ste_dma40.c 73.7 KB
Newer Older
1
/*
2 3
 * Copyright (C) Ericsson AB 2007-2008
 * Copyright (C) ST-Ericsson SA 2008-2010
4
 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5
 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6 7 8 9 10 11 12 13 14
 * License terms: GNU General Public License (GPL) version 2
 */

#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/dmaengine.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/delay.h>
15
#include <linux/err.h>
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

#include <plat/ste_dma40.h>

#include "ste_dma40_ll.h"

#define D40_NAME "dma40"

#define D40_PHY_CHAN -1

/* For masking out/in 2 bit channel positions */
#define D40_CHAN_POS(chan)  (2 * (chan / 2))
#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))

/* Maximum iterations taken before giving up suspending a channel */
#define D40_SUSPEND_MAX_IT 500

32 33
/* Hardware requirement on LCLA alignment */
#define LCLA_ALIGNMENT 0x40000
34 35 36 37 38

/* Max number of links per event group */
#define D40_LCLA_LINK_PER_EVENT_GRP 128
#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP

39 40 41 42
/* Attempts before giving up to trying to get pages that are aligned */
#define MAX_LCLA_ALLOC_ATTEMPTS 256

/* Bit markings for allocation map */
43 44 45 46 47
#define D40_ALLOC_FREE		(1 << 31)
#define D40_ALLOC_PHY		(1 << 30)
#define D40_ALLOC_LOG_FREE	0

/* Hardware designer of the block */
48
#define D40_HW_DESIGNER 0x8
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

/**
 * enum 40_command - The different commands and/or statuses.
 *
 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
 */
enum d40_command {
	D40_DMA_STOP		= 0,
	D40_DMA_RUN		= 1,
	D40_DMA_SUSPEND_REQ	= 2,
	D40_DMA_SUSPENDED	= 3
};

/**
 * struct d40_lli_pool - Structure for keeping LLIs in memory
 *
 * @base: Pointer to memory area when the pre_alloc_lli's are not large
 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
 * pre_alloc_lli is used.
71
 * @dma_addr: DMA address, if mapped
72 73 74 75 76 77
 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
 * one buffer to one buffer.
 */
struct d40_lli_pool {
	void	*base;
78
	int	 size;
79
	dma_addr_t	dma_addr;
80
	/* Space for dst and src, plus an extra for padding */
81
	u8	 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
82 83 84 85 86 87 88 89 90 91
};

/**
 * struct d40_desc - A descriptor is one DMA job.
 *
 * @lli_phy: LLI settings for physical channel. Both src and dst=
 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
 * lli_len equals one.
 * @lli_log: Same as above but for logical channels.
 * @lli_pool: The pool with two entries pre-allocated.
92
 * @lli_len: Number of llis of current descriptor.
L
Lucas De Marchi 已提交
93
 * @lli_current: Number of transferred llis.
94
 * @lcla_alloc: Number of LCLA entries allocated.
95 96 97 98
 * @txd: DMA engine struct. Used for among other things for communication
 * during a transfer.
 * @node: List entry.
 * @is_in_client_list: true if the client owns this descriptor.
99
 * the previous one.
100 101 102 103 104 105 106 107 108 109
 *
 * This descriptor is used for both logical and physical transfers.
 */
struct d40_desc {
	/* LLI physical */
	struct d40_phy_lli_bidir	 lli_phy;
	/* LLI logical */
	struct d40_log_lli_bidir	 lli_log;

	struct d40_lli_pool		 lli_pool;
110
	int				 lli_len;
111 112
	int				 lli_current;
	int				 lcla_alloc;
113 114 115 116 117

	struct dma_async_tx_descriptor	 txd;
	struct list_head		 node;

	bool				 is_in_client_list;
R
Rabin Vincent 已提交
118
	bool				 cyclic;
119 120 121 122 123
};

/**
 * struct d40_lcla_pool - LCLA pool settings and data.
 *
124 125 126 127 128
 * @base: The virtual address of LCLA. 18 bit aligned.
 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
 * This pointer is only there for clean-up on error.
 * @pages: The number of pages needed for all physical channels.
 * Only used later for clean-up on error
129
 * @lock: Lock to protect the content in this struct.
130
 * @alloc_map: big map over which LCLA entry is own by which job.
131 132 133
 */
struct d40_lcla_pool {
	void		*base;
134
	dma_addr_t	dma_addr;
135 136
	void		*base_unaligned;
	int		 pages;
137
	spinlock_t	 lock;
138
	struct d40_desc	**alloc_map;
139 140 141 142 143 144 145 146 147 148 149 150
};

/**
 * struct d40_phy_res - struct for handling eventlines mapped to physical
 * channels.
 *
 * @lock: A lock protection this entity.
 * @num: The physical channel number of this entity.
 * @allocated_src: Bit mapped to show which src event line's are mapped to
 * this physical channel. Can also be free or physically allocated.
 * @allocated_dst: Same as for src but is dst.
 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
151
 * event line number.
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
 */
struct d40_phy_res {
	spinlock_t lock;
	int	   num;
	u32	   allocated_src;
	u32	   allocated_dst;
};

struct d40_base;

/**
 * struct d40_chan - Struct that describes a channel.
 *
 * @lock: A spinlock to protect this struct.
 * @log_num: The logical number, if any of this channel.
 * @completed: Starts with 1, after first interrupt it is set to dma engine's
 * current cookie.
 * @pending_tx: The number of pending transfers. Used between interrupt handler
 * and tasklet.
 * @busy: Set to true when transfer is ongoing on this channel.
172 173
 * @phy_chan: Pointer to physical channel which this instance runs on. If this
 * point is NULL, then the channel is not allocated.
174 175 176 177 178 179 180
 * @chan: DMA engine handle.
 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
 * transfer and call client callback.
 * @client: Cliented owned descriptor list.
 * @active: Active descriptor.
 * @queue: Queued jobs.
 * @dma_cfg: The client configuration of this dma channel.
181
 * @configured: whether the dma_cfg configuration is valid
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
 * @base: Pointer to the device instance struct.
 * @src_def_cfg: Default cfg register setting for src.
 * @dst_def_cfg: Default cfg register setting for dst.
 * @log_def: Default logical channel settings.
 * @lcla: Space for one dst src pair for logical channel transfers.
 * @lcpa: Pointer to dst and src lcpa settings.
 *
 * This struct can either "be" a logical or a physical channel.
 */
struct d40_chan {
	spinlock_t			 lock;
	int				 log_num;
	/* ID of the most recent completed transfer */
	int				 completed;
	int				 pending_tx;
	bool				 busy;
	struct d40_phy_res		*phy_chan;
	struct dma_chan			 chan;
	struct tasklet_struct		 tasklet;
	struct list_head		 client;
	struct list_head		 active;
	struct list_head		 queue;
	struct stedma40_chan_cfg	 dma_cfg;
205
	bool				 configured;
206 207 208 209 210 211
	struct d40_base			*base;
	/* Default register configurations */
	u32				 src_def_cfg;
	u32				 dst_def_cfg;
	struct d40_def_lcsp		 log_def;
	struct d40_log_lli_full		*lcpa;
212 213 214
	/* Runtime reconfiguration */
	dma_addr_t			runtime_addr;
	enum dma_data_direction		runtime_direction;
215 216 217 218 219 220 221 222 223 224
};

/**
 * struct d40_base - The big global struct, one for each probe'd instance.
 *
 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
 * @execmd_lock: Lock for execute command usage since several channels share
 * the same physical register.
 * @dev: The device structure.
 * @virtbase: The virtual base address of the DMA's register.
225
 * @rev: silicon revision detected.
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
 * @clk: Pointer to the DMA clock structure.
 * @phy_start: Physical memory start of the DMA registers.
 * @phy_size: Size of the DMA register map.
 * @irq: The IRQ number.
 * @num_phy_chans: The number of physical channels. Read from HW. This
 * is the number of available channels for this driver, not counting "Secure
 * mode" allocated physical channels.
 * @num_log_chans: The number of logical channels. Calculated from
 * num_phy_chans.
 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
 * @dma_slave: dma_device channels that can do only do slave transfers.
 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
 * @log_chans: Room for all possible logical channels in system.
 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
 * to log_chans entries.
 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
 * to phy_chans entries.
 * @plat_data: Pointer to provided platform_data which is the driver
 * configuration.
 * @phy_res: Vector containing all physical channels.
 * @lcla_pool: lcla pool settings and data.
 * @lcpa_base: The virtual mapped address of LCPA.
 * @phy_lcpa: The physical address of the LCPA.
 * @lcpa_size: The size of the LCPA area.
250
 * @desc_slab: cache for descriptors.
251 252 253 254 255 256
 */
struct d40_base {
	spinlock_t			 interrupt_lock;
	spinlock_t			 execmd_lock;
	struct device			 *dev;
	void __iomem			 *virtbase;
257
	u8				  rev:4;
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
	struct clk			 *clk;
	phys_addr_t			  phy_start;
	resource_size_t			  phy_size;
	int				  irq;
	int				  num_phy_chans;
	int				  num_log_chans;
	struct dma_device		  dma_both;
	struct dma_device		  dma_slave;
	struct dma_device		  dma_memcpy;
	struct d40_chan			 *phy_chans;
	struct d40_chan			 *log_chans;
	struct d40_chan			**lookup_log_chans;
	struct d40_chan			**lookup_phy_chans;
	struct stedma40_platform_data	 *plat_data;
	/* Physical half channels */
	struct d40_phy_res		 *phy_res;
	struct d40_lcla_pool		  lcla_pool;
	void				 *lcpa_base;
	dma_addr_t			  phy_lcpa;
	resource_size_t			  lcpa_size;
278
	struct kmem_cache		 *desc_slab;
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
};

/**
 * struct d40_interrupt_lookup - lookup table for interrupt handler
 *
 * @src: Interrupt mask register.
 * @clr: Interrupt clear register.
 * @is_error: true if this is an error interrupt.
 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
 */
struct d40_interrupt_lookup {
	u32 src;
	u32 clr;
	bool is_error;
	int offset;
};

/**
 * struct d40_reg_val - simple lookup struct
 *
 * @reg: The register.
 * @val: The value that belongs to the register in reg.
 */
struct d40_reg_val {
	unsigned int reg;
	unsigned int val;
};

308 309 310 311 312
static struct device *chan2dev(struct d40_chan *d40c)
{
	return &d40c->chan.dev->device;
}

313 314 315 316 317 318 319 320 321 322
static bool chan_is_physical(struct d40_chan *chan)
{
	return chan->log_num == D40_PHY_CHAN;
}

static bool chan_is_logical(struct d40_chan *chan)
{
	return !chan_is_physical(chan);
}

323 324 325 326 327 328
static void __iomem *chan_base(struct d40_chan *chan)
{
	return chan->base->virtbase + D40_DREG_PCBASE +
	       chan->phy_chan->num * D40_DREG_PCDELTA;
}

329 330 331 332 333 334
#define d40_err(dev, format, arg...)		\
	dev_err(dev, "[%s] " format, __func__, ## arg)

#define chan_err(d40c, format, arg...)		\
	d40_err(chan2dev(d40c), format, ## arg)

335
static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
336
			      int lli_len)
337
{
338
	bool is_log = chan_is_logical(d40c);
339 340 341 342 343 344 345 346 347 348 349 350 351
	u32 align;
	void *base;

	if (is_log)
		align = sizeof(struct d40_log_lli);
	else
		align = sizeof(struct d40_phy_lli);

	if (lli_len == 1) {
		base = d40d->lli_pool.pre_alloc_lli;
		d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
		d40d->lli_pool.base = NULL;
	} else {
352
		d40d->lli_pool.size = lli_len * 2 * align;
353 354 355 356 357 358 359 360 361

		base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
		d40d->lli_pool.base = base;

		if (d40d->lli_pool.base == NULL)
			return -ENOMEM;
	}

	if (is_log) {
R
Rabin Vincent 已提交
362
		d40d->lli_log.src = PTR_ALIGN(base, align);
363
		d40d->lli_log.dst = d40d->lli_log.src + lli_len;
364 365

		d40d->lli_pool.dma_addr = 0;
366
	} else {
R
Rabin Vincent 已提交
367
		d40d->lli_phy.src = PTR_ALIGN(base, align);
368
		d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
369 370 371 372 373 374 375 376 377 378 379 380 381

		d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
							 d40d->lli_phy.src,
							 d40d->lli_pool.size,
							 DMA_TO_DEVICE);

		if (dma_mapping_error(d40c->base->dev,
				      d40d->lli_pool.dma_addr)) {
			kfree(d40d->lli_pool.base);
			d40d->lli_pool.base = NULL;
			d40d->lli_pool.dma_addr = 0;
			return -ENOMEM;
		}
382 383 384 385 386
	}

	return 0;
}

387
static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
388
{
389 390 391 392
	if (d40d->lli_pool.dma_addr)
		dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
				 d40d->lli_pool.size, DMA_TO_DEVICE);

393 394 395 396 397 398 399 400 401
	kfree(d40d->lli_pool.base);
	d40d->lli_pool.base = NULL;
	d40d->lli_pool.size = 0;
	d40d->lli_log.src = NULL;
	d40d->lli_log.dst = NULL;
	d40d->lli_phy.src = NULL;
	d40d->lli_phy.dst = NULL;
}

402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
static int d40_lcla_alloc_one(struct d40_chan *d40c,
			      struct d40_desc *d40d)
{
	unsigned long flags;
	int i;
	int ret = -EINVAL;
	int p;

	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);

	p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;

	/*
	 * Allocate both src and dst at the same time, therefore the half
	 * start on 1 since 0 can't be used since zero is used as end marker.
	 */
	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
		if (!d40c->base->lcla_pool.alloc_map[p + i]) {
			d40c->base->lcla_pool.alloc_map[p + i] = d40d;
			d40d->lcla_alloc++;
			ret = i;
			break;
		}
	}

	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);

	return ret;
}

static int d40_lcla_free_all(struct d40_chan *d40c,
			     struct d40_desc *d40d)
{
	unsigned long flags;
	int i;
	int ret = -EINVAL;

439
	if (chan_is_physical(d40c))
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
		return 0;

	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);

	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
		if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
						    D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
			d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
							D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
			d40d->lcla_alloc--;
			if (d40d->lcla_alloc == 0) {
				ret = 0;
				break;
			}
		}
	}

	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);

	return ret;

}

463 464 465 466 467 468 469
static void d40_desc_remove(struct d40_desc *d40d)
{
	list_del(&d40d->node);
}

static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
{
R
Rabin Vincent 已提交
470
	struct d40_desc *desc = NULL;
471 472

	if (!list_empty(&d40c->client)) {
R
Rabin Vincent 已提交
473 474 475
		struct d40_desc *d;
		struct d40_desc *_d;

476 477
		list_for_each_entry_safe(d, _d, &d40c->client, node)
			if (async_tx_test_ack(&d->txd)) {
478
				d40_pool_lli_free(d40c, d);
479
				d40_desc_remove(d);
R
Rabin Vincent 已提交
480 481
				desc = d;
				memset(desc, 0, sizeof(*desc));
482
				break;
483 484
			}
	}
R
Rabin Vincent 已提交
485 486 487 488 489 490 491 492

	if (!desc)
		desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);

	if (desc)
		INIT_LIST_HEAD(&desc->node);

	return desc;
493 494 495 496
}

static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
{
497

498
	d40_pool_lli_free(d40c, d40d);
499
	d40_lcla_free_all(d40c, d40d);
500
	kmem_cache_free(d40c->base->desc_slab, d40d);
501 502 503 504 505 506 507
}

static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
{
	list_add_tail(&desc->node, &d40c->active);
}

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
{
	struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
	struct d40_phy_lli *lli_src = desc->lli_phy.src;
	void __iomem *base = chan_base(chan);

	writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
	writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
	writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
	writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);

	writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
	writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
	writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
	writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
}

525
static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
526
{
527 528 529 530
	struct d40_lcla_pool *pool = &chan->base->lcla_pool;
	struct d40_log_lli_bidir *lli = &desc->lli_log;
	int lli_current = desc->lli_current;
	int lli_len = desc->lli_len;
R
Rabin Vincent 已提交
531
	bool cyclic = desc->cyclic;
532
	int curr_lcla = -EINVAL;
R
Rabin Vincent 已提交
533 534
	int first_lcla = 0;
	bool linkback;
535

R
Rabin Vincent 已提交
536 537 538 539 540 541 542 543 544 545 546
	/*
	 * We may have partially running cyclic transfers, in case we did't get
	 * enough LCLA entries.
	 */
	linkback = cyclic && lli_current == 0;

	/*
	 * For linkback, we need one LCLA even with only one link, because we
	 * can't link back to the one in LCPA space
	 */
	if (linkback || (lli_len - lli_current > 1)) {
547
		curr_lcla = d40_lcla_alloc_one(chan, desc);
R
Rabin Vincent 已提交
548 549 550 551 552 553 554 555 556 557 558
		first_lcla = curr_lcla;
	}

	/*
	 * For linkback, we normally load the LCPA in the loop since we need to
	 * link it to the second LCLA and not the first.  However, if we
	 * couldn't even get a first LCLA, then we have to run in LCPA and
	 * reload manually.
	 */
	if (!linkback || curr_lcla == -EINVAL) {
		unsigned int flags = 0;
559

R
Rabin Vincent 已提交
560 561
		if (curr_lcla == -EINVAL)
			flags |= LLI_TERM_INT;
562

R
Rabin Vincent 已提交
563 564 565 566 567 568 569
		d40_log_lli_lcpa_write(chan->lcpa,
				       &lli->dst[lli_current],
				       &lli->src[lli_current],
				       curr_lcla,
				       flags);
		lli_current++;
	}
570 571 572 573

	if (curr_lcla < 0)
		goto out;

574 575 576 577
	for (; lli_current < lli_len; lli_current++) {
		unsigned int lcla_offset = chan->phy_chan->num * 1024 +
					   8 * curr_lcla * 2;
		struct d40_log_lli *lcla = pool->base + lcla_offset;
R
Rabin Vincent 已提交
578
		unsigned int flags = 0;
579 580 581 582 583
		int next_lcla;

		if (lli_current + 1 < lli_len)
			next_lcla = d40_lcla_alloc_one(chan, desc);
		else
R
Rabin Vincent 已提交
584 585 586 587
			next_lcla = linkback ? first_lcla : -EINVAL;

		if (cyclic || next_lcla == -EINVAL)
			flags |= LLI_TERM_INT;
588

R
Rabin Vincent 已提交
589 590 591 592 593 594 595 596 597 598 599 600
		if (linkback && curr_lcla == first_lcla) {
			/* First link goes in both LCPA and LCLA */
			d40_log_lli_lcpa_write(chan->lcpa,
					       &lli->dst[lli_current],
					       &lli->src[lli_current],
					       next_lcla, flags);
		}

		/*
		 * One unused LCLA in the cyclic case if the very first
		 * next_lcla fails...
		 */
601 602 603
		d40_log_lli_lcla_write(lcla,
				       &lli->dst[lli_current],
				       &lli->src[lli_current],
R
Rabin Vincent 已提交
604
				       next_lcla, flags);
605 606 607 608 609 610 611 612

		dma_sync_single_range_for_device(chan->base->dev,
					pool->dma_addr, lcla_offset,
					2 * sizeof(struct d40_log_lli),
					DMA_TO_DEVICE);

		curr_lcla = next_lcla;

R
Rabin Vincent 已提交
613
		if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
614 615 616 617 618
			lli_current++;
			break;
		}
	}

619
out:
620 621
	desc->lli_current = lli_current;
}
622

623 624
static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
{
625
	if (chan_is_physical(d40c)) {
626
		d40_phy_lli_load(d40c, d40d);
627
		d40d->lli_current = d40d->lli_len;
628 629
	} else
		d40_log_lli_to_lcxa(d40c, d40d);
630 631
}

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
{
	struct d40_desc *d;

	if (list_empty(&d40c->active))
		return NULL;

	d = list_first_entry(&d40c->active,
			     struct d40_desc,
			     node);
	return d;
}

static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
{
	list_add_tail(&desc->node, &d40c->queue);
}

static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
{
	struct d40_desc *d;

	if (list_empty(&d40c->queue))
		return NULL;

	d = list_first_entry(&d40c->queue,
			     struct d40_desc,
			     node);
	return d;
}

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
static int d40_psize_2_burst_size(bool is_log, int psize)
{
	if (is_log) {
		if (psize == STEDMA40_PSIZE_LOG_1)
			return 1;
	} else {
		if (psize == STEDMA40_PSIZE_PHY_1)
			return 1;
	}

	return 2 << psize;
}

/*
 * The dma only supports transmitting packages up to
 * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
 * dma elements required to send the entire sg list
 */
static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
{
	int dmalen;
	u32 max_w = max(data_width1, data_width2);
	u32 min_w = min(data_width1, data_width2);
	u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);

	if (seg_max > STEDMA40_MAX_SEG_SIZE)
		seg_max -= (1 << max_w);

	if (!IS_ALIGNED(size, 1 << max_w))
		return -EINVAL;

	if (size <= seg_max)
		dmalen = 1;
	else {
		dmalen = size / seg_max;
		if (dmalen * seg_max < size)
			dmalen++;
	}
	return dmalen;
}

static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
			   u32 data_width1, u32 data_width2)
{
	struct scatterlist *sg;
	int i;
	int len = 0;
	int ret;

	for_each_sg(sgl, sg, sg_len, i) {
		ret = d40_size_2_dmalen(sg_dma_len(sg),
					data_width1, data_width2);
		if (ret < 0)
			return ret;
		len += ret;
	}
	return len;
}
721

722
/* Support functions for logical channels */
723 724 725 726

static int d40_channel_execute_command(struct d40_chan *d40c,
				       enum d40_command command)
{
727 728
	u32 status;
	int i;
729 730 731
	void __iomem *active_reg;
	int ret = 0;
	unsigned long flags;
732
	u32 wmask;
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749

	spin_lock_irqsave(&d40c->base->execmd_lock, flags);

	if (d40c->phy_chan->num % 2 == 0)
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
	else
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;

	if (command == D40_DMA_SUSPEND_REQ) {
		status = (readl(active_reg) &
			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
			D40_CHAN_POS(d40c->phy_chan->num);

		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
			goto done;
	}

750 751 752
	wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
	writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
	       active_reg);
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773

	if (command == D40_DMA_SUSPEND_REQ) {

		for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
			status = (readl(active_reg) &
				  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
				D40_CHAN_POS(d40c->phy_chan->num);

			cpu_relax();
			/*
			 * Reduce the number of bus accesses while
			 * waiting for the DMA to suspend.
			 */
			udelay(3);

			if (status == D40_DMA_STOP ||
			    status == D40_DMA_SUSPENDED)
				break;
		}

		if (i == D40_SUSPEND_MAX_IT) {
774 775 776
			chan_err(d40c,
				"unable to suspend the chl %d (log: %d) status %x\n",
				d40c->phy_chan->num, d40c->log_num,
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
				status);
			dump_stack();
			ret = -EBUSY;
		}

	}
done:
	spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
	return ret;
}

static void d40_term_all(struct d40_chan *d40c)
{
	struct d40_desc *d40d;

	/* Release active descriptors */
	while ((d40d = d40_first_active_get(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}

	/* Release queued descriptors waiting for transfer */
	while ((d40d = d40_first_queued(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}


	d40c->pending_tx = 0;
	d40c->busy = false;
}

809 810 811
static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
				   u32 event, int reg)
{
812
	void __iomem *addr = chan_base(d40c) + reg;
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
	int tries;

	if (!enable) {
		writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
		       | ~D40_EVENTLINE_MASK(event), addr);
		return;
	}

	/*
	 * The hardware sometimes doesn't register the enable when src and dst
	 * event lines are active on the same logical channel.  Retry to ensure
	 * it does.  Usually only one retry is sufficient.
	 */
	tries = 100;
	while (--tries) {
		writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
		       | ~D40_EVENTLINE_MASK(event), addr);

		if (readl(addr) & D40_EVENTLINE_MASK(event))
			break;
	}

	if (tries != 99)
		dev_dbg(chan2dev(d40c),
			"[%s] workaround enable S%cLNK (%d tries)\n",
			__func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
			100 - tries);

	WARN_ON(!tries);
}

844 845 846 847 848 849 850 851 852 853 854
static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
{
	unsigned long flags;

	spin_lock_irqsave(&d40c->phy_chan->lock, flags);

	/* Enable event line connected to device (or memcpy) */
	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);

855 856
		__d40_config_set_event(d40c, do_enable, event,
				       D40_CHAN_REG_SSLNK);
857
	}
858

859 860 861
	if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM) {
		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);

862 863
		__d40_config_set_event(d40c, do_enable, event,
				       D40_CHAN_REG_SDLNK);
864 865 866 867 868
	}

	spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
}

869
static u32 d40_chan_has_events(struct d40_chan *d40c)
870
{
871
	void __iomem *chanbase = chan_base(d40c);
872
	u32 val;
873

874 875
	val = readl(chanbase + D40_CHAN_REG_SSLNK);
	val |= readl(chanbase + D40_CHAN_REG_SDLNK);
876

877
	return val;
878 879
}

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
static u32 d40_get_prmo(struct d40_chan *d40c)
{
	static const unsigned int phy_map[] = {
		[STEDMA40_PCHAN_BASIC_MODE]
			= D40_DREG_PRMO_PCHAN_BASIC,
		[STEDMA40_PCHAN_MODULO_MODE]
			= D40_DREG_PRMO_PCHAN_MODULO,
		[STEDMA40_PCHAN_DOUBLE_DST_MODE]
			= D40_DREG_PRMO_PCHAN_DOUBLE_DST,
	};
	static const unsigned int log_map[] = {
		[STEDMA40_LCHAN_SRC_PHY_DST_LOG]
			= D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
		[STEDMA40_LCHAN_SRC_LOG_DST_PHY]
			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
		[STEDMA40_LCHAN_SRC_LOG_DST_LOG]
			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
	};

899
	if (chan_is_physical(d40c))
900 901 902 903 904
		return phy_map[d40c->dma_cfg.mode_opt];
	else
		return log_map[d40c->dma_cfg.mode_opt];
}

905
static void d40_config_write(struct d40_chan *d40c)
906 907 908 909 910 911 912
{
	u32 addr_base;
	u32 var;

	/* Odd addresses are even addresses + 4 */
	addr_base = (d40c->phy_chan->num % 2) * 4;
	/* Setup channel mode to logical or physical */
913
	var = ((u32)(chan_is_logical(d40c)) + 1) <<
914 915 916 917
		D40_CHAN_POS(d40c->phy_chan->num);
	writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);

	/* Setup operational mode option register */
918
	var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
919 920 921

	writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);

922
	if (chan_is_logical(d40c)) {
923 924 925 926
		int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
			   & D40_SREG_ELEM_LOG_LIDX_MASK;
		void __iomem *chanbase = chan_base(d40c);

927
		/* Set default config for CFG reg */
928 929
		writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
		writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
930

931
		/* Set LIDX for lcla */
932 933
		writel(lidx, chanbase + D40_CHAN_REG_SSELT);
		writel(lidx, chanbase + D40_CHAN_REG_SDELT);
934 935 936
	}
}

937 938 939 940
static u32 d40_residue(struct d40_chan *d40c)
{
	u32 num_elt;

941
	if (chan_is_logical(d40c))
942 943
		num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
			>> D40_MEM_LCSP2_ECNT_POS;
944 945 946 947 948 949
	else {
		u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
		num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
			  >> D40_SREG_ELEM_PHY_ECNT_POS;
	}

950 951 952 953 954 955 956
	return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
}

static bool d40_tx_is_linked(struct d40_chan *d40c)
{
	bool is_link;

957
	if (chan_is_logical(d40c))
958 959
		is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
	else
960 961 962
		is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
			  & D40_SREG_LNK_PHYS_LNK_MASK;

963 964 965
	return is_link;
}

966
static int d40_pause(struct d40_chan *d40c)
967 968 969 970
{
	int res = 0;
	unsigned long flags;

971 972 973
	if (!d40c->busy)
		return 0;

974 975 976 977
	spin_lock_irqsave(&d40c->lock, flags);

	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
	if (res == 0) {
978
		if (chan_is_logical(d40c)) {
979 980 981 982 983 984 985 986 987 988 989 990
			d40_config_set_event(d40c, false);
			/* Resume the other logical channels if any */
			if (d40_chan_has_events(d40c))
				res = d40_channel_execute_command(d40c,
								  D40_DMA_RUN);
		}
	}

	spin_unlock_irqrestore(&d40c->lock, flags);
	return res;
}

991
static int d40_resume(struct d40_chan *d40c)
992 993 994 995
{
	int res = 0;
	unsigned long flags;

996 997 998
	if (!d40c->busy)
		return 0;

999 1000 1001
	spin_lock_irqsave(&d40c->lock, flags);

	if (d40c->base->rev == 0)
1002
		if (chan_is_logical(d40c)) {
1003 1004 1005 1006 1007 1008 1009 1010
			res = d40_channel_execute_command(d40c,
							  D40_DMA_SUSPEND_REQ);
			goto no_suspend;
		}

	/* If bytes left to transfer or linked tx resume job */
	if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {

1011
		if (chan_is_logical(d40c))
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
			d40_config_set_event(d40c, true);

		res = d40_channel_execute_command(d40c, D40_DMA_RUN);
	}

no_suspend:
	spin_unlock_irqrestore(&d40c->lock, flags);
	return res;
}

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
static int d40_terminate_all(struct d40_chan *chan)
{
	unsigned long flags;
	int ret = 0;

	ret = d40_pause(chan);
	if (!ret && chan_is_physical(chan))
		ret = d40_channel_execute_command(chan, D40_DMA_STOP);

	spin_lock_irqsave(&chan->lock, flags);
	d40_term_all(chan);
	spin_unlock_irqrestore(&chan->lock, flags);

	return ret;
}

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
{
	struct d40_chan *d40c = container_of(tx->chan,
					     struct d40_chan,
					     chan);
	struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
	unsigned long flags;

	spin_lock_irqsave(&d40c->lock, flags);

1048 1049 1050 1051 1052 1053 1054
	d40c->chan.cookie++;

	if (d40c->chan.cookie < 0)
		d40c->chan.cookie = 1;

	d40d->txd.cookie = d40c->chan.cookie;

1055 1056 1057 1058 1059 1060 1061 1062 1063
	d40_desc_queue(d40c, d40d);

	spin_unlock_irqrestore(&d40c->lock, flags);

	return tx->cookie;
}

static int d40_start(struct d40_chan *d40c)
{
1064 1065 1066
	if (d40c->base->rev == 0) {
		int err;

1067
		if (chan_is_logical(d40c)) {
1068 1069 1070 1071 1072 1073 1074
			err = d40_channel_execute_command(d40c,
							  D40_DMA_SUSPEND_REQ);
			if (err)
				return err;
		}
	}

1075
	if (chan_is_logical(d40c))
1076 1077
		d40_config_set_event(d40c, true);

1078
	return d40_channel_execute_command(d40c, D40_DMA_RUN);
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
}

static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
{
	struct d40_desc *d40d;
	int err;

	/* Start queued jobs, if any */
	d40d = d40_first_queued(d40c);

	if (d40d != NULL) {
		d40c->busy = true;

		/* Remove from queue */
		d40_desc_remove(d40d);

		/* Add to active queue */
		d40_desc_submit(d40c, d40d);

1098 1099
		/* Initiate DMA job */
		d40_desc_load(d40c, d40d);
1100

1101 1102
		/* Start dma job */
		err = d40_start(d40c);
1103

1104 1105
		if (err)
			return NULL;
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
	}

	return d40d;
}

/* called from interrupt context */
static void dma_tc_handle(struct d40_chan *d40c)
{
	struct d40_desc *d40d;

	/* Get first active entry from list */
	d40d = d40_first_active_get(d40c);

	if (d40d == NULL)
		return;

R
Rabin Vincent 已提交
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	if (d40d->cyclic) {
		/*
		 * If this was a paritially loaded list, we need to reloaded
		 * it, and only when the list is completed.  We need to check
		 * for done because the interrupt will hit for every link, and
		 * not just the last one.
		 */
		if (d40d->lli_current < d40d->lli_len
		    && !d40_tx_is_linked(d40c)
		    && !d40_residue(d40c)) {
			d40_lcla_free_all(d40c, d40d);
			d40_desc_load(d40c, d40d);
			(void) d40_start(d40c);
1135

R
Rabin Vincent 已提交
1136 1137 1138 1139 1140
			if (d40d->lli_current == d40d->lli_len)
				d40d->lli_current = 0;
		}
	} else {
		d40_lcla_free_all(d40c, d40d);
1141

R
Rabin Vincent 已提交
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
		if (d40d->lli_current < d40d->lli_len) {
			d40_desc_load(d40c, d40d);
			/* Start dma job */
			(void) d40_start(d40c);
			return;
		}

		if (d40_queue_start(d40c) == NULL)
			d40c->busy = false;
	}
1152 1153 1154 1155 1156 1157 1158 1159 1160

	d40c->pending_tx++;
	tasklet_schedule(&d40c->tasklet);

}

static void dma_tasklet(unsigned long data)
{
	struct d40_chan *d40c = (struct d40_chan *) data;
1161
	struct d40_desc *d40d;
1162 1163 1164 1165 1166 1167 1168
	unsigned long flags;
	dma_async_tx_callback callback;
	void *callback_param;

	spin_lock_irqsave(&d40c->lock, flags);

	/* Get first active entry from list */
1169 1170
	d40d = d40_first_active_get(d40c);
	if (d40d == NULL)
1171 1172
		goto err;

R
Rabin Vincent 已提交
1173 1174
	if (!d40d->cyclic)
		d40c->completed = d40d->txd.cookie;
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185

	/*
	 * If terminating a channel pending_tx is set to zero.
	 * This prevents any finished active jobs to return to the client.
	 */
	if (d40c->pending_tx == 0) {
		spin_unlock_irqrestore(&d40c->lock, flags);
		return;
	}

	/* Callback to client */
1186 1187 1188
	callback = d40d->txd.callback;
	callback_param = d40d->txd.callback_param;

R
Rabin Vincent 已提交
1189 1190 1191
	if (!d40d->cyclic) {
		if (async_tx_test_ack(&d40d->txd)) {
			d40_pool_lli_free(d40c, d40d);
1192
			d40_desc_remove(d40d);
R
Rabin Vincent 已提交
1193 1194 1195 1196 1197 1198 1199 1200
			d40_desc_free(d40c, d40d);
		} else {
			if (!d40d->is_in_client_list) {
				d40_desc_remove(d40d);
				d40_lcla_free_all(d40c, d40d);
				list_add_tail(&d40d->node, &d40c->client);
				d40d->is_in_client_list = true;
			}
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
		}
	}

	d40c->pending_tx--;

	if (d40c->pending_tx)
		tasklet_schedule(&d40c->tasklet);

	spin_unlock_irqrestore(&d40c->lock, flags);

1211
	if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1212 1213 1214 1215 1216
		callback(callback_param);

	return;

 err:
L
Lucas De Marchi 已提交
1217
	/* Rescue manoeuvre if receiving double interrupts */
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
	if (d40c->pending_tx > 0)
		d40c->pending_tx--;
	spin_unlock_irqrestore(&d40c->lock, flags);
}

static irqreturn_t d40_handle_interrupt(int irq, void *data)
{
	static const struct d40_interrupt_lookup il[] = {
		{D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
		{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
		{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
		{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
		{D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
		{D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
		{D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
		{D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
		{D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
		{D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
	};

	int i;
	u32 regs[ARRAY_SIZE(il)];
	u32 idx;
	u32 row;
	long chan = -1;
	struct d40_chan *d40c;
	unsigned long flags;
	struct d40_base *base = data;

	spin_lock_irqsave(&base->interrupt_lock, flags);

	/* Read interrupt status of both logical and physical channels */
	for (i = 0; i < ARRAY_SIZE(il); i++)
		regs[i] = readl(base->virtbase + il[i].src);

	for (;;) {

		chan = find_next_bit((unsigned long *)regs,
				     BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);

		/* No more set bits found? */
		if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
			break;

		row = chan / BITS_PER_LONG;
		idx = chan & (BITS_PER_LONG - 1);

		/* ACK interrupt */
1266
		writel(1 << idx, base->virtbase + il[row].clr);
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276

		if (il[row].offset == D40_PHY_CHAN)
			d40c = base->lookup_phy_chans[idx];
		else
			d40c = base->lookup_log_chans[il[row].offset + idx];
		spin_lock(&d40c->lock);

		if (!il[row].is_error)
			dma_tc_handle(d40c);
		else
1277 1278
			d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
				chan, il[row].offset, idx);
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293

		spin_unlock(&d40c->lock);
	}

	spin_unlock_irqrestore(&base->interrupt_lock, flags);

	return IRQ_HANDLED;
}

static int d40_validate_conf(struct d40_chan *d40c,
			     struct stedma40_chan_cfg *conf)
{
	int res = 0;
	u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
	u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
1294
	bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1295

1296
	if (!conf->dir) {
1297
		chan_err(d40c, "Invalid direction.\n");
1298 1299 1300 1301 1302 1303 1304
		res = -EINVAL;
	}

	if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
	    d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
	    d40c->runtime_addr == 0) {

1305 1306
		chan_err(d40c, "Invalid TX channel address (%d)\n",
			 conf->dst_dev_type);
1307 1308 1309 1310 1311 1312
		res = -EINVAL;
	}

	if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
	    d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
	    d40c->runtime_addr == 0) {
1313 1314
		chan_err(d40c, "Invalid RX channel address (%d)\n",
			conf->src_dev_type);
1315 1316 1317 1318
		res = -EINVAL;
	}

	if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1319
	    dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1320
		chan_err(d40c, "Invalid dst\n");
1321 1322 1323
		res = -EINVAL;
	}

1324
	if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1325
	    src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1326
		chan_err(d40c, "Invalid src\n");
1327 1328 1329 1330 1331
		res = -EINVAL;
	}

	if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
	    dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1332
		chan_err(d40c, "No event line\n");
1333 1334 1335 1336 1337
		res = -EINVAL;
	}

	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
	    (src_event_group != dst_event_group)) {
1338
		chan_err(d40c, "Invalid event group\n");
1339 1340 1341 1342 1343 1344 1345 1346
		res = -EINVAL;
	}

	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
		/*
		 * DMAC HW supports it. Will be added to this driver,
		 * in case any dma client requires it.
		 */
1347
		chan_err(d40c, "periph to periph not supported\n");
1348 1349 1350
		res = -EINVAL;
	}

1351 1352 1353 1354 1355 1356 1357 1358 1359
	if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
	    (1 << conf->src_info.data_width) !=
	    d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
	    (1 << conf->dst_info.data_width)) {
		/*
		 * The DMAC hardware only supports
		 * src (burst x width) == dst (burst x width)
		 */

1360
		chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1361 1362 1363
		res = -EINVAL;
	}

1364 1365 1366 1367
	return res;
}

static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
1368
			       int log_event_line, bool is_log)
1369 1370 1371
{
	unsigned long flags;
	spin_lock_irqsave(&phy->lock, flags);
1372
	if (!is_log) {
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
		/* Physical interrupts are masked per physical full channel */
		if (phy->allocated_src == D40_ALLOC_FREE &&
		    phy->allocated_dst == D40_ALLOC_FREE) {
			phy->allocated_dst = D40_ALLOC_PHY;
			phy->allocated_src = D40_ALLOC_PHY;
			goto found;
		} else
			goto not_found;
	}

	/* Logical channel */
	if (is_src) {
		if (phy->allocated_src == D40_ALLOC_PHY)
			goto not_found;

		if (phy->allocated_src == D40_ALLOC_FREE)
			phy->allocated_src = D40_ALLOC_LOG_FREE;

		if (!(phy->allocated_src & (1 << log_event_line))) {
			phy->allocated_src |= 1 << log_event_line;
			goto found;
		} else
			goto not_found;
	} else {
		if (phy->allocated_dst == D40_ALLOC_PHY)
			goto not_found;

		if (phy->allocated_dst == D40_ALLOC_FREE)
			phy->allocated_dst = D40_ALLOC_LOG_FREE;

		if (!(phy->allocated_dst & (1 << log_event_line))) {
			phy->allocated_dst |= 1 << log_event_line;
			goto found;
		} else
			goto not_found;
	}

not_found:
	spin_unlock_irqrestore(&phy->lock, flags);
	return false;
found:
	spin_unlock_irqrestore(&phy->lock, flags);
	return true;
}

static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
			       int log_event_line)
{
	unsigned long flags;
	bool is_free = false;

	spin_lock_irqsave(&phy->lock, flags);
	if (!log_event_line) {
		phy->allocated_dst = D40_ALLOC_FREE;
		phy->allocated_src = D40_ALLOC_FREE;
		is_free = true;
		goto out;
	}

	/* Logical channel */
	if (is_src) {
		phy->allocated_src &= ~(1 << log_event_line);
		if (phy->allocated_src == D40_ALLOC_LOG_FREE)
			phy->allocated_src = D40_ALLOC_FREE;
	} else {
		phy->allocated_dst &= ~(1 << log_event_line);
		if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
			phy->allocated_dst = D40_ALLOC_FREE;
	}

	is_free = ((phy->allocated_src | phy->allocated_dst) ==
		   D40_ALLOC_FREE);

out:
	spin_unlock_irqrestore(&phy->lock, flags);

	return is_free;
}

static int d40_allocate_channel(struct d40_chan *d40c)
{
	int dev_type;
	int event_group;
	int event_line;
	struct d40_phy_res *phys;
	int i;
	int j;
	int log_num;
	bool is_src;
1462
	bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486

	phys = d40c->base->phy_res;

	if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
		dev_type = d40c->dma_cfg.src_dev_type;
		log_num = 2 * dev_type;
		is_src = true;
	} else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
		   d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
		/* dst event lines are used for logical memcpy */
		dev_type = d40c->dma_cfg.dst_dev_type;
		log_num = 2 * dev_type + 1;
		is_src = false;
	} else
		return -EINVAL;

	event_group = D40_TYPE_TO_GROUP(dev_type);
	event_line = D40_TYPE_TO_EVENT(dev_type);

	if (!is_log) {
		if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
			/* Find physical half channel */
			for (i = 0; i < d40c->base->num_phy_chans; i++) {

1487 1488
				if (d40_alloc_mask_set(&phys[i], is_src,
						       0, is_log))
1489 1490 1491 1492 1493 1494
					goto found_phy;
			}
		} else
			for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
				int phy_num = j  + event_group * 2;
				for (i = phy_num; i < phy_num + 2; i++) {
1495 1496 1497 1498
					if (d40_alloc_mask_set(&phys[i],
							       is_src,
							       0,
							       is_log))
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
						goto found_phy;
				}
			}
		return -EINVAL;
found_phy:
		d40c->phy_chan = &phys[i];
		d40c->log_num = D40_PHY_CHAN;
		goto out;
	}
	if (dev_type == -1)
		return -EINVAL;

	/* Find logical channel */
	for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
		int phy_num = j + event_group * 2;
		/*
		 * Spread logical channels across all available physical rather
		 * than pack every logical channel at the first available phy
		 * channels.
		 */
		if (is_src) {
			for (i = phy_num; i < phy_num + 2; i++) {
				if (d40_alloc_mask_set(&phys[i], is_src,
1522
						       event_line, is_log))
1523 1524 1525 1526 1527
					goto found_log;
			}
		} else {
			for (i = phy_num + 1; i >= phy_num; i--) {
				if (d40_alloc_mask_set(&phys[i], is_src,
1528
						       event_line, is_log))
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
					goto found_log;
			}
		}
	}
	return -EINVAL;

found_log:
	d40c->phy_chan = &phys[i];
	d40c->log_num = log_num;
out:

	if (is_log)
		d40c->base->lookup_log_chans[d40c->log_num] = d40c;
	else
		d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;

	return 0;

}

static int d40_config_memcpy(struct d40_chan *d40c)
{
	dma_cap_mask_t cap = d40c->chan.device->cap_mask;

	if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
		d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
		d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
			memcpy[d40c->chan.chan_id];

	} else if (dma_has_cap(DMA_MEMCPY, cap) &&
		   dma_has_cap(DMA_SLAVE, cap)) {
		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
	} else {
1563
		chan_err(d40c, "No memcpy\n");
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
		return -EINVAL;
	}

	return 0;
}


static int d40_free_dma(struct d40_chan *d40c)
{

	int res = 0;
1575
	u32 event;
1576 1577
	struct d40_phy_res *phy = d40c->phy_chan;
	bool is_src;
1578 1579 1580
	struct d40_desc *d;
	struct d40_desc *_d;

1581 1582 1583 1584

	/* Terminate all queued and active transfers */
	d40_term_all(d40c);

1585 1586 1587
	/* Release client owned descriptors */
	if (!list_empty(&d40c->client))
		list_for_each_entry_safe(d, _d, &d40c->client, node) {
1588
			d40_pool_lli_free(d40c, d);
1589 1590 1591 1592
			d40_desc_remove(d);
			d40_desc_free(d40c, d);
		}

1593
	if (phy == NULL) {
1594
		chan_err(d40c, "phy == null\n");
1595 1596 1597 1598 1599
		return -EINVAL;
	}

	if (phy->allocated_src == D40_ALLOC_FREE &&
	    phy->allocated_dst == D40_ALLOC_FREE) {
1600
		chan_err(d40c, "channel already free\n");
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
		return -EINVAL;
	}

	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
		is_src = false;
	} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
		is_src = true;
	} else {
1612
		chan_err(d40c, "Unknown direction\n");
1613 1614 1615
		return -EINVAL;
	}

1616 1617
	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
	if (res) {
1618
		chan_err(d40c, "suspend failed\n");
1619 1620 1621
		return res;
	}

1622
	if (chan_is_logical(d40c)) {
1623
		/* Release logical channel, deactivate the event line */
1624

1625
		d40_config_set_event(d40c, false);
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
		d40c->base->lookup_log_chans[d40c->log_num] = NULL;

		/*
		 * Check if there are more logical allocation
		 * on this phy channel.
		 */
		if (!d40_alloc_mask_free(phy, is_src, event)) {
			/* Resume the other logical channels if any */
			if (d40_chan_has_events(d40c)) {
				res = d40_channel_execute_command(d40c,
								  D40_DMA_RUN);
				if (res) {
1638 1639
					chan_err(d40c,
						"Executing RUN command\n");
1640 1641 1642 1643 1644
					return res;
				}
			}
			return 0;
		}
1645 1646 1647
	} else {
		(void) d40_alloc_mask_free(phy, is_src, 0);
	}
1648 1649 1650 1651

	/* Release physical channel */
	res = d40_channel_execute_command(d40c, D40_DMA_STOP);
	if (res) {
1652
		chan_err(d40c, "Failed to stop channel\n");
1653 1654 1655
		return res;
	}
	d40c->phy_chan = NULL;
1656
	d40c->configured = false;
1657 1658 1659 1660 1661
	d40c->base->lookup_phy_chans[phy->num] = NULL;

	return 0;
}

1662 1663
static bool d40_is_paused(struct d40_chan *d40c)
{
1664
	void __iomem *chanbase = chan_base(d40c);
1665 1666 1667 1668 1669 1670 1671 1672
	bool is_paused = false;
	unsigned long flags;
	void __iomem *active_reg;
	u32 status;
	u32 event;

	spin_lock_irqsave(&d40c->lock, flags);

1673
	if (chan_is_physical(d40c)) {
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
		if (d40c->phy_chan->num % 2 == 0)
			active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
		else
			active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;

		status = (readl(active_reg) &
			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
			D40_CHAN_POS(d40c->phy_chan->num);
		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
			is_paused = true;

		goto _exit;
	}

	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1689
	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1690
		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1691
		status = readl(chanbase + D40_CHAN_REG_SDLNK);
1692
	} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1693
		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1694
		status = readl(chanbase + D40_CHAN_REG_SSLNK);
1695
	} else {
1696
		chan_err(d40c, "Unknown direction\n");
1697 1698
		goto _exit;
	}
1699

1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
	status = (status & D40_EVENTLINE_MASK(event)) >>
		D40_EVENTLINE_POS(event);

	if (status != D40_DMA_RUN)
		is_paused = true;
_exit:
	spin_unlock_irqrestore(&d40c->lock, flags);
	return is_paused;

}


1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
static u32 stedma40_residue(struct dma_chan *chan)
{
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	u32 bytes_left;
	unsigned long flags;

	spin_lock_irqsave(&d40c->lock, flags);
	bytes_left = d40_residue(d40c);
	spin_unlock_irqrestore(&d40c->lock, flags);

	return bytes_left;
}

1726 1727 1728
static int
d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
		struct scatterlist *sg_src, struct scatterlist *sg_dst,
R
Rabin Vincent 已提交
1729 1730
		unsigned int sg_len, dma_addr_t src_dev_addr,
		dma_addr_t dst_dev_addr)
1731 1732 1733 1734
{
	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
	struct stedma40_half_channel_info *src_info = &cfg->src_info;
	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1735
	int ret;
1736

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
	ret = d40_log_sg_to_lli(sg_src, sg_len,
				src_dev_addr,
				desc->lli_log.src,
				chan->log_def.lcsp1,
				src_info->data_width,
				dst_info->data_width);

	ret = d40_log_sg_to_lli(sg_dst, sg_len,
				dst_dev_addr,
				desc->lli_log.dst,
				chan->log_def.lcsp3,
				dst_info->data_width,
				src_info->data_width);

	return ret < 0 ? ret : 0;
1752 1753 1754 1755 1756
}

static int
d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
		struct scatterlist *sg_src, struct scatterlist *sg_dst,
R
Rabin Vincent 已提交
1757 1758
		unsigned int sg_len, dma_addr_t src_dev_addr,
		dma_addr_t dst_dev_addr)
1759 1760 1761 1762
{
	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
	struct stedma40_half_channel_info *src_info = &cfg->src_info;
	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
R
Rabin Vincent 已提交
1763
	unsigned long flags = 0;
1764 1765
	int ret;

R
Rabin Vincent 已提交
1766 1767 1768
	if (desc->cyclic)
		flags |= LLI_CYCLIC | LLI_TERM_INT;

1769 1770 1771 1772
	ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
				desc->lli_phy.src,
				virt_to_phys(desc->lli_phy.src),
				chan->src_def_cfg,
R
Rabin Vincent 已提交
1773
				src_info, dst_info, flags);
1774 1775 1776 1777 1778

	ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
				desc->lli_phy.dst,
				virt_to_phys(desc->lli_phy.dst),
				chan->dst_def_cfg,
R
Rabin Vincent 已提交
1779
				dst_info, src_info, flags);
1780 1781 1782 1783 1784 1785 1786 1787

	dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
				   desc->lli_pool.size, DMA_TO_DEVICE);

	return ret < 0 ? ret : 0;
}


1788 1789 1790 1791 1792 1793
static struct d40_desc *
d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
	      unsigned int sg_len, unsigned long dma_flags)
{
	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
	struct d40_desc *desc;
1794
	int ret;
1795 1796 1797 1798 1799 1800 1801 1802 1803

	desc = d40_desc_get(chan);
	if (!desc)
		return NULL;

	desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
					cfg->dst_info.data_width);
	if (desc->lli_len < 0) {
		chan_err(chan, "Unaligned size\n");
1804 1805
		goto err;
	}
1806

1807 1808 1809 1810
	ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
	if (ret < 0) {
		chan_err(chan, "Could not allocate lli\n");
		goto err;
1811 1812
	}

1813

1814 1815 1816 1817 1818 1819 1820
	desc->lli_current = 0;
	desc->txd.flags = dma_flags;
	desc->txd.tx_submit = d40_tx_submit;

	dma_async_tx_descriptor_init(&desc->txd, &chan->chan);

	return desc;
1821 1822 1823 1824

err:
	d40_desc_free(chan, desc);
	return NULL;
1825 1826
}

1827 1828
static dma_addr_t
d40_get_dev_addr(struct d40_chan *chan, enum dma_data_direction direction)
1829
{
1830 1831
	struct stedma40_platform_data *plat = chan->base->plat_data;
	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1832
	dma_addr_t addr = 0;
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850

	if (chan->runtime_addr)
		return chan->runtime_addr;

	if (direction == DMA_FROM_DEVICE)
		addr = plat->dev_rx[cfg->src_dev_type];
	else if (direction == DMA_TO_DEVICE)
		addr = plat->dev_tx[cfg->dst_dev_type];

	return addr;
}

static struct dma_async_tx_descriptor *
d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
	    struct scatterlist *sg_dst, unsigned int sg_len,
	    enum dma_data_direction direction, unsigned long dma_flags)
{
	struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
R
Rabin Vincent 已提交
1851 1852
	dma_addr_t src_dev_addr = 0;
	dma_addr_t dst_dev_addr = 0;
1853
	struct d40_desc *desc;
1854
	unsigned long flags;
1855
	int ret;
1856

1857 1858 1859
	if (!chan->phy_chan) {
		chan_err(chan, "Cannot prepare unallocated channel\n");
		return NULL;
1860 1861
	}

R
Rabin Vincent 已提交
1862

1863
	spin_lock_irqsave(&chan->lock, flags);
1864

1865 1866
	desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
	if (desc == NULL)
1867 1868
		goto err;

R
Rabin Vincent 已提交
1869 1870 1871
	if (sg_next(&sg_src[sg_len - 1]) == sg_src)
		desc->cyclic = true;

R
Rabin Vincent 已提交
1872 1873 1874 1875 1876 1877 1878 1879
	if (direction != DMA_NONE) {
		dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);

		if (direction == DMA_FROM_DEVICE)
			src_dev_addr = dev_addr;
		else if (direction == DMA_TO_DEVICE)
			dst_dev_addr = dev_addr;
	}
1880 1881 1882

	if (chan_is_logical(chan))
		ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
R
Rabin Vincent 已提交
1883
				      sg_len, src_dev_addr, dst_dev_addr);
1884 1885
	else
		ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
R
Rabin Vincent 已提交
1886
				      sg_len, src_dev_addr, dst_dev_addr);
1887 1888 1889 1890 1891

	if (ret) {
		chan_err(chan, "Failed to prepare %s sg job: %d\n",
			 chan_is_logical(chan) ? "log" : "phy", ret);
		goto err;
1892 1893
	}

1894 1895 1896
	spin_unlock_irqrestore(&chan->lock, flags);

	return &desc->txd;
1897 1898

err:
1899 1900 1901
	if (desc)
		d40_desc_free(chan, desc);
	spin_unlock_irqrestore(&chan->lock, flags);
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
	return NULL;
}

bool stedma40_filter(struct dma_chan *chan, void *data)
{
	struct stedma40_chan_cfg *info = data;
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	int err;

	if (data) {
		err = d40_validate_conf(d40c, info);
		if (!err)
			d40c->dma_cfg = *info;
	} else
		err = d40_config_memcpy(d40c);

1919 1920 1921
	if (!err)
		d40c->configured = true;

1922 1923 1924 1925
	return err == 0;
}
EXPORT_SYMBOL(stedma40_filter);

1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
{
	bool realtime = d40c->dma_cfg.realtime;
	bool highprio = d40c->dma_cfg.high_priority;
	u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
	u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
	u32 event = D40_TYPE_TO_EVENT(dev_type);
	u32 group = D40_TYPE_TO_GROUP(dev_type);
	u32 bit = 1 << event;

	/* Destination event lines are stored in the upper halfword */
	if (!src)
		bit <<= 16;

	writel(bit, d40c->base->virtbase + prioreg + group * 4);
	writel(bit, d40c->base->virtbase + rtreg + group * 4);
}

static void d40_set_prio_realtime(struct d40_chan *d40c)
{
	if (d40c->base->rev < 3)
		return;

	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
		__d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);

	if ((d40c->dma_cfg.dir ==  STEDMA40_MEM_TO_PERIPH) ||
	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
		__d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
}

1958 1959 1960 1961 1962 1963 1964
/* DMA ENGINE functions */
static int d40_alloc_chan_resources(struct dma_chan *chan)
{
	int err;
	unsigned long flags;
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
1965
	bool is_free_phy;
1966 1967 1968 1969
	spin_lock_irqsave(&d40c->lock, flags);

	d40c->completed = chan->cookie = 1;

1970 1971
	/* If no dma configuration is set use default configuration (memcpy) */
	if (!d40c->configured) {
1972
		err = d40_config_memcpy(d40c);
1973
		if (err) {
1974
			chan_err(d40c, "Failed to configure memcpy channel\n");
1975 1976
			goto fail;
		}
1977
	}
1978
	is_free_phy = (d40c->phy_chan == NULL);
1979 1980 1981

	err = d40_allocate_channel(d40c);
	if (err) {
1982
		chan_err(d40c, "Failed to allocate channel\n");
1983
		goto fail;
1984 1985
	}

1986 1987
	/* Fill in basic CFG register values */
	d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
1988
		    &d40c->dst_def_cfg, chan_is_logical(d40c));
1989

1990 1991
	d40_set_prio_realtime(d40c);

1992
	if (chan_is_logical(d40c)) {
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
		d40_log_cfg(&d40c->dma_cfg,
			    &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);

		if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
			d40c->lcpa = d40c->base->lcpa_base +
			  d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
		else
			d40c->lcpa = d40c->base->lcpa_base +
			  d40c->dma_cfg.dst_dev_type *
			  D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
	}

	/*
	 * Only write channel configuration to the DMA if the physical
	 * resource is free. In case of multiple logical channels
	 * on the same physical resource, only the first write is necessary.
	 */
2010 2011
	if (is_free_phy)
		d40_config_write(d40c);
2012
fail:
2013
	spin_unlock_irqrestore(&d40c->lock, flags);
2014
	return err;
2015 2016 2017 2018 2019 2020 2021 2022 2023
}

static void d40_free_chan_resources(struct dma_chan *chan)
{
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	int err;
	unsigned long flags;

2024
	if (d40c->phy_chan == NULL) {
2025
		chan_err(d40c, "Cannot free unallocated channel\n");
2026 2027 2028 2029
		return;
	}


2030 2031 2032 2033 2034
	spin_lock_irqsave(&d40c->lock, flags);

	err = d40_free_dma(d40c);

	if (err)
2035
		chan_err(d40c, "Failed to free channel\n");
2036 2037 2038 2039 2040 2041 2042
	spin_unlock_irqrestore(&d40c->lock, flags);
}

static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
						       dma_addr_t dst,
						       dma_addr_t src,
						       size_t size,
2043
						       unsigned long dma_flags)
2044
{
2045 2046
	struct scatterlist dst_sg;
	struct scatterlist src_sg;
2047

2048 2049
	sg_init_table(&dst_sg, 1);
	sg_init_table(&src_sg, 1);
2050

2051 2052
	sg_dma_address(&dst_sg) = dst;
	sg_dma_address(&src_sg) = src;
2053

2054 2055
	sg_dma_len(&dst_sg) = size;
	sg_dma_len(&src_sg) = size;
2056

2057
	return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
2058 2059
}

2060
static struct dma_async_tx_descriptor *
2061 2062 2063 2064
d40_prep_memcpy_sg(struct dma_chan *chan,
		   struct scatterlist *dst_sg, unsigned int dst_nents,
		   struct scatterlist *src_sg, unsigned int src_nents,
		   unsigned long dma_flags)
2065 2066 2067 2068
{
	if (dst_nents != src_nents)
		return NULL;

2069
	return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
2070 2071
}

2072 2073 2074 2075
static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
							 struct scatterlist *sgl,
							 unsigned int sg_len,
							 enum dma_data_direction direction,
2076
							 unsigned long dma_flags)
2077
{
2078 2079 2080
	if (direction != DMA_FROM_DEVICE && direction != DMA_TO_DEVICE)
		return NULL;

2081
	return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2082 2083
}

R
Rabin Vincent 已提交
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
static struct dma_async_tx_descriptor *
dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
		     size_t buf_len, size_t period_len,
		     enum dma_data_direction direction)
{
	unsigned int periods = buf_len / period_len;
	struct dma_async_tx_descriptor *txd;
	struct scatterlist *sg;
	int i;

	sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_KERNEL);
	for (i = 0; i < periods; i++) {
		sg_dma_address(&sg[i]) = dma_addr;
		sg_dma_len(&sg[i]) = period_len;
		dma_addr += period_len;
	}

	sg[periods].offset = 0;
	sg[periods].length = 0;
	sg[periods].page_link =
		((unsigned long)sg | 0x01) & ~0x02;

	txd = d40_prep_sg(chan, sg, sg, periods, direction,
			  DMA_PREP_INTERRUPT);

	kfree(sg);

	return txd;
}

2114 2115 2116 2117 2118 2119 2120 2121 2122
static enum dma_status d40_tx_status(struct dma_chan *chan,
				     dma_cookie_t cookie,
				     struct dma_tx_state *txstate)
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	dma_cookie_t last_used;
	dma_cookie_t last_complete;
	int ret;

2123
	if (d40c->phy_chan == NULL) {
2124
		chan_err(d40c, "Cannot read status of unallocated channel\n");
2125 2126 2127
		return -EINVAL;
	}

2128 2129 2130
	last_complete = d40c->completed;
	last_used = chan->cookie;

2131 2132 2133 2134
	if (d40_is_paused(d40c))
		ret = DMA_PAUSED;
	else
		ret = dma_async_is_complete(cookie, last_complete, last_used);
2135

2136 2137
	dma_set_tx_state(txstate, last_complete, last_used,
			 stedma40_residue(chan));
2138 2139 2140 2141 2142 2143 2144 2145 2146

	return ret;
}

static void d40_issue_pending(struct dma_chan *chan)
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	unsigned long flags;

2147
	if (d40c->phy_chan == NULL) {
2148
		chan_err(d40c, "Channel is not allocated!\n");
2149 2150 2151
		return;
	}

2152 2153 2154 2155 2156 2157 2158 2159 2160
	spin_lock_irqsave(&d40c->lock, flags);

	/* Busy means that pending jobs are already being processed */
	if (!d40c->busy)
		(void) d40_queue_start(d40c);

	spin_unlock_irqrestore(&d40c->lock, flags);
}

2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
/* Runtime reconfiguration extension */
static void d40_set_runtime_config(struct dma_chan *chan,
			       struct dma_slave_config *config)
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
	enum dma_slave_buswidth config_addr_width;
	dma_addr_t config_addr;
	u32 config_maxburst;
	enum stedma40_periph_data_width addr_width;
	int psize;

	if (config->direction == DMA_FROM_DEVICE) {
		dma_addr_t dev_addr_rx =
			d40c->base->plat_data->dev_rx[cfg->src_dev_type];

		config_addr = config->src_addr;
		if (dev_addr_rx)
			dev_dbg(d40c->base->dev,
				"channel has a pre-wired RX address %08x "
				"overriding with %08x\n",
				dev_addr_rx, config_addr);
		if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
			dev_dbg(d40c->base->dev,
				"channel was not configured for peripheral "
				"to memory transfer (%d) overriding\n",
				cfg->dir);
		cfg->dir = STEDMA40_PERIPH_TO_MEM;

		config_addr_width = config->src_addr_width;
		config_maxburst = config->src_maxburst;

	} else if (config->direction == DMA_TO_DEVICE) {
		dma_addr_t dev_addr_tx =
			d40c->base->plat_data->dev_tx[cfg->dst_dev_type];

		config_addr = config->dst_addr;
		if (dev_addr_tx)
			dev_dbg(d40c->base->dev,
				"channel has a pre-wired TX address %08x "
				"overriding with %08x\n",
				dev_addr_tx, config_addr);
		if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
			dev_dbg(d40c->base->dev,
				"channel was not configured for memory "
				"to peripheral transfer (%d) overriding\n",
				cfg->dir);
		cfg->dir = STEDMA40_MEM_TO_PERIPH;

		config_addr_width = config->dst_addr_width;
		config_maxburst = config->dst_maxburst;

	} else {
		dev_err(d40c->base->dev,
			"unrecognized channel direction %d\n",
			config->direction);
		return;
	}

	switch (config_addr_width) {
	case DMA_SLAVE_BUSWIDTH_1_BYTE:
		addr_width = STEDMA40_BYTE_WIDTH;
		break;
	case DMA_SLAVE_BUSWIDTH_2_BYTES:
		addr_width = STEDMA40_HALFWORD_WIDTH;
		break;
	case DMA_SLAVE_BUSWIDTH_4_BYTES:
		addr_width = STEDMA40_WORD_WIDTH;
		break;
	case DMA_SLAVE_BUSWIDTH_8_BYTES:
		addr_width = STEDMA40_DOUBLEWORD_WIDTH;
		break;
	default:
		dev_err(d40c->base->dev,
			"illegal peripheral address width "
			"requested (%d)\n",
			config->src_addr_width);
		return;
	}

2241
	if (chan_is_logical(d40c)) {
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
		if (config_maxburst >= 16)
			psize = STEDMA40_PSIZE_LOG_16;
		else if (config_maxburst >= 8)
			psize = STEDMA40_PSIZE_LOG_8;
		else if (config_maxburst >= 4)
			psize = STEDMA40_PSIZE_LOG_4;
		else
			psize = STEDMA40_PSIZE_LOG_1;
	} else {
		if (config_maxburst >= 16)
			psize = STEDMA40_PSIZE_PHY_16;
		else if (config_maxburst >= 8)
			psize = STEDMA40_PSIZE_PHY_8;
		else if (config_maxburst >= 4)
			psize = STEDMA40_PSIZE_PHY_4;
2257 2258
		else if (config_maxburst >= 2)
			psize = STEDMA40_PSIZE_PHY_2;
2259 2260 2261
		else
			psize = STEDMA40_PSIZE_PHY_1;
	}
2262 2263 2264 2265

	/* Set up all the endpoint configs */
	cfg->src_info.data_width = addr_width;
	cfg->src_info.psize = psize;
2266
	cfg->src_info.big_endian = false;
2267 2268 2269
	cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
	cfg->dst_info.data_width = addr_width;
	cfg->dst_info.psize = psize;
2270
	cfg->dst_info.big_endian = false;
2271 2272
	cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;

2273
	/* Fill in register values */
2274
	if (chan_is_logical(d40c))
2275 2276 2277 2278 2279
		d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
	else
		d40_phy_cfg(cfg, &d40c->src_def_cfg,
			    &d40c->dst_def_cfg, false);

2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
	/* These settings will take precedence later */
	d40c->runtime_addr = config_addr;
	d40c->runtime_direction = config->direction;
	dev_dbg(d40c->base->dev,
		"configured channel %s for %s, data width %d, "
		"maxburst %d bytes, LE, no flow control\n",
		dma_chan_name(chan),
		(config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
		config_addr_width,
		config_maxburst);
}

2292 2293
static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
		       unsigned long arg)
2294 2295 2296
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);

2297
	if (d40c->phy_chan == NULL) {
2298
		chan_err(d40c, "Channel is not allocated!\n");
2299 2300 2301
		return -EINVAL;
	}

2302 2303
	switch (cmd) {
	case DMA_TERMINATE_ALL:
2304
		return d40_terminate_all(d40c);
2305
	case DMA_PAUSE:
2306
		return d40_pause(d40c);
2307
	case DMA_RESUME:
2308
		return d40_resume(d40c);
2309 2310 2311 2312 2313 2314
	case DMA_SLAVE_CONFIG:
		d40_set_runtime_config(chan,
			(struct dma_slave_config *) arg);
		return 0;
	default:
		break;
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
	}

	/* Other commands are unimplemented */
	return -ENXIO;
}

/* Initialization functions */

static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
				 struct d40_chan *chans, int offset,
				 int num_chans)
{
	int i = 0;
	struct d40_chan *d40c;

	INIT_LIST_HEAD(&dma->channels);

	for (i = offset; i < offset + num_chans; i++) {
		d40c = &chans[i];
		d40c->base = base;
		d40c->chan.device = dma;

		spin_lock_init(&d40c->lock);

		d40c->log_num = D40_PHY_CHAN;

		INIT_LIST_HEAD(&d40c->active);
		INIT_LIST_HEAD(&d40c->queue);
		INIT_LIST_HEAD(&d40c->client);

		tasklet_init(&d40c->tasklet, dma_tasklet,
			     (unsigned long) d40c);

		list_add_tail(&d40c->chan.device_node,
			      &dma->channels);
	}
}

2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
{
	if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
		dev->device_prep_slave_sg = d40_prep_slave_sg;

	if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
		dev->device_prep_dma_memcpy = d40_prep_memcpy;

		/*
		 * This controller can only access address at even
		 * 32bit boundaries, i.e. 2^2
		 */
		dev->copy_align = 2;
	}

	if (dma_has_cap(DMA_SG, dev->cap_mask))
		dev->device_prep_dma_sg = d40_prep_memcpy_sg;

R
Rabin Vincent 已提交
2371 2372 2373
	if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
		dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;

2374 2375 2376 2377 2378 2379 2380 2381
	dev->device_alloc_chan_resources = d40_alloc_chan_resources;
	dev->device_free_chan_resources = d40_free_chan_resources;
	dev->device_issue_pending = d40_issue_pending;
	dev->device_tx_status = d40_tx_status;
	dev->device_control = d40_control;
	dev->dev = base->dev;
}

2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
static int __init d40_dmaengine_init(struct d40_base *base,
				     int num_reserved_chans)
{
	int err ;

	d40_chan_init(base, &base->dma_slave, base->log_chans,
		      0, base->num_log_chans);

	dma_cap_zero(base->dma_slave.cap_mask);
	dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
R
Rabin Vincent 已提交
2392
	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2393

2394
	d40_ops_init(base, &base->dma_slave);
2395 2396 2397 2398

	err = dma_async_device_register(&base->dma_slave);

	if (err) {
2399
		d40_err(base->dev, "Failed to register slave channels\n");
2400 2401 2402 2403 2404 2405 2406 2407
		goto failure1;
	}

	d40_chan_init(base, &base->dma_memcpy, base->log_chans,
		      base->num_log_chans, base->plat_data->memcpy_len);

	dma_cap_zero(base->dma_memcpy.cap_mask);
	dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2408 2409 2410
	dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);

	d40_ops_init(base, &base->dma_memcpy);
2411 2412 2413 2414

	err = dma_async_device_register(&base->dma_memcpy);

	if (err) {
2415 2416
		d40_err(base->dev,
			"Failed to regsiter memcpy only channels\n");
2417 2418 2419 2420 2421 2422 2423 2424 2425
		goto failure2;
	}

	d40_chan_init(base, &base->dma_both, base->phy_chans,
		      0, num_reserved_chans);

	dma_cap_zero(base->dma_both.cap_mask);
	dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
	dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2426
	dma_cap_set(DMA_SG, base->dma_both.cap_mask);
R
Rabin Vincent 已提交
2427
	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2428 2429

	d40_ops_init(base, &base->dma_both);
2430 2431 2432
	err = dma_async_device_register(&base->dma_both);

	if (err) {
2433 2434
		d40_err(base->dev,
			"Failed to register logical and physical capable channels\n");
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
		goto failure3;
	}
	return 0;
failure3:
	dma_async_device_unregister(&base->dma_memcpy);
failure2:
	dma_async_device_unregister(&base->dma_slave);
failure1:
	return err;
}

/* Initialization functions. */

static int __init d40_phy_res_init(struct d40_base *base)
{
	int i;
	int num_phy_chans_avail = 0;
	u32 val[2];
	int odd_even_bit = -2;

	val[0] = readl(base->virtbase + D40_DREG_PRSME);
	val[1] = readl(base->virtbase + D40_DREG_PRSMO);

	for (i = 0; i < base->num_phy_chans; i++) {
		base->phy_res[i].num = i;
		odd_even_bit += 2 * ((i % 2) == 0);
		if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
			/* Mark security only channels as occupied */
			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
		} else {
			base->phy_res[i].allocated_src = D40_ALLOC_FREE;
			base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
			num_phy_chans_avail++;
		}
		spin_lock_init(&base->phy_res[i].lock);
	}
2472 2473 2474

	/* Mark disabled channels as occupied */
	for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2475 2476 2477 2478 2479
		int chan = base->plat_data->disabled_channels[i];

		base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
		base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
		num_phy_chans_avail--;
2480 2481
	}

2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
	dev_info(base->dev, "%d of %d physical DMA channels available\n",
		 num_phy_chans_avail, base->num_phy_chans);

	/* Verify settings extended vs standard */
	val[0] = readl(base->virtbase + D40_DREG_PRTYP);

	for (i = 0; i < base->num_phy_chans; i++) {

		if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
		    (val[0] & 0x3) != 1)
			dev_info(base->dev,
				 "[%s] INFO: channel %d is misconfigured (%d)\n",
				 __func__, i, val[0] & 0x3);

		val[0] = val[0] >> 2;
	}

	return num_phy_chans_avail;
}

static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
{
	static const struct d40_reg_val dma_id_regs[] = {
		/* Peripheral Id */
		{ .reg = D40_DREG_PERIPHID0, .val = 0x0040},
		{ .reg = D40_DREG_PERIPHID1, .val = 0x0000},
		/*
		 * D40_DREG_PERIPHID2 Depends on HW revision:
2510
		 *  DB8500ed has 0x0008,
2511
		 *  ? has 0x0018,
2512 2513
		 *  DB8500v1 has 0x0028
		 *  DB8500v2 has 0x0038
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
		 */
		{ .reg = D40_DREG_PERIPHID3, .val = 0x0000},

		/* PCell Id */
		{ .reg = D40_DREG_CELLID0, .val = 0x000d},
		{ .reg = D40_DREG_CELLID1, .val = 0x00f0},
		{ .reg = D40_DREG_CELLID2, .val = 0x0005},
		{ .reg = D40_DREG_CELLID3, .val = 0x00b1}
	};
	struct stedma40_platform_data *plat_data;
	struct clk *clk = NULL;
	void __iomem *virtbase = NULL;
	struct resource *res = NULL;
	struct d40_base *base = NULL;
	int num_log_chans = 0;
	int num_phy_chans;
	int i;
2531
	u32 val;
2532
	u32 rev;
2533 2534 2535 2536

	clk = clk_get(&pdev->dev, NULL);

	if (IS_ERR(clk)) {
2537
		d40_err(&pdev->dev, "No matching clock found\n");
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
		goto failure;
	}

	clk_enable(clk);

	/* Get IO for DMAC base address */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
	if (!res)
		goto failure;

	if (request_mem_region(res->start, resource_size(res),
			       D40_NAME " I/O base") == NULL)
		goto failure;

	virtbase = ioremap(res->start, resource_size(res));
	if (!virtbase)
		goto failure;

	/* HW version check */
	for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
		if (dma_id_regs[i].val !=
		    readl(virtbase + dma_id_regs[i].reg)) {
2560 2561
			d40_err(&pdev->dev,
				"Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
2562 2563 2564 2565 2566 2567 2568
				dma_id_regs[i].val,
				dma_id_regs[i].reg,
				readl(virtbase + dma_id_regs[i].reg));
			goto failure;
		}
	}

2569
	/* Get silicon revision and designer */
2570
	val = readl(virtbase + D40_DREG_PERIPHID2);
2571

2572 2573
	if ((val & D40_DREG_PERIPHID2_DESIGNER_MASK) !=
	    D40_HW_DESIGNER) {
2574 2575
		d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
			val & D40_DREG_PERIPHID2_DESIGNER_MASK,
2576
			D40_HW_DESIGNER);
2577 2578 2579
		goto failure;
	}

2580 2581 2582
	rev = (val & D40_DREG_PERIPHID2_REV_MASK) >>
		D40_DREG_PERIPHID2_REV_POS;

2583 2584 2585 2586
	/* The number of physical channels on this HW */
	num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;

	dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2587
		 rev, res->start);
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604

	plat_data = pdev->dev.platform_data;

	/* Count the number of logical channels in use */
	for (i = 0; i < plat_data->dev_len; i++)
		if (plat_data->dev_rx[i] != 0)
			num_log_chans++;

	for (i = 0; i < plat_data->dev_len; i++)
		if (plat_data->dev_tx[i] != 0)
			num_log_chans++;

	base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
		       (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
		       sizeof(struct d40_chan), GFP_KERNEL);

	if (base == NULL) {
2605
		d40_err(&pdev->dev, "Out of memory\n");
2606 2607 2608
		goto failure;
	}

2609
	base->rev = rev;
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
	base->clk = clk;
	base->num_phy_chans = num_phy_chans;
	base->num_log_chans = num_log_chans;
	base->phy_start = res->start;
	base->phy_size = resource_size(res);
	base->virtbase = virtbase;
	base->plat_data = plat_data;
	base->dev = &pdev->dev;
	base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
	base->log_chans = &base->phy_chans[num_phy_chans];

	base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
				GFP_KERNEL);
	if (!base->phy_res)
		goto failure;

	base->lookup_phy_chans = kzalloc(num_phy_chans *
					 sizeof(struct d40_chan *),
					 GFP_KERNEL);
	if (!base->lookup_phy_chans)
		goto failure;

	if (num_log_chans + plat_data->memcpy_len) {
		/*
		 * The max number of logical channels are event lines for all
		 * src devices and dst devices
		 */
		base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
						 sizeof(struct d40_chan *),
						 GFP_KERNEL);
		if (!base->lookup_log_chans)
			goto failure;
	}
2643 2644 2645 2646

	base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
					    sizeof(struct d40_desc *) *
					    D40_LCLA_LINK_PER_EVENT_GRP,
2647 2648 2649 2650
					    GFP_KERNEL);
	if (!base->lcla_pool.alloc_map)
		goto failure;

2651 2652 2653 2654 2655 2656
	base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
					    0, SLAB_HWCACHE_ALIGN,
					    NULL);
	if (base->desc_slab == NULL)
		goto failure;

2657 2658 2659
	return base;

failure:
2660
	if (!IS_ERR(clk)) {
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
		clk_disable(clk);
		clk_put(clk);
	}
	if (virtbase)
		iounmap(virtbase);
	if (res)
		release_mem_region(res->start,
				   resource_size(res));
	if (virtbase)
		iounmap(virtbase);

	if (base) {
		kfree(base->lcla_pool.alloc_map);
		kfree(base->lookup_log_chans);
		kfree(base->lookup_phy_chans);
		kfree(base->phy_res);
		kfree(base);
	}

	return NULL;
}

static void __init d40_hw_init(struct d40_base *base)
{

	static const struct d40_reg_val dma_init_reg[] = {
		/* Clock every part of the DMA block from start */
		{ .reg = D40_DREG_GCC,    .val = 0x0000ff01},

		/* Interrupts on all logical channels */
		{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
	};
	int i;
	u32 prmseo[2] = {0, 0};
	u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
	u32 pcmis = 0;
	u32 pcicr = 0;

	for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
		writel(dma_init_reg[i].val,
		       base->virtbase + dma_init_reg[i].reg);

	/* Configure all our dma channels to default settings */
	for (i = 0; i < base->num_phy_chans; i++) {

		activeo[i % 2] = activeo[i % 2] << 2;

		if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
		    == D40_ALLOC_PHY) {
			activeo[i % 2] |= 3;
			continue;
		}

		/* Enable interrupt # */
		pcmis = (pcmis << 1) | 1;

		/* Clear interrupt # */
		pcicr = (pcicr << 1) | 1;

		/* Set channel to physical mode */
		prmseo[i % 2] = prmseo[i % 2] << 2;
		prmseo[i % 2] |= 1;

	}

	writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
	writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
	writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
	writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);

	/* Write which interrupt to enable */
	writel(pcmis, base->virtbase + D40_DREG_PCMIS);

	/* Write which interrupt to clear */
	writel(pcicr, base->virtbase + D40_DREG_PCICR);

}

2750 2751
static int __init d40_lcla_allocate(struct d40_base *base)
{
2752
	struct d40_lcla_pool *pool = &base->lcla_pool;
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
	unsigned long *page_list;
	int i, j;
	int ret = 0;

	/*
	 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
	 * To full fill this hardware requirement without wasting 256 kb
	 * we allocate pages until we get an aligned one.
	 */
	page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
			    GFP_KERNEL);

	if (!page_list) {
		ret = -ENOMEM;
		goto failure;
	}

	/* Calculating how many pages that are required */
	base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;

	for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
		page_list[i] = __get_free_pages(GFP_KERNEL,
						base->lcla_pool.pages);
		if (!page_list[i]) {

2778 2779
			d40_err(base->dev, "Failed to allocate %d pages.\n",
				base->lcla_pool.pages);
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796

			for (j = 0; j < i; j++)
				free_pages(page_list[j], base->lcla_pool.pages);
			goto failure;
		}

		if ((virt_to_phys((void *)page_list[i]) &
		     (LCLA_ALIGNMENT - 1)) == 0)
			break;
	}

	for (j = 0; j < i; j++)
		free_pages(page_list[j], base->lcla_pool.pages);

	if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
		base->lcla_pool.base = (void *)page_list[i];
	} else {
2797 2798 2799 2800
		/*
		 * After many attempts and no succees with finding the correct
		 * alignment, try with allocating a big buffer.
		 */
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
		dev_warn(base->dev,
			 "[%s] Failed to get %d pages @ 18 bit align.\n",
			 __func__, base->lcla_pool.pages);
		base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
							 base->num_phy_chans +
							 LCLA_ALIGNMENT,
							 GFP_KERNEL);
		if (!base->lcla_pool.base_unaligned) {
			ret = -ENOMEM;
			goto failure;
		}

		base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
						 LCLA_ALIGNMENT);
	}

2817 2818 2819 2820 2821 2822 2823 2824 2825
	pool->dma_addr = dma_map_single(base->dev, pool->base,
					SZ_1K * base->num_phy_chans,
					DMA_TO_DEVICE);
	if (dma_mapping_error(base->dev, pool->dma_addr)) {
		pool->dma_addr = 0;
		ret = -ENOMEM;
		goto failure;
	}

2826 2827 2828 2829 2830 2831 2832
	writel(virt_to_phys(base->lcla_pool.base),
	       base->virtbase + D40_DREG_LCLA);
failure:
	kfree(page_list);
	return ret;
}

2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
static int __init d40_probe(struct platform_device *pdev)
{
	int err;
	int ret = -ENOENT;
	struct d40_base *base;
	struct resource *res = NULL;
	int num_reserved_chans;
	u32 val;

	base = d40_hw_detect_init(pdev);

	if (!base)
		goto failure;

	num_reserved_chans = d40_phy_res_init(base);

	platform_set_drvdata(pdev, base);

	spin_lock_init(&base->interrupt_lock);
	spin_lock_init(&base->execmd_lock);

	/* Get IO for logical channel parameter address */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
	if (!res) {
		ret = -ENOENT;
2858
		d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
2859 2860 2861 2862 2863 2864 2865 2866
		goto failure;
	}
	base->lcpa_size = resource_size(res);
	base->phy_lcpa = res->start;

	if (request_mem_region(res->start, resource_size(res),
			       D40_NAME " I/O lcpa") == NULL) {
		ret = -EBUSY;
2867 2868 2869
		d40_err(&pdev->dev,
			"Failed to request LCPA region 0x%x-0x%x\n",
			res->start, res->end);
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
		goto failure;
	}

	/* We make use of ESRAM memory for this. */
	val = readl(base->virtbase + D40_DREG_LCPA);
	if (res->start != val && val != 0) {
		dev_warn(&pdev->dev,
			 "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
			 __func__, val, res->start);
	} else
		writel(res->start, base->virtbase + D40_DREG_LCPA);

	base->lcpa_base = ioremap(res->start, resource_size(res));
	if (!base->lcpa_base) {
		ret = -ENOMEM;
2885
		d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
2886 2887 2888
		goto failure;
	}

2889 2890
	ret = d40_lcla_allocate(base);
	if (ret) {
2891
		d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
2892 2893 2894 2895 2896 2897 2898 2899 2900
		goto failure;
	}

	spin_lock_init(&base->lcla_pool.lock);

	base->irq = platform_get_irq(pdev, 0);

	ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
	if (ret) {
2901
		d40_err(&pdev->dev, "No IRQ defined\n");
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
		goto failure;
	}

	err = d40_dmaengine_init(base, num_reserved_chans);
	if (err)
		goto failure;

	d40_hw_init(base);

	dev_info(base->dev, "initialized\n");
	return 0;

failure:
	if (base) {
2916 2917
		if (base->desc_slab)
			kmem_cache_destroy(base->desc_slab);
2918 2919
		if (base->virtbase)
			iounmap(base->virtbase);
2920 2921 2922 2923 2924 2925

		if (base->lcla_pool.dma_addr)
			dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
					 SZ_1K * base->num_phy_chans,
					 DMA_TO_DEVICE);

2926 2927 2928
		if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
			free_pages((unsigned long)base->lcla_pool.base,
				   base->lcla_pool.pages);
2929 2930 2931

		kfree(base->lcla_pool.base_unaligned);

2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
		if (base->phy_lcpa)
			release_mem_region(base->phy_lcpa,
					   base->lcpa_size);
		if (base->phy_start)
			release_mem_region(base->phy_start,
					   base->phy_size);
		if (base->clk) {
			clk_disable(base->clk);
			clk_put(base->clk);
		}

		kfree(base->lcla_pool.alloc_map);
		kfree(base->lookup_log_chans);
		kfree(base->lookup_phy_chans);
		kfree(base->phy_res);
		kfree(base);
	}

2950
	d40_err(&pdev->dev, "probe failed\n");
2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
	return ret;
}

static struct platform_driver d40_driver = {
	.driver = {
		.owner = THIS_MODULE,
		.name  = D40_NAME,
	},
};

R
Rabin Vincent 已提交
2961
static int __init stedma40_init(void)
2962 2963 2964
{
	return platform_driver_probe(&d40_driver, d40_probe);
}
L
Linus Walleij 已提交
2965
subsys_initcall(stedma40_init);