmalen;
}

static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
			   u32 data_width1, u32 data_width2)
{
	struct scatterlist *sg;
	int i;
	int len = 0;
	int ret;

	for_each_sg(sgl, sg, sg_len, i) {
		ret = d40_size_2_dmalen(sg_dma_len(sg),
					data_width1, data_width2);
		if (ret < 0)
			return ret;
		len += ret;
	}
	return len;
}
1017

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061

#ifdef CONFIG_PM
static void dma40_backup(void __iomem *baseaddr, u32 *backup,
			 u32 *regaddr, int num, bool save)
{
	int i;

	for (i = 0; i < num; i++) {
		void __iomem *addr = baseaddr + regaddr[i];

		if (save)
			backup[i] = readl_relaxed(addr);
		else
			writel_relaxed(backup[i], addr);
	}
}

static void d40_save_restore_registers(struct d40_base *base, bool save)
{
	int i;

	/* Save/Restore channel specific registers */
	for (i = 0; i < base->num_phy_chans; i++) {
		void __iomem *addr;
		int idx;

		if (base->phy_res[i].reserved)
			continue;

		addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
		idx = i * ARRAY_SIZE(d40_backup_regs_chan);

		dma40_backup(addr, &base->reg_val_backup_chan[idx],
			     d40_backup_regs_chan,
			     ARRAY_SIZE(d40_backup_regs_chan),
			     save);
	}

	/* Save/Restore global registers */
	dma40_backup(base->virtbase, base->reg_val_backup,
		     d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
		     save);

	/* Save/Restore registers only existing on dma40 v3 and later */
1062 1063 1064 1065 1066
	if (base->gen_dmac.backup)
		dma40_backup(base->virtbase, base->reg_val_backup_v4,
			     base->gen_dmac.backup,
			base->gen_dmac.backup_size,
			save);
1067 1068 1069 1070 1071 1072
}
#else
static void d40_save_restore_registers(struct d40_base *base, bool save)
{
}
#endif
1073

1074 1075
static int __d40_execute_command_phy(struct d40_chan *d40c,
				     enum d40_command command)
1076
{
1077 1078
	u32 status;
	int i;
1079 1080 1081
	void __iomem *active_reg;
	int ret = 0;
	unsigned long flags;
1082
	u32 wmask;
1083

1084 1085 1086 1087 1088 1089
	if (command == D40_DMA_STOP) {
		ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
		if (ret)
			return ret;
	}

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
	spin_lock_irqsave(&d40c->base->execmd_lock, flags);

	if (d40c->phy_chan->num % 2 == 0)
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
	else
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;

	if (command == D40_DMA_SUSPEND_REQ) {
		status = (readl(active_reg) &
			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
			D40_CHAN_POS(d40c->phy_chan->num);

		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
			goto done;
	}

1106 1107 1108
	wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
	writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
	       active_reg);
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129

	if (command == D40_DMA_SUSPEND_REQ) {

		for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
			status = (readl(active_reg) &
				  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
				D40_CHAN_POS(d40c->phy_chan->num);

			cpu_relax();
			/*
			 * Reduce the number of bus accesses while
			 * waiting for the DMA to suspend.
			 */
			udelay(3);

			if (status == D40_DMA_STOP ||
			    status == D40_DMA_SUSPENDED)
				break;
		}

		if (i == D40_SUSPEND_MAX_IT) {
1130 1131 1132
			chan_err(d40c,
				"unable to suspend the chl %d (log: %d) status %x\n",
				d40c->phy_chan->num, d40c->log_num,
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
				status);
			dump_stack();
			ret = -EBUSY;
		}

	}
done:
	spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
	return ret;
}

static void d40_term_all(struct d40_chan *d40c)
{
	struct d40_desc *d40d;
1147
	struct d40_desc *_d;
1148

1149 1150 1151 1152 1153 1154
	/* Release completed descriptors */
	while ((d40d = d40_first_done(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
	/* Release active descriptors */
	while ((d40d = d40_first_active_get(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}

	/* Release queued descriptors waiting for transfer */
	while ((d40d = d40_first_queued(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}

1167 1168 1169 1170 1171
	/* Release pending descriptors */
	while ((d40d = d40_first_pending(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}
1172

1173 1174 1175 1176 1177 1178 1179
	/* Release client owned descriptors */
	if (!list_empty(&d40c->client))
		list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
			d40_desc_remove(d40d);
			d40_desc_free(d40c, d40d);
		}

1180 1181 1182 1183 1184 1185 1186
	/* Release descriptors in prepare queue */
	if (!list_empty(&d40c->prepare_queue))
		list_for_each_entry_safe(d40d, _d,
					 &d40c->prepare_queue, node) {
			d40_desc_remove(d40d);
			d40_desc_free(d40c, d40d);
		}
1187

1188 1189 1190
	d40c->pending_tx = 0;
}

1191 1192 1193
static void __d40_config_set_event(struct d40_chan *d40c,
				   enum d40_events event_type, u32 event,
				   int reg)
1194
{
1195
	void __iomem *addr = chan_base(d40c) + reg;
1196
	int tries;
1197 1198 1199 1200 1201
	u32 status;

	switch (event_type) {

	case D40_DEACTIVATE_EVENTLINE:
1202 1203 1204

		writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
		       | ~D40_EVENTLINE_MASK(event), addr);
1205 1206 1207 1208 1209 1210 1211 1212 1213
		break;

	case D40_SUSPEND_REQ_EVENTLINE:
		status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
			  D40_EVENTLINE_POS(event);

		if (status == D40_DEACTIVATE_EVENTLINE ||
		    status == D40_SUSPEND_REQ_EVENTLINE)
			break;
1214

1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
		writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
		       | ~D40_EVENTLINE_MASK(event), addr);

		for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {

			status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
				  D40_EVENTLINE_POS(event);

			cpu_relax();
			/*
			 * Reduce the number of bus accesses while
			 * waiting for the DMA to suspend.
			 */
			udelay(3);

			if (status == D40_DEACTIVATE_EVENTLINE)
				break;
		}

		if (tries == D40_SUSPEND_MAX_IT) {
			chan_err(d40c,
				"unable to stop the event_line chl %d (log: %d)"
				"status %x\n", d40c->phy_chan->num,
				 d40c->log_num, status);
		}
		break;

	case D40_ACTIVATE_EVENTLINE:
1243 1244 1245 1246 1247
	/*
	 * The hardware sometimes doesn't register the enable when src and dst
	 * event lines are active on the same logical channel.  Retry to ensure
	 * it does.  Usually only one retry is sufficient.
	 */
1248 1249 1250 1251 1252
		tries = 100;
		while (--tries) {
			writel((D40_ACTIVATE_EVENTLINE <<
				D40_EVENTLINE_POS(event)) |
				~D40_EVENTLINE_MASK(event), addr);
1253

1254 1255 1256
			if (readl(addr) & D40_EVENTLINE_MASK(event))
				break;
		}
1257

1258 1259 1260 1261 1262
		if (tries != 99)
			dev_dbg(chan2dev(d40c),
				"[%s] workaround enable S%cLNK (%d tries)\n",
				__func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
				100 - tries);
1263

1264 1265
		WARN_ON(!tries);
		break;
1266

1267 1268 1269
	case D40_ROUND_EVENTLINE:
		BUG();
		break;
1270

1271 1272
	}
}
1273

1274 1275 1276
static void d40_config_set_event(struct d40_chan *d40c,
				 enum d40_events event_type)
{
1277 1278 1279 1280 1281
	/* Enable event line connected to device (or memcpy) */
	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);

1282
		__d40_config_set_event(d40c, event_type, event,
1283
				       D40_CHAN_REG_SSLNK);
1284
	}
1285

1286 1287 1288
	if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM) {
		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);

1289
		__d40_config_set_event(d40c, event_type, event,
1290
				       D40_CHAN_REG_SDLNK);
1291 1292 1293
	}
}

1294
static u32 d40_chan_has_events(struct d40_chan *d40c)
1295
{
1296
	void __iomem *chanbase = chan_base(d40c);
1297
	u32 val;
1298

1299 1300
	val = readl(chanbase + D40_CHAN_REG_SSLNK);
	val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1301

1302
	return val;
1303 1304
}

1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
static int
__d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
{
	unsigned long flags;
	int ret = 0;
	u32 active_status;
	void __iomem *active_reg;

	if (d40c->phy_chan->num % 2 == 0)
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
	else
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;


	spin_lock_irqsave(&d40c->phy_chan->lock, flags);

	switch (command) {
	case D40_DMA_STOP:
	case D40_DMA_SUSPEND_REQ:

		active_status = (readl(active_reg) &
				 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
				 D40_CHAN_POS(d40c->phy_chan->num);

		if (active_status == D40_DMA_RUN)
			d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
		else
			d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);

		if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
			ret = __d40_execute_command_phy(d40c, command);

		break;

	case D40_DMA_RUN:

		d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
		ret = __d40_execute_command_phy(d40c, command);
		break;

	case D40_DMA_SUSPENDED:
		BUG();
		break;
	}

	spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
	return ret;
}

static int d40_channel_execute_command(struct d40_chan *d40c,
				       enum d40_command command)
{
	if (chan_is_logical(d40c))
		return __d40_execute_command_log(d40c, command);
	else
		return __d40_execute_command_phy(d40c, command);
}

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
static u32 d40_get_prmo(struct d40_chan *d40c)
{
	static const unsigned int phy_map[] = {
		[STEDMA40_PCHAN_BASIC_MODE]
			= D40_DREG_PRMO_PCHAN_BASIC,
		[STEDMA40_PCHAN_MODULO_MODE]
			= D40_DREG_PRMO_PCHAN_MODULO,
		[STEDMA40_PCHAN_DOUBLE_DST_MODE]
			= D40_DREG_PRMO_PCHAN_DOUBLE_DST,
	};
	static const unsigned int log_map[] = {
		[STEDMA40_LCHAN_SRC_PHY_DST_LOG]
			= D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
		[STEDMA40_LCHAN_SRC_LOG_DST_PHY]
			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
		[STEDMA40_LCHAN_SRC_LOG_DST_LOG]
			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
	};

1382
	if (chan_is_physical(d40c))
1383 1384 1385 1386 1387
		return phy_map[d40c->dma_cfg.mode_opt];
	else
		return log_map[d40c->dma_cfg.mode_opt];
}

1388
static void d40_config_write(struct d40_chan *d40c)
1389 1390 1391 1392 1393 1394 1395
{
	u32 addr_base;
	u32 var;

	/* Odd addresses are even addresses + 4 */
	addr_base = (d40c->phy_chan->num % 2) * 4;
	/* Setup channel mode to logical or physical */
1396
	var = ((u32)(chan_is_logical(d40c)) + 1) <<
1397 1398 1399 1400
		D40_CHAN_POS(d40c->phy_chan->num);
	writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);

	/* Setup operational mode option register */
1401
	var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1402 1403 1404

	writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);

1405
	if (chan_is_logical(d40c)) {
1406 1407 1408 1409
		int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
			   & D40_SREG_ELEM_LOG_LIDX_MASK;
		void __iomem *chanbase = chan_base(d40c);

1410
		/* Set default config for CFG reg */
1411 1412
		writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
		writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1413

1414
		/* Set LIDX for lcla */
1415 1416
		writel(lidx, chanbase + D40_CHAN_REG_SSELT);
		writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1417 1418 1419 1420

		/* Clear LNK which will be used by d40_chan_has_events() */
		writel(0, chanbase + D40_CHAN_REG_SSLNK);
		writel(0, chanbase + D40_CHAN_REG_SDLNK);
1421 1422 1423
	}
}

1424 1425 1426 1427
static u32 d40_residue(struct d40_chan *d40c)
{
	u32 num_elt;

1428
	if (chan_is_logical(d40c))
1429 1430
		num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
			>> D40_MEM_LCSP2_ECNT_POS;
1431 1432 1433 1434 1435 1436
	else {
		u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
		num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
			  >> D40_SREG_ELEM_PHY_ECNT_POS;
	}

1437 1438 1439 1440 1441 1442 1443
	return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
}

static bool d40_tx_is_linked(struct d40_chan *d40c)
{
	bool is_link;

1444
	if (chan_is_logical(d40c))
1445 1446
		is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
	else
1447 1448 1449
		is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
			  & D40_SREG_LNK_PHYS_LNK_MASK;

1450 1451 1452
	return is_link;
}

1453
static int d40_pause(struct d40_chan *d40c)
1454 1455 1456 1457
{
	int res = 0;
	unsigned long flags;

1458 1459 1460
	if (!d40c->busy)
		return 0;

1461
	pm_runtime_get_sync(d40c->base->dev);
1462 1463 1464
	spin_lock_irqsave(&d40c->lock, flags);

	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1465

1466 1467
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
1468 1469 1470 1471
	spin_unlock_irqrestore(&d40c->lock, flags);
	return res;
}

1472
static int d40_resume(struct d40_chan *d40c)
1473 1474 1475 1476
{
	int res = 0;
	unsigned long flags;

1477 1478 1479
	if (!d40c->busy)
		return 0;

1480
	spin_lock_irqsave(&d40c->lock, flags);
1481
	pm_runtime_get_sync(d40c->base->dev);
1482 1483

	/* If bytes left to transfer or linked tx resume job */
1484
	if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1485 1486
		res = d40_channel_execute_command(d40c, D40_DMA_RUN);

1487 1488
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
1489 1490 1491 1492
	spin_unlock_irqrestore(&d40c->lock, flags);
	return res;
}

1493 1494 1495 1496 1497 1498 1499
static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
{
	struct d40_chan *d40c = container_of(tx->chan,
					     struct d40_chan,
					     chan);
	struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
	unsigned long flags;
1500
	dma_cookie_t cookie;
1501 1502

	spin_lock_irqsave(&d40c->lock, flags);
1503
	cookie = dma_cookie_assign(tx);
1504 1505 1506
	d40_desc_queue(d40c, d40d);
	spin_unlock_irqrestore(&d40c->lock, flags);

1507
	return cookie;
1508 1509 1510 1511
}

static int d40_start(struct d40_chan *d40c)
{
1512
	return d40_channel_execute_command(d40c, D40_DMA_RUN);
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
}

static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
{
	struct d40_desc *d40d;
	int err;

	/* Start queued jobs, if any */
	d40d = d40_first_queued(d40c);

	if (d40d != NULL) {
1524
		if (!d40c->busy) {
1525
			d40c->busy = true;
1526 1527
			pm_runtime_get_sync(d40c->base->dev);
		}
1528 1529 1530 1531 1532 1533 1534

		/* Remove from queue */
		d40_desc_remove(d40d);

		/* Add to active queue */
		d40_desc_submit(d40c, d40d);

1535 1536
		/* Initiate DMA job */
		d40_desc_load(d40c, d40d);
1537

1538 1539
		/* Start dma job */
		err = d40_start(d40c);
1540

1541 1542
		if (err)
			return NULL;
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
	}

	return d40d;
}

/* called from interrupt context */
static void dma_tc_handle(struct d40_chan *d40c)
{
	struct d40_desc *d40d;

	/* Get first active entry from list */
	d40d = d40_first_active_get(d40c);

	if (d40d == NULL)
		return;

R
Rabin Vincent 已提交
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
	if (d40d->cyclic) {
		/*
		 * If this was a paritially loaded list, we need to reloaded
		 * it, and only when the list is completed.  We need to check
		 * for done because the interrupt will hit for every link, and
		 * not just the last one.
		 */
		if (d40d->lli_current < d40d->lli_len
		    && !d40_tx_is_linked(d40c)
		    && !d40_residue(d40c)) {
			d40_lcla_free_all(d40c, d40d);
			d40_desc_load(d40c, d40d);
			(void) d40_start(d40c);
1572

R
Rabin Vincent 已提交
1573 1574 1575 1576 1577
			if (d40d->lli_current == d40d->lli_len)
				d40d->lli_current = 0;
		}
	} else {
		d40_lcla_free_all(d40c, d40d);
1578

R
Rabin Vincent 已提交
1579 1580 1581 1582 1583 1584 1585 1586 1587
		if (d40d->lli_current < d40d->lli_len) {
			d40_desc_load(d40c, d40d);
			/* Start dma job */
			(void) d40_start(d40c);
			return;
		}

		if (d40_queue_start(d40c) == NULL)
			d40c->busy = false;
1588 1589
		pm_runtime_mark_last_busy(d40c->base->dev);
		pm_runtime_put_autosuspend(d40c->base->dev);
1590

1591 1592 1593
		d40_desc_remove(d40d);
		d40_desc_done(d40c, d40d);
	}
1594

1595 1596 1597 1598 1599 1600 1601 1602
	d40c->pending_tx++;
	tasklet_schedule(&d40c->tasklet);

}

static void dma_tasklet(unsigned long data)
{
	struct d40_chan *d40c = (struct d40_chan *) data;
1603
	struct d40_desc *d40d;
1604 1605 1606 1607 1608 1609
	unsigned long flags;
	dma_async_tx_callback callback;
	void *callback_param;

	spin_lock_irqsave(&d40c->lock, flags);

1610 1611 1612 1613 1614 1615 1616 1617
	/* Get first entry from the done list */
	d40d = d40_first_done(d40c);
	if (d40d == NULL) {
		/* Check if we have reached here for cyclic job */
		d40d = d40_first_active_get(d40c);
		if (d40d == NULL || !d40d->cyclic)
			goto err;
	}
1618

R
Rabin Vincent 已提交
1619
	if (!d40d->cyclic)
1620
		dma_cookie_complete(&d40d->txd);
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631

	/*
	 * If terminating a channel pending_tx is set to zero.
	 * This prevents any finished active jobs to return to the client.
	 */
	if (d40c->pending_tx == 0) {
		spin_unlock_irqrestore(&d40c->lock, flags);
		return;
	}

	/* Callback to client */
1632 1633 1634
	callback = d40d->txd.callback;
	callback_param = d40d->txd.callback_param;

R
Rabin Vincent 已提交
1635 1636
	if (!d40d->cyclic) {
		if (async_tx_test_ack(&d40d->txd)) {
1637
			d40_desc_remove(d40d);
R
Rabin Vincent 已提交
1638
			d40_desc_free(d40c, d40d);
1639 1640 1641 1642 1643
		} else if (!d40d->is_in_client_list) {
			d40_desc_remove(d40d);
			d40_lcla_free_all(d40c, d40d);
			list_add_tail(&d40d->node, &d40c->client);
			d40d->is_in_client_list = true;
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
		}
	}

	d40c->pending_tx--;

	if (d40c->pending_tx)
		tasklet_schedule(&d40c->tasklet);

	spin_unlock_irqrestore(&d40c->lock, flags);

1654
	if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1655 1656 1657 1658
		callback(callback_param);

	return;

1659 1660
err:
	/* Rescue manouver if receiving double interrupts */
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
	if (d40c->pending_tx > 0)
		d40c->pending_tx--;
	spin_unlock_irqrestore(&d40c->lock, flags);
}

static irqreturn_t d40_handle_interrupt(int irq, void *data)
{
	int i;
	u32 idx;
	u32 row;
	long chan = -1;
	struct d40_chan *d40c;
	unsigned long flags;
	struct d40_base *base = data;
1675 1676 1677
	u32 regs[base->gen_dmac.il_size];
	struct d40_interrupt_lookup *il = base->gen_dmac.il;
	u32 il_size = base->gen_dmac.il_size;
1678 1679 1680 1681

	spin_lock_irqsave(&base->interrupt_lock, flags);

	/* Read interrupt status of both logical and physical channels */
1682
	for (i = 0; i < il_size; i++)
1683 1684 1685 1686 1687
		regs[i] = readl(base->virtbase + il[i].src);

	for (;;) {

		chan = find_next_bit((unsigned long *)regs,
1688
				     BITS_PER_LONG * il_size, chan + 1);
1689 1690

		/* No more set bits found? */
1691
		if (chan == BITS_PER_LONG * il_size)
1692 1693 1694 1695 1696 1697 1698 1699 1700
			break;

		row = chan / BITS_PER_LONG;
		idx = chan & (BITS_PER_LONG - 1);

		if (il[row].offset == D40_PHY_CHAN)
			d40c = base->lookup_phy_chans[idx];
		else
			d40c = base->lookup_log_chans[il[row].offset + idx];
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712

		if (!d40c) {
			/*
			 * No error because this can happen if something else
			 * in the system is using the channel.
			 */
			continue;
		}

		/* ACK interrupt */
		writel(1 << idx, base->virtbase + il[row].clr);

1713 1714 1715 1716 1717
		spin_lock(&d40c->lock);

		if (!il[row].is_error)
			dma_tc_handle(d40c);
		else
1718 1719
			d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
				chan, il[row].offset, idx);
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734

		spin_unlock(&d40c->lock);
	}

	spin_unlock_irqrestore(&base->interrupt_lock, flags);

	return IRQ_HANDLED;
}

static int d40_validate_conf(struct d40_chan *d40c,
			     struct stedma40_chan_cfg *conf)
{
	int res = 0;
	u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
	u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
1735
	bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1736

1737
	if (!conf->dir) {
1738
		chan_err(d40c, "Invalid direction.\n");
1739 1740 1741 1742 1743 1744 1745
		res = -EINVAL;
	}

	if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
	    d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
	    d40c->runtime_addr == 0) {

1746 1747
		chan_err(d40c, "Invalid TX channel address (%d)\n",
			 conf->dst_dev_type);
1748 1749 1750 1751 1752 1753
		res = -EINVAL;
	}

	if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
	    d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
	    d40c->runtime_addr == 0) {
1754 1755
		chan_err(d40c, "Invalid RX channel address (%d)\n",
			conf->src_dev_type);
1756 1757 1758 1759
		res = -EINVAL;
	}

	if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1760
	    dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1761
		chan_err(d40c, "Invalid dst\n");
1762 1763 1764
		res = -EINVAL;
	}

1765
	if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1766
	    src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1767
		chan_err(d40c, "Invalid src\n");
1768 1769 1770 1771 1772
		res = -EINVAL;
	}

	if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
	    dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1773
		chan_err(d40c, "No event line\n");
1774 1775 1776 1777 1778
		res = -EINVAL;
	}

	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
	    (src_event_group != dst_event_group)) {
1779
		chan_err(d40c, "Invalid event group\n");
1780 1781 1782 1783 1784 1785 1786 1787
		res = -EINVAL;
	}

	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
		/*
		 * DMAC HW supports it. Will be added to this driver,
		 * in case any dma client requires it.
		 */
1788
		chan_err(d40c, "periph to periph not supported\n");
1789 1790 1791
		res = -EINVAL;
	}

1792 1793 1794 1795 1796 1797 1798 1799 1800
	if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
	    (1 << conf->src_info.data_width) !=
	    d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
	    (1 << conf->dst_info.data_width)) {
		/*
		 * The DMAC hardware only supports
		 * src (burst x width) == dst (burst x width)
		 */

1801
		chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1802 1803 1804
		res = -EINVAL;
	}

1805 1806 1807
	return res;
}

1808 1809 1810
static bool d40_alloc_mask_set(struct d40_phy_res *phy,
			       bool is_src, int log_event_line, bool is_log,
			       bool *first_user)
1811 1812 1813
{
	unsigned long flags;
	spin_lock_irqsave(&phy->lock, flags);
1814 1815 1816 1817

	*first_user = ((phy->allocated_src | phy->allocated_dst)
			== D40_ALLOC_FREE);

1818
	if (!is_log) {
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
		/* Physical interrupts are masked per physical full channel */
		if (phy->allocated_src == D40_ALLOC_FREE &&
		    phy->allocated_dst == D40_ALLOC_FREE) {
			phy->allocated_dst = D40_ALLOC_PHY;
			phy->allocated_src = D40_ALLOC_PHY;
			goto found;
		} else
			goto not_found;
	}

	/* Logical channel */
	if (is_src) {
		if (phy->allocated_src == D40_ALLOC_PHY)
			goto not_found;

		if (phy->allocated_src == D40_ALLOC_FREE)
			phy->allocated_src = D40_ALLOC_LOG_FREE;

		if (!(phy->allocated_src & (1 << log_event_line))) {
			phy->allocated_src |= 1 << log_event_line;
			goto found;
		} else
			goto not_found;
	} else {
		if (phy->allocated_dst == D40_ALLOC_PHY)
			goto not_found;

		if (phy->allocated_dst == D40_ALLOC_FREE)
			phy->allocated_dst = D40_ALLOC_LOG_FREE;

		if (!(phy->allocated_dst & (1 << log_event_line))) {
			phy->allocated_dst |= 1 << log_event_line;
			goto found;
		} else
			goto not_found;
	}

not_found:
	spin_unlock_irqrestore(&phy->lock, flags);
	return false;
found:
	spin_unlock_irqrestore(&phy->lock, flags);
	return true;
}

static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
			       int log_event_line)
{
	unsigned long flags;
	bool is_free = false;

	spin_lock_irqsave(&phy->lock, flags);
	if (!log_event_line) {
		phy->allocated_dst = D40_ALLOC_FREE;
		phy->allocated_src = D40_ALLOC_FREE;
		is_free = true;
		goto out;
	}

	/* Logical channel */
	if (is_src) {
		phy->allocated_src &= ~(1 << log_event_line);
		if (phy->allocated_src == D40_ALLOC_LOG_FREE)
			phy->allocated_src = D40_ALLOC_FREE;
	} else {
		phy->allocated_dst &= ~(1 << log_event_line);
		if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
			phy->allocated_dst = D40_ALLOC_FREE;
	}

	is_free = ((phy->allocated_src | phy->allocated_dst) ==
		   D40_ALLOC_FREE);

out:
	spin_unlock_irqrestore(&phy->lock, flags);

	return is_free;
}

1898
static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1899 1900 1901 1902 1903 1904 1905 1906
{
	int dev_type;
	int event_group;
	int event_line;
	struct d40_phy_res *phys;
	int i;
	int j;
	int log_num;
1907
	int num_phy_chans;
1908
	bool is_src;
1909
	bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1910 1911

	phys = d40c->base->phy_res;
1912
	num_phy_chans = d40c->base->num_phy_chans;
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932

	if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
		dev_type = d40c->dma_cfg.src_dev_type;
		log_num = 2 * dev_type;
		is_src = true;
	} else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
		   d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
		/* dst event lines are used for logical memcpy */
		dev_type = d40c->dma_cfg.dst_dev_type;
		log_num = 2 * dev_type + 1;
		is_src = false;
	} else
		return -EINVAL;

	event_group = D40_TYPE_TO_GROUP(dev_type);
	event_line = D40_TYPE_TO_EVENT(dev_type);

	if (!is_log) {
		if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
			/* Find physical half channel */
1933 1934
			if (d40c->dma_cfg.use_fixed_channel) {
				i = d40c->dma_cfg.phy_channel;
1935
				if (d40_alloc_mask_set(&phys[i], is_src,
1936 1937
						       0, is_log,
						       first_phy_user))
1938
					goto found_phy;
1939 1940 1941 1942 1943 1944 1945
			} else {
				for (i = 0; i < num_phy_chans; i++) {
					if (d40_alloc_mask_set(&phys[i], is_src,
						       0, is_log,
						       first_phy_user))
						goto found_phy;
				}
1946 1947 1948 1949 1950
			}
		} else
			for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
				int phy_num = j  + event_group * 2;
				for (i = phy_num; i < phy_num + 2; i++) {
1951 1952 1953
					if (d40_alloc_mask_set(&phys[i],
							       is_src,
							       0,
1954 1955
							       is_log,
							       first_phy_user))
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
						goto found_phy;
				}
			}
		return -EINVAL;
found_phy:
		d40c->phy_chan = &phys[i];
		d40c->log_num = D40_PHY_CHAN;
		goto out;
	}
	if (dev_type == -1)
		return -EINVAL;

	/* Find logical channel */
	for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
		int phy_num = j + event_group * 2;
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

		if (d40c->dma_cfg.use_fixed_channel) {
			i = d40c->dma_cfg.phy_channel;

			if ((i != phy_num) && (i != phy_num + 1)) {
				dev_err(chan2dev(d40c),
					"invalid fixed phy channel %d\n", i);
				return -EINVAL;
			}

			if (d40_alloc_mask_set(&phys[i], is_src, event_line,
					       is_log, first_phy_user))
				goto found_log;

			dev_err(chan2dev(d40c),
				"could not allocate fixed phy channel %d\n", i);
			return -EINVAL;
		}

1990 1991 1992 1993 1994 1995 1996 1997
		/*
		 * Spread logical channels across all available physical rather
		 * than pack every logical channel at the first available phy
		 * channels.
		 */
		if (is_src) {
			for (i = phy_num; i < phy_num + 2; i++) {
				if (d40_alloc_mask_set(&phys[i], is_src,
1998 1999
						       event_line, is_log,
						       first_phy_user))
2000 2001 2002 2003 2004
					goto found_log;
			}
		} else {
			for (i = phy_num + 1; i >= phy_num; i--) {
				if (d40_alloc_mask_set(&phys[i], is_src,
2005 2006
						       event_line, is_log,
						       first_phy_user))
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
					goto found_log;
			}
		}
	}
	return -EINVAL;

found_log:
	d40c->phy_chan = &phys[i];
	d40c->log_num = log_num;
out:

	if (is_log)
		d40c->base->lookup_log_chans[d40c->log_num] = d40c;
	else
		d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;

	return 0;

}

static int d40_config_memcpy(struct d40_chan *d40c)
{
	dma_cap_mask_t cap = d40c->chan.device->cap_mask;

	if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
		d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
2034
		d40c->dma_cfg.dst_dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
2035 2036 2037 2038 2039

	} else if (dma_has_cap(DMA_MEMCPY, cap) &&
		   dma_has_cap(DMA_SLAVE, cap)) {
		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
	} else {
2040
		chan_err(d40c, "No memcpy\n");
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
		return -EINVAL;
	}

	return 0;
}

static int d40_free_dma(struct d40_chan *d40c)
{

	int res = 0;
2051
	u32 event;
2052 2053 2054 2055 2056 2057 2058
	struct d40_phy_res *phy = d40c->phy_chan;
	bool is_src;

	/* Terminate all queued and active transfers */
	d40_term_all(d40c);

	if (phy == NULL) {
2059
		chan_err(d40c, "phy == null\n");
2060 2061 2062 2063 2064
		return -EINVAL;
	}

	if (phy->allocated_src == D40_ALLOC_FREE &&
	    phy->allocated_dst == D40_ALLOC_FREE) {
2065
		chan_err(d40c, "channel already free\n");
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
		return -EINVAL;
	}

	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
		is_src = false;
	} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
		is_src = true;
	} else {
2077
		chan_err(d40c, "Unknown direction\n");
2078 2079 2080
		return -EINVAL;
	}

2081
	pm_runtime_get_sync(d40c->base->dev);
2082
	res = d40_channel_execute_command(d40c, D40_DMA_STOP);
2083
	if (res) {
2084
		chan_err(d40c, "stop failed\n");
2085
		goto out;
2086 2087
	}

2088
	d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
2089

2090
	if (chan_is_logical(d40c))
2091
		d40c->base->lookup_log_chans[d40c->log_num] = NULL;
2092 2093
	else
		d40c->base->lookup_phy_chans[phy->num] = NULL;
2094 2095 2096 2097 2098 2099 2100

	if (d40c->busy) {
		pm_runtime_mark_last_busy(d40c->base->dev);
		pm_runtime_put_autosuspend(d40c->base->dev);
	}

	d40c->busy = false;
2101
	d40c->phy_chan = NULL;
2102
	d40c->configured = false;
2103
out:
2104

2105 2106 2107
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
	return res;
2108 2109
}

2110 2111
static bool d40_is_paused(struct d40_chan *d40c)
{
2112
	void __iomem *chanbase = chan_base(d40c);
2113 2114 2115 2116 2117 2118 2119 2120
	bool is_paused = false;
	unsigned long flags;
	void __iomem *active_reg;
	u32 status;
	u32 event;

	spin_lock_irqsave(&d40c->lock, flags);

2121
	if (chan_is_physical(d40c)) {
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
		if (d40c->phy_chan->num % 2 == 0)
			active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
		else
			active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;

		status = (readl(active_reg) &
			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
			D40_CHAN_POS(d40c->phy_chan->num);
		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
			is_paused = true;

		goto _exit;
	}

	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
2137
	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
2138
		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
2139
		status = readl(chanbase + D40_CHAN_REG_SDLNK);
2140
	} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
2141
		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
2142
		status = readl(chanbase + D40_CHAN_REG_SSLNK);
2143
	} else {
2144
		chan_err(d40c, "Unknown direction\n");
2145 2146
		goto _exit;
	}
2147

2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
	status = (status & D40_EVENTLINE_MASK(event)) >>
		D40_EVENTLINE_POS(event);

	if (status != D40_DMA_RUN)
		is_paused = true;
_exit:
	spin_unlock_irqrestore(&d40c->lock, flags);
	return is_paused;

}

2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
static u32 stedma40_residue(struct dma_chan *chan)
{
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	u32 bytes_left;
	unsigned long flags;

	spin_lock_irqsave(&d40c->lock, flags);
	bytes_left = d40_residue(d40c);
	spin_unlock_irqrestore(&d40c->lock, flags);

	return bytes_left;
}

2173 2174 2175
static int
d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
		struct scatterlist *sg_src, struct scatterlist *sg_dst,
R
Rabin Vincent 已提交
2176 2177
		unsigned int sg_len, dma_addr_t src_dev_addr,
		dma_addr_t dst_dev_addr)
2178 2179 2180 2181
{
	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
	struct stedma40_half_channel_info *src_info = &cfg->src_info;
	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2182
	int ret;
2183

2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
	ret = d40_log_sg_to_lli(sg_src, sg_len,
				src_dev_addr,
				desc->lli_log.src,
				chan->log_def.lcsp1,
				src_info->data_width,
				dst_info->data_width);

	ret = d40_log_sg_to_lli(sg_dst, sg_len,
				dst_dev_addr,
				desc->lli_log.dst,
				chan->log_def.lcsp3,
				dst_info->data_width,
				src_info->data_width);

	return ret < 0 ? ret : 0;
2199 2200 2201 2202 2203
}

static int
d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
		struct scatterlist *sg_src, struct scatterlist *sg_dst,
R
Rabin Vincent 已提交
2204 2205
		unsigned int sg_len, dma_addr_t src_dev_addr,
		dma_addr_t dst_dev_addr)
2206 2207 2208 2209
{
	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
	struct stedma40_half_channel_info *src_info = &cfg->src_info;
	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
R
Rabin Vincent 已提交
2210
	unsigned long flags = 0;
2211 2212
	int ret;

R
Rabin Vincent 已提交
2213 2214 2215
	if (desc->cyclic)
		flags |= LLI_CYCLIC | LLI_TERM_INT;

2216 2217 2218 2219
	ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
				desc->lli_phy.src,
				virt_to_phys(desc->lli_phy.src),
				chan->src_def_cfg,
R
Rabin Vincent 已提交
2220
				src_info, dst_info, flags);
2221 2222 2223 2224 2225

	ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
				desc->lli_phy.dst,
				virt_to_phys(desc->lli_phy.dst),
				chan->dst_def_cfg,
R
Rabin Vincent 已提交
2226
				dst_info, src_info, flags);
2227 2228 2229 2230 2231 2232 2233

	dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
				   desc->lli_pool.size, DMA_TO_DEVICE);

	return ret < 0 ? ret : 0;
}

2234 2235 2236 2237 2238 2239
static struct d40_desc *
d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
	      unsigned int sg_len, unsigned long dma_flags)
{
	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
	struct d40_desc *desc;
2240
	int ret;
2241 2242 2243 2244 2245 2246 2247 2248 2249

	desc = d40_desc_get(chan);
	if (!desc)
		return NULL;

	desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
					cfg->dst_info.data_width);
	if (desc->lli_len < 0) {
		chan_err(chan, "Unaligned size\n");
2250 2251
		goto err;
	}
2252

2253 2254 2255 2256
	ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
	if (ret < 0) {
		chan_err(chan, "Could not allocate lli\n");
		goto err;
2257 2258 2259 2260 2261 2262 2263 2264 2265
	}

	desc->lli_current = 0;
	desc->txd.flags = dma_flags;
	desc->txd.tx_submit = d40_tx_submit;

	dma_async_tx_descriptor_init(&desc->txd, &chan->chan);

	return desc;
2266 2267 2268 2269

err:
	d40_desc_free(chan, desc);
	return NULL;
2270 2271
}

2272
static dma_addr_t
2273
d40_get_dev_addr(struct d40_chan *chan, enum dma_transfer_direction direction)
2274
{
2275 2276
	struct stedma40_platform_data *plat = chan->base->plat_data;
	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2277
	dma_addr_t addr = 0;
2278 2279 2280 2281

	if (chan->runtime_addr)
		return chan->runtime_addr;

2282
	if (direction == DMA_DEV_TO_MEM)
2283
		addr = plat->dev_rx[cfg->src_dev_type];
2284
	else if (direction == DMA_MEM_TO_DEV)
2285 2286 2287 2288 2289 2290 2291 2292
		addr = plat->dev_tx[cfg->dst_dev_type];

	return addr;
}

static struct dma_async_tx_descriptor *
d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
	    struct scatterlist *sg_dst, unsigned int sg_len,
2293
	    enum dma_transfer_direction direction, unsigned long dma_flags)
2294 2295
{
	struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
R
Rabin Vincent 已提交
2296 2297
	dma_addr_t src_dev_addr = 0;
	dma_addr_t dst_dev_addr = 0;
2298
	struct d40_desc *desc;
2299
	unsigned long flags;
2300
	int ret;
2301

2302 2303 2304
	if (!chan->phy_chan) {
		chan_err(chan, "Cannot prepare unallocated channel\n");
		return NULL;
2305 2306
	}

2307
	spin_lock_irqsave(&chan->lock, flags);
2308

2309 2310
	desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
	if (desc == NULL)
2311 2312
		goto err;

R
Rabin Vincent 已提交
2313 2314 2315
	if (sg_next(&sg_src[sg_len - 1]) == sg_src)
		desc->cyclic = true;

2316
	if (direction != DMA_TRANS_NONE) {
R
Rabin Vincent 已提交
2317 2318
		dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);

2319
		if (direction == DMA_DEV_TO_MEM)
R
Rabin Vincent 已提交
2320
			src_dev_addr = dev_addr;
2321
		else if (direction == DMA_MEM_TO_DEV)
R
Rabin Vincent 已提交
2322 2323
			dst_dev_addr = dev_addr;
	}
2324 2325 2326

	if (chan_is_logical(chan))
		ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
R
Rabin Vincent 已提交
2327
				      sg_len, src_dev_addr, dst_dev_addr);
2328 2329
	else
		ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
R
Rabin Vincent 已提交
2330
				      sg_len, src_dev_addr, dst_dev_addr);
2331 2332 2333 2334 2335

	if (ret) {
		chan_err(chan, "Failed to prepare %s sg job: %d\n",
			 chan_is_logical(chan) ? "log" : "phy", ret);
		goto err;
2336 2337
	}

2338 2339 2340 2341 2342 2343
	/*
	 * add descriptor to the prepare queue in order to be able
	 * to free them later in terminate_all
	 */
	list_add_tail(&desc->node, &chan->prepare_queue);

2344 2345 2346
	spin_unlock_irqrestore(&chan->lock, flags);

	return &desc->txd;
2347 2348

err:
2349 2350 2351
	if (desc)
		d40_desc_free(chan, desc);
	spin_unlock_irqrestore(&chan->lock, flags);
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
	return NULL;
}

bool stedma40_filter(struct dma_chan *chan, void *data)
{
	struct stedma40_chan_cfg *info = data;
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	int err;

	if (data) {
		err = d40_validate_conf(d40c, info);
		if (!err)
			d40c->dma_cfg = *info;
	} else
		err = d40_config_memcpy(d40c);

2369 2370 2371
	if (!err)
		d40c->configured = true;

2372 2373 2374 2375
	return err == 0;
}
EXPORT_SYMBOL(stedma40_filter);

2376 2377 2378 2379
static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
{
	bool realtime = d40c->dma_cfg.realtime;
	bool highprio = d40c->dma_cfg.high_priority;
2380
	u32 rtreg;
2381 2382 2383
	u32 event = D40_TYPE_TO_EVENT(dev_type);
	u32 group = D40_TYPE_TO_GROUP(dev_type);
	u32 bit = 1 << event;
2384
	u32 prioreg;
2385
	struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
2386

2387
	rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
	/*
	 * Due to a hardware bug, in some cases a logical channel triggered by
	 * a high priority destination event line can generate extra packet
	 * transactions.
	 *
	 * The workaround is to not set the high priority level for the
	 * destination event lines that trigger logical channels.
	 */
	if (!src && chan_is_logical(d40c))
		highprio = false;

2399
	prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422

	/* Destination event lines are stored in the upper halfword */
	if (!src)
		bit <<= 16;

	writel(bit, d40c->base->virtbase + prioreg + group * 4);
	writel(bit, d40c->base->virtbase + rtreg + group * 4);
}

static void d40_set_prio_realtime(struct d40_chan *d40c)
{
	if (d40c->base->rev < 3)
		return;

	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
		__d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);

	if ((d40c->dma_cfg.dir ==  STEDMA40_MEM_TO_PERIPH) ||
	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
		__d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
}

2423 2424 2425 2426 2427 2428 2429
/* DMA ENGINE functions */
static int d40_alloc_chan_resources(struct dma_chan *chan)
{
	int err;
	unsigned long flags;
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
2430
	bool is_free_phy;
2431 2432
	spin_lock_irqsave(&d40c->lock, flags);

2433
	dma_cookie_init(chan);
2434

2435 2436
	/* If no dma configuration is set use default configuration (memcpy) */
	if (!d40c->configured) {
2437
		err = d40_config_memcpy(d40c);
2438
		if (err) {
2439
			chan_err(d40c, "Failed to configure memcpy channel\n");
2440 2441
			goto fail;
		}
2442 2443
	}

2444
	err = d40_allocate_channel(d40c, &is_free_phy);
2445
	if (err) {
2446
		chan_err(d40c, "Failed to allocate channel\n");
2447
		d40c->configured = false;
2448
		goto fail;
2449 2450
	}

2451
	pm_runtime_get_sync(d40c->base->dev);
2452 2453
	/* Fill in basic CFG register values */
	d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
2454
		    &d40c->dst_def_cfg, chan_is_logical(d40c));
2455

2456 2457
	d40_set_prio_realtime(d40c);

2458
	if (chan_is_logical(d40c)) {
2459 2460 2461 2462 2463
		d40_log_cfg(&d40c->dma_cfg,
			    &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);

		if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
			d40c->lcpa = d40c->base->lcpa_base +
2464
				d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
2465 2466
		else
			d40c->lcpa = d40c->base->lcpa_base +
2467 2468
				d40c->dma_cfg.dst_dev_type *
				D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2469 2470
	}

2471 2472 2473 2474 2475 2476
	dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
		 chan_is_logical(d40c) ? "logical" : "physical",
		 d40c->phy_chan->num,
		 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");


2477 2478 2479 2480 2481
	/*
	 * Only write channel configuration to the DMA if the physical
	 * resource is free. In case of multiple logical channels
	 * on the same physical resource, only the first write is necessary.
	 */
2482 2483
	if (is_free_phy)
		d40_config_write(d40c);
2484
fail:
2485 2486
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
2487
	spin_unlock_irqrestore(&d40c->lock, flags);
2488
	return err;
2489 2490 2491 2492 2493 2494 2495 2496 2497
}

static void d40_free_chan_resources(struct dma_chan *chan)
{
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	int err;
	unsigned long flags;

2498
	if (d40c->phy_chan == NULL) {
2499
		chan_err(d40c, "Cannot free unallocated channel\n");
2500 2501 2502
		return;
	}

2503 2504 2505 2506 2507
	spin_lock_irqsave(&d40c->lock, flags);

	err = d40_free_dma(d40c);

	if (err)
2508
		chan_err(d40c, "Failed to free channel\n");
2509 2510 2511 2512 2513 2514 2515
	spin_unlock_irqrestore(&d40c->lock, flags);
}

static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
						       dma_addr_t dst,
						       dma_addr_t src,
						       size_t size,
2516
						       unsigned long dma_flags)
2517
{
2518 2519
	struct scatterlist dst_sg;
	struct scatterlist src_sg;
2520

2521 2522
	sg_init_table(&dst_sg, 1);
	sg_init_table(&src_sg, 1);
2523

2524 2525
	sg_dma_address(&dst_sg) = dst;
	sg_dma_address(&src_sg) = src;
2526

2527 2528
	sg_dma_len(&dst_sg) = size;
	sg_dma_len(&src_sg) = size;
2529

2530
	return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
2531 2532
}

2533
static struct dma_async_tx_descriptor *
2534 2535 2536 2537
d40_prep_memcpy_sg(struct dma_chan *chan,
		   struct scatterlist *dst_sg, unsigned int dst_nents,
		   struct scatterlist *src_sg, unsigned int src_nents,
		   unsigned long dma_flags)
2538 2539 2540 2541
{
	if (dst_nents != src_nents)
		return NULL;

2542
	return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
2543 2544
}

2545 2546 2547 2548
static struct dma_async_tx_descriptor *
d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
		  unsigned int sg_len, enum dma_transfer_direction direction,
		  unsigned long dma_flags, void *context)
2549
{
2550
	if (!is_slave_direction(direction))
2551 2552
		return NULL;

2553
	return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2554 2555
}

R
Rabin Vincent 已提交
2556 2557 2558
static struct dma_async_tx_descriptor *
dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
		     size_t buf_len, size_t period_len,
2559 2560
		     enum dma_transfer_direction direction, unsigned long flags,
		     void *context)
R
Rabin Vincent 已提交
2561 2562 2563 2564 2565 2566
{
	unsigned int periods = buf_len / period_len;
	struct dma_async_tx_descriptor *txd;
	struct scatterlist *sg;
	int i;

2567
	sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
R
Rabin Vincent 已提交
2568 2569 2570 2571 2572 2573 2574
	for (i = 0; i < periods; i++) {
		sg_dma_address(&sg[i]) = dma_addr;
		sg_dma_len(&sg[i]) = period_len;
		dma_addr += period_len;
	}

	sg[periods].offset = 0;
2575
	sg_dma_len(&sg[periods]) = 0;
R
Rabin Vincent 已提交
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
	sg[periods].page_link =
		((unsigned long)sg | 0x01) & ~0x02;

	txd = d40_prep_sg(chan, sg, sg, periods, direction,
			  DMA_PREP_INTERRUPT);

	kfree(sg);

	return txd;
}

2587 2588 2589 2590 2591
static enum dma_status d40_tx_status(struct dma_chan *chan,
				     dma_cookie_t cookie,
				     struct dma_tx_state *txstate)
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2592
	enum dma_status ret;
2593

2594
	if (d40c->phy_chan == NULL) {
2595
		chan_err(d40c, "Cannot read status of unallocated channel\n");
2596 2597 2598
		return -EINVAL;
	}

2599 2600 2601
	ret = dma_cookie_status(chan, cookie, txstate);
	if (ret != DMA_SUCCESS)
		dma_set_residue(txstate, stedma40_residue(chan));
2602

2603 2604
	if (d40_is_paused(d40c))
		ret = DMA_PAUSED;
2605 2606 2607 2608 2609 2610 2611 2612 2613

	return ret;
}

static void d40_issue_pending(struct dma_chan *chan)
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	unsigned long flags;

2614
	if (d40c->phy_chan == NULL) {
2615
		chan_err(d40c, "Channel is not allocated!\n");
2616 2617 2618
		return;
	}

2619 2620
	spin_lock_irqsave(&d40c->lock, flags);

2621 2622 2623
	list_splice_tail_init(&d40c->pending_queue, &d40c->queue);

	/* Busy means that queued jobs are already being processed */
2624 2625 2626 2627 2628 2629
	if (!d40c->busy)
		(void) d40_queue_start(d40c);

	spin_unlock_irqrestore(&d40c->lock, flags);
}

2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
static void d40_terminate_all(struct dma_chan *chan)
{
	unsigned long flags;
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	int ret;

	spin_lock_irqsave(&d40c->lock, flags);

	pm_runtime_get_sync(d40c->base->dev);
	ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
	if (ret)
		chan_err(d40c, "Failed to stop channel\n");

	d40_term_all(d40c);
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
	if (d40c->busy) {
		pm_runtime_mark_last_busy(d40c->base->dev);
		pm_runtime_put_autosuspend(d40c->base->dev);
	}
	d40c->busy = false;

	spin_unlock_irqrestore(&d40c->lock, flags);
}

2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
static int
dma40_config_to_halfchannel(struct d40_chan *d40c,
			    struct stedma40_half_channel_info *info,
			    enum dma_slave_buswidth width,
			    u32 maxburst)
{
	enum stedma40_periph_data_width addr_width;
	int psize;

	switch (width) {
	case DMA_SLAVE_BUSWIDTH_1_BYTE:
		addr_width = STEDMA40_BYTE_WIDTH;
		break;
	case DMA_SLAVE_BUSWIDTH_2_BYTES:
		addr_width = STEDMA40_HALFWORD_WIDTH;
		break;
	case DMA_SLAVE_BUSWIDTH_4_BYTES:
		addr_width = STEDMA40_WORD_WIDTH;
		break;
	case DMA_SLAVE_BUSWIDTH_8_BYTES:
		addr_width = STEDMA40_DOUBLEWORD_WIDTH;
		break;
	default:
		dev_err(d40c->base->dev,
			"illegal peripheral address width "
			"requested (%d)\n",
			width);
		return -EINVAL;
	}

	if (chan_is_logical(d40c)) {
		if (maxburst >= 16)
			psize = STEDMA40_PSIZE_LOG_16;
		else if (maxburst >= 8)
			psize = STEDMA40_PSIZE_LOG_8;
		else if (maxburst >= 4)
			psize = STEDMA40_PSIZE_LOG_4;
		else
			psize = STEDMA40_PSIZE_LOG_1;
	} else {
		if (maxburst >= 16)
			psize = STEDMA40_PSIZE_PHY_16;
		else if (maxburst >= 8)
			psize = STEDMA40_PSIZE_PHY_8;
		else if (maxburst >= 4)
			psize = STEDMA40_PSIZE_PHY_4;
		else
			psize = STEDMA40_PSIZE_PHY_1;
	}

	info->data_width = addr_width;
	info->psize = psize;
	info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;

	return 0;
}

2712
/* Runtime reconfiguration extension */
2713 2714
static int d40_set_runtime_config(struct dma_chan *chan,
				  struct dma_slave_config *config)
2715 2716 2717
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2718
	enum dma_slave_buswidth src_addr_width, dst_addr_width;
2719
	dma_addr_t config_addr;
2720 2721 2722 2723 2724 2725 2726
	u32 src_maxburst, dst_maxburst;
	int ret;

	src_addr_width = config->src_addr_width;
	src_maxburst = config->src_maxburst;
	dst_addr_width = config->dst_addr_width;
	dst_maxburst = config->dst_maxburst;
2727

2728
	if (config->direction == DMA_DEV_TO_MEM) {
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
		dma_addr_t dev_addr_rx =
			d40c->base->plat_data->dev_rx[cfg->src_dev_type];

		config_addr = config->src_addr;
		if (dev_addr_rx)
			dev_dbg(d40c->base->dev,
				"channel has a pre-wired RX address %08x "
				"overriding with %08x\n",
				dev_addr_rx, config_addr);
		if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
			dev_dbg(d40c->base->dev,
				"channel was not configured for peripheral "
				"to memory transfer (%d) overriding\n",
				cfg->dir);
		cfg->dir = STEDMA40_PERIPH_TO_MEM;

2745 2746 2747 2748 2749
		/* Configure the memory side */
		if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
			dst_addr_width = src_addr_width;
		if (dst_maxburst == 0)
			dst_maxburst = src_maxburst;
2750

2751
	} else if (config->direction == DMA_MEM_TO_DEV) {
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
		dma_addr_t dev_addr_tx =
			d40c->base->plat_data->dev_tx[cfg->dst_dev_type];

		config_addr = config->dst_addr;
		if (dev_addr_tx)
			dev_dbg(d40c->base->dev,
				"channel has a pre-wired TX address %08x "
				"overriding with %08x\n",
				dev_addr_tx, config_addr);
		if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
			dev_dbg(d40c->base->dev,
				"channel was not configured for memory "
				"to peripheral transfer (%d) overriding\n",
				cfg->dir);
		cfg->dir = STEDMA40_MEM_TO_PERIPH;

2768 2769 2770 2771 2772
		/* Configure the memory side */
		if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
			src_addr_width = dst_addr_width;
		if (src_maxburst == 0)
			src_maxburst = dst_maxburst;
2773 2774 2775 2776
	} else {
		dev_err(d40c->base->dev,
			"unrecognized channel direction %d\n",
			config->direction);
2777
		return -EINVAL;
2778 2779
	}

2780
	if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2781
		dev_err(d40c->base->dev,
2782 2783 2784 2785 2786 2787
			"src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
			src_maxburst,
			src_addr_width,
			dst_maxburst,
			dst_addr_width);
		return -EINVAL;
2788 2789
	}

2790 2791 2792 2793 2794 2795 2796 2797
	if (src_maxburst > 16) {
		src_maxburst = 16;
		dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
	} else if (dst_maxburst > 16) {
		dst_maxburst = 16;
		src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
	}

2798 2799 2800 2801 2802
	ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
					  src_addr_width,
					  src_maxburst);
	if (ret)
		return ret;
2803

2804 2805 2806 2807 2808
	ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
					  dst_addr_width,
					  dst_maxburst);
	if (ret)
		return ret;
2809

2810
	/* Fill in register values */
2811
	if (chan_is_logical(d40c))
2812 2813 2814 2815 2816
		d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
	else
		d40_phy_cfg(cfg, &d40c->src_def_cfg,
			    &d40c->dst_def_cfg, false);

2817 2818 2819 2820
	/* These settings will take precedence later */
	d40c->runtime_addr = config_addr;
	d40c->runtime_direction = config->direction;
	dev_dbg(d40c->base->dev,
2821 2822
		"configured channel %s for %s, data width %d/%d, "
		"maxburst %d/%d elements, LE, no flow control\n",
2823
		dma_chan_name(chan),
2824
		(config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2825 2826 2827 2828
		src_addr_width, dst_addr_width,
		src_maxburst, dst_maxburst);

	return 0;
2829 2830
}

2831 2832
static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
		       unsigned long arg)
2833 2834 2835
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);

2836
	if (d40c->phy_chan == NULL) {
2837
		chan_err(d40c, "Channel is not allocated!\n");
2838 2839 2840
		return -EINVAL;
	}

2841 2842
	switch (cmd) {
	case DMA_TERMINATE_ALL:
2843 2844
		d40_terminate_all(chan);
		return 0;
2845
	case DMA_PAUSE:
2846
		return d40_pause(d40c);
2847
	case DMA_RESUME:
2848
		return d40_resume(d40c);
2849
	case DMA_SLAVE_CONFIG:
2850
		return d40_set_runtime_config(chan,
2851 2852 2853
			(struct dma_slave_config *) arg);
	default:
		break;
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
	}

	/* Other commands are unimplemented */
	return -ENXIO;
}

/* Initialization functions */

static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
				 struct d40_chan *chans, int offset,
				 int num_chans)
{
	int i = 0;
	struct d40_chan *d40c;

	INIT_LIST_HEAD(&dma->channels);

	for (i = offset; i < offset + num_chans; i++) {
		d40c = &chans[i];
		d40c->base = base;
		d40c->chan.device = dma;

		spin_lock_init(&d40c->lock);

		d40c->log_num = D40_PHY_CHAN;

2880
		INIT_LIST_HEAD(&d40c->done);
2881 2882
		INIT_LIST_HEAD(&d40c->active);
		INIT_LIST_HEAD(&d40c->queue);
2883
		INIT_LIST_HEAD(&d40c->pending_queue);
2884
		INIT_LIST_HEAD(&d40c->client);
2885
		INIT_LIST_HEAD(&d40c->prepare_queue);
2886 2887 2888 2889 2890 2891 2892 2893 2894

		tasklet_init(&d40c->tasklet, dma_tasklet,
			     (unsigned long) d40c);

		list_add_tail(&d40c->chan.device_node,
			      &dma->channels);
	}
}

2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
{
	if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
		dev->device_prep_slave_sg = d40_prep_slave_sg;

	if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
		dev->device_prep_dma_memcpy = d40_prep_memcpy;

		/*
		 * This controller can only access address at even
		 * 32bit boundaries, i.e. 2^2
		 */
		dev->copy_align = 2;
	}

	if (dma_has_cap(DMA_SG, dev->cap_mask))
		dev->device_prep_dma_sg = d40_prep_memcpy_sg;

R
Rabin Vincent 已提交
2913 2914 2915
	if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
		dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;

2916 2917 2918 2919 2920 2921 2922 2923
	dev->device_alloc_chan_resources = d40_alloc_chan_resources;
	dev->device_free_chan_resources = d40_free_chan_resources;
	dev->device_issue_pending = d40_issue_pending;
	dev->device_tx_status = d40_tx_status;
	dev->device_control = d40_control;
	dev->dev = base->dev;
}

2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
static int __init d40_dmaengine_init(struct d40_base *base,
				     int num_reserved_chans)
{
	int err ;

	d40_chan_init(base, &base->dma_slave, base->log_chans,
		      0, base->num_log_chans);

	dma_cap_zero(base->dma_slave.cap_mask);
	dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
R
Rabin Vincent 已提交
2934
	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2935

2936
	d40_ops_init(base, &base->dma_slave);
2937 2938 2939 2940

	err = dma_async_device_register(&base->dma_slave);

	if (err) {
2941
		d40_err(base->dev, "Failed to register slave channels\n");
2942 2943 2944 2945
		goto failure1;
	}

	d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2946
		      base->num_log_chans, ARRAY_SIZE(dma40_memcpy_channels));
2947 2948 2949

	dma_cap_zero(base->dma_memcpy.cap_mask);
	dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2950 2951 2952
	dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);

	d40_ops_init(base, &base->dma_memcpy);
2953 2954 2955 2956

	err = dma_async_device_register(&base->dma_memcpy);

	if (err) {
2957 2958
		d40_err(base->dev,
			"Failed to regsiter memcpy only channels\n");
2959 2960 2961 2962 2963 2964 2965 2966 2967
		goto failure2;
	}

	d40_chan_init(base, &base->dma_both, base->phy_chans,
		      0, num_reserved_chans);

	dma_cap_zero(base->dma_both.cap_mask);
	dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
	dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2968
	dma_cap_set(DMA_SG, base->dma_both.cap_mask);
R
Rabin Vincent 已提交
2969
	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2970 2971

	d40_ops_init(base, &base->dma_both);
2972 2973 2974
	err = dma_async_device_register(&base->dma_both);

	if (err) {
2975 2976
		d40_err(base->dev,
			"Failed to register logical and physical capable channels\n");
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
		goto failure3;
	}
	return 0;
failure3:
	dma_async_device_unregister(&base->dma_memcpy);
failure2:
	dma_async_device_unregister(&base->dma_slave);
failure1:
	return err;
}

2988 2989 2990 2991
/* Suspend resume functionality */
#ifdef CONFIG_PM
static int dma40_pm_suspend(struct device *dev)
{
2992 2993 2994
	struct platform_device *pdev = to_platform_device(dev);
	struct d40_base *base = platform_get_drvdata(pdev);
	int ret = 0;
2995

2996 2997 2998
	if (base->lcpa_regulator)
		ret = regulator_disable(base->lcpa_regulator);
	return ret;
2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
}

static int dma40_runtime_suspend(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct d40_base *base = platform_get_drvdata(pdev);

	d40_save_restore_registers(base, true);

	/* Don't disable/enable clocks for v1 due to HW bugs */
	if (base->rev != 1)
		writel_relaxed(base->gcc_pwr_off_mask,
			       base->virtbase + D40_DREG_GCC);

	return 0;
}

static int dma40_runtime_resume(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct d40_base *base = platform_get_drvdata(pdev);

	if (base->initialized)
		d40_save_restore_registers(base, false);

	writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
		       base->virtbase + D40_DREG_GCC);
	return 0;
}

3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
static int dma40_resume(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct d40_base *base = platform_get_drvdata(pdev);
	int ret = 0;

	if (base->lcpa_regulator)
		ret = regulator_enable(base->lcpa_regulator);

	return ret;
}
3040 3041 3042 3043 3044

static const struct dev_pm_ops dma40_pm_ops = {
	.suspend		= dma40_pm_suspend,
	.runtime_suspend	= dma40_runtime_suspend,
	.runtime_resume		= dma40_runtime_resume,
3045
	.resume			= dma40_resume,
3046 3047 3048 3049 3050 3051
};
#define DMA40_PM_OPS	(&dma40_pm_ops)
#else
#define DMA40_PM_OPS	NULL
#endif

3052 3053 3054 3055 3056 3057 3058 3059
/* Initialization functions. */

static int __init d40_phy_res_init(struct d40_base *base)
{
	int i;
	int num_phy_chans_avail = 0;
	u32 val[2];
	int odd_even_bit = -2;
3060
	int gcc = D40_DREG_GCC_ENA;
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

	val[0] = readl(base->virtbase + D40_DREG_PRSME);
	val[1] = readl(base->virtbase + D40_DREG_PRSMO);

	for (i = 0; i < base->num_phy_chans; i++) {
		base->phy_res[i].num = i;
		odd_even_bit += 2 * ((i % 2) == 0);
		if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
			/* Mark security only channels as occupied */
			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
3072 3073 3074 3075 3076 3077 3078
			base->phy_res[i].reserved = true;
			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
						       D40_DREG_GCC_SRC);
			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
						       D40_DREG_GCC_DST);


3079 3080 3081
		} else {
			base->phy_res[i].allocated_src = D40_ALLOC_FREE;
			base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
3082
			base->phy_res[i].reserved = false;
3083 3084 3085 3086
			num_phy_chans_avail++;
		}
		spin_lock_init(&base->phy_res[i].lock);
	}
3087 3088 3089

	/* Mark disabled channels as occupied */
	for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
3090 3091 3092 3093
		int chan = base->plat_data->disabled_channels[i];

		base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
		base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
3094 3095 3096 3097 3098
		base->phy_res[chan].reserved = true;
		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
					       D40_DREG_GCC_SRC);
		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
					       D40_DREG_GCC_DST);
3099
		num_phy_chans_avail--;
3100 3101
	}

3102 3103 3104 3105 3106 3107 3108
	/* Mark soft_lli channels */
	for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
		int chan = base->plat_data->soft_lli_chans[i];

		base->phy_res[chan].use_soft_lli = true;
	}

3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
	dev_info(base->dev, "%d of %d physical DMA channels available\n",
		 num_phy_chans_avail, base->num_phy_chans);

	/* Verify settings extended vs standard */
	val[0] = readl(base->virtbase + D40_DREG_PRTYP);

	for (i = 0; i < base->num_phy_chans; i++) {

		if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
		    (val[0] & 0x3) != 1)
			dev_info(base->dev,
				 "[%s] INFO: channel %d is misconfigured (%d)\n",
				 __func__, i, val[0] & 0x3);

		val[0] = val[0] >> 2;
	}

3126 3127 3128 3129 3130 3131 3132 3133 3134
	/*
	 * To keep things simple, Enable all clocks initially.
	 * The clocks will get managed later post channel allocation.
	 * The clocks for the event lines on which reserved channels exists
	 * are not managed here.
	 */
	writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
	base->gcc_pwr_off_mask = gcc;

3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
	return num_phy_chans_avail;
}

static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
{
	struct stedma40_platform_data *plat_data;
	struct clk *clk = NULL;
	void __iomem *virtbase = NULL;
	struct resource *res = NULL;
	struct d40_base *base = NULL;
	int num_log_chans = 0;
	int num_phy_chans;
3147
	int clk_ret = -EINVAL;
3148
	int i;
3149 3150 3151
	u32 pid;
	u32 cid;
	u8 rev;
3152 3153 3154

	clk = clk_get(&pdev->dev, NULL);
	if (IS_ERR(clk)) {
3155
		d40_err(&pdev->dev, "No matching clock found\n");
3156 3157 3158
		goto failure;
	}

3159 3160 3161 3162 3163
	clk_ret = clk_prepare_enable(clk);
	if (clk_ret) {
		d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
		goto failure;
	}
3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177

	/* Get IO for DMAC base address */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
	if (!res)
		goto failure;

	if (request_mem_region(res->start, resource_size(res),
			       D40_NAME " I/O base") == NULL)
		goto failure;

	virtbase = ioremap(res->start, resource_size(res));
	if (!virtbase)
		goto failure;

3178 3179 3180 3181 3182 3183 3184
	/* This is just a regular AMBA PrimeCell ID actually */
	for (pid = 0, i = 0; i < 4; i++)
		pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
			& 255) << (i * 8);
	for (cid = 0, i = 0; i < 4; i++)
		cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
			& 255) << (i * 8);
3185

3186 3187 3188 3189 3190
	if (cid != AMBA_CID) {
		d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
		goto failure;
	}
	if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
3191
		d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
3192 3193
			AMBA_MANF_BITS(pid),
			AMBA_VENDOR_ST);
3194 3195
		goto failure;
	}
3196 3197 3198 3199 3200 3201
	/*
	 * HW revision:
	 * DB8500ed has revision 0
	 * ? has revision 1
	 * DB8500v1 has revision 2
	 * DB8500v2 has revision 3
3202 3203
	 * AP9540v1 has revision 4
	 * DB8540v1 has revision 4
3204 3205
	 */
	rev = AMBA_REV_BITS(pid);
3206

3207 3208
	plat_data = pdev->dev.platform_data;

3209
	/* The number of physical channels on this HW */
3210 3211 3212 3213
	if (plat_data->num_of_phy_chans)
		num_phy_chans = plat_data->num_of_phy_chans;
	else
		num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
3214

3215 3216
	dev_info(&pdev->dev, "hardware revision: %d @ 0x%x with %d physical channels\n",
		 rev, res->start, num_phy_chans);
3217

3218 3219 3220 3221 3222 3223
	if (rev < 2) {
		d40_err(&pdev->dev, "hardware revision: %d is not supported",
			rev);
		goto failure;
	}

3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
	/* Count the number of logical channels in use */
	for (i = 0; i < plat_data->dev_len; i++)
		if (plat_data->dev_rx[i] != 0)
			num_log_chans++;

	for (i = 0; i < plat_data->dev_len; i++)
		if (plat_data->dev_tx[i] != 0)
			num_log_chans++;

	base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
3234
		       (num_phy_chans + num_log_chans + ARRAY_SIZE(dma40_memcpy_channels)) *
3235 3236 3237
		       sizeof(struct d40_chan), GFP_KERNEL);

	if (base == NULL) {
3238
		d40_err(&pdev->dev, "Out of memory\n");
3239 3240 3241
		goto failure;
	}

3242
	base->rev = rev;
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253
	base->clk = clk;
	base->num_phy_chans = num_phy_chans;
	base->num_log_chans = num_log_chans;
	base->phy_start = res->start;
	base->phy_size = resource_size(res);
	base->virtbase = virtbase;
	base->plat_data = plat_data;
	base->dev = &pdev->dev;
	base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
	base->log_chans = &base->phy_chans[num_phy_chans];

3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
	if (base->plat_data->num_of_phy_chans == 14) {
		base->gen_dmac.backup = d40_backup_regs_v4b;
		base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
		base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
		base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
		base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
		base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
		base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
		base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
		base->gen_dmac.il = il_v4b;
		base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
		base->gen_dmac.init_reg = dma_init_reg_v4b;
		base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
	} else {
		if (base->rev >= 3) {
			base->gen_dmac.backup = d40_backup_regs_v4a;
			base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
		}
		base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
		base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
		base->gen_dmac.realtime_en = D40_DREG_RSEG1;
		base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
		base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
		base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
		base->gen_dmac.il = il_v4a;
		base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
		base->gen_dmac.init_reg = dma_init_reg_v4a;
		base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
	}

3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
	base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
				GFP_KERNEL);
	if (!base->phy_res)
		goto failure;

	base->lookup_phy_chans = kzalloc(num_phy_chans *
					 sizeof(struct d40_chan *),
					 GFP_KERNEL);
	if (!base->lookup_phy_chans)
		goto failure;

3295
	if (num_log_chans + ARRAY_SIZE(dma40_memcpy_channels)) {
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
		/*
		 * The max number of logical channels are event lines for all
		 * src devices and dst devices
		 */
		base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
						 sizeof(struct d40_chan *),
						 GFP_KERNEL);
		if (!base->lookup_log_chans)
			goto failure;
	}
3306

3307 3308
	base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
					    sizeof(d40_backup_regs_chan),
3309
					    GFP_KERNEL);
3310 3311 3312 3313 3314 3315
	if (!base->reg_val_backup_chan)
		goto failure;

	base->lcla_pool.alloc_map =
		kzalloc(num_phy_chans * sizeof(struct d40_desc *)
			* D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
3316 3317 3318
	if (!base->lcla_pool.alloc_map)
		goto failure;

3319 3320 3321 3322 3323 3324
	base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
					    0, SLAB_HWCACHE_ALIGN,
					    NULL);
	if (base->desc_slab == NULL)
		goto failure;

3325 3326 3327
	return base;

failure:
3328 3329 3330
	if (!clk_ret)
		clk_disable_unprepare(clk);
	if (!IS_ERR(clk))
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
		clk_put(clk);
	if (virtbase)
		iounmap(virtbase);
	if (res)
		release_mem_region(res->start,
				   resource_size(res));
	if (virtbase)
		iounmap(virtbase);

	if (base) {
		kfree(base->lcla_pool.alloc_map);
3342
		kfree(base->reg_val_backup_chan);
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
		kfree(base->lookup_log_chans);
		kfree(base->lookup_phy_chans);
		kfree(base->phy_res);
		kfree(base);
	}

	return NULL;
}

static void __init d40_hw_init(struct d40_base *base)
{

	int i;
	u32 prmseo[2] = {0, 0};
	u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
	u32 pcmis = 0;
	u32 pcicr = 0;
3360 3361
	struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
	u32 reg_size = base->gen_dmac.init_reg_size;
3362

3363
	for (i = 0; i < reg_size; i++)
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
		writel(dma_init_reg[i].val,
		       base->virtbase + dma_init_reg[i].reg);

	/* Configure all our dma channels to default settings */
	for (i = 0; i < base->num_phy_chans; i++) {

		activeo[i % 2] = activeo[i % 2] << 2;

		if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
		    == D40_ALLOC_PHY) {
			activeo[i % 2] |= 3;
			continue;
		}

		/* Enable interrupt # */
		pcmis = (pcmis << 1) | 1;

		/* Clear interrupt # */
		pcicr = (pcicr << 1) | 1;

		/* Set channel to physical mode */
		prmseo[i % 2] = prmseo[i % 2] << 2;
		prmseo[i % 2] |= 1;

	}

	writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
	writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
	writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
	writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);

	/* Write which interrupt to enable */
3396
	writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
3397 3398

	/* Write which interrupt to clear */
3399
	writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
3400

3401 3402 3403
	/* These are __initdata and cannot be accessed after init */
	base->gen_dmac.init_reg = NULL;
	base->gen_dmac.init_reg_size = 0;
3404 3405
}

3406 3407
static int __init d40_lcla_allocate(struct d40_base *base)
{
3408
	struct d40_lcla_pool *pool = &base->lcla_pool;
3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
	unsigned long *page_list;
	int i, j;
	int ret = 0;

	/*
	 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
	 * To full fill this hardware requirement without wasting 256 kb
	 * we allocate pages until we get an aligned one.
	 */
	page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
			    GFP_KERNEL);

	if (!page_list) {
		ret = -ENOMEM;
		goto failure;
	}

	/* Calculating how many pages that are required */
	base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;

	for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
		page_list[i] = __get_free_pages(GFP_KERNEL,
						base->lcla_pool.pages);
		if (!page_list[i]) {

3434 3435
			d40_err(base->dev, "Failed to allocate %d pages.\n",
				base->lcla_pool.pages);
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452

			for (j = 0; j < i; j++)
				free_pages(page_list[j], base->lcla_pool.pages);
			goto failure;
		}

		if ((virt_to_phys((void *)page_list[i]) &
		     (LCLA_ALIGNMENT - 1)) == 0)
			break;
	}

	for (j = 0; j < i; j++)
		free_pages(page_list[j], base->lcla_pool.pages);

	if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
		base->lcla_pool.base = (void *)page_list[i];
	} else {
3453 3454 3455 3456
		/*
		 * After many attempts and no succees with finding the correct
		 * alignment, try with allocating a big buffer.
		 */
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
		dev_warn(base->dev,
			 "[%s] Failed to get %d pages @ 18 bit align.\n",
			 __func__, base->lcla_pool.pages);
		base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
							 base->num_phy_chans +
							 LCLA_ALIGNMENT,
							 GFP_KERNEL);
		if (!base->lcla_pool.base_unaligned) {
			ret = -ENOMEM;
			goto failure;
		}

		base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
						 LCLA_ALIGNMENT);
	}

3473 3474 3475 3476 3477 3478 3479 3480 3481
	pool->dma_addr = dma_map_single(base->dev, pool->base,
					SZ_1K * base->num_phy_chans,
					DMA_TO_DEVICE);
	if (dma_mapping_error(base->dev, pool->dma_addr)) {
		pool->dma_addr = 0;
		ret = -ENOMEM;
		goto failure;
	}

3482 3483 3484 3485 3486 3487 3488
	writel(virt_to_phys(base->lcla_pool.base),
	       base->virtbase + D40_DREG_LCLA);
failure:
	kfree(page_list);
	return ret;
}

3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
static int __init d40_probe(struct platform_device *pdev)
{
	int err;
	int ret = -ENOENT;
	struct d40_base *base;
	struct resource *res = NULL;
	int num_reserved_chans;
	u32 val;

	base = d40_hw_detect_init(pdev);

	if (!base)
		goto failure;

	num_reserved_chans = d40_phy_res_init(base);

	platform_set_drvdata(pdev, base);

	spin_lock_init(&base->interrupt_lock);
	spin_lock_init(&base->execmd_lock);

	/* Get IO for logical channel parameter address */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
	if (!res) {
		ret = -ENOENT;
3514
		d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3515 3516 3517 3518 3519 3520 3521 3522
		goto failure;
	}
	base->lcpa_size = resource_size(res);
	base->phy_lcpa = res->start;

	if (request_mem_region(res->start, resource_size(res),
			       D40_NAME " I/O lcpa") == NULL) {
		ret = -EBUSY;
3523 3524 3525
		d40_err(&pdev->dev,
			"Failed to request LCPA region 0x%x-0x%x\n",
			res->start, res->end);
3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
		goto failure;
	}

	/* We make use of ESRAM memory for this. */
	val = readl(base->virtbase + D40_DREG_LCPA);
	if (res->start != val && val != 0) {
		dev_warn(&pdev->dev,
			 "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
			 __func__, val, res->start);
	} else
		writel(res->start, base->virtbase + D40_DREG_LCPA);

	base->lcpa_base = ioremap(res->start, resource_size(res));
	if (!base->lcpa_base) {
		ret = -ENOMEM;
3541
		d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3542 3543
		goto failure;
	}
3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
	/* If lcla has to be located in ESRAM we don't need to allocate */
	if (base->plat_data->use_esram_lcla) {
		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
							"lcla_esram");
		if (!res) {
			ret = -ENOENT;
			d40_err(&pdev->dev,
				"No \"lcla_esram\" memory resource\n");
			goto failure;
		}
		base->lcla_pool.base = ioremap(res->start,
						resource_size(res));
		if (!base->lcla_pool.base) {
			ret = -ENOMEM;
			d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
			goto failure;
		}
		writel(res->start, base->virtbase + D40_DREG_LCLA);
3562

3563 3564 3565 3566 3567 3568
	} else {
		ret = d40_lcla_allocate(base);
		if (ret) {
			d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
			goto failure;
		}
3569 3570 3571 3572 3573 3574 3575 3576
	}

	spin_lock_init(&base->lcla_pool.lock);

	base->irq = platform_get_irq(pdev, 0);

	ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
	if (ret) {
3577
		d40_err(&pdev->dev, "No IRQ defined\n");
3578 3579 3580
		goto failure;
	}

3581 3582 3583 3584 3585
	pm_runtime_irq_safe(base->dev);
	pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
	pm_runtime_use_autosuspend(base->dev);
	pm_runtime_enable(base->dev);
	pm_runtime_resume(base->dev);
3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605

	if (base->plat_data->use_esram_lcla) {

		base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
		if (IS_ERR(base->lcpa_regulator)) {
			d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
			base->lcpa_regulator = NULL;
			goto failure;
		}

		ret = regulator_enable(base->lcpa_regulator);
		if (ret) {
			d40_err(&pdev->dev,
				"Failed to enable lcpa_regulator\n");
			regulator_put(base->lcpa_regulator);
			base->lcpa_regulator = NULL;
			goto failure;
		}
	}

3606
	base->initialized = true;
3607 3608 3609 3610
	err = d40_dmaengine_init(base, num_reserved_chans);
	if (err)
		goto failure;

3611 3612 3613 3614 3615 3616 3617
	base->dev->dma_parms = &base->dma_parms;
	err = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
	if (err) {
		d40_err(&pdev->dev, "Failed to set dma max seg size\n");
		goto failure;
	}

3618 3619 3620 3621 3622 3623 3624
	d40_hw_init(base);

	dev_info(base->dev, "initialized\n");
	return 0;

failure:
	if (base) {
3625 3626
		if (base->desc_slab)
			kmem_cache_destroy(base->desc_slab);
3627 3628
		if (base->virtbase)
			iounmap(base->virtbase);
3629

3630 3631 3632 3633 3634
		if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
			iounmap(base->lcla_pool.base);
			base->lcla_pool.base = NULL;
		}

3635 3636 3637 3638 3639
		if (base->lcla_pool.dma_addr)
			dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
					 SZ_1K * base->num_phy_chans,
					 DMA_TO_DEVICE);

3640 3641 3642
		if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
			free_pages((unsigned long)base->lcla_pool.base,
				   base->lcla_pool.pages);
3643 3644 3645

		kfree(base->lcla_pool.base_unaligned);

3646 3647 3648 3649 3650 3651 3652
		if (base->phy_lcpa)
			release_mem_region(base->phy_lcpa,
					   base->lcpa_size);
		if (base->phy_start)
			release_mem_region(base->phy_start,
					   base->phy_size);
		if (base->clk) {
3653
			clk_disable_unprepare(base->clk);
3654 3655 3656
			clk_put(base->clk);
		}

3657 3658 3659 3660 3661
		if (base->lcpa_regulator) {
			regulator_disable(base->lcpa_regulator);
			regulator_put(base->lcpa_regulator);
		}

3662 3663 3664 3665 3666 3667 3668
		kfree(base->lcla_pool.alloc_map);
		kfree(base->lookup_log_chans);
		kfree(base->lookup_phy_chans);
		kfree(base->phy_res);
		kfree(base);
	}

3669
	d40_err(&pdev->dev, "probe failed\n");
3670 3671 3672 3673 3674 3675 3676
	return ret;
}

static struct platform_driver d40_driver = {
	.driver = {
		.owner = THIS_MODULE,
		.name  = D40_NAME,
3677
		.pm = DMA40_PM_OPS,
3678 3679 3680
	},
};

R
Rabin Vincent 已提交
3681
static int __init stedma40_init(void)
3682 3683 3684
{
	return platform_driver_probe(&d40_driver, d40_probe);
}
L
Linus Walleij 已提交
3685
subsys_initcall(stedma40_init);