ste_dma40.c 73.8 KB
Newer Older
1
/*
2 3
 * Copyright (C) Ericsson AB 2007-2008
 * Copyright (C) ST-Ericsson SA 2008-2010
4
 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5
 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6 7 8 9 10 11 12 13 14
 * License terms: GNU General Public License (GPL) version 2
 */

#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/dmaengine.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/delay.h>
15
#include <linux/err.h>
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

#include <plat/ste_dma40.h>

#include "ste_dma40_ll.h"

#define D40_NAME "dma40"

#define D40_PHY_CHAN -1

/* For masking out/in 2 bit channel positions */
#define D40_CHAN_POS(chan)  (2 * (chan / 2))
#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))

/* Maximum iterations taken before giving up suspending a channel */
#define D40_SUSPEND_MAX_IT 500

32 33
/* Hardware requirement on LCLA alignment */
#define LCLA_ALIGNMENT 0x40000
34 35 36 37 38

/* Max number of links per event group */
#define D40_LCLA_LINK_PER_EVENT_GRP 128
#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP

39 40 41 42
/* Attempts before giving up to trying to get pages that are aligned */
#define MAX_LCLA_ALLOC_ATTEMPTS 256

/* Bit markings for allocation map */
43 44 45 46 47
#define D40_ALLOC_FREE		(1 << 31)
#define D40_ALLOC_PHY		(1 << 30)
#define D40_ALLOC_LOG_FREE	0

/* Hardware designer of the block */
48
#define D40_HW_DESIGNER 0x8
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

/**
 * enum 40_command - The different commands and/or statuses.
 *
 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
 */
enum d40_command {
	D40_DMA_STOP		= 0,
	D40_DMA_RUN		= 1,
	D40_DMA_SUSPEND_REQ	= 2,
	D40_DMA_SUSPENDED	= 3
};

/**
 * struct d40_lli_pool - Structure for keeping LLIs in memory
 *
 * @base: Pointer to memory area when the pre_alloc_lli's are not large
 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
 * pre_alloc_lli is used.
 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
 * one buffer to one buffer.
 */
struct d40_lli_pool {
	void	*base;
77
	int	 size;
78
	/* Space for dst and src, plus an extra for padding */
79
	u8	 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
80 81 82 83 84 85 86 87 88 89
};

/**
 * struct d40_desc - A descriptor is one DMA job.
 *
 * @lli_phy: LLI settings for physical channel. Both src and dst=
 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
 * lli_len equals one.
 * @lli_log: Same as above but for logical channels.
 * @lli_pool: The pool with two entries pre-allocated.
90
 * @lli_len: Number of llis of current descriptor.
91 92
 * @lli_current: Number of transfered llis.
 * @lcla_alloc: Number of LCLA entries allocated.
93 94 95 96
 * @txd: DMA engine struct. Used for among other things for communication
 * during a transfer.
 * @node: List entry.
 * @is_in_client_list: true if the client owns this descriptor.
97
 * the previous one.
98 99 100 101 102 103 104 105 106 107
 *
 * This descriptor is used for both logical and physical transfers.
 */
struct d40_desc {
	/* LLI physical */
	struct d40_phy_lli_bidir	 lli_phy;
	/* LLI logical */
	struct d40_log_lli_bidir	 lli_log;

	struct d40_lli_pool		 lli_pool;
108
	int				 lli_len;
109 110
	int				 lli_current;
	int				 lcla_alloc;
111 112 113 114 115 116 117 118 119 120

	struct dma_async_tx_descriptor	 txd;
	struct list_head		 node;

	bool				 is_in_client_list;
};

/**
 * struct d40_lcla_pool - LCLA pool settings and data.
 *
121 122 123 124 125
 * @base: The virtual address of LCLA. 18 bit aligned.
 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
 * This pointer is only there for clean-up on error.
 * @pages: The number of pages needed for all physical channels.
 * Only used later for clean-up on error
126
 * @lock: Lock to protect the content in this struct.
127
 * @alloc_map: big map over which LCLA entry is own by which job.
128 129 130
 */
struct d40_lcla_pool {
	void		*base;
131 132
	void		*base_unaligned;
	int		 pages;
133
	spinlock_t	 lock;
134
	struct d40_desc	**alloc_map;
135 136 137 138 139 140 141 142 143 144 145 146
};

/**
 * struct d40_phy_res - struct for handling eventlines mapped to physical
 * channels.
 *
 * @lock: A lock protection this entity.
 * @num: The physical channel number of this entity.
 * @allocated_src: Bit mapped to show which src event line's are mapped to
 * this physical channel. Can also be free or physically allocated.
 * @allocated_dst: Same as for src but is dst.
 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
147
 * event line number.
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
 */
struct d40_phy_res {
	spinlock_t lock;
	int	   num;
	u32	   allocated_src;
	u32	   allocated_dst;
};

struct d40_base;

/**
 * struct d40_chan - Struct that describes a channel.
 *
 * @lock: A spinlock to protect this struct.
 * @log_num: The logical number, if any of this channel.
 * @completed: Starts with 1, after first interrupt it is set to dma engine's
 * current cookie.
 * @pending_tx: The number of pending transfers. Used between interrupt handler
 * and tasklet.
 * @busy: Set to true when transfer is ongoing on this channel.
168 169
 * @phy_chan: Pointer to physical channel which this instance runs on. If this
 * point is NULL, then the channel is not allocated.
170 171 172 173 174 175 176
 * @chan: DMA engine handle.
 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
 * transfer and call client callback.
 * @client: Cliented owned descriptor list.
 * @active: Active descriptor.
 * @queue: Queued jobs.
 * @dma_cfg: The client configuration of this dma channel.
177
 * @configured: whether the dma_cfg configuration is valid
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
 * @base: Pointer to the device instance struct.
 * @src_def_cfg: Default cfg register setting for src.
 * @dst_def_cfg: Default cfg register setting for dst.
 * @log_def: Default logical channel settings.
 * @lcla: Space for one dst src pair for logical channel transfers.
 * @lcpa: Pointer to dst and src lcpa settings.
 *
 * This struct can either "be" a logical or a physical channel.
 */
struct d40_chan {
	spinlock_t			 lock;
	int				 log_num;
	/* ID of the most recent completed transfer */
	int				 completed;
	int				 pending_tx;
	bool				 busy;
	struct d40_phy_res		*phy_chan;
	struct dma_chan			 chan;
	struct tasklet_struct		 tasklet;
	struct list_head		 client;
	struct list_head		 active;
	struct list_head		 queue;
	struct stedma40_chan_cfg	 dma_cfg;
201
	bool				 configured;
202 203 204 205 206 207
	struct d40_base			*base;
	/* Default register configurations */
	u32				 src_def_cfg;
	u32				 dst_def_cfg;
	struct d40_def_lcsp		 log_def;
	struct d40_log_lli_full		*lcpa;
208 209 210
	/* Runtime reconfiguration */
	dma_addr_t			runtime_addr;
	enum dma_data_direction		runtime_direction;
211 212 213 214 215 216 217 218 219 220
};

/**
 * struct d40_base - The big global struct, one for each probe'd instance.
 *
 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
 * @execmd_lock: Lock for execute command usage since several channels share
 * the same physical register.
 * @dev: The device structure.
 * @virtbase: The virtual base address of the DMA's register.
221
 * @rev: silicon revision detected.
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
 * @clk: Pointer to the DMA clock structure.
 * @phy_start: Physical memory start of the DMA registers.
 * @phy_size: Size of the DMA register map.
 * @irq: The IRQ number.
 * @num_phy_chans: The number of physical channels. Read from HW. This
 * is the number of available channels for this driver, not counting "Secure
 * mode" allocated physical channels.
 * @num_log_chans: The number of logical channels. Calculated from
 * num_phy_chans.
 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
 * @dma_slave: dma_device channels that can do only do slave transfers.
 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
 * @log_chans: Room for all possible logical channels in system.
 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
 * to log_chans entries.
 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
 * to phy_chans entries.
 * @plat_data: Pointer to provided platform_data which is the driver
 * configuration.
 * @phy_res: Vector containing all physical channels.
 * @lcla_pool: lcla pool settings and data.
 * @lcpa_base: The virtual mapped address of LCPA.
 * @phy_lcpa: The physical address of the LCPA.
 * @lcpa_size: The size of the LCPA area.
246
 * @desc_slab: cache for descriptors.
247 248 249 250 251 252
 */
struct d40_base {
	spinlock_t			 interrupt_lock;
	spinlock_t			 execmd_lock;
	struct device			 *dev;
	void __iomem			 *virtbase;
253
	u8				  rev:4;
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
	struct clk			 *clk;
	phys_addr_t			  phy_start;
	resource_size_t			  phy_size;
	int				  irq;
	int				  num_phy_chans;
	int				  num_log_chans;
	struct dma_device		  dma_both;
	struct dma_device		  dma_slave;
	struct dma_device		  dma_memcpy;
	struct d40_chan			 *phy_chans;
	struct d40_chan			 *log_chans;
	struct d40_chan			**lookup_log_chans;
	struct d40_chan			**lookup_phy_chans;
	struct stedma40_platform_data	 *plat_data;
	/* Physical half channels */
	struct d40_phy_res		 *phy_res;
	struct d40_lcla_pool		  lcla_pool;
	void				 *lcpa_base;
	dma_addr_t			  phy_lcpa;
	resource_size_t			  lcpa_size;
274
	struct kmem_cache		 *desc_slab;
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
};

/**
 * struct d40_interrupt_lookup - lookup table for interrupt handler
 *
 * @src: Interrupt mask register.
 * @clr: Interrupt clear register.
 * @is_error: true if this is an error interrupt.
 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
 */
struct d40_interrupt_lookup {
	u32 src;
	u32 clr;
	bool is_error;
	int offset;
};

/**
 * struct d40_reg_val - simple lookup struct
 *
 * @reg: The register.
 * @val: The value that belongs to the register in reg.
 */
struct d40_reg_val {
	unsigned int reg;
	unsigned int val;
};

304 305 306 307 308
static struct device *chan2dev(struct d40_chan *d40c)
{
	return &d40c->chan.dev->device;
}

309 310 311 312 313 314 315 316 317 318
static bool chan_is_physical(struct d40_chan *chan)
{
	return chan->log_num == D40_PHY_CHAN;
}

static bool chan_is_logical(struct d40_chan *chan)
{
	return !chan_is_physical(chan);
}

319 320 321 322 323 324
static void __iomem *chan_base(struct d40_chan *chan)
{
	return chan->base->virtbase + D40_DREG_PCBASE +
	       chan->phy_chan->num * D40_DREG_PCDELTA;
}

325 326 327 328 329 330
#define d40_err(dev, format, arg...)		\
	dev_err(dev, "[%s] " format, __func__, ## arg)

#define chan_err(d40c, format, arg...)		\
	d40_err(chan2dev(d40c), format, ## arg)

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
static int d40_pool_lli_alloc(struct d40_desc *d40d,
			      int lli_len, bool is_log)
{
	u32 align;
	void *base;

	if (is_log)
		align = sizeof(struct d40_log_lli);
	else
		align = sizeof(struct d40_phy_lli);

	if (lli_len == 1) {
		base = d40d->lli_pool.pre_alloc_lli;
		d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
		d40d->lli_pool.base = NULL;
	} else {
		d40d->lli_pool.size = ALIGN(lli_len * 2 * align, align);

		base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
		d40d->lli_pool.base = base;

		if (d40d->lli_pool.base == NULL)
			return -ENOMEM;
	}

	if (is_log) {
		d40d->lli_log.src = PTR_ALIGN((struct d40_log_lli *) base,
					      align);
		d40d->lli_log.dst = PTR_ALIGN(d40d->lli_log.src + lli_len,
					      align);
	} else {
		d40d->lli_phy.src = PTR_ALIGN((struct d40_phy_lli *)base,
					      align);
		d40d->lli_phy.dst = PTR_ALIGN(d40d->lli_phy.src + lli_len,
					      align);
	}

	return 0;
}

static void d40_pool_lli_free(struct d40_desc *d40d)
{
	kfree(d40d->lli_pool.base);
	d40d->lli_pool.base = NULL;
	d40d->lli_pool.size = 0;
	d40d->lli_log.src = NULL;
	d40d->lli_log.dst = NULL;
	d40d->lli_phy.src = NULL;
	d40d->lli_phy.dst = NULL;
}

382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
static int d40_lcla_alloc_one(struct d40_chan *d40c,
			      struct d40_desc *d40d)
{
	unsigned long flags;
	int i;
	int ret = -EINVAL;
	int p;

	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);

	p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;

	/*
	 * Allocate both src and dst at the same time, therefore the half
	 * start on 1 since 0 can't be used since zero is used as end marker.
	 */
	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
		if (!d40c->base->lcla_pool.alloc_map[p + i]) {
			d40c->base->lcla_pool.alloc_map[p + i] = d40d;
			d40d->lcla_alloc++;
			ret = i;
			break;
		}
	}

	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);

	return ret;
}

static int d40_lcla_free_all(struct d40_chan *d40c,
			     struct d40_desc *d40d)
{
	unsigned long flags;
	int i;
	int ret = -EINVAL;

419
	if (chan_is_physical(d40c))
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
		return 0;

	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);

	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
		if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
						    D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
			d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
							D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
			d40d->lcla_alloc--;
			if (d40d->lcla_alloc == 0) {
				ret = 0;
				break;
			}
		}
	}

	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);

	return ret;

}

443 444 445 446 447 448 449
static void d40_desc_remove(struct d40_desc *d40d)
{
	list_del(&d40d->node);
}

static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
{
R
Rabin Vincent 已提交
450
	struct d40_desc *desc = NULL;
451 452

	if (!list_empty(&d40c->client)) {
R
Rabin Vincent 已提交
453 454 455
		struct d40_desc *d;
		struct d40_desc *_d;

456 457 458 459
		list_for_each_entry_safe(d, _d, &d40c->client, node)
			if (async_tx_test_ack(&d->txd)) {
				d40_pool_lli_free(d);
				d40_desc_remove(d);
R
Rabin Vincent 已提交
460 461
				desc = d;
				memset(desc, 0, sizeof(*desc));
462
				break;
463 464
			}
	}
R
Rabin Vincent 已提交
465 466 467 468 469 470 471 472

	if (!desc)
		desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);

	if (desc)
		INIT_LIST_HEAD(&desc->node);

	return desc;
473 474 475 476
}

static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
{
477 478

	d40_lcla_free_all(d40c, d40d);
479
	kmem_cache_free(d40c->base->desc_slab, d40d);
480 481 482 483 484 485 486
}

static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
{
	list_add_tail(&desc->node, &d40c->active);
}

487 488 489 490
static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
{
	int curr_lcla = -EINVAL, next_lcla;

491
	if (chan_is_physical(d40c)) {
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
		d40_phy_lli_write(d40c->base->virtbase,
				  d40c->phy_chan->num,
				  d40d->lli_phy.dst,
				  d40d->lli_phy.src);
		d40d->lli_current = d40d->lli_len;
	} else {

		if ((d40d->lli_len - d40d->lli_current) > 1)
			curr_lcla = d40_lcla_alloc_one(d40c, d40d);

		d40_log_lli_lcpa_write(d40c->lcpa,
				       &d40d->lli_log.dst[d40d->lli_current],
				       &d40d->lli_log.src[d40d->lli_current],
				       curr_lcla);

		d40d->lli_current++;
		for (; d40d->lli_current < d40d->lli_len; d40d->lli_current++) {
			struct d40_log_lli *lcla;

			if (d40d->lli_current + 1 < d40d->lli_len)
				next_lcla = d40_lcla_alloc_one(d40c, d40d);
			else
				next_lcla = -EINVAL;

			lcla = d40c->base->lcla_pool.base +
				d40c->phy_chan->num * 1024 +
				8 * curr_lcla * 2;

			d40_log_lli_lcla_write(lcla,
					       &d40d->lli_log.dst[d40d->lli_current],
					       &d40d->lli_log.src[d40d->lli_current],
					       next_lcla);

			(void) dma_map_single(d40c->base->dev, lcla,
					      2 * sizeof(struct d40_log_lli),
					      DMA_TO_DEVICE);

			curr_lcla = next_lcla;

			if (curr_lcla == -EINVAL) {
				d40d->lli_current++;
				break;
			}

		}
	}
}

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
{
	struct d40_desc *d;

	if (list_empty(&d40c->active))
		return NULL;

	d = list_first_entry(&d40c->active,
			     struct d40_desc,
			     node);
	return d;
}

static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
{
	list_add_tail(&desc->node, &d40c->queue);
}

static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
{
	struct d40_desc *d;

	if (list_empty(&d40c->queue))
		return NULL;

	d = list_first_entry(&d40c->queue,
			     struct d40_desc,
			     node);
	return d;
}

571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
static int d40_psize_2_burst_size(bool is_log, int psize)
{
	if (is_log) {
		if (psize == STEDMA40_PSIZE_LOG_1)
			return 1;
	} else {
		if (psize == STEDMA40_PSIZE_PHY_1)
			return 1;
	}

	return 2 << psize;
}

/*
 * The dma only supports transmitting packages up to
 * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
 * dma elements required to send the entire sg list
 */
static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
{
	int dmalen;
	u32 max_w = max(data_width1, data_width2);
	u32 min_w = min(data_width1, data_width2);
	u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);

	if (seg_max > STEDMA40_MAX_SEG_SIZE)
		seg_max -= (1 << max_w);

	if (!IS_ALIGNED(size, 1 << max_w))
		return -EINVAL;

	if (size <= seg_max)
		dmalen = 1;
	else {
		dmalen = size / seg_max;
		if (dmalen * seg_max < size)
			dmalen++;
	}
	return dmalen;
}

static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
			   u32 data_width1, u32 data_width2)
{
	struct scatterlist *sg;
	int i;
	int len = 0;
	int ret;

	for_each_sg(sgl, sg, sg_len, i) {
		ret = d40_size_2_dmalen(sg_dma_len(sg),
					data_width1, data_width2);
		if (ret < 0)
			return ret;
		len += ret;
	}
	return len;
}
629

630
/* Support functions for logical channels */
631 632 633 634

static int d40_channel_execute_command(struct d40_chan *d40c,
				       enum d40_command command)
{
635 636
	u32 status;
	int i;
637 638 639
	void __iomem *active_reg;
	int ret = 0;
	unsigned long flags;
640
	u32 wmask;
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657

	spin_lock_irqsave(&d40c->base->execmd_lock, flags);

	if (d40c->phy_chan->num % 2 == 0)
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
	else
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;

	if (command == D40_DMA_SUSPEND_REQ) {
		status = (readl(active_reg) &
			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
			D40_CHAN_POS(d40c->phy_chan->num);

		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
			goto done;
	}

658 659 660
	wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
	writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
	       active_reg);
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681

	if (command == D40_DMA_SUSPEND_REQ) {

		for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
			status = (readl(active_reg) &
				  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
				D40_CHAN_POS(d40c->phy_chan->num);

			cpu_relax();
			/*
			 * Reduce the number of bus accesses while
			 * waiting for the DMA to suspend.
			 */
			udelay(3);

			if (status == D40_DMA_STOP ||
			    status == D40_DMA_SUSPENDED)
				break;
		}

		if (i == D40_SUSPEND_MAX_IT) {
682 683 684
			chan_err(d40c,
				"unable to suspend the chl %d (log: %d) status %x\n",
				d40c->phy_chan->num, d40c->log_num,
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
				status);
			dump_stack();
			ret = -EBUSY;
		}

	}
done:
	spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
	return ret;
}

static void d40_term_all(struct d40_chan *d40c)
{
	struct d40_desc *d40d;

	/* Release active descriptors */
	while ((d40d = d40_first_active_get(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}

	/* Release queued descriptors waiting for transfer */
	while ((d40d = d40_first_queued(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}


	d40c->pending_tx = 0;
	d40c->busy = false;
}

717 718 719
static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
				   u32 event, int reg)
{
720
	void __iomem *addr = chan_base(d40c) + reg;
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
	int tries;

	if (!enable) {
		writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
		       | ~D40_EVENTLINE_MASK(event), addr);
		return;
	}

	/*
	 * The hardware sometimes doesn't register the enable when src and dst
	 * event lines are active on the same logical channel.  Retry to ensure
	 * it does.  Usually only one retry is sufficient.
	 */
	tries = 100;
	while (--tries) {
		writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
		       | ~D40_EVENTLINE_MASK(event), addr);

		if (readl(addr) & D40_EVENTLINE_MASK(event))
			break;
	}

	if (tries != 99)
		dev_dbg(chan2dev(d40c),
			"[%s] workaround enable S%cLNK (%d tries)\n",
			__func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
			100 - tries);

	WARN_ON(!tries);
}

752 753 754 755 756 757 758 759 760 761 762
static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
{
	unsigned long flags;

	spin_lock_irqsave(&d40c->phy_chan->lock, flags);

	/* Enable event line connected to device (or memcpy) */
	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);

763 764
		__d40_config_set_event(d40c, do_enable, event,
				       D40_CHAN_REG_SSLNK);
765
	}
766

767 768 769
	if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM) {
		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);

770 771
		__d40_config_set_event(d40c, do_enable, event,
				       D40_CHAN_REG_SDLNK);
772 773 774 775 776
	}

	spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
}

777
static u32 d40_chan_has_events(struct d40_chan *d40c)
778
{
779
	void __iomem *chanbase = chan_base(d40c);
780
	u32 val;
781

782 783
	val = readl(chanbase + D40_CHAN_REG_SSLNK);
	val |= readl(chanbase + D40_CHAN_REG_SDLNK);
784

785
	return val;
786 787
}

788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
static u32 d40_get_prmo(struct d40_chan *d40c)
{
	static const unsigned int phy_map[] = {
		[STEDMA40_PCHAN_BASIC_MODE]
			= D40_DREG_PRMO_PCHAN_BASIC,
		[STEDMA40_PCHAN_MODULO_MODE]
			= D40_DREG_PRMO_PCHAN_MODULO,
		[STEDMA40_PCHAN_DOUBLE_DST_MODE]
			= D40_DREG_PRMO_PCHAN_DOUBLE_DST,
	};
	static const unsigned int log_map[] = {
		[STEDMA40_LCHAN_SRC_PHY_DST_LOG]
			= D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
		[STEDMA40_LCHAN_SRC_LOG_DST_PHY]
			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
		[STEDMA40_LCHAN_SRC_LOG_DST_LOG]
			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
	};

807
	if (chan_is_physical(d40c))
808 809 810 811 812
		return phy_map[d40c->dma_cfg.mode_opt];
	else
		return log_map[d40c->dma_cfg.mode_opt];
}

813
static void d40_config_write(struct d40_chan *d40c)
814 815 816 817 818 819 820
{
	u32 addr_base;
	u32 var;

	/* Odd addresses are even addresses + 4 */
	addr_base = (d40c->phy_chan->num % 2) * 4;
	/* Setup channel mode to logical or physical */
821
	var = ((u32)(chan_is_logical(d40c)) + 1) <<
822 823 824 825
		D40_CHAN_POS(d40c->phy_chan->num);
	writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);

	/* Setup operational mode option register */
826
	var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
827 828 829

	writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);

830
	if (chan_is_logical(d40c)) {
831 832 833 834
		int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
			   & D40_SREG_ELEM_LOG_LIDX_MASK;
		void __iomem *chanbase = chan_base(d40c);

835
		/* Set default config for CFG reg */
836 837
		writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
		writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
838

839
		/* Set LIDX for lcla */
840 841
		writel(lidx, chanbase + D40_CHAN_REG_SSELT);
		writel(lidx, chanbase + D40_CHAN_REG_SDELT);
842 843 844
	}
}

845 846 847 848
static u32 d40_residue(struct d40_chan *d40c)
{
	u32 num_elt;

849
	if (chan_is_logical(d40c))
850 851
		num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
			>> D40_MEM_LCSP2_ECNT_POS;
852 853 854 855 856 857
	else {
		u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
		num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
			  >> D40_SREG_ELEM_PHY_ECNT_POS;
	}

858 859 860 861 862 863 864
	return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
}

static bool d40_tx_is_linked(struct d40_chan *d40c)
{
	bool is_link;

865
	if (chan_is_logical(d40c))
866 867
		is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
	else
868 869 870
		is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
			  & D40_SREG_LNK_PHYS_LNK_MASK;

871 872 873 874 875 876 877 878 879 880
	return is_link;
}

static int d40_pause(struct dma_chan *chan)
{
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	int res = 0;
	unsigned long flags;

881 882 883
	if (!d40c->busy)
		return 0;

884 885 886 887
	spin_lock_irqsave(&d40c->lock, flags);

	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
	if (res == 0) {
888
		if (chan_is_logical(d40c)) {
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
			d40_config_set_event(d40c, false);
			/* Resume the other logical channels if any */
			if (d40_chan_has_events(d40c))
				res = d40_channel_execute_command(d40c,
								  D40_DMA_RUN);
		}
	}

	spin_unlock_irqrestore(&d40c->lock, flags);
	return res;
}

static int d40_resume(struct dma_chan *chan)
{
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	int res = 0;
	unsigned long flags;

908 909 910
	if (!d40c->busy)
		return 0;

911 912 913
	spin_lock_irqsave(&d40c->lock, flags);

	if (d40c->base->rev == 0)
914
		if (chan_is_logical(d40c)) {
915 916 917 918 919 920 921 922
			res = d40_channel_execute_command(d40c,
							  D40_DMA_SUSPEND_REQ);
			goto no_suspend;
		}

	/* If bytes left to transfer or linked tx resume job */
	if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {

923
		if (chan_is_logical(d40c))
924 925 926 927 928 929 930 931 932 933
			d40_config_set_event(d40c, true);

		res = d40_channel_execute_command(d40c, D40_DMA_RUN);
	}

no_suspend:
	spin_unlock_irqrestore(&d40c->lock, flags);
	return res;
}

934 935 936 937 938 939 940 941 942 943
static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
{
	struct d40_chan *d40c = container_of(tx->chan,
					     struct d40_chan,
					     chan);
	struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
	unsigned long flags;

	spin_lock_irqsave(&d40c->lock, flags);

944 945 946 947 948 949 950
	d40c->chan.cookie++;

	if (d40c->chan.cookie < 0)
		d40c->chan.cookie = 1;

	d40d->txd.cookie = d40c->chan.cookie;

951 952 953 954 955 956 957 958 959
	d40_desc_queue(d40c, d40d);

	spin_unlock_irqrestore(&d40c->lock, flags);

	return tx->cookie;
}

static int d40_start(struct d40_chan *d40c)
{
960 961 962
	if (d40c->base->rev == 0) {
		int err;

963
		if (chan_is_logical(d40c)) {
964 965 966 967 968 969 970
			err = d40_channel_execute_command(d40c,
							  D40_DMA_SUSPEND_REQ);
			if (err)
				return err;
		}
	}

971
	if (chan_is_logical(d40c))
972 973
		d40_config_set_event(d40c, true);

974
	return d40_channel_execute_command(d40c, D40_DMA_RUN);
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
}

static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
{
	struct d40_desc *d40d;
	int err;

	/* Start queued jobs, if any */
	d40d = d40_first_queued(d40c);

	if (d40d != NULL) {
		d40c->busy = true;

		/* Remove from queue */
		d40_desc_remove(d40d);

		/* Add to active queue */
		d40_desc_submit(d40c, d40d);

994 995
		/* Initiate DMA job */
		d40_desc_load(d40c, d40d);
996

997 998
		/* Start dma job */
		err = d40_start(d40c);
999

1000 1001
		if (err)
			return NULL;
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
	}

	return d40d;
}

/* called from interrupt context */
static void dma_tc_handle(struct d40_chan *d40c)
{
	struct d40_desc *d40d;

	/* Get first active entry from list */
	d40d = d40_first_active_get(d40c);

	if (d40d == NULL)
		return;

1018
	d40_lcla_free_all(d40c, d40d);
1019

1020
	if (d40d->lli_current < d40d->lli_len) {
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
		d40_desc_load(d40c, d40d);
		/* Start dma job */
		(void) d40_start(d40c);
		return;
	}

	if (d40_queue_start(d40c) == NULL)
		d40c->busy = false;

	d40c->pending_tx++;
	tasklet_schedule(&d40c->tasklet);

}

static void dma_tasklet(unsigned long data)
{
	struct d40_chan *d40c = (struct d40_chan *) data;
1038
	struct d40_desc *d40d;
1039 1040 1041 1042 1043 1044 1045
	unsigned long flags;
	dma_async_tx_callback callback;
	void *callback_param;

	spin_lock_irqsave(&d40c->lock, flags);

	/* Get first active entry from list */
1046
	d40d = d40_first_active_get(d40c);
1047

1048
	if (d40d == NULL)
1049 1050
		goto err;

1051
	d40c->completed = d40d->txd.cookie;
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062

	/*
	 * If terminating a channel pending_tx is set to zero.
	 * This prevents any finished active jobs to return to the client.
	 */
	if (d40c->pending_tx == 0) {
		spin_unlock_irqrestore(&d40c->lock, flags);
		return;
	}

	/* Callback to client */
1063 1064 1065 1066 1067 1068 1069
	callback = d40d->txd.callback;
	callback_param = d40d->txd.callback_param;

	if (async_tx_test_ack(&d40d->txd)) {
		d40_pool_lli_free(d40d);
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
1070
	} else {
1071 1072
		if (!d40d->is_in_client_list) {
			d40_desc_remove(d40d);
1073
			d40_lcla_free_all(d40c, d40d);
1074 1075
			list_add_tail(&d40d->node, &d40c->client);
			d40d->is_in_client_list = true;
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
		}
	}

	d40c->pending_tx--;

	if (d40c->pending_tx)
		tasklet_schedule(&d40c->tasklet);

	spin_unlock_irqrestore(&d40c->lock, flags);

1086
	if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
		callback(callback_param);

	return;

 err:
	/* Rescue manouver if receiving double interrupts */
	if (d40c->pending_tx > 0)
		d40c->pending_tx--;
	spin_unlock_irqrestore(&d40c->lock, flags);
}

static irqreturn_t d40_handle_interrupt(int irq, void *data)
{
	static const struct d40_interrupt_lookup il[] = {
		{D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
		{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
		{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
		{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
		{D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
		{D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
		{D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
		{D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
		{D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
		{D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
	};

	int i;
	u32 regs[ARRAY_SIZE(il)];
	u32 idx;
	u32 row;
	long chan = -1;
	struct d40_chan *d40c;
	unsigned long flags;
	struct d40_base *base = data;

	spin_lock_irqsave(&base->interrupt_lock, flags);

	/* Read interrupt status of both logical and physical channels */
	for (i = 0; i < ARRAY_SIZE(il); i++)
		regs[i] = readl(base->virtbase + il[i].src);

	for (;;) {

		chan = find_next_bit((unsigned long *)regs,
				     BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);

		/* No more set bits found? */
		if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
			break;

		row = chan / BITS_PER_LONG;
		idx = chan & (BITS_PER_LONG - 1);

		/* ACK interrupt */
1141
		writel(1 << idx, base->virtbase + il[row].clr);
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

		if (il[row].offset == D40_PHY_CHAN)
			d40c = base->lookup_phy_chans[idx];
		else
			d40c = base->lookup_log_chans[il[row].offset + idx];
		spin_lock(&d40c->lock);

		if (!il[row].is_error)
			dma_tc_handle(d40c);
		else
1152 1153
			d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
				chan, il[row].offset, idx);
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168

		spin_unlock(&d40c->lock);
	}

	spin_unlock_irqrestore(&base->interrupt_lock, flags);

	return IRQ_HANDLED;
}

static int d40_validate_conf(struct d40_chan *d40c,
			     struct stedma40_chan_cfg *conf)
{
	int res = 0;
	u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
	u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
1169
	bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1170

1171
	if (!conf->dir) {
1172
		chan_err(d40c, "Invalid direction.\n");
1173 1174 1175 1176 1177 1178 1179
		res = -EINVAL;
	}

	if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
	    d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
	    d40c->runtime_addr == 0) {

1180 1181
		chan_err(d40c, "Invalid TX channel address (%d)\n",
			 conf->dst_dev_type);
1182 1183 1184 1185 1186 1187
		res = -EINVAL;
	}

	if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
	    d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
	    d40c->runtime_addr == 0) {
1188 1189
		chan_err(d40c, "Invalid RX channel address (%d)\n",
			conf->src_dev_type);
1190 1191 1192 1193
		res = -EINVAL;
	}

	if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1194
	    dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1195
		chan_err(d40c, "Invalid dst\n");
1196 1197 1198
		res = -EINVAL;
	}

1199
	if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1200
	    src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1201
		chan_err(d40c, "Invalid src\n");
1202 1203 1204 1205 1206
		res = -EINVAL;
	}

	if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
	    dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1207
		chan_err(d40c, "No event line\n");
1208 1209 1210 1211 1212
		res = -EINVAL;
	}

	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
	    (src_event_group != dst_event_group)) {
1213
		chan_err(d40c, "Invalid event group\n");
1214 1215 1216 1217 1218 1219 1220 1221
		res = -EINVAL;
	}

	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
		/*
		 * DMAC HW supports it. Will be added to this driver,
		 * in case any dma client requires it.
		 */
1222
		chan_err(d40c, "periph to periph not supported\n");
1223 1224 1225
		res = -EINVAL;
	}

1226 1227 1228 1229 1230 1231 1232 1233 1234
	if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
	    (1 << conf->src_info.data_width) !=
	    d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
	    (1 << conf->dst_info.data_width)) {
		/*
		 * The DMAC hardware only supports
		 * src (burst x width) == dst (burst x width)
		 */

1235
		chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1236 1237 1238
		res = -EINVAL;
	}

1239 1240 1241 1242
	return res;
}

static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
1243
			       int log_event_line, bool is_log)
1244 1245 1246
{
	unsigned long flags;
	spin_lock_irqsave(&phy->lock, flags);
1247
	if (!is_log) {
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
		/* Physical interrupts are masked per physical full channel */
		if (phy->allocated_src == D40_ALLOC_FREE &&
		    phy->allocated_dst == D40_ALLOC_FREE) {
			phy->allocated_dst = D40_ALLOC_PHY;
			phy->allocated_src = D40_ALLOC_PHY;
			goto found;
		} else
			goto not_found;
	}

	/* Logical channel */
	if (is_src) {
		if (phy->allocated_src == D40_ALLOC_PHY)
			goto not_found;

		if (phy->allocated_src == D40_ALLOC_FREE)
			phy->allocated_src = D40_ALLOC_LOG_FREE;

		if (!(phy->allocated_src & (1 << log_event_line))) {
			phy->allocated_src |= 1 << log_event_line;
			goto found;
		} else
			goto not_found;
	} else {
		if (phy->allocated_dst == D40_ALLOC_PHY)
			goto not_found;

		if (phy->allocated_dst == D40_ALLOC_FREE)
			phy->allocated_dst = D40_ALLOC_LOG_FREE;

		if (!(phy->allocated_dst & (1 << log_event_line))) {
			phy->allocated_dst |= 1 << log_event_line;
			goto found;
		} else
			goto not_found;
	}

not_found:
	spin_unlock_irqrestore(&phy->lock, flags);
	return false;
found:
	spin_unlock_irqrestore(&phy->lock, flags);
	return true;
}

static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
			       int log_event_line)
{
	unsigned long flags;
	bool is_free = false;

	spin_lock_irqsave(&phy->lock, flags);
	if (!log_event_line) {
		phy->allocated_dst = D40_ALLOC_FREE;
		phy->allocated_src = D40_ALLOC_FREE;
		is_free = true;
		goto out;
	}

	/* Logical channel */
	if (is_src) {
		phy->allocated_src &= ~(1 << log_event_line);
		if (phy->allocated_src == D40_ALLOC_LOG_FREE)
			phy->allocated_src = D40_ALLOC_FREE;
	} else {
		phy->allocated_dst &= ~(1 << log_event_line);
		if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
			phy->allocated_dst = D40_ALLOC_FREE;
	}

	is_free = ((phy->allocated_src | phy->allocated_dst) ==
		   D40_ALLOC_FREE);

out:
	spin_unlock_irqrestore(&phy->lock, flags);

	return is_free;
}

static int d40_allocate_channel(struct d40_chan *d40c)
{
	int dev_type;
	int event_group;
	int event_line;
	struct d40_phy_res *phys;
	int i;
	int j;
	int log_num;
	bool is_src;
1337
	bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361

	phys = d40c->base->phy_res;

	if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
		dev_type = d40c->dma_cfg.src_dev_type;
		log_num = 2 * dev_type;
		is_src = true;
	} else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
		   d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
		/* dst event lines are used for logical memcpy */
		dev_type = d40c->dma_cfg.dst_dev_type;
		log_num = 2 * dev_type + 1;
		is_src = false;
	} else
		return -EINVAL;

	event_group = D40_TYPE_TO_GROUP(dev_type);
	event_line = D40_TYPE_TO_EVENT(dev_type);

	if (!is_log) {
		if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
			/* Find physical half channel */
			for (i = 0; i < d40c->base->num_phy_chans; i++) {

1362 1363
				if (d40_alloc_mask_set(&phys[i], is_src,
						       0, is_log))
1364 1365 1366 1367 1368 1369
					goto found_phy;
			}
		} else
			for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
				int phy_num = j  + event_group * 2;
				for (i = phy_num; i < phy_num + 2; i++) {
1370 1371 1372 1373
					if (d40_alloc_mask_set(&phys[i],
							       is_src,
							       0,
							       is_log))
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
						goto found_phy;
				}
			}
		return -EINVAL;
found_phy:
		d40c->phy_chan = &phys[i];
		d40c->log_num = D40_PHY_CHAN;
		goto out;
	}
	if (dev_type == -1)
		return -EINVAL;

	/* Find logical channel */
	for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
		int phy_num = j + event_group * 2;
		/*
		 * Spread logical channels across all available physical rather
		 * than pack every logical channel at the first available phy
		 * channels.
		 */
		if (is_src) {
			for (i = phy_num; i < phy_num + 2; i++) {
				if (d40_alloc_mask_set(&phys[i], is_src,
1397
						       event_line, is_log))
1398 1399 1400 1401 1402
					goto found_log;
			}
		} else {
			for (i = phy_num + 1; i >= phy_num; i--) {
				if (d40_alloc_mask_set(&phys[i], is_src,
1403
						       event_line, is_log))
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
					goto found_log;
			}
		}
	}
	return -EINVAL;

found_log:
	d40c->phy_chan = &phys[i];
	d40c->log_num = log_num;
out:

	if (is_log)
		d40c->base->lookup_log_chans[d40c->log_num] = d40c;
	else
		d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;

	return 0;

}

static int d40_config_memcpy(struct d40_chan *d40c)
{
	dma_cap_mask_t cap = d40c->chan.device->cap_mask;

	if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
		d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
		d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
			memcpy[d40c->chan.chan_id];

	} else if (dma_has_cap(DMA_MEMCPY, cap) &&
		   dma_has_cap(DMA_SLAVE, cap)) {
		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
	} else {
1438
		chan_err(d40c, "No memcpy\n");
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
		return -EINVAL;
	}

	return 0;
}


static int d40_free_dma(struct d40_chan *d40c)
{

	int res = 0;
1450
	u32 event;
1451 1452
	struct d40_phy_res *phy = d40c->phy_chan;
	bool is_src;
1453 1454 1455
	struct d40_desc *d;
	struct d40_desc *_d;

1456 1457 1458 1459

	/* Terminate all queued and active transfers */
	d40_term_all(d40c);

1460 1461 1462 1463 1464 1465 1466 1467
	/* Release client owned descriptors */
	if (!list_empty(&d40c->client))
		list_for_each_entry_safe(d, _d, &d40c->client, node) {
			d40_pool_lli_free(d);
			d40_desc_remove(d);
			d40_desc_free(d40c, d);
		}

1468
	if (phy == NULL) {
1469
		chan_err(d40c, "phy == null\n");
1470 1471 1472 1473 1474
		return -EINVAL;
	}

	if (phy->allocated_src == D40_ALLOC_FREE &&
	    phy->allocated_dst == D40_ALLOC_FREE) {
1475
		chan_err(d40c, "channel already free\n");
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
		return -EINVAL;
	}

	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
		is_src = false;
	} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
		is_src = true;
	} else {
1487
		chan_err(d40c, "Unknown direction\n");
1488 1489 1490
		return -EINVAL;
	}

1491 1492
	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
	if (res) {
1493
		chan_err(d40c, "suspend failed\n");
1494 1495 1496
		return res;
	}

1497
	if (chan_is_logical(d40c)) {
1498
		/* Release logical channel, deactivate the event line */
1499

1500
		d40_config_set_event(d40c, false);
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
		d40c->base->lookup_log_chans[d40c->log_num] = NULL;

		/*
		 * Check if there are more logical allocation
		 * on this phy channel.
		 */
		if (!d40_alloc_mask_free(phy, is_src, event)) {
			/* Resume the other logical channels if any */
			if (d40_chan_has_events(d40c)) {
				res = d40_channel_execute_command(d40c,
								  D40_DMA_RUN);
				if (res) {
1513 1514
					chan_err(d40c,
						"Executing RUN command\n");
1515 1516 1517 1518 1519
					return res;
				}
			}
			return 0;
		}
1520 1521 1522
	} else {
		(void) d40_alloc_mask_free(phy, is_src, 0);
	}
1523 1524 1525 1526

	/* Release physical channel */
	res = d40_channel_execute_command(d40c, D40_DMA_STOP);
	if (res) {
1527
		chan_err(d40c, "Failed to stop channel\n");
1528 1529 1530
		return res;
	}
	d40c->phy_chan = NULL;
1531
	d40c->configured = false;
1532 1533 1534 1535 1536
	d40c->base->lookup_phy_chans[phy->num] = NULL;

	return 0;
}

1537 1538
static bool d40_is_paused(struct d40_chan *d40c)
{
1539
	void __iomem *chanbase = chan_base(d40c);
1540 1541 1542 1543 1544 1545 1546 1547
	bool is_paused = false;
	unsigned long flags;
	void __iomem *active_reg;
	u32 status;
	u32 event;

	spin_lock_irqsave(&d40c->lock, flags);

1548
	if (chan_is_physical(d40c)) {
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
		if (d40c->phy_chan->num % 2 == 0)
			active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
		else
			active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;

		status = (readl(active_reg) &
			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
			D40_CHAN_POS(d40c->phy_chan->num);
		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
			is_paused = true;

		goto _exit;
	}

	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1564
	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1565
		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1566
		status = readl(chanbase + D40_CHAN_REG_SDLNK);
1567
	} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1568
		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1569
		status = readl(chanbase + D40_CHAN_REG_SSLNK);
1570
	} else {
1571
		chan_err(d40c, "Unknown direction\n");
1572 1573
		goto _exit;
	}
1574

1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
	status = (status & D40_EVENTLINE_MASK(event)) >>
		D40_EVENTLINE_POS(event);

	if (status != D40_DMA_RUN)
		is_paused = true;
_exit:
	spin_unlock_irqrestore(&d40c->lock, flags);
	return is_paused;

}


1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
static u32 stedma40_residue(struct dma_chan *chan)
{
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	u32 bytes_left;
	unsigned long flags;

	spin_lock_irqsave(&d40c->lock, flags);
	bytes_left = d40_residue(d40c);
	spin_unlock_irqrestore(&d40c->lock, flags);

	return bytes_left;
}

struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
						   struct scatterlist *sgl_dst,
						   struct scatterlist *sgl_src,
						   unsigned int sgl_len,
1605
						   unsigned long dma_flags)
1606 1607 1608 1609 1610
{
	int res;
	struct d40_desc *d40d;
	struct d40_chan *d40c = container_of(chan, struct d40_chan,
					     chan);
1611
	unsigned long flags;
1612

1613
	if (d40c->phy_chan == NULL) {
1614
		chan_err(d40c, "Unallocated channel.\n");
1615 1616 1617
		return ERR_PTR(-EINVAL);
	}

1618
	spin_lock_irqsave(&d40c->lock, flags);
1619 1620 1621 1622 1623
	d40d = d40_desc_get(d40c);

	if (d40d == NULL)
		goto err;

1624 1625 1626 1627
	d40d->lli_len = d40_sg_2_dmalen(sgl_dst, sgl_len,
					d40c->dma_cfg.src_info.data_width,
					d40c->dma_cfg.dst_info.data_width);
	if (d40d->lli_len < 0) {
1628
		chan_err(d40c, "Unaligned size\n");
1629 1630 1631
		goto err;
	}

1632
	d40d->lli_current = 0;
1633
	d40d->txd.flags = dma_flags;
1634

1635
	if (chan_is_logical(d40c)) {
1636

1637
		if (d40_pool_lli_alloc(d40d, d40d->lli_len, true) < 0) {
1638
			chan_err(d40c, "Out of memory\n");
1639 1640 1641
			goto err;
		}

1642
		(void) d40_log_sg_to_lli(sgl_src,
1643 1644 1645
					 sgl_len,
					 d40d->lli_log.src,
					 d40c->log_def.lcsp1,
1646 1647
					 d40c->dma_cfg.src_info.data_width,
					 d40c->dma_cfg.dst_info.data_width);
1648

1649
		(void) d40_log_sg_to_lli(sgl_dst,
1650 1651 1652
					 sgl_len,
					 d40d->lli_log.dst,
					 d40c->log_def.lcsp3,
1653 1654
					 d40c->dma_cfg.dst_info.data_width,
					 d40c->dma_cfg.src_info.data_width);
1655
	} else {
1656
		if (d40_pool_lli_alloc(d40d, d40d->lli_len, false) < 0) {
1657
			chan_err(d40c, "Out of memory\n");
1658 1659 1660 1661 1662 1663 1664
			goto err;
		}

		res = d40_phy_sg_to_lli(sgl_src,
					sgl_len,
					0,
					d40d->lli_phy.src,
1665
					virt_to_phys(d40d->lli_phy.src),
1666 1667
					d40c->src_def_cfg,
					d40c->dma_cfg.src_info.data_width,
1668
					d40c->dma_cfg.dst_info.data_width,
1669
					d40c->dma_cfg.src_info.psize);
1670 1671 1672 1673 1674 1675 1676 1677

		if (res < 0)
			goto err;

		res = d40_phy_sg_to_lli(sgl_dst,
					sgl_len,
					0,
					d40d->lli_phy.dst,
1678
					virt_to_phys(d40d->lli_phy.dst),
1679 1680
					d40c->dst_def_cfg,
					d40c->dma_cfg.dst_info.data_width,
1681
					d40c->dma_cfg.src_info.data_width,
1682
					d40c->dma_cfg.dst_info.psize);
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694

		if (res < 0)
			goto err;

		(void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
				      d40d->lli_pool.size, DMA_TO_DEVICE);
	}

	dma_async_tx_descriptor_init(&d40d->txd, chan);

	d40d->txd.tx_submit = d40_tx_submit;

1695
	spin_unlock_irqrestore(&d40c->lock, flags);
1696 1697 1698

	return &d40d->txd;
err:
1699 1700
	if (d40d)
		d40_desc_free(d40c, d40d);
1701
	spin_unlock_irqrestore(&d40c->lock, flags);
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
	return NULL;
}
EXPORT_SYMBOL(stedma40_memcpy_sg);

bool stedma40_filter(struct dma_chan *chan, void *data)
{
	struct stedma40_chan_cfg *info = data;
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	int err;

	if (data) {
		err = d40_validate_conf(d40c, info);
		if (!err)
			d40c->dma_cfg = *info;
	} else
		err = d40_config_memcpy(d40c);

1720 1721 1722
	if (!err)
		d40c->configured = true;

1723 1724 1725 1726
	return err == 0;
}
EXPORT_SYMBOL(stedma40_filter);

1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
{
	bool realtime = d40c->dma_cfg.realtime;
	bool highprio = d40c->dma_cfg.high_priority;
	u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
	u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
	u32 event = D40_TYPE_TO_EVENT(dev_type);
	u32 group = D40_TYPE_TO_GROUP(dev_type);
	u32 bit = 1 << event;

	/* Destination event lines are stored in the upper halfword */
	if (!src)
		bit <<= 16;

	writel(bit, d40c->base->virtbase + prioreg + group * 4);
	writel(bit, d40c->base->virtbase + rtreg + group * 4);
}

static void d40_set_prio_realtime(struct d40_chan *d40c)
{
	if (d40c->base->rev < 3)
		return;

	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
		__d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);

	if ((d40c->dma_cfg.dir ==  STEDMA40_MEM_TO_PERIPH) ||
	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
		__d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
}

1759 1760 1761 1762 1763 1764 1765
/* DMA ENGINE functions */
static int d40_alloc_chan_resources(struct dma_chan *chan)
{
	int err;
	unsigned long flags;
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
1766
	bool is_free_phy;
1767 1768 1769 1770
	spin_lock_irqsave(&d40c->lock, flags);

	d40c->completed = chan->cookie = 1;

1771 1772
	/* If no dma configuration is set use default configuration (memcpy) */
	if (!d40c->configured) {
1773
		err = d40_config_memcpy(d40c);
1774
		if (err) {
1775
			chan_err(d40c, "Failed to configure memcpy channel\n");
1776 1777
			goto fail;
		}
1778
	}
1779
	is_free_phy = (d40c->phy_chan == NULL);
1780 1781 1782

	err = d40_allocate_channel(d40c);
	if (err) {
1783
		chan_err(d40c, "Failed to allocate channel\n");
1784
		goto fail;
1785 1786
	}

1787 1788
	/* Fill in basic CFG register values */
	d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
1789
		    &d40c->dst_def_cfg, chan_is_logical(d40c));
1790

1791 1792
	d40_set_prio_realtime(d40c);

1793
	if (chan_is_logical(d40c)) {
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
		d40_log_cfg(&d40c->dma_cfg,
			    &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);

		if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
			d40c->lcpa = d40c->base->lcpa_base +
			  d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
		else
			d40c->lcpa = d40c->base->lcpa_base +
			  d40c->dma_cfg.dst_dev_type *
			  D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
	}

	/*
	 * Only write channel configuration to the DMA if the physical
	 * resource is free. In case of multiple logical channels
	 * on the same physical resource, only the first write is necessary.
	 */
1811 1812
	if (is_free_phy)
		d40_config_write(d40c);
1813
fail:
1814
	spin_unlock_irqrestore(&d40c->lock, flags);
1815
	return err;
1816 1817 1818 1819 1820 1821 1822 1823 1824
}

static void d40_free_chan_resources(struct dma_chan *chan)
{
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	int err;
	unsigned long flags;

1825
	if (d40c->phy_chan == NULL) {
1826
		chan_err(d40c, "Cannot free unallocated channel\n");
1827 1828 1829 1830
		return;
	}


1831 1832 1833 1834 1835
	spin_lock_irqsave(&d40c->lock, flags);

	err = d40_free_dma(d40c);

	if (err)
1836
		chan_err(d40c, "Failed to free channel\n");
1837 1838 1839 1840 1841 1842 1843
	spin_unlock_irqrestore(&d40c->lock, flags);
}

static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
						       dma_addr_t dst,
						       dma_addr_t src,
						       size_t size,
1844
						       unsigned long dma_flags)
1845 1846 1847 1848
{
	struct d40_desc *d40d;
	struct d40_chan *d40c = container_of(chan, struct d40_chan,
					     chan);
1849
	unsigned long flags;
1850

1851
	if (d40c->phy_chan == NULL) {
1852
		chan_err(d40c, "Channel is not allocated.\n");
1853 1854 1855
		return ERR_PTR(-EINVAL);
	}

1856
	spin_lock_irqsave(&d40c->lock, flags);
1857 1858 1859
	d40d = d40_desc_get(d40c);

	if (d40d == NULL) {
1860
		chan_err(d40c, "Descriptor is NULL\n");
1861 1862 1863
		goto err;
	}

1864
	d40d->txd.flags = dma_flags;
1865 1866 1867 1868
	d40d->lli_len = d40_size_2_dmalen(size,
					  d40c->dma_cfg.src_info.data_width,
					  d40c->dma_cfg.dst_info.data_width);
	if (d40d->lli_len < 0) {
1869
		chan_err(d40c, "Unaligned size\n");
1870 1871 1872
		goto err;
	}

1873 1874 1875 1876 1877

	dma_async_tx_descriptor_init(&d40d->txd, chan);

	d40d->txd.tx_submit = d40_tx_submit;

1878
	if (chan_is_logical(d40c)) {
1879

1880
		if (d40_pool_lli_alloc(d40d, d40d->lli_len, true) < 0) {
1881
			chan_err(d40c, "Out of memory\n");
1882 1883
			goto err;
		}
1884
		d40d->lli_current = 0;
1885

1886 1887 1888 1889 1890 1891 1892 1893
		if (d40_log_buf_to_lli(d40d->lli_log.src,
				       src,
				       size,
				       d40c->log_def.lcsp1,
				       d40c->dma_cfg.src_info.data_width,
				       d40c->dma_cfg.dst_info.data_width,
				       true) == NULL)
			goto err;
1894

1895 1896 1897 1898 1899 1900 1901 1902
		if (d40_log_buf_to_lli(d40d->lli_log.dst,
				       dst,
				       size,
				       d40c->log_def.lcsp3,
				       d40c->dma_cfg.dst_info.data_width,
				       d40c->dma_cfg.src_info.data_width,
				       true) == NULL)
			goto err;
1903 1904 1905

	} else {

1906
		if (d40_pool_lli_alloc(d40d, d40d->lli_len, false) < 0) {
1907
			chan_err(d40c, "Out of memory\n");
1908 1909 1910
			goto err;
		}

1911
		if (d40_phy_buf_to_lli(d40d->lli_phy.src,
1912 1913 1914 1915 1916 1917 1918
				       src,
				       size,
				       d40c->dma_cfg.src_info.psize,
				       0,
				       d40c->src_def_cfg,
				       true,
				       d40c->dma_cfg.src_info.data_width,
1919 1920 1921
				       d40c->dma_cfg.dst_info.data_width,
				       false) == NULL)
			goto err;
1922

1923
		if (d40_phy_buf_to_lli(d40d->lli_phy.dst,
1924 1925 1926 1927 1928 1929 1930
				       dst,
				       size,
				       d40c->dma_cfg.dst_info.psize,
				       0,
				       d40c->dst_def_cfg,
				       true,
				       d40c->dma_cfg.dst_info.data_width,
1931 1932 1933
				       d40c->dma_cfg.src_info.data_width,
				       false) == NULL)
			goto err;
1934 1935 1936 1937 1938

		(void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
				      d40d->lli_pool.size, DMA_TO_DEVICE);
	}

1939
	spin_unlock_irqrestore(&d40c->lock, flags);
1940 1941 1942
	return &d40d->txd;

err:
1943 1944
	if (d40d)
		d40_desc_free(d40c, d40d);
1945
	spin_unlock_irqrestore(&d40c->lock, flags);
1946 1947 1948
	return NULL;
}

1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
static struct dma_async_tx_descriptor *
d40_prep_sg(struct dma_chan *chan,
	    struct scatterlist *dst_sg, unsigned int dst_nents,
	    struct scatterlist *src_sg, unsigned int src_nents,
	    unsigned long dma_flags)
{
	if (dst_nents != src_nents)
		return NULL;

	return stedma40_memcpy_sg(chan, dst_sg, src_sg, dst_nents, dma_flags);
}

1961 1962 1963 1964 1965
static int d40_prep_slave_sg_log(struct d40_desc *d40d,
				 struct d40_chan *d40c,
				 struct scatterlist *sgl,
				 unsigned int sg_len,
				 enum dma_data_direction direction,
1966
				 unsigned long dma_flags)
1967 1968 1969 1970
{
	dma_addr_t dev_addr = 0;
	int total_size;

1971 1972 1973 1974
	d40d->lli_len = d40_sg_2_dmalen(sgl, sg_len,
					d40c->dma_cfg.src_info.data_width,
					d40c->dma_cfg.dst_info.data_width);
	if (d40d->lli_len < 0) {
1975
		chan_err(d40c, "Unaligned size\n");
1976 1977 1978 1979
		return -EINVAL;
	}

	if (d40_pool_lli_alloc(d40d, d40d->lli_len, true) < 0) {
1980
		chan_err(d40c, "Out of memory\n");
1981 1982 1983
		return -ENOMEM;
	}

1984
	d40d->lli_current = 0;
1985

1986
	if (direction == DMA_FROM_DEVICE)
1987 1988 1989 1990
		if (d40c->runtime_addr)
			dev_addr = d40c->runtime_addr;
		else
			dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
1991
	else if (direction == DMA_TO_DEVICE)
1992 1993 1994 1995 1996
		if (d40c->runtime_addr)
			dev_addr = d40c->runtime_addr;
		else
			dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];

1997
	else
1998
		return -EINVAL;
1999

2000
	total_size = d40_log_sg_to_dev(sgl, sg_len,
2001 2002 2003 2004 2005
				       &d40d->lli_log,
				       &d40c->log_def,
				       d40c->dma_cfg.src_info.data_width,
				       d40c->dma_cfg.dst_info.data_width,
				       direction,
2006
				       dev_addr);
2007

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
	if (total_size < 0)
		return -EINVAL;

	return 0;
}

static int d40_prep_slave_sg_phy(struct d40_desc *d40d,
				 struct d40_chan *d40c,
				 struct scatterlist *sgl,
				 unsigned int sgl_len,
				 enum dma_data_direction direction,
2019
				 unsigned long dma_flags)
2020 2021 2022 2023 2024
{
	dma_addr_t src_dev_addr;
	dma_addr_t dst_dev_addr;
	int res;

2025 2026 2027 2028
	d40d->lli_len = d40_sg_2_dmalen(sgl, sgl_len,
					d40c->dma_cfg.src_info.data_width,
					d40c->dma_cfg.dst_info.data_width);
	if (d40d->lli_len < 0) {
2029
		chan_err(d40c, "Unaligned size\n");
2030 2031 2032 2033
		return -EINVAL;
	}

	if (d40_pool_lli_alloc(d40d, d40d->lli_len, false) < 0) {
2034
		chan_err(d40c, "Out of memory\n");
2035 2036 2037
		return -ENOMEM;
	}

2038
	d40d->lli_current = 0;
2039 2040 2041

	if (direction == DMA_FROM_DEVICE) {
		dst_dev_addr = 0;
2042 2043 2044 2045
		if (d40c->runtime_addr)
			src_dev_addr = d40c->runtime_addr;
		else
			src_dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
2046
	} else if (direction == DMA_TO_DEVICE) {
2047 2048 2049 2050
		if (d40c->runtime_addr)
			dst_dev_addr = d40c->runtime_addr;
		else
			dst_dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
2051 2052 2053 2054 2055 2056 2057 2058
		src_dev_addr = 0;
	} else
		return -EINVAL;

	res = d40_phy_sg_to_lli(sgl,
				sgl_len,
				src_dev_addr,
				d40d->lli_phy.src,
2059
				virt_to_phys(d40d->lli_phy.src),
2060 2061
				d40c->src_def_cfg,
				d40c->dma_cfg.src_info.data_width,
2062
				d40c->dma_cfg.dst_info.data_width,
2063
				d40c->dma_cfg.src_info.psize);
2064 2065 2066 2067 2068 2069 2070
	if (res < 0)
		return res;

	res = d40_phy_sg_to_lli(sgl,
				sgl_len,
				dst_dev_addr,
				d40d->lli_phy.dst,
2071
				virt_to_phys(d40d->lli_phy.dst),
2072 2073
				d40c->dst_def_cfg,
				d40c->dma_cfg.dst_info.data_width,
2074
				d40c->dma_cfg.src_info.data_width,
2075
				d40c->dma_cfg.dst_info.psize);
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
	if (res < 0)
		return res;

	(void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
			      d40d->lli_pool.size, DMA_TO_DEVICE);
	return 0;
}

static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
							 struct scatterlist *sgl,
							 unsigned int sg_len,
							 enum dma_data_direction direction,
2088
							 unsigned long dma_flags)
2089 2090 2091 2092
{
	struct d40_desc *d40d;
	struct d40_chan *d40c = container_of(chan, struct d40_chan,
					     chan);
2093
	unsigned long flags;
2094 2095
	int err;

2096
	if (d40c->phy_chan == NULL) {
2097
		chan_err(d40c, "Cannot prepare unallocated channel\n");
2098 2099 2100
		return ERR_PTR(-EINVAL);
	}

2101
	spin_lock_irqsave(&d40c->lock, flags);
2102 2103 2104
	d40d = d40_desc_get(d40c);

	if (d40d == NULL)
2105
		goto err;
2106

2107
	if (chan_is_logical(d40c))
2108
		err = d40_prep_slave_sg_log(d40d, d40c, sgl, sg_len,
2109
					    direction, dma_flags);
2110 2111
	else
		err = d40_prep_slave_sg_phy(d40d, d40c, sgl, sg_len,
2112
					    direction, dma_flags);
2113
	if (err) {
2114
		chan_err(d40c, "Failed to prepare %s slave sg job: %d\n",
2115
			chan_is_logical(d40c) ? "log" : "phy", err);
2116
		goto err;
2117 2118
	}

2119
	d40d->txd.flags = dma_flags;
2120 2121 2122 2123 2124

	dma_async_tx_descriptor_init(&d40d->txd, chan);

	d40d->txd.tx_submit = d40_tx_submit;

2125
	spin_unlock_irqrestore(&d40c->lock, flags);
2126
	return &d40d->txd;
2127 2128 2129 2130 2131 2132

err:
	if (d40d)
		d40_desc_free(d40c, d40d);
	spin_unlock_irqrestore(&d40c->lock, flags);
	return NULL;
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
}

static enum dma_status d40_tx_status(struct dma_chan *chan,
				     dma_cookie_t cookie,
				     struct dma_tx_state *txstate)
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	dma_cookie_t last_used;
	dma_cookie_t last_complete;
	int ret;

2144
	if (d40c->phy_chan == NULL) {
2145
		chan_err(d40c, "Cannot read status of unallocated channel\n");
2146 2147 2148
		return -EINVAL;
	}

2149 2150 2151
	last_complete = d40c->completed;
	last_used = chan->cookie;

2152 2153 2154 2155
	if (d40_is_paused(d40c))
		ret = DMA_PAUSED;
	else
		ret = dma_async_is_complete(cookie, last_complete, last_used);
2156

2157 2158
	dma_set_tx_state(txstate, last_complete, last_used,
			 stedma40_residue(chan));
2159 2160 2161 2162 2163 2164 2165 2166 2167

	return ret;
}

static void d40_issue_pending(struct dma_chan *chan)
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	unsigned long flags;

2168
	if (d40c->phy_chan == NULL) {
2169
		chan_err(d40c, "Channel is not allocated!\n");
2170 2171 2172
		return;
	}

2173 2174 2175 2176 2177 2178 2179 2180 2181
	spin_lock_irqsave(&d40c->lock, flags);

	/* Busy means that pending jobs are already being processed */
	if (!d40c->busy)
		(void) d40_queue_start(d40c);

	spin_unlock_irqrestore(&d40c->lock, flags);
}

2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
/* Runtime reconfiguration extension */
static void d40_set_runtime_config(struct dma_chan *chan,
			       struct dma_slave_config *config)
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
	enum dma_slave_buswidth config_addr_width;
	dma_addr_t config_addr;
	u32 config_maxburst;
	enum stedma40_periph_data_width addr_width;
	int psize;

	if (config->direction == DMA_FROM_DEVICE) {
		dma_addr_t dev_addr_rx =
			d40c->base->plat_data->dev_rx[cfg->src_dev_type];

		config_addr = config->src_addr;
		if (dev_addr_rx)
			dev_dbg(d40c->base->dev,
				"channel has a pre-wired RX address %08x "
				"overriding with %08x\n",
				dev_addr_rx, config_addr);
		if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
			dev_dbg(d40c->base->dev,
				"channel was not configured for peripheral "
				"to memory transfer (%d) overriding\n",
				cfg->dir);
		cfg->dir = STEDMA40_PERIPH_TO_MEM;

		config_addr_width = config->src_addr_width;
		config_maxburst = config->src_maxburst;

	} else if (config->direction == DMA_TO_DEVICE) {
		dma_addr_t dev_addr_tx =
			d40c->base->plat_data->dev_tx[cfg->dst_dev_type];

		config_addr = config->dst_addr;
		if (dev_addr_tx)
			dev_dbg(d40c->base->dev,
				"channel has a pre-wired TX address %08x "
				"overriding with %08x\n",
				dev_addr_tx, config_addr);
		if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
			dev_dbg(d40c->base->dev,
				"channel was not configured for memory "
				"to peripheral transfer (%d) overriding\n",
				cfg->dir);
		cfg->dir = STEDMA40_MEM_TO_PERIPH;

		config_addr_width = config->dst_addr_width;
		config_maxburst = config->dst_maxburst;

	} else {
		dev_err(d40c->base->dev,
			"unrecognized channel direction %d\n",
			config->direction);
		return;
	}

	switch (config_addr_width) {
	case DMA_SLAVE_BUSWIDTH_1_BYTE:
		addr_width = STEDMA40_BYTE_WIDTH;
		break;
	case DMA_SLAVE_BUSWIDTH_2_BYTES:
		addr_width = STEDMA40_HALFWORD_WIDTH;
		break;
	case DMA_SLAVE_BUSWIDTH_4_BYTES:
		addr_width = STEDMA40_WORD_WIDTH;
		break;
	case DMA_SLAVE_BUSWIDTH_8_BYTES:
		addr_width = STEDMA40_DOUBLEWORD_WIDTH;
		break;
	default:
		dev_err(d40c->base->dev,
			"illegal peripheral address width "
			"requested (%d)\n",
			config->src_addr_width);
		return;
	}

2262
	if (chan_is_logical(d40c)) {
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
		if (config_maxburst >= 16)
			psize = STEDMA40_PSIZE_LOG_16;
		else if (config_maxburst >= 8)
			psize = STEDMA40_PSIZE_LOG_8;
		else if (config_maxburst >= 4)
			psize = STEDMA40_PSIZE_LOG_4;
		else
			psize = STEDMA40_PSIZE_LOG_1;
	} else {
		if (config_maxburst >= 16)
			psize = STEDMA40_PSIZE_PHY_16;
		else if (config_maxburst >= 8)
			psize = STEDMA40_PSIZE_PHY_8;
		else if (config_maxburst >= 4)
			psize = STEDMA40_PSIZE_PHY_4;
2278 2279
		else if (config_maxburst >= 2)
			psize = STEDMA40_PSIZE_PHY_2;
2280 2281 2282
		else
			psize = STEDMA40_PSIZE_PHY_1;
	}
2283 2284 2285 2286

	/* Set up all the endpoint configs */
	cfg->src_info.data_width = addr_width;
	cfg->src_info.psize = psize;
2287
	cfg->src_info.big_endian = false;
2288 2289 2290
	cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
	cfg->dst_info.data_width = addr_width;
	cfg->dst_info.psize = psize;
2291
	cfg->dst_info.big_endian = false;
2292 2293
	cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;

2294
	/* Fill in register values */
2295
	if (chan_is_logical(d40c))
2296 2297 2298 2299 2300
		d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
	else
		d40_phy_cfg(cfg, &d40c->src_def_cfg,
			    &d40c->dst_def_cfg, false);

2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
	/* These settings will take precedence later */
	d40c->runtime_addr = config_addr;
	d40c->runtime_direction = config->direction;
	dev_dbg(d40c->base->dev,
		"configured channel %s for %s, data width %d, "
		"maxburst %d bytes, LE, no flow control\n",
		dma_chan_name(chan),
		(config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
		config_addr_width,
		config_maxburst);
}

2313 2314
static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
		       unsigned long arg)
2315 2316 2317 2318
{
	unsigned long flags;
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);

2319
	if (d40c->phy_chan == NULL) {
2320
		chan_err(d40c, "Channel is not allocated!\n");
2321 2322 2323
		return -EINVAL;
	}

2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
	switch (cmd) {
	case DMA_TERMINATE_ALL:
		spin_lock_irqsave(&d40c->lock, flags);
		d40_term_all(d40c);
		spin_unlock_irqrestore(&d40c->lock, flags);
		return 0;
	case DMA_PAUSE:
		return d40_pause(chan);
	case DMA_RESUME:
		return d40_resume(chan);
2334 2335 2336 2337 2338 2339
	case DMA_SLAVE_CONFIG:
		d40_set_runtime_config(chan,
			(struct dma_slave_config *) arg);
		return 0;
	default:
		break;
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
	}

	/* Other commands are unimplemented */
	return -ENXIO;
}

/* Initialization functions */

static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
				 struct d40_chan *chans, int offset,
				 int num_chans)
{
	int i = 0;
	struct d40_chan *d40c;

	INIT_LIST_HEAD(&dma->channels);

	for (i = offset; i < offset + num_chans; i++) {
		d40c = &chans[i];
		d40c->base = base;
		d40c->chan.device = dma;

		spin_lock_init(&d40c->lock);

		d40c->log_num = D40_PHY_CHAN;

		INIT_LIST_HEAD(&d40c->active);
		INIT_LIST_HEAD(&d40c->queue);
		INIT_LIST_HEAD(&d40c->client);

		tasklet_init(&d40c->tasklet, dma_tasklet,
			     (unsigned long) d40c);

		list_add_tail(&d40c->chan.device_node,
			      &dma->channels);
	}
}

static int __init d40_dmaengine_init(struct d40_base *base,
				     int num_reserved_chans)
{
	int err ;

	d40_chan_init(base, &base->dma_slave, base->log_chans,
		      0, base->num_log_chans);

	dma_cap_zero(base->dma_slave.cap_mask);
	dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);

	base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources;
	base->dma_slave.device_free_chan_resources = d40_free_chan_resources;
	base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy;
2392
	base->dma_slave.device_prep_dma_sg = d40_prep_sg;
2393 2394 2395 2396 2397 2398 2399 2400 2401
	base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg;
	base->dma_slave.device_tx_status = d40_tx_status;
	base->dma_slave.device_issue_pending = d40_issue_pending;
	base->dma_slave.device_control = d40_control;
	base->dma_slave.dev = base->dev;

	err = dma_async_device_register(&base->dma_slave);

	if (err) {
2402
		d40_err(base->dev, "Failed to register slave channels\n");
2403 2404 2405 2406 2407 2408 2409 2410
		goto failure1;
	}

	d40_chan_init(base, &base->dma_memcpy, base->log_chans,
		      base->num_log_chans, base->plat_data->memcpy_len);

	dma_cap_zero(base->dma_memcpy.cap_mask);
	dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2411
	dma_cap_set(DMA_SG, base->dma_slave.cap_mask);
2412 2413 2414 2415

	base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources;
	base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources;
	base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy;
2416
	base->dma_slave.device_prep_dma_sg = d40_prep_sg;
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
	base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg;
	base->dma_memcpy.device_tx_status = d40_tx_status;
	base->dma_memcpy.device_issue_pending = d40_issue_pending;
	base->dma_memcpy.device_control = d40_control;
	base->dma_memcpy.dev = base->dev;
	/*
	 * This controller can only access address at even
	 * 32bit boundaries, i.e. 2^2
	 */
	base->dma_memcpy.copy_align = 2;

	err = dma_async_device_register(&base->dma_memcpy);

	if (err) {
2431 2432
		d40_err(base->dev,
			"Failed to regsiter memcpy only channels\n");
2433 2434 2435 2436 2437 2438 2439 2440 2441
		goto failure2;
	}

	d40_chan_init(base, &base->dma_both, base->phy_chans,
		      0, num_reserved_chans);

	dma_cap_zero(base->dma_both.cap_mask);
	dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
	dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2442
	dma_cap_set(DMA_SG, base->dma_slave.cap_mask);
2443 2444 2445 2446

	base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources;
	base->dma_both.device_free_chan_resources = d40_free_chan_resources;
	base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy;
2447
	base->dma_slave.device_prep_dma_sg = d40_prep_sg;
2448 2449 2450 2451 2452 2453 2454 2455 2456
	base->dma_both.device_prep_slave_sg = d40_prep_slave_sg;
	base->dma_both.device_tx_status = d40_tx_status;
	base->dma_both.device_issue_pending = d40_issue_pending;
	base->dma_both.device_control = d40_control;
	base->dma_both.dev = base->dev;
	base->dma_both.copy_align = 2;
	err = dma_async_device_register(&base->dma_both);

	if (err) {
2457 2458
		d40_err(base->dev,
			"Failed to register logical and physical capable channels\n");
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
		goto failure3;
	}
	return 0;
failure3:
	dma_async_device_unregister(&base->dma_memcpy);
failure2:
	dma_async_device_unregister(&base->dma_slave);
failure1:
	return err;
}

/* Initialization functions. */

static int __init d40_phy_res_init(struct d40_base *base)
{
	int i;
	int num_phy_chans_avail = 0;
	u32 val[2];
	int odd_even_bit = -2;

	val[0] = readl(base->virtbase + D40_DREG_PRSME);
	val[1] = readl(base->virtbase + D40_DREG_PRSMO);

	for (i = 0; i < base->num_phy_chans; i++) {
		base->phy_res[i].num = i;
		odd_even_bit += 2 * ((i % 2) == 0);
		if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
			/* Mark security only channels as occupied */
			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
		} else {
			base->phy_res[i].allocated_src = D40_ALLOC_FREE;
			base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
			num_phy_chans_avail++;
		}
		spin_lock_init(&base->phy_res[i].lock);
	}
2496 2497 2498

	/* Mark disabled channels as occupied */
	for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2499 2500 2501 2502 2503
		int chan = base->plat_data->disabled_channels[i];

		base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
		base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
		num_phy_chans_avail--;
2504 2505
	}

2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
	dev_info(base->dev, "%d of %d physical DMA channels available\n",
		 num_phy_chans_avail, base->num_phy_chans);

	/* Verify settings extended vs standard */
	val[0] = readl(base->virtbase + D40_DREG_PRTYP);

	for (i = 0; i < base->num_phy_chans; i++) {

		if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
		    (val[0] & 0x3) != 1)
			dev_info(base->dev,
				 "[%s] INFO: channel %d is misconfigured (%d)\n",
				 __func__, i, val[0] & 0x3);

		val[0] = val[0] >> 2;
	}

	return num_phy_chans_avail;
}

static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
{
	static const struct d40_reg_val dma_id_regs[] = {
		/* Peripheral Id */
		{ .reg = D40_DREG_PERIPHID0, .val = 0x0040},
		{ .reg = D40_DREG_PERIPHID1, .val = 0x0000},
		/*
		 * D40_DREG_PERIPHID2 Depends on HW revision:
2534
		 *  DB8500ed has 0x0008,
2535
		 *  ? has 0x0018,
2536 2537
		 *  DB8500v1 has 0x0028
		 *  DB8500v2 has 0x0038
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
		 */
		{ .reg = D40_DREG_PERIPHID3, .val = 0x0000},

		/* PCell Id */
		{ .reg = D40_DREG_CELLID0, .val = 0x000d},
		{ .reg = D40_DREG_CELLID1, .val = 0x00f0},
		{ .reg = D40_DREG_CELLID2, .val = 0x0005},
		{ .reg = D40_DREG_CELLID3, .val = 0x00b1}
	};
	struct stedma40_platform_data *plat_data;
	struct clk *clk = NULL;
	void __iomem *virtbase = NULL;
	struct resource *res = NULL;
	struct d40_base *base = NULL;
	int num_log_chans = 0;
	int num_phy_chans;
	int i;
2555
	u32 val;
2556
	u32 rev;
2557 2558 2559 2560

	clk = clk_get(&pdev->dev, NULL);

	if (IS_ERR(clk)) {
2561
		d40_err(&pdev->dev, "No matching clock found\n");
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
		goto failure;
	}

	clk_enable(clk);

	/* Get IO for DMAC base address */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
	if (!res)
		goto failure;

	if (request_mem_region(res->start, resource_size(res),
			       D40_NAME " I/O base") == NULL)
		goto failure;

	virtbase = ioremap(res->start, resource_size(res));
	if (!virtbase)
		goto failure;

	/* HW version check */
	for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
		if (dma_id_regs[i].val !=
		    readl(virtbase + dma_id_regs[i].reg)) {
2584 2585
			d40_err(&pdev->dev,
				"Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
2586 2587 2588 2589 2590 2591 2592
				dma_id_regs[i].val,
				dma_id_regs[i].reg,
				readl(virtbase + dma_id_regs[i].reg));
			goto failure;
		}
	}

2593
	/* Get silicon revision and designer */
2594
	val = readl(virtbase + D40_DREG_PERIPHID2);
2595

2596 2597
	if ((val & D40_DREG_PERIPHID2_DESIGNER_MASK) !=
	    D40_HW_DESIGNER) {
2598 2599
		d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
			val & D40_DREG_PERIPHID2_DESIGNER_MASK,
2600
			D40_HW_DESIGNER);
2601 2602 2603
		goto failure;
	}

2604 2605 2606
	rev = (val & D40_DREG_PERIPHID2_REV_MASK) >>
		D40_DREG_PERIPHID2_REV_POS;

2607 2608 2609 2610
	/* The number of physical channels on this HW */
	num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;

	dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2611
		 rev, res->start);
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628

	plat_data = pdev->dev.platform_data;

	/* Count the number of logical channels in use */
	for (i = 0; i < plat_data->dev_len; i++)
		if (plat_data->dev_rx[i] != 0)
			num_log_chans++;

	for (i = 0; i < plat_data->dev_len; i++)
		if (plat_data->dev_tx[i] != 0)
			num_log_chans++;

	base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
		       (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
		       sizeof(struct d40_chan), GFP_KERNEL);

	if (base == NULL) {
2629
		d40_err(&pdev->dev, "Out of memory\n");
2630 2631 2632
		goto failure;
	}

2633
	base->rev = rev;
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
	base->clk = clk;
	base->num_phy_chans = num_phy_chans;
	base->num_log_chans = num_log_chans;
	base->phy_start = res->start;
	base->phy_size = resource_size(res);
	base->virtbase = virtbase;
	base->plat_data = plat_data;
	base->dev = &pdev->dev;
	base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
	base->log_chans = &base->phy_chans[num_phy_chans];

	base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
				GFP_KERNEL);
	if (!base->phy_res)
		goto failure;

	base->lookup_phy_chans = kzalloc(num_phy_chans *
					 sizeof(struct d40_chan *),
					 GFP_KERNEL);
	if (!base->lookup_phy_chans)
		goto failure;

	if (num_log_chans + plat_data->memcpy_len) {
		/*
		 * The max number of logical channels are event lines for all
		 * src devices and dst devices
		 */
		base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
						 sizeof(struct d40_chan *),
						 GFP_KERNEL);
		if (!base->lookup_log_chans)
			goto failure;
	}
2667 2668 2669 2670

	base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
					    sizeof(struct d40_desc *) *
					    D40_LCLA_LINK_PER_EVENT_GRP,
2671 2672 2673 2674
					    GFP_KERNEL);
	if (!base->lcla_pool.alloc_map)
		goto failure;

2675 2676 2677 2678 2679 2680
	base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
					    0, SLAB_HWCACHE_ALIGN,
					    NULL);
	if (base->desc_slab == NULL)
		goto failure;

2681 2682 2683
	return base;

failure:
2684
	if (!IS_ERR(clk)) {
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
		clk_disable(clk);
		clk_put(clk);
	}
	if (virtbase)
		iounmap(virtbase);
	if (res)
		release_mem_region(res->start,
				   resource_size(res));
	if (virtbase)
		iounmap(virtbase);

	if (base) {
		kfree(base->lcla_pool.alloc_map);
		kfree(base->lookup_log_chans);
		kfree(base->lookup_phy_chans);
		kfree(base->phy_res);
		kfree(base);
	}

	return NULL;
}

static void __init d40_hw_init(struct d40_base *base)
{

	static const struct d40_reg_val dma_init_reg[] = {
		/* Clock every part of the DMA block from start */
		{ .reg = D40_DREG_GCC,    .val = 0x0000ff01},

		/* Interrupts on all logical channels */
		{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
	};
	int i;
	u32 prmseo[2] = {0, 0};
	u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
	u32 pcmis = 0;
	u32 pcicr = 0;

	for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
		writel(dma_init_reg[i].val,
		       base->virtbase + dma_init_reg[i].reg);

	/* Configure all our dma channels to default settings */
	for (i = 0; i < base->num_phy_chans; i++) {

		activeo[i % 2] = activeo[i % 2] << 2;

		if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
		    == D40_ALLOC_PHY) {
			activeo[i % 2] |= 3;
			continue;
		}

		/* Enable interrupt # */
		pcmis = (pcmis << 1) | 1;

		/* Clear interrupt # */
		pcicr = (pcicr << 1) | 1;

		/* Set channel to physical mode */
		prmseo[i % 2] = prmseo[i % 2] << 2;
		prmseo[i % 2] |= 1;

	}

	writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
	writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
	writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
	writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);

	/* Write which interrupt to enable */
	writel(pcmis, base->virtbase + D40_DREG_PCMIS);

	/* Write which interrupt to clear */
	writel(pcicr, base->virtbase + D40_DREG_PCICR);

}

2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
static int __init d40_lcla_allocate(struct d40_base *base)
{
	unsigned long *page_list;
	int i, j;
	int ret = 0;

	/*
	 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
	 * To full fill this hardware requirement without wasting 256 kb
	 * we allocate pages until we get an aligned one.
	 */
	page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
			    GFP_KERNEL);

	if (!page_list) {
		ret = -ENOMEM;
		goto failure;
	}

	/* Calculating how many pages that are required */
	base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;

	for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
		page_list[i] = __get_free_pages(GFP_KERNEL,
						base->lcla_pool.pages);
		if (!page_list[i]) {

2801 2802
			d40_err(base->dev, "Failed to allocate %d pages.\n",
				base->lcla_pool.pages);
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819

			for (j = 0; j < i; j++)
				free_pages(page_list[j], base->lcla_pool.pages);
			goto failure;
		}

		if ((virt_to_phys((void *)page_list[i]) &
		     (LCLA_ALIGNMENT - 1)) == 0)
			break;
	}

	for (j = 0; j < i; j++)
		free_pages(page_list[j], base->lcla_pool.pages);

	if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
		base->lcla_pool.base = (void *)page_list[i];
	} else {
2820 2821 2822 2823
		/*
		 * After many attempts and no succees with finding the correct
		 * alignment, try with allocating a big buffer.
		 */
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
		dev_warn(base->dev,
			 "[%s] Failed to get %d pages @ 18 bit align.\n",
			 __func__, base->lcla_pool.pages);
		base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
							 base->num_phy_chans +
							 LCLA_ALIGNMENT,
							 GFP_KERNEL);
		if (!base->lcla_pool.base_unaligned) {
			ret = -ENOMEM;
			goto failure;
		}

		base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
						 LCLA_ALIGNMENT);
	}

	writel(virt_to_phys(base->lcla_pool.base),
	       base->virtbase + D40_DREG_LCLA);
failure:
	kfree(page_list);
	return ret;
}

2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
static int __init d40_probe(struct platform_device *pdev)
{
	int err;
	int ret = -ENOENT;
	struct d40_base *base;
	struct resource *res = NULL;
	int num_reserved_chans;
	u32 val;

	base = d40_hw_detect_init(pdev);

	if (!base)
		goto failure;

	num_reserved_chans = d40_phy_res_init(base);

	platform_set_drvdata(pdev, base);

	spin_lock_init(&base->interrupt_lock);
	spin_lock_init(&base->execmd_lock);

	/* Get IO for logical channel parameter address */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
	if (!res) {
		ret = -ENOENT;
2872
		d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
2873 2874 2875 2876 2877 2878 2879 2880
		goto failure;
	}
	base->lcpa_size = resource_size(res);
	base->phy_lcpa = res->start;

	if (request_mem_region(res->start, resource_size(res),
			       D40_NAME " I/O lcpa") == NULL) {
		ret = -EBUSY;
2881 2882 2883
		d40_err(&pdev->dev,
			"Failed to request LCPA region 0x%x-0x%x\n",
			res->start, res->end);
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
		goto failure;
	}

	/* We make use of ESRAM memory for this. */
	val = readl(base->virtbase + D40_DREG_LCPA);
	if (res->start != val && val != 0) {
		dev_warn(&pdev->dev,
			 "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
			 __func__, val, res->start);
	} else
		writel(res->start, base->virtbase + D40_DREG_LCPA);

	base->lcpa_base = ioremap(res->start, resource_size(res));
	if (!base->lcpa_base) {
		ret = -ENOMEM;
2899
		d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
2900 2901 2902
		goto failure;
	}

2903 2904
	ret = d40_lcla_allocate(base);
	if (ret) {
2905
		d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
2906 2907 2908 2909 2910 2911 2912 2913 2914
		goto failure;
	}

	spin_lock_init(&base->lcla_pool.lock);

	base->irq = platform_get_irq(pdev, 0);

	ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
	if (ret) {
2915
		d40_err(&pdev->dev, "No IRQ defined\n");
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
		goto failure;
	}

	err = d40_dmaengine_init(base, num_reserved_chans);
	if (err)
		goto failure;

	d40_hw_init(base);

	dev_info(base->dev, "initialized\n");
	return 0;

failure:
	if (base) {
2930 2931
		if (base->desc_slab)
			kmem_cache_destroy(base->desc_slab);
2932 2933
		if (base->virtbase)
			iounmap(base->virtbase);
2934 2935 2936
		if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
			free_pages((unsigned long)base->lcla_pool.base,
				   base->lcla_pool.pages);
2937 2938 2939

		kfree(base->lcla_pool.base_unaligned);

2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
		if (base->phy_lcpa)
			release_mem_region(base->phy_lcpa,
					   base->lcpa_size);
		if (base->phy_start)
			release_mem_region(base->phy_start,
					   base->phy_size);
		if (base->clk) {
			clk_disable(base->clk);
			clk_put(base->clk);
		}

		kfree(base->lcla_pool.alloc_map);
		kfree(base->lookup_log_chans);
		kfree(base->lookup_phy_chans);
		kfree(base->phy_res);
		kfree(base);
	}

2958
	d40_err(&pdev->dev, "probe failed\n");
2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
	return ret;
}

static struct platform_driver d40_driver = {
	.driver = {
		.owner = THIS_MODULE,
		.name  = D40_NAME,
	},
};

R
Rabin Vincent 已提交
2969
static int __init stedma40_init(void)
2970 2971 2972 2973
{
	return platform_driver_probe(&d40_driver, d40_probe);
}
arch_initcall(stedma40_init);