ste_dma40.c 73.5 KB
Newer Older
1
/*
2 3 4
 * Copyright (C) ST-Ericsson SA 2007-2010
 * Author: Per Friden <per.friden@stericsson.com> for ST-Ericsson
 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
5 6 7 8 9 10 11 12 13
 * License terms: GNU General Public License (GPL) version 2
 */

#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/dmaengine.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/delay.h>
14
#include <linux/err.h>
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

#include <plat/ste_dma40.h>

#include "ste_dma40_ll.h"

#define D40_NAME "dma40"

#define D40_PHY_CHAN -1

/* For masking out/in 2 bit channel positions */
#define D40_CHAN_POS(chan)  (2 * (chan / 2))
#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))

/* Maximum iterations taken before giving up suspending a channel */
#define D40_SUSPEND_MAX_IT 500

31 32
/* Hardware requirement on LCLA alignment */
#define LCLA_ALIGNMENT 0x40000
33 34 35 36 37

/* Max number of links per event group */
#define D40_LCLA_LINK_PER_EVENT_GRP 128
#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP

38 39 40 41
/* Attempts before giving up to trying to get pages that are aligned */
#define MAX_LCLA_ALLOC_ATTEMPTS 256

/* Bit markings for allocation map */
42 43 44 45 46
#define D40_ALLOC_FREE		(1 << 31)
#define D40_ALLOC_PHY		(1 << 30)
#define D40_ALLOC_LOG_FREE	0

/* Hardware designer of the block */
47
#define D40_HW_DESIGNER 0x8
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

/**
 * enum 40_command - The different commands and/or statuses.
 *
 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
 */
enum d40_command {
	D40_DMA_STOP		= 0,
	D40_DMA_RUN		= 1,
	D40_DMA_SUSPEND_REQ	= 2,
	D40_DMA_SUSPENDED	= 3
};

/**
 * struct d40_lli_pool - Structure for keeping LLIs in memory
 *
 * @base: Pointer to memory area when the pre_alloc_lli's are not large
 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
 * pre_alloc_lli is used.
 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
 * one buffer to one buffer.
 */
struct d40_lli_pool {
	void	*base;
76
	int	 size;
77
	/* Space for dst and src, plus an extra for padding */
78
	u8	 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
79 80 81 82 83 84 85 86 87 88
};

/**
 * struct d40_desc - A descriptor is one DMA job.
 *
 * @lli_phy: LLI settings for physical channel. Both src and dst=
 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
 * lli_len equals one.
 * @lli_log: Same as above but for logical channels.
 * @lli_pool: The pool with two entries pre-allocated.
89
 * @lli_len: Number of llis of current descriptor.
90 91
 * @lli_current: Number of transfered llis.
 * @lcla_alloc: Number of LCLA entries allocated.
92 93 94 95
 * @txd: DMA engine struct. Used for among other things for communication
 * during a transfer.
 * @node: List entry.
 * @is_in_client_list: true if the client owns this descriptor.
96 97
 * @is_hw_linked: true if this job will automatically be continued for
 * the previous one.
98 99 100 101 102 103 104 105 106 107
 *
 * This descriptor is used for both logical and physical transfers.
 */
struct d40_desc {
	/* LLI physical */
	struct d40_phy_lli_bidir	 lli_phy;
	/* LLI logical */
	struct d40_log_lli_bidir	 lli_log;

	struct d40_lli_pool		 lli_pool;
108
	int				 lli_len;
109 110
	int				 lli_current;
	int				 lcla_alloc;
111 112 113 114 115

	struct dma_async_tx_descriptor	 txd;
	struct list_head		 node;

	bool				 is_in_client_list;
116
	bool				 is_hw_linked;
117 118 119 120 121
};

/**
 * struct d40_lcla_pool - LCLA pool settings and data.
 *
122 123 124 125 126
 * @base: The virtual address of LCLA. 18 bit aligned.
 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
 * This pointer is only there for clean-up on error.
 * @pages: The number of pages needed for all physical channels.
 * Only used later for clean-up on error
127
 * @lock: Lock to protect the content in this struct.
128
 * @alloc_map: big map over which LCLA entry is own by which job.
129 130 131
 */
struct d40_lcla_pool {
	void		*base;
132 133
	void		*base_unaligned;
	int		 pages;
134
	spinlock_t	 lock;
135
	struct d40_desc	**alloc_map;
136 137 138 139 140 141 142 143 144 145 146 147
};

/**
 * struct d40_phy_res - struct for handling eventlines mapped to physical
 * channels.
 *
 * @lock: A lock protection this entity.
 * @num: The physical channel number of this entity.
 * @allocated_src: Bit mapped to show which src event line's are mapped to
 * this physical channel. Can also be free or physically allocated.
 * @allocated_dst: Same as for src but is dst.
 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
148
 * event line number.
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
 */
struct d40_phy_res {
	spinlock_t lock;
	int	   num;
	u32	   allocated_src;
	u32	   allocated_dst;
};

struct d40_base;

/**
 * struct d40_chan - Struct that describes a channel.
 *
 * @lock: A spinlock to protect this struct.
 * @log_num: The logical number, if any of this channel.
 * @completed: Starts with 1, after first interrupt it is set to dma engine's
 * current cookie.
 * @pending_tx: The number of pending transfers. Used between interrupt handler
 * and tasklet.
 * @busy: Set to true when transfer is ongoing on this channel.
169 170
 * @phy_chan: Pointer to physical channel which this instance runs on. If this
 * point is NULL, then the channel is not allocated.
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
 * @chan: DMA engine handle.
 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
 * transfer and call client callback.
 * @client: Cliented owned descriptor list.
 * @active: Active descriptor.
 * @queue: Queued jobs.
 * @dma_cfg: The client configuration of this dma channel.
 * @base: Pointer to the device instance struct.
 * @src_def_cfg: Default cfg register setting for src.
 * @dst_def_cfg: Default cfg register setting for dst.
 * @log_def: Default logical channel settings.
 * @lcla: Space for one dst src pair for logical channel transfers.
 * @lcpa: Pointer to dst and src lcpa settings.
 *
 * This struct can either "be" a logical or a physical channel.
 */
struct d40_chan {
	spinlock_t			 lock;
	int				 log_num;
	/* ID of the most recent completed transfer */
	int				 completed;
	int				 pending_tx;
	bool				 busy;
	struct d40_phy_res		*phy_chan;
	struct dma_chan			 chan;
	struct tasklet_struct		 tasklet;
	struct list_head		 client;
	struct list_head		 active;
	struct list_head		 queue;
	struct stedma40_chan_cfg	 dma_cfg;
	struct d40_base			*base;
	/* Default register configurations */
	u32				 src_def_cfg;
	u32				 dst_def_cfg;
	struct d40_def_lcsp		 log_def;
	struct d40_log_lli_full		*lcpa;
207 208 209
	/* Runtime reconfiguration */
	dma_addr_t			runtime_addr;
	enum dma_data_direction		runtime_direction;
210 211 212 213 214 215 216 217 218 219
};

/**
 * struct d40_base - The big global struct, one for each probe'd instance.
 *
 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
 * @execmd_lock: Lock for execute command usage since several channels share
 * the same physical register.
 * @dev: The device structure.
 * @virtbase: The virtual base address of the DMA's register.
220
 * @rev: silicon revision detected.
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
 * @clk: Pointer to the DMA clock structure.
 * @phy_start: Physical memory start of the DMA registers.
 * @phy_size: Size of the DMA register map.
 * @irq: The IRQ number.
 * @num_phy_chans: The number of physical channels. Read from HW. This
 * is the number of available channels for this driver, not counting "Secure
 * mode" allocated physical channels.
 * @num_log_chans: The number of logical channels. Calculated from
 * num_phy_chans.
 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
 * @dma_slave: dma_device channels that can do only do slave transfers.
 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
 * @log_chans: Room for all possible logical channels in system.
 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
 * to log_chans entries.
 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
 * to phy_chans entries.
 * @plat_data: Pointer to provided platform_data which is the driver
 * configuration.
 * @phy_res: Vector containing all physical channels.
 * @lcla_pool: lcla pool settings and data.
 * @lcpa_base: The virtual mapped address of LCPA.
 * @phy_lcpa: The physical address of the LCPA.
 * @lcpa_size: The size of the LCPA area.
245
 * @desc_slab: cache for descriptors.
246 247 248 249 250 251
 */
struct d40_base {
	spinlock_t			 interrupt_lock;
	spinlock_t			 execmd_lock;
	struct device			 *dev;
	void __iomem			 *virtbase;
252
	u8				  rev:4;
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
	struct clk			 *clk;
	phys_addr_t			  phy_start;
	resource_size_t			  phy_size;
	int				  irq;
	int				  num_phy_chans;
	int				  num_log_chans;
	struct dma_device		  dma_both;
	struct dma_device		  dma_slave;
	struct dma_device		  dma_memcpy;
	struct d40_chan			 *phy_chans;
	struct d40_chan			 *log_chans;
	struct d40_chan			**lookup_log_chans;
	struct d40_chan			**lookup_phy_chans;
	struct stedma40_platform_data	 *plat_data;
	/* Physical half channels */
	struct d40_phy_res		 *phy_res;
	struct d40_lcla_pool		  lcla_pool;
	void				 *lcpa_base;
	dma_addr_t			  phy_lcpa;
	resource_size_t			  lcpa_size;
273
	struct kmem_cache		 *desc_slab;
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
};

/**
 * struct d40_interrupt_lookup - lookup table for interrupt handler
 *
 * @src: Interrupt mask register.
 * @clr: Interrupt clear register.
 * @is_error: true if this is an error interrupt.
 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
 */
struct d40_interrupt_lookup {
	u32 src;
	u32 clr;
	bool is_error;
	int offset;
};

/**
 * struct d40_reg_val - simple lookup struct
 *
 * @reg: The register.
 * @val: The value that belongs to the register in reg.
 */
struct d40_reg_val {
	unsigned int reg;
	unsigned int val;
};

static int d40_pool_lli_alloc(struct d40_desc *d40d,
			      int lli_len, bool is_log)
{
	u32 align;
	void *base;

	if (is_log)
		align = sizeof(struct d40_log_lli);
	else
		align = sizeof(struct d40_phy_lli);

	if (lli_len == 1) {
		base = d40d->lli_pool.pre_alloc_lli;
		d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
		d40d->lli_pool.base = NULL;
	} else {
		d40d->lli_pool.size = ALIGN(lli_len * 2 * align, align);

		base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
		d40d->lli_pool.base = base;

		if (d40d->lli_pool.base == NULL)
			return -ENOMEM;
	}

	if (is_log) {
		d40d->lli_log.src = PTR_ALIGN((struct d40_log_lli *) base,
					      align);
		d40d->lli_log.dst = PTR_ALIGN(d40d->lli_log.src + lli_len,
					      align);
	} else {
		d40d->lli_phy.src = PTR_ALIGN((struct d40_phy_lli *)base,
					      align);
		d40d->lli_phy.dst = PTR_ALIGN(d40d->lli_phy.src + lli_len,
					      align);
	}

	return 0;
}

static void d40_pool_lli_free(struct d40_desc *d40d)
{
	kfree(d40d->lli_pool.base);
	d40d->lli_pool.base = NULL;
	d40d->lli_pool.size = 0;
	d40d->lli_log.src = NULL;
	d40d->lli_log.dst = NULL;
	d40d->lli_phy.src = NULL;
	d40d->lli_phy.dst = NULL;
}

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
static int d40_lcla_alloc_one(struct d40_chan *d40c,
			      struct d40_desc *d40d)
{
	unsigned long flags;
	int i;
	int ret = -EINVAL;
	int p;

	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);

	p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;

	/*
	 * Allocate both src and dst at the same time, therefore the half
	 * start on 1 since 0 can't be used since zero is used as end marker.
	 */
	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
		if (!d40c->base->lcla_pool.alloc_map[p + i]) {
			d40c->base->lcla_pool.alloc_map[p + i] = d40d;
			d40d->lcla_alloc++;
			ret = i;
			break;
		}
	}

	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);

	return ret;
}

static int d40_lcla_free_all(struct d40_chan *d40c,
			     struct d40_desc *d40d)
{
	unsigned long flags;
	int i;
	int ret = -EINVAL;

	if (d40c->log_num == D40_PHY_CHAN)
		return 0;

	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);

	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
		if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
						    D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
			d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
							D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
			d40d->lcla_alloc--;
			if (d40d->lcla_alloc == 0) {
				ret = 0;
				break;
			}
		}
	}

	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);

	return ret;

}

415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
static void d40_desc_remove(struct d40_desc *d40d)
{
	list_del(&d40d->node);
}

static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
{
	struct d40_desc *d;
	struct d40_desc *_d;

	if (!list_empty(&d40c->client)) {
		list_for_each_entry_safe(d, _d, &d40c->client, node)
			if (async_tx_test_ack(&d->txd)) {
				d40_pool_lli_free(d);
				d40_desc_remove(d);
430
				break;
431 432
			}
	} else {
433 434 435 436 437
		d = kmem_cache_alloc(d40c->base->desc_slab, GFP_NOWAIT);
		if (d != NULL) {
			memset(d, 0, sizeof(struct d40_desc));
			INIT_LIST_HEAD(&d->node);
		}
438
	}
439
	return d;
440 441 442 443
}

static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
{
444 445

	d40_lcla_free_all(d40c, d40d);
446
	kmem_cache_free(d40c->base->desc_slab, d40d);
447 448 449 450 451 452 453
}

static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
{
	list_add_tail(&desc->node, &d40c->active);
}

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
{
	int curr_lcla = -EINVAL, next_lcla;

	if (d40c->log_num == D40_PHY_CHAN) {
		d40_phy_lli_write(d40c->base->virtbase,
				  d40c->phy_chan->num,
				  d40d->lli_phy.dst,
				  d40d->lli_phy.src);
		d40d->lli_current = d40d->lli_len;
	} else {

		if ((d40d->lli_len - d40d->lli_current) > 1)
			curr_lcla = d40_lcla_alloc_one(d40c, d40d);

		d40_log_lli_lcpa_write(d40c->lcpa,
				       &d40d->lli_log.dst[d40d->lli_current],
				       &d40d->lli_log.src[d40d->lli_current],
				       curr_lcla);

		d40d->lli_current++;
		for (; d40d->lli_current < d40d->lli_len; d40d->lli_current++) {
			struct d40_log_lli *lcla;

			if (d40d->lli_current + 1 < d40d->lli_len)
				next_lcla = d40_lcla_alloc_one(d40c, d40d);
			else
				next_lcla = -EINVAL;

			lcla = d40c->base->lcla_pool.base +
				d40c->phy_chan->num * 1024 +
				8 * curr_lcla * 2;

			d40_log_lli_lcla_write(lcla,
					       &d40d->lli_log.dst[d40d->lli_current],
					       &d40d->lli_log.src[d40d->lli_current],
					       next_lcla);

			(void) dma_map_single(d40c->base->dev, lcla,
					      2 * sizeof(struct d40_log_lli),
					      DMA_TO_DEVICE);

			curr_lcla = next_lcla;

			if (curr_lcla == -EINVAL) {
				d40d->lli_current++;
				break;
			}

		}
	}
}

507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
{
	struct d40_desc *d;

	if (list_empty(&d40c->active))
		return NULL;

	d = list_first_entry(&d40c->active,
			     struct d40_desc,
			     node);
	return d;
}

static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
{
	list_add_tail(&desc->node, &d40c->queue);
}

static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
{
	struct d40_desc *d;

	if (list_empty(&d40c->queue))
		return NULL;

	d = list_first_entry(&d40c->queue,
			     struct d40_desc,
			     node);
	return d;
}

538 539 540 541 542 543 544 545 546 547 548 549
static struct d40_desc *d40_last_queued(struct d40_chan *d40c)
{
	struct d40_desc *d;

	if (list_empty(&d40c->queue))
		return NULL;
	list_for_each_entry(d, &d40c->queue, node)
		if (list_is_last(&d->node, &d40c->queue))
			break;
	return d;
}

550 551 552 553 554 555
/* Support functions for logical channels */


static int d40_channel_execute_command(struct d40_chan *d40c,
				       enum d40_command command)
{
556 557
	u32 status;
	int i;
558 559 560
	void __iomem *active_reg;
	int ret = 0;
	unsigned long flags;
561
	u32 wmask;
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578

	spin_lock_irqsave(&d40c->base->execmd_lock, flags);

	if (d40c->phy_chan->num % 2 == 0)
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
	else
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;

	if (command == D40_DMA_SUSPEND_REQ) {
		status = (readl(active_reg) &
			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
			D40_CHAN_POS(d40c->phy_chan->num);

		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
			goto done;
	}

579 580 581
	wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
	writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
	       active_reg);
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642

	if (command == D40_DMA_SUSPEND_REQ) {

		for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
			status = (readl(active_reg) &
				  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
				D40_CHAN_POS(d40c->phy_chan->num);

			cpu_relax();
			/*
			 * Reduce the number of bus accesses while
			 * waiting for the DMA to suspend.
			 */
			udelay(3);

			if (status == D40_DMA_STOP ||
			    status == D40_DMA_SUSPENDED)
				break;
		}

		if (i == D40_SUSPEND_MAX_IT) {
			dev_err(&d40c->chan.dev->device,
				"[%s]: unable to suspend the chl %d (log: %d) status %x\n",
				__func__, d40c->phy_chan->num, d40c->log_num,
				status);
			dump_stack();
			ret = -EBUSY;
		}

	}
done:
	spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
	return ret;
}

static void d40_term_all(struct d40_chan *d40c)
{
	struct d40_desc *d40d;

	/* Release active descriptors */
	while ((d40d = d40_first_active_get(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}

	/* Release queued descriptors waiting for transfer */
	while ((d40d = d40_first_queued(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}


	d40c->pending_tx = 0;
	d40c->busy = false;
}

static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
{
	u32 val;
	unsigned long flags;

643
	/* Notice, that disable requires the physical channel to be stopped */
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
	if (do_enable)
		val = D40_ACTIVATE_EVENTLINE;
	else
		val = D40_DEACTIVATE_EVENTLINE;

	spin_lock_irqsave(&d40c->phy_chan->lock, flags);

	/* Enable event line connected to device (or memcpy) */
	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);

		writel((val << D40_EVENTLINE_POS(event)) |
		       ~D40_EVENTLINE_MASK(event),
		       d40c->base->virtbase + D40_DREG_PCBASE +
		       d40c->phy_chan->num * D40_DREG_PCDELTA +
		       D40_CHAN_REG_SSLNK);
	}
	if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM) {
		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);

		writel((val << D40_EVENTLINE_POS(event)) |
		       ~D40_EVENTLINE_MASK(event),
		       d40c->base->virtbase + D40_DREG_PCBASE +
		       d40c->phy_chan->num * D40_DREG_PCDELTA +
		       D40_CHAN_REG_SDLNK);
	}

	spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
}

675
static u32 d40_chan_has_events(struct d40_chan *d40c)
676
{
677
	u32 val;
678

679 680 681 682 683 684 685
	val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
		    d40c->phy_chan->num * D40_DREG_PCDELTA +
		    D40_CHAN_REG_SSLNK);

	val |= readl(d40c->base->virtbase + D40_DREG_PCBASE +
		     d40c->phy_chan->num * D40_DREG_PCDELTA +
		     D40_CHAN_REG_SDLNK);
686
	return val;
687 688
}

689
static void d40_config_write(struct d40_chan *d40c)
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
{
	u32 addr_base;
	u32 var;

	/* Odd addresses are even addresses + 4 */
	addr_base = (d40c->phy_chan->num % 2) * 4;
	/* Setup channel mode to logical or physical */
	var = ((u32)(d40c->log_num != D40_PHY_CHAN) + 1) <<
		D40_CHAN_POS(d40c->phy_chan->num);
	writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);

	/* Setup operational mode option register */
	var = ((d40c->dma_cfg.channel_type >> STEDMA40_INFO_CH_MODE_OPT_POS) &
	       0x3) << D40_CHAN_POS(d40c->phy_chan->num);

	writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);

	if (d40c->log_num != D40_PHY_CHAN) {
		/* Set default config for CFG reg */
		writel(d40c->src_def_cfg,
		       d40c->base->virtbase + D40_DREG_PCBASE +
		       d40c->phy_chan->num * D40_DREG_PCDELTA +
		       D40_CHAN_REG_SSCFG);
		writel(d40c->dst_def_cfg,
		       d40c->base->virtbase + D40_DREG_PCBASE +
		       d40c->phy_chan->num * D40_DREG_PCDELTA +
		       D40_CHAN_REG_SDCFG);

718 719 720 721 722 723 724 725 726 727 728 729 730
		/* Set LIDX for lcla */
		writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
		       D40_SREG_ELEM_LOG_LIDX_MASK,
		       d40c->base->virtbase + D40_DREG_PCBASE +
		       d40c->phy_chan->num * D40_DREG_PCDELTA +
		       D40_CHAN_REG_SDELT);

		writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
		       D40_SREG_ELEM_LOG_LIDX_MASK,
		       d40c->base->virtbase + D40_DREG_PCBASE +
		       d40c->phy_chan->num * D40_DREG_PCDELTA +
		       D40_CHAN_REG_SSELT);

731 732 733
	}
}

734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
static u32 d40_residue(struct d40_chan *d40c)
{
	u32 num_elt;

	if (d40c->log_num != D40_PHY_CHAN)
		num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
			>> D40_MEM_LCSP2_ECNT_POS;
	else
		num_elt = (readl(d40c->base->virtbase + D40_DREG_PCBASE +
				 d40c->phy_chan->num * D40_DREG_PCDELTA +
				 D40_CHAN_REG_SDELT) &
			   D40_SREG_ELEM_PHY_ECNT_MASK) >>
			D40_SREG_ELEM_PHY_ECNT_POS;
	return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
}

static bool d40_tx_is_linked(struct d40_chan *d40c)
{
	bool is_link;

	if (d40c->log_num != D40_PHY_CHAN)
		is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
	else
		is_link = readl(d40c->base->virtbase + D40_DREG_PCBASE +
				d40c->phy_chan->num * D40_DREG_PCDELTA +
				D40_CHAN_REG_SDLNK) &
			D40_SREG_LNK_PHYS_LNK_MASK;
	return is_link;
}

static int d40_pause(struct dma_chan *chan)
{
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	int res = 0;
	unsigned long flags;

771 772 773
	if (!d40c->busy)
		return 0;

774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
	spin_lock_irqsave(&d40c->lock, flags);

	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
	if (res == 0) {
		if (d40c->log_num != D40_PHY_CHAN) {
			d40_config_set_event(d40c, false);
			/* Resume the other logical channels if any */
			if (d40_chan_has_events(d40c))
				res = d40_channel_execute_command(d40c,
								  D40_DMA_RUN);
		}
	}

	spin_unlock_irqrestore(&d40c->lock, flags);
	return res;
}

static int d40_resume(struct dma_chan *chan)
{
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	int res = 0;
	unsigned long flags;

798 799 800
	if (!d40c->busy)
		return 0;

801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
	spin_lock_irqsave(&d40c->lock, flags);

	if (d40c->base->rev == 0)
		if (d40c->log_num != D40_PHY_CHAN) {
			res = d40_channel_execute_command(d40c,
							  D40_DMA_SUSPEND_REQ);
			goto no_suspend;
		}

	/* If bytes left to transfer or linked tx resume job */
	if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {

		if (d40c->log_num != D40_PHY_CHAN)
			d40_config_set_event(d40c, true);

		res = d40_channel_execute_command(d40c, D40_DMA_RUN);
	}

no_suspend:
	spin_unlock_irqrestore(&d40c->lock, flags);
	return res;
}

static void d40_tx_submit_log(struct d40_chan *d40c, struct d40_desc *d40d)
{
	/* TODO: Write */
}

static void d40_tx_submit_phy(struct d40_chan *d40c, struct d40_desc *d40d)
{
	struct d40_desc *d40d_prev = NULL;
	int i;
	u32 val;

	if (!list_empty(&d40c->queue))
		d40d_prev = d40_last_queued(d40c);
	else if (!list_empty(&d40c->active))
		d40d_prev = d40_first_active_get(d40c);

	if (!d40d_prev)
		return;

	/* Here we try to join this job with previous jobs */
	val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
		    d40c->phy_chan->num * D40_DREG_PCDELTA +
		    D40_CHAN_REG_SSLNK);

	/* Figure out which link we're currently transmitting */
	for (i = 0; i < d40d_prev->lli_len; i++)
		if (val == d40d_prev->lli_phy.src[i].reg_lnk)
			break;

	val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
		    d40c->phy_chan->num * D40_DREG_PCDELTA +
		    D40_CHAN_REG_SSELT) >> D40_SREG_ELEM_LOG_ECNT_POS;

	if (i == (d40d_prev->lli_len - 1) && val > 0) {
		/* Change the current one */
		writel(virt_to_phys(d40d->lli_phy.src),
		       d40c->base->virtbase + D40_DREG_PCBASE +
		       d40c->phy_chan->num * D40_DREG_PCDELTA +
		       D40_CHAN_REG_SSLNK);
		writel(virt_to_phys(d40d->lli_phy.dst),
		       d40c->base->virtbase + D40_DREG_PCBASE +
		       d40c->phy_chan->num * D40_DREG_PCDELTA +
		       D40_CHAN_REG_SDLNK);

		d40d->is_hw_linked = true;

	} else if (i < d40d_prev->lli_len) {
		(void) dma_unmap_single(d40c->base->dev,
					virt_to_phys(d40d_prev->lli_phy.src),
					d40d_prev->lli_pool.size,
					DMA_TO_DEVICE);

		/* Keep the settings */
		val = d40d_prev->lli_phy.src[d40d_prev->lli_len - 1].reg_lnk &
			~D40_SREG_LNK_PHYS_LNK_MASK;
		d40d_prev->lli_phy.src[d40d_prev->lli_len - 1].reg_lnk =
			val | virt_to_phys(d40d->lli_phy.src);

		val = d40d_prev->lli_phy.dst[d40d_prev->lli_len - 1].reg_lnk &
			~D40_SREG_LNK_PHYS_LNK_MASK;
		d40d_prev->lli_phy.dst[d40d_prev->lli_len - 1].reg_lnk =
			val | virt_to_phys(d40d->lli_phy.dst);

		(void) dma_map_single(d40c->base->dev,
				      d40d_prev->lli_phy.src,
				      d40d_prev->lli_pool.size,
				      DMA_TO_DEVICE);
		d40d->is_hw_linked = true;
	}
}

895 896 897 898 899 900 901 902
static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
{
	struct d40_chan *d40c = container_of(tx->chan,
					     struct d40_chan,
					     chan);
	struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
	unsigned long flags;

903 904
	(void) d40_pause(&d40c->chan);

905 906
	spin_lock_irqsave(&d40c->lock, flags);

907 908 909 910 911 912 913 914 915 916 917
	d40c->chan.cookie++;

	if (d40c->chan.cookie < 0)
		d40c->chan.cookie = 1;

	d40d->txd.cookie = d40c->chan.cookie;

	if (d40c->log_num == D40_PHY_CHAN)
		d40_tx_submit_phy(d40c, d40d);
	else
		d40_tx_submit_log(d40c, d40d);
918 919 920 921 922

	d40_desc_queue(d40c, d40d);

	spin_unlock_irqrestore(&d40c->lock, flags);

923 924
	(void) d40_resume(&d40c->chan);

925 926 927 928 929
	return tx->cookie;
}

static int d40_start(struct d40_chan *d40c)
{
930 931 932 933 934 935 936 937 938 939 940
	if (d40c->base->rev == 0) {
		int err;

		if (d40c->log_num != D40_PHY_CHAN) {
			err = d40_channel_execute_command(d40c,
							  D40_DMA_SUSPEND_REQ);
			if (err)
				return err;
		}
	}

941
	if (d40c->log_num != D40_PHY_CHAN)
942 943
		d40_config_set_event(d40c, true);

944
	return d40_channel_execute_command(d40c, D40_DMA_RUN);
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
}

static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
{
	struct d40_desc *d40d;
	int err;

	/* Start queued jobs, if any */
	d40d = d40_first_queued(d40c);

	if (d40d != NULL) {
		d40c->busy = true;

		/* Remove from queue */
		d40_desc_remove(d40d);

		/* Add to active queue */
		d40_desc_submit(d40c, d40d);

964 965 966 967
		/*
		 * If this job is already linked in hw,
		 * do not submit it.
		 */
968

969 970 971
		if (!d40d->is_hw_linked) {
			/* Initiate DMA job */
			d40_desc_load(d40c, d40d);
972

973 974
			/* Start dma job */
			err = d40_start(d40c);
975

976 977 978
			if (err)
				return NULL;
		}
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
	}

	return d40d;
}

/* called from interrupt context */
static void dma_tc_handle(struct d40_chan *d40c)
{
	struct d40_desc *d40d;

	/* Get first active entry from list */
	d40d = d40_first_active_get(d40c);

	if (d40d == NULL)
		return;

995
	d40_lcla_free_all(d40c, d40d);
996

997
	if (d40d->lli_current < d40d->lli_len) {
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
		d40_desc_load(d40c, d40d);
		/* Start dma job */
		(void) d40_start(d40c);
		return;
	}

	if (d40_queue_start(d40c) == NULL)
		d40c->busy = false;

	d40c->pending_tx++;
	tasklet_schedule(&d40c->tasklet);

}

static void dma_tasklet(unsigned long data)
{
	struct d40_chan *d40c = (struct d40_chan *) data;
1015
	struct d40_desc *d40d;
1016 1017 1018 1019 1020 1021 1022
	unsigned long flags;
	dma_async_tx_callback callback;
	void *callback_param;

	spin_lock_irqsave(&d40c->lock, flags);

	/* Get first active entry from list */
1023
	d40d = d40_first_active_get(d40c);
1024

1025
	if (d40d == NULL)
1026 1027
		goto err;

1028
	d40c->completed = d40d->txd.cookie;
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039

	/*
	 * If terminating a channel pending_tx is set to zero.
	 * This prevents any finished active jobs to return to the client.
	 */
	if (d40c->pending_tx == 0) {
		spin_unlock_irqrestore(&d40c->lock, flags);
		return;
	}

	/* Callback to client */
1040 1041 1042 1043 1044 1045 1046
	callback = d40d->txd.callback;
	callback_param = d40d->txd.callback_param;

	if (async_tx_test_ack(&d40d->txd)) {
		d40_pool_lli_free(d40d);
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
1047
	} else {
1048 1049
		if (!d40d->is_in_client_list) {
			d40_desc_remove(d40d);
1050
			d40_lcla_free_all(d40c, d40d);
1051 1052
			list_add_tail(&d40d->node, &d40c->client);
			d40d->is_in_client_list = true;
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
		}
	}

	d40c->pending_tx--;

	if (d40c->pending_tx)
		tasklet_schedule(&d40c->tasklet);

	spin_unlock_irqrestore(&d40c->lock, flags);

1063
	if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
		callback(callback_param);

	return;

 err:
	/* Rescue manouver if receiving double interrupts */
	if (d40c->pending_tx > 0)
		d40c->pending_tx--;
	spin_unlock_irqrestore(&d40c->lock, flags);
}

static irqreturn_t d40_handle_interrupt(int irq, void *data)
{
	static const struct d40_interrupt_lookup il[] = {
		{D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
		{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
		{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
		{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
		{D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
		{D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
		{D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
		{D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
		{D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
		{D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
	};

	int i;
	u32 regs[ARRAY_SIZE(il)];
	u32 idx;
	u32 row;
	long chan = -1;
	struct d40_chan *d40c;
	unsigned long flags;
	struct d40_base *base = data;

	spin_lock_irqsave(&base->interrupt_lock, flags);

	/* Read interrupt status of both logical and physical channels */
	for (i = 0; i < ARRAY_SIZE(il); i++)
		regs[i] = readl(base->virtbase + il[i].src);

	for (;;) {

		chan = find_next_bit((unsigned long *)regs,
				     BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);

		/* No more set bits found? */
		if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
			break;

		row = chan / BITS_PER_LONG;
		idx = chan & (BITS_PER_LONG - 1);

		/* ACK interrupt */
1118
		writel(1 << idx, base->virtbase + il[row].clr);
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128

		if (il[row].offset == D40_PHY_CHAN)
			d40c = base->lookup_phy_chans[idx];
		else
			d40c = base->lookup_log_chans[il[row].offset + idx];
		spin_lock(&d40c->lock);

		if (!il[row].is_error)
			dma_tc_handle(d40c);
		else
1129 1130
			dev_err(base->dev,
				"[%s] IRQ chan: %ld offset %d idx %d\n",
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
				__func__, chan, il[row].offset, idx);

		spin_unlock(&d40c->lock);
	}

	spin_unlock_irqrestore(&base->interrupt_lock, flags);

	return IRQ_HANDLED;
}

static int d40_validate_conf(struct d40_chan *d40c,
			     struct stedma40_chan_cfg *conf)
{
	int res = 0;
	u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
	u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
	bool is_log = (conf->channel_type & STEDMA40_CHANNEL_IN_OPER_MODE)
		== STEDMA40_CHANNEL_IN_LOG_MODE;

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
	if (!conf->dir) {
		dev_err(&d40c->chan.dev->device, "[%s] Invalid direction.\n",
			__func__);
		res = -EINVAL;
	}

	if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
	    d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
	    d40c->runtime_addr == 0) {

		dev_err(&d40c->chan.dev->device,
			"[%s] Invalid TX channel address (%d)\n",
			__func__, conf->dst_dev_type);
		res = -EINVAL;
	}

	if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
	    d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
	    d40c->runtime_addr == 0) {
		dev_err(&d40c->chan.dev->device,
			"[%s] Invalid RX channel address (%d)\n",
			__func__, conf->src_dev_type);
		res = -EINVAL;
	}

	if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1176 1177 1178 1179 1180 1181
	    dst_event_group == STEDMA40_DEV_DST_MEMORY) {
		dev_err(&d40c->chan.dev->device, "[%s] Invalid dst\n",
			__func__);
		res = -EINVAL;
	}

1182
	if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
	    src_event_group == STEDMA40_DEV_SRC_MEMORY) {
		dev_err(&d40c->chan.dev->device, "[%s] Invalid src\n",
			__func__);
		res = -EINVAL;
	}

	if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
	    dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
		dev_err(&d40c->chan.dev->device,
			"[%s] No event line\n", __func__);
		res = -EINVAL;
	}

	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
	    (src_event_group != dst_event_group)) {
		dev_err(&d40c->chan.dev->device,
			"[%s] Invalid event group\n", __func__);
		res = -EINVAL;
	}

	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
		/*
		 * DMAC HW supports it. Will be added to this driver,
		 * in case any dma client requires it.
		 */
		dev_err(&d40c->chan.dev->device,
			"[%s] periph to periph not supported\n",
			__func__);
		res = -EINVAL;
	}

	return res;
}

static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
1218
			       int log_event_line, bool is_log)
1219 1220 1221
{
	unsigned long flags;
	spin_lock_irqsave(&phy->lock, flags);
1222
	if (!is_log) {
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
		/* Physical interrupts are masked per physical full channel */
		if (phy->allocated_src == D40_ALLOC_FREE &&
		    phy->allocated_dst == D40_ALLOC_FREE) {
			phy->allocated_dst = D40_ALLOC_PHY;
			phy->allocated_src = D40_ALLOC_PHY;
			goto found;
		} else
			goto not_found;
	}

	/* Logical channel */
	if (is_src) {
		if (phy->allocated_src == D40_ALLOC_PHY)
			goto not_found;

		if (phy->allocated_src == D40_ALLOC_FREE)
			phy->allocated_src = D40_ALLOC_LOG_FREE;

		if (!(phy->allocated_src & (1 << log_event_line))) {
			phy->allocated_src |= 1 << log_event_line;
			goto found;
		} else
			goto not_found;
	} else {
		if (phy->allocated_dst == D40_ALLOC_PHY)
			goto not_found;

		if (phy->allocated_dst == D40_ALLOC_FREE)
			phy->allocated_dst = D40_ALLOC_LOG_FREE;

		if (!(phy->allocated_dst & (1 << log_event_line))) {
			phy->allocated_dst |= 1 << log_event_line;
			goto found;
		} else
			goto not_found;
	}

not_found:
	spin_unlock_irqrestore(&phy->lock, flags);
	return false;
found:
	spin_unlock_irqrestore(&phy->lock, flags);
	return true;
}

static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
			       int log_event_line)
{
	unsigned long flags;
	bool is_free = false;

	spin_lock_irqsave(&phy->lock, flags);
	if (!log_event_line) {
		phy->allocated_dst = D40_ALLOC_FREE;
		phy->allocated_src = D40_ALLOC_FREE;
		is_free = true;
		goto out;
	}

	/* Logical channel */
	if (is_src) {
		phy->allocated_src &= ~(1 << log_event_line);
		if (phy->allocated_src == D40_ALLOC_LOG_FREE)
			phy->allocated_src = D40_ALLOC_FREE;
	} else {
		phy->allocated_dst &= ~(1 << log_event_line);
		if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
			phy->allocated_dst = D40_ALLOC_FREE;
	}

	is_free = ((phy->allocated_src | phy->allocated_dst) ==
		   D40_ALLOC_FREE);

out:
	spin_unlock_irqrestore(&phy->lock, flags);

	return is_free;
}

static int d40_allocate_channel(struct d40_chan *d40c)
{
	int dev_type;
	int event_group;
	int event_line;
	struct d40_phy_res *phys;
	int i;
	int j;
	int log_num;
	bool is_src;
1312 1313
	bool is_log = (d40c->dma_cfg.channel_type &
		       STEDMA40_CHANNEL_IN_OPER_MODE)
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
		== STEDMA40_CHANNEL_IN_LOG_MODE;


	phys = d40c->base->phy_res;

	if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
		dev_type = d40c->dma_cfg.src_dev_type;
		log_num = 2 * dev_type;
		is_src = true;
	} else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
		   d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
		/* dst event lines are used for logical memcpy */
		dev_type = d40c->dma_cfg.dst_dev_type;
		log_num = 2 * dev_type + 1;
		is_src = false;
	} else
		return -EINVAL;

	event_group = D40_TYPE_TO_GROUP(dev_type);
	event_line = D40_TYPE_TO_EVENT(dev_type);

	if (!is_log) {
		if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
			/* Find physical half channel */
			for (i = 0; i < d40c->base->num_phy_chans; i++) {

1340 1341
				if (d40_alloc_mask_set(&phys[i], is_src,
						       0, is_log))
1342 1343 1344 1345 1346 1347
					goto found_phy;
			}
		} else
			for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
				int phy_num = j  + event_group * 2;
				for (i = phy_num; i < phy_num + 2; i++) {
1348 1349 1350 1351
					if (d40_alloc_mask_set(&phys[i],
							       is_src,
							       0,
							       is_log))
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
						goto found_phy;
				}
			}
		return -EINVAL;
found_phy:
		d40c->phy_chan = &phys[i];
		d40c->log_num = D40_PHY_CHAN;
		goto out;
	}
	if (dev_type == -1)
		return -EINVAL;

	/* Find logical channel */
	for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
		int phy_num = j + event_group * 2;
		/*
		 * Spread logical channels across all available physical rather
		 * than pack every logical channel at the first available phy
		 * channels.
		 */
		if (is_src) {
			for (i = phy_num; i < phy_num + 2; i++) {
				if (d40_alloc_mask_set(&phys[i], is_src,
1375
						       event_line, is_log))
1376 1377 1378 1379 1380
					goto found_log;
			}
		} else {
			for (i = phy_num + 1; i >= phy_num; i--) {
				if (d40_alloc_mask_set(&phys[i], is_src,
1381
						       event_line, is_log))
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
					goto found_log;
			}
		}
	}
	return -EINVAL;

found_log:
	d40c->phy_chan = &phys[i];
	d40c->log_num = log_num;
out:

	if (is_log)
		d40c->base->lookup_log_chans[d40c->log_num] = d40c;
	else
		d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;

	return 0;

}

static int d40_config_memcpy(struct d40_chan *d40c)
{
	dma_cap_mask_t cap = d40c->chan.device->cap_mask;

	if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
		d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
		d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
			memcpy[d40c->chan.chan_id];

	} else if (dma_has_cap(DMA_MEMCPY, cap) &&
		   dma_has_cap(DMA_SLAVE, cap)) {
		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
	} else {
		dev_err(&d40c->chan.dev->device, "[%s] No memcpy\n",
			__func__);
		return -EINVAL;
	}

	return 0;
}


static int d40_free_dma(struct d40_chan *d40c)
{

	int res = 0;
1429
	u32 event;
1430 1431
	struct d40_phy_res *phy = d40c->phy_chan;
	bool is_src;
1432 1433 1434
	struct d40_desc *d;
	struct d40_desc *_d;

1435 1436 1437 1438

	/* Terminate all queued and active transfers */
	d40_term_all(d40c);

1439 1440 1441 1442 1443 1444 1445 1446
	/* Release client owned descriptors */
	if (!list_empty(&d40c->client))
		list_for_each_entry_safe(d, _d, &d40c->client, node) {
			d40_pool_lli_free(d);
			d40_desc_remove(d);
			d40_desc_free(d40c, d);
		}

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
	if (phy == NULL) {
		dev_err(&d40c->chan.dev->device, "[%s] phy == null\n",
			__func__);
		return -EINVAL;
	}

	if (phy->allocated_src == D40_ALLOC_FREE &&
	    phy->allocated_dst == D40_ALLOC_FREE) {
		dev_err(&d40c->chan.dev->device, "[%s] channel already free\n",
			__func__);
		return -EINVAL;
	}

	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
		is_src = false;
	} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
		is_src = true;
	} else {
		dev_err(&d40c->chan.dev->device,
			"[%s] Unknown direction\n", __func__);
		return -EINVAL;
	}

1473 1474 1475 1476 1477 1478 1479
	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
	if (res) {
		dev_err(&d40c->chan.dev->device, "[%s] suspend failed\n",
			__func__);
		return res;
	}

1480
	if (d40c->log_num != D40_PHY_CHAN) {
1481
		/* Release logical channel, deactivate the event line */
1482

1483
		d40_config_set_event(d40c, false);
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
		d40c->base->lookup_log_chans[d40c->log_num] = NULL;

		/*
		 * Check if there are more logical allocation
		 * on this phy channel.
		 */
		if (!d40_alloc_mask_free(phy, is_src, event)) {
			/* Resume the other logical channels if any */
			if (d40_chan_has_events(d40c)) {
				res = d40_channel_execute_command(d40c,
								  D40_DMA_RUN);
				if (res) {
					dev_err(&d40c->chan.dev->device,
						"[%s] Executing RUN command\n",
						__func__);
					return res;
				}
			}
			return 0;
		}
1504 1505 1506
	} else {
		(void) d40_alloc_mask_free(phy, is_src, 0);
	}
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522

	/* Release physical channel */
	res = d40_channel_execute_command(d40c, D40_DMA_STOP);
	if (res) {
		dev_err(&d40c->chan.dev->device,
			"[%s] Failed to stop channel\n", __func__);
		return res;
	}
	d40c->phy_chan = NULL;
	/* Invalidate channel type */
	d40c->dma_cfg.channel_type = 0;
	d40c->base->lookup_phy_chans[phy->num] = NULL;

	return 0;
}

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
static bool d40_is_paused(struct d40_chan *d40c)
{
	bool is_paused = false;
	unsigned long flags;
	void __iomem *active_reg;
	u32 status;
	u32 event;

	spin_lock_irqsave(&d40c->lock, flags);

	if (d40c->log_num == D40_PHY_CHAN) {
		if (d40c->phy_chan->num % 2 == 0)
			active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
		else
			active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;

		status = (readl(active_reg) &
			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
			D40_CHAN_POS(d40c->phy_chan->num);
		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
			is_paused = true;

		goto _exit;
	}

	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1549
	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1550
		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1551 1552 1553 1554
		status = readl(d40c->base->virtbase + D40_DREG_PCBASE +
			       d40c->phy_chan->num * D40_DREG_PCDELTA +
			       D40_CHAN_REG_SDLNK);
	} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1555
		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1556 1557 1558 1559
		status = readl(d40c->base->virtbase + D40_DREG_PCBASE +
			       d40c->phy_chan->num * D40_DREG_PCDELTA +
			       D40_CHAN_REG_SSLNK);
	} else {
1560 1561 1562 1563
		dev_err(&d40c->chan.dev->device,
			"[%s] Unknown direction\n", __func__);
		goto _exit;
	}
1564

1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
	status = (status & D40_EVENTLINE_MASK(event)) >>
		D40_EVENTLINE_POS(event);

	if (status != D40_DMA_RUN)
		is_paused = true;
_exit:
	spin_unlock_irqrestore(&d40c->lock, flags);
	return is_paused;

}


1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
static u32 stedma40_residue(struct dma_chan *chan)
{
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	u32 bytes_left;
	unsigned long flags;

	spin_lock_irqsave(&d40c->lock, flags);
	bytes_left = d40_residue(d40c);
	spin_unlock_irqrestore(&d40c->lock, flags);

	return bytes_left;
}

/* Public DMA functions in addition to the DMA engine framework */

int stedma40_set_psize(struct dma_chan *chan,
		       int src_psize,
		       int dst_psize)
{
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	unsigned long flags;

	spin_lock_irqsave(&d40c->lock, flags);

	if (d40c->log_num != D40_PHY_CHAN) {
		d40c->log_def.lcsp1 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK;
		d40c->log_def.lcsp3 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK;
1606 1607 1608 1609
		d40c->log_def.lcsp1 |= src_psize <<
			D40_MEM_LCSP1_SCFG_PSIZE_POS;
		d40c->log_def.lcsp3 |= dst_psize <<
			D40_MEM_LCSP1_SCFG_PSIZE_POS;
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
		goto out;
	}

	if (src_psize == STEDMA40_PSIZE_PHY_1)
		d40c->src_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS);
	else {
		d40c->src_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS;
		d40c->src_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 <<
				       D40_SREG_CFG_PSIZE_POS);
		d40c->src_def_cfg |= src_psize << D40_SREG_CFG_PSIZE_POS;
	}

	if (dst_psize == STEDMA40_PSIZE_PHY_1)
		d40c->dst_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS);
	else {
		d40c->dst_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS;
		d40c->dst_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 <<
				       D40_SREG_CFG_PSIZE_POS);
		d40c->dst_def_cfg |= dst_psize << D40_SREG_CFG_PSIZE_POS;
	}
out:
	spin_unlock_irqrestore(&d40c->lock, flags);
	return 0;
}
EXPORT_SYMBOL(stedma40_set_psize);

struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
						   struct scatterlist *sgl_dst,
						   struct scatterlist *sgl_src,
						   unsigned int sgl_len,
1640
						   unsigned long dma_flags)
1641 1642 1643 1644 1645
{
	int res;
	struct d40_desc *d40d;
	struct d40_chan *d40c = container_of(chan, struct d40_chan,
					     chan);
1646
	unsigned long flags;
1647

1648 1649 1650 1651 1652 1653
	if (d40c->phy_chan == NULL) {
		dev_err(&d40c->chan.dev->device,
			"[%s] Unallocated channel.\n", __func__);
		return ERR_PTR(-EINVAL);
	}

1654
	spin_lock_irqsave(&d40c->lock, flags);
1655 1656 1657 1658 1659 1660
	d40d = d40_desc_get(d40c);

	if (d40d == NULL)
		goto err;

	d40d->lli_len = sgl_len;
1661
	d40d->lli_current = 0;
1662
	d40d->txd.flags = dma_flags;
1663 1664 1665 1666 1667 1668 1669 1670 1671

	if (d40c->log_num != D40_PHY_CHAN) {

		if (d40_pool_lli_alloc(d40d, sgl_len, true) < 0) {
			dev_err(&d40c->chan.dev->device,
				"[%s] Out of memory\n", __func__);
			goto err;
		}

1672
		(void) d40_log_sg_to_lli(sgl_src,
1673 1674 1675
					 sgl_len,
					 d40d->lli_log.src,
					 d40c->log_def.lcsp1,
1676
					 d40c->dma_cfg.src_info.data_width);
1677

1678
		(void) d40_log_sg_to_lli(sgl_dst,
1679 1680 1681
					 sgl_len,
					 d40d->lli_log.dst,
					 d40c->log_def.lcsp3,
1682
					 d40c->dma_cfg.dst_info.data_width);
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
	} else {
		if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
			dev_err(&d40c->chan.dev->device,
				"[%s] Out of memory\n", __func__);
			goto err;
		}

		res = d40_phy_sg_to_lli(sgl_src,
					sgl_len,
					0,
					d40d->lli_phy.src,
1694
					virt_to_phys(d40d->lli_phy.src),
1695 1696
					d40c->src_def_cfg,
					d40c->dma_cfg.src_info.data_width,
1697
					d40c->dma_cfg.src_info.psize);
1698 1699 1700 1701 1702 1703 1704 1705

		if (res < 0)
			goto err;

		res = d40_phy_sg_to_lli(sgl_dst,
					sgl_len,
					0,
					d40d->lli_phy.dst,
1706
					virt_to_phys(d40d->lli_phy.dst),
1707 1708
					d40c->dst_def_cfg,
					d40c->dma_cfg.dst_info.data_width,
1709
					d40c->dma_cfg.dst_info.psize);
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721

		if (res < 0)
			goto err;

		(void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
				      d40d->lli_pool.size, DMA_TO_DEVICE);
	}

	dma_async_tx_descriptor_init(&d40d->txd, chan);

	d40d->txd.tx_submit = d40_tx_submit;

1722
	spin_unlock_irqrestore(&d40c->lock, flags);
1723 1724 1725

	return &d40d->txd;
err:
1726
	spin_unlock_irqrestore(&d40c->lock, flags);
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
	return NULL;
}
EXPORT_SYMBOL(stedma40_memcpy_sg);

bool stedma40_filter(struct dma_chan *chan, void *data)
{
	struct stedma40_chan_cfg *info = data;
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	int err;

	if (data) {
		err = d40_validate_conf(d40c, info);
		if (!err)
			d40c->dma_cfg = *info;
	} else
		err = d40_config_memcpy(d40c);

	return err == 0;
}
EXPORT_SYMBOL(stedma40_filter);

/* DMA ENGINE functions */
static int d40_alloc_chan_resources(struct dma_chan *chan)
{
	int err;
	unsigned long flags;
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
1756
	bool is_free_phy;
1757 1758 1759 1760 1761 1762
	spin_lock_irqsave(&d40c->lock, flags);

	d40c->completed = chan->cookie = 1;

	/*
	 * If no dma configuration is set (channel_type == 0)
1763
	 * use default configuration (memcpy)
1764 1765
	 */
	if (d40c->dma_cfg.channel_type == 0) {
1766

1767
		err = d40_config_memcpy(d40c);
1768 1769 1770 1771 1772 1773
		if (err) {
			dev_err(&d40c->chan.dev->device,
				"[%s] Failed to configure memcpy channel\n",
				__func__);
			goto fail;
		}
1774
	}
1775
	is_free_phy = (d40c->phy_chan == NULL);
1776 1777 1778 1779 1780

	err = d40_allocate_channel(d40c);
	if (err) {
		dev_err(&d40c->chan.dev->device,
			"[%s] Failed to allocate channel\n", __func__);
1781
		goto fail;
1782 1783
	}

1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
	/* Fill in basic CFG register values */
	d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
		    &d40c->dst_def_cfg, d40c->log_num != D40_PHY_CHAN);

	if (d40c->log_num != D40_PHY_CHAN) {
		d40_log_cfg(&d40c->dma_cfg,
			    &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);

		if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
			d40c->lcpa = d40c->base->lcpa_base +
			  d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
		else
			d40c->lcpa = d40c->base->lcpa_base +
			  d40c->dma_cfg.dst_dev_type *
			  D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
	}

	/*
	 * Only write channel configuration to the DMA if the physical
	 * resource is free. In case of multiple logical channels
	 * on the same physical resource, only the first write is necessary.
	 */
1806 1807
	if (is_free_phy)
		d40_config_write(d40c);
1808
fail:
1809
	spin_unlock_irqrestore(&d40c->lock, flags);
1810
	return err;
1811 1812 1813 1814 1815 1816 1817 1818 1819
}

static void d40_free_chan_resources(struct dma_chan *chan)
{
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	int err;
	unsigned long flags;

1820 1821 1822 1823 1824 1825 1826
	if (d40c->phy_chan == NULL) {
		dev_err(&d40c->chan.dev->device,
			"[%s] Cannot free unallocated channel\n", __func__);
		return;
	}


1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
	spin_lock_irqsave(&d40c->lock, flags);

	err = d40_free_dma(d40c);

	if (err)
		dev_err(&d40c->chan.dev->device,
			"[%s] Failed to free channel\n", __func__);
	spin_unlock_irqrestore(&d40c->lock, flags);
}

static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
						       dma_addr_t dst,
						       dma_addr_t src,
						       size_t size,
1841
						       unsigned long dma_flags)
1842 1843 1844 1845
{
	struct d40_desc *d40d;
	struct d40_chan *d40c = container_of(chan, struct d40_chan,
					     chan);
1846
	unsigned long flags;
1847 1848
	int err = 0;

1849 1850 1851 1852 1853 1854
	if (d40c->phy_chan == NULL) {
		dev_err(&d40c->chan.dev->device,
			"[%s] Channel is not allocated.\n", __func__);
		return ERR_PTR(-EINVAL);
	}

1855
	spin_lock_irqsave(&d40c->lock, flags);
1856 1857 1858 1859 1860 1861 1862 1863
	d40d = d40_desc_get(d40c);

	if (d40d == NULL) {
		dev_err(&d40c->chan.dev->device,
			"[%s] Descriptor is NULL\n", __func__);
		goto err;
	}

1864
	d40d->txd.flags = dma_flags;
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877

	dma_async_tx_descriptor_init(&d40d->txd, chan);

	d40d->txd.tx_submit = d40_tx_submit;

	if (d40c->log_num != D40_PHY_CHAN) {

		if (d40_pool_lli_alloc(d40d, 1, true) < 0) {
			dev_err(&d40c->chan.dev->device,
				"[%s] Out of memory\n", __func__);
			goto err;
		}
		d40d->lli_len = 1;
1878
		d40d->lli_current = 0;
1879 1880 1881 1882 1883 1884

		d40_log_fill_lli(d40d->lli_log.src,
				 src,
				 size,
				 d40c->log_def.lcsp1,
				 d40c->dma_cfg.src_info.data_width,
1885
				 true);
1886 1887 1888 1889 1890 1891

		d40_log_fill_lli(d40d->lli_log.dst,
				 dst,
				 size,
				 d40c->log_def.lcsp3,
				 d40c->dma_cfg.dst_info.data_width,
1892
				 true);
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930

	} else {

		if (d40_pool_lli_alloc(d40d, 1, false) < 0) {
			dev_err(&d40c->chan.dev->device,
				"[%s] Out of memory\n", __func__);
			goto err;
		}

		err = d40_phy_fill_lli(d40d->lli_phy.src,
				       src,
				       size,
				       d40c->dma_cfg.src_info.psize,
				       0,
				       d40c->src_def_cfg,
				       true,
				       d40c->dma_cfg.src_info.data_width,
				       false);
		if (err)
			goto err_fill_lli;

		err = d40_phy_fill_lli(d40d->lli_phy.dst,
				       dst,
				       size,
				       d40c->dma_cfg.dst_info.psize,
				       0,
				       d40c->dst_def_cfg,
				       true,
				       d40c->dma_cfg.dst_info.data_width,
				       false);

		if (err)
			goto err_fill_lli;

		(void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
				      d40d->lli_pool.size, DMA_TO_DEVICE);
	}

1931
	spin_unlock_irqrestore(&d40c->lock, flags);
1932 1933 1934 1935 1936 1937 1938
	return &d40d->txd;

err_fill_lli:
	dev_err(&d40c->chan.dev->device,
		"[%s] Failed filling in PHY LLI\n", __func__);
	d40_pool_lli_free(d40d);
err:
1939
	spin_unlock_irqrestore(&d40c->lock, flags);
1940 1941 1942 1943 1944 1945 1946 1947
	return NULL;
}

static int d40_prep_slave_sg_log(struct d40_desc *d40d,
				 struct d40_chan *d40c,
				 struct scatterlist *sgl,
				 unsigned int sg_len,
				 enum dma_data_direction direction,
1948
				 unsigned long dma_flags)
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
{
	dma_addr_t dev_addr = 0;
	int total_size;

	if (d40_pool_lli_alloc(d40d, sg_len, true) < 0) {
		dev_err(&d40c->chan.dev->device,
			"[%s] Out of memory\n", __func__);
		return -ENOMEM;
	}

	d40d->lli_len = sg_len;
1960
	d40d->lli_current = 0;
1961

1962
	if (direction == DMA_FROM_DEVICE)
1963 1964 1965 1966
		if (d40c->runtime_addr)
			dev_addr = d40c->runtime_addr;
		else
			dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
1967
	else if (direction == DMA_TO_DEVICE)
1968 1969 1970 1971 1972
		if (d40c->runtime_addr)
			dev_addr = d40c->runtime_addr;
		else
			dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];

1973
	else
1974
		return -EINVAL;
1975

1976
	total_size = d40_log_sg_to_dev(sgl, sg_len,
1977 1978 1979 1980 1981
				       &d40d->lli_log,
				       &d40c->log_def,
				       d40c->dma_cfg.src_info.data_width,
				       d40c->dma_cfg.dst_info.data_width,
				       direction,
1982
				       dev_addr);
1983

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
	if (total_size < 0)
		return -EINVAL;

	return 0;
}

static int d40_prep_slave_sg_phy(struct d40_desc *d40d,
				 struct d40_chan *d40c,
				 struct scatterlist *sgl,
				 unsigned int sgl_len,
				 enum dma_data_direction direction,
1995
				 unsigned long dma_flags)
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
{
	dma_addr_t src_dev_addr;
	dma_addr_t dst_dev_addr;
	int res;

	if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
		dev_err(&d40c->chan.dev->device,
			"[%s] Out of memory\n", __func__);
		return -ENOMEM;
	}

	d40d->lli_len = sgl_len;
2008
	d40d->lli_current = 0;
2009 2010 2011

	if (direction == DMA_FROM_DEVICE) {
		dst_dev_addr = 0;
2012 2013 2014 2015
		if (d40c->runtime_addr)
			src_dev_addr = d40c->runtime_addr;
		else
			src_dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
2016
	} else if (direction == DMA_TO_DEVICE) {
2017 2018 2019 2020
		if (d40c->runtime_addr)
			dst_dev_addr = d40c->runtime_addr;
		else
			dst_dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
2021 2022 2023 2024 2025 2026 2027 2028
		src_dev_addr = 0;
	} else
		return -EINVAL;

	res = d40_phy_sg_to_lli(sgl,
				sgl_len,
				src_dev_addr,
				d40d->lli_phy.src,
2029
				virt_to_phys(d40d->lli_phy.src),
2030 2031
				d40c->src_def_cfg,
				d40c->dma_cfg.src_info.data_width,
2032
				d40c->dma_cfg.src_info.psize);
2033 2034 2035 2036 2037 2038 2039
	if (res < 0)
		return res;

	res = d40_phy_sg_to_lli(sgl,
				sgl_len,
				dst_dev_addr,
				d40d->lli_phy.dst,
2040
				virt_to_phys(d40d->lli_phy.dst),
2041 2042
				d40c->dst_def_cfg,
				d40c->dma_cfg.dst_info.data_width,
2043
				d40c->dma_cfg.dst_info.psize);
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
	if (res < 0)
		return res;

	(void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
			      d40d->lli_pool.size, DMA_TO_DEVICE);
	return 0;
}

static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
							 struct scatterlist *sgl,
							 unsigned int sg_len,
							 enum dma_data_direction direction,
2056
							 unsigned long dma_flags)
2057 2058 2059 2060
{
	struct d40_desc *d40d;
	struct d40_chan *d40c = container_of(chan, struct d40_chan,
					     chan);
2061
	unsigned long flags;
2062 2063
	int err;

2064 2065 2066 2067 2068 2069
	if (d40c->phy_chan == NULL) {
		dev_err(&d40c->chan.dev->device,
			"[%s] Cannot prepare unallocated channel\n", __func__);
		return ERR_PTR(-EINVAL);
	}

2070 2071 2072 2073 2074
	if (d40c->dma_cfg.pre_transfer)
		d40c->dma_cfg.pre_transfer(chan,
					   d40c->dma_cfg.pre_transfer_data,
					   sg_dma_len(sgl));

2075
	spin_lock_irqsave(&d40c->lock, flags);
2076
	d40d = d40_desc_get(d40c);
2077
	spin_unlock_irqrestore(&d40c->lock, flags);
2078 2079 2080 2081 2082 2083

	if (d40d == NULL)
		return NULL;

	if (d40c->log_num != D40_PHY_CHAN)
		err = d40_prep_slave_sg_log(d40d, d40c, sgl, sg_len,
2084
					    direction, dma_flags);
2085 2086
	else
		err = d40_prep_slave_sg_phy(d40d, d40c, sgl, sg_len,
2087
					    direction, dma_flags);
2088 2089 2090 2091 2092 2093 2094 2095
	if (err) {
		dev_err(&d40c->chan.dev->device,
			"[%s] Failed to prepare %s slave sg job: %d\n",
			__func__,
			d40c->log_num != D40_PHY_CHAN ? "log" : "phy", err);
		return NULL;
	}

2096
	d40d->txd.flags = dma_flags;
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113

	dma_async_tx_descriptor_init(&d40d->txd, chan);

	d40d->txd.tx_submit = d40_tx_submit;

	return &d40d->txd;
}

static enum dma_status d40_tx_status(struct dma_chan *chan,
				     dma_cookie_t cookie,
				     struct dma_tx_state *txstate)
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	dma_cookie_t last_used;
	dma_cookie_t last_complete;
	int ret;

2114 2115 2116 2117 2118 2119 2120
	if (d40c->phy_chan == NULL) {
		dev_err(&d40c->chan.dev->device,
			"[%s] Cannot read status of unallocated channel\n",
			__func__);
		return -EINVAL;
	}

2121 2122 2123
	last_complete = d40c->completed;
	last_used = chan->cookie;

2124 2125 2126 2127
	if (d40_is_paused(d40c))
		ret = DMA_PAUSED;
	else
		ret = dma_async_is_complete(cookie, last_complete, last_used);
2128

2129 2130
	dma_set_tx_state(txstate, last_complete, last_used,
			 stedma40_residue(chan));
2131 2132 2133 2134 2135 2136 2137 2138 2139

	return ret;
}

static void d40_issue_pending(struct dma_chan *chan)
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	unsigned long flags;

2140 2141 2142 2143 2144 2145
	if (d40c->phy_chan == NULL) {
		dev_err(&d40c->chan.dev->device,
			"[%s] Channel is not allocated!\n", __func__);
		return;
	}

2146 2147 2148 2149 2150 2151 2152 2153 2154
	spin_lock_irqsave(&d40c->lock, flags);

	/* Busy means that pending jobs are already being processed */
	if (!d40c->busy)
		(void) d40_queue_start(d40c);

	spin_unlock_irqrestore(&d40c->lock, flags);
}

2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
/* Runtime reconfiguration extension */
static void d40_set_runtime_config(struct dma_chan *chan,
			       struct dma_slave_config *config)
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
	enum dma_slave_buswidth config_addr_width;
	dma_addr_t config_addr;
	u32 config_maxburst;
	enum stedma40_periph_data_width addr_width;
	int psize;

	if (config->direction == DMA_FROM_DEVICE) {
		dma_addr_t dev_addr_rx =
			d40c->base->plat_data->dev_rx[cfg->src_dev_type];

		config_addr = config->src_addr;
		if (dev_addr_rx)
			dev_dbg(d40c->base->dev,
				"channel has a pre-wired RX address %08x "
				"overriding with %08x\n",
				dev_addr_rx, config_addr);
		if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
			dev_dbg(d40c->base->dev,
				"channel was not configured for peripheral "
				"to memory transfer (%d) overriding\n",
				cfg->dir);
		cfg->dir = STEDMA40_PERIPH_TO_MEM;

		config_addr_width = config->src_addr_width;
		config_maxburst = config->src_maxburst;

	} else if (config->direction == DMA_TO_DEVICE) {
		dma_addr_t dev_addr_tx =
			d40c->base->plat_data->dev_tx[cfg->dst_dev_type];

		config_addr = config->dst_addr;
		if (dev_addr_tx)
			dev_dbg(d40c->base->dev,
				"channel has a pre-wired TX address %08x "
				"overriding with %08x\n",
				dev_addr_tx, config_addr);
		if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
			dev_dbg(d40c->base->dev,
				"channel was not configured for memory "
				"to peripheral transfer (%d) overriding\n",
				cfg->dir);
		cfg->dir = STEDMA40_MEM_TO_PERIPH;

		config_addr_width = config->dst_addr_width;
		config_maxburst = config->dst_maxburst;

	} else {
		dev_err(d40c->base->dev,
			"unrecognized channel direction %d\n",
			config->direction);
		return;
	}

	switch (config_addr_width) {
	case DMA_SLAVE_BUSWIDTH_1_BYTE:
		addr_width = STEDMA40_BYTE_WIDTH;
		break;
	case DMA_SLAVE_BUSWIDTH_2_BYTES:
		addr_width = STEDMA40_HALFWORD_WIDTH;
		break;
	case DMA_SLAVE_BUSWIDTH_4_BYTES:
		addr_width = STEDMA40_WORD_WIDTH;
		break;
	case DMA_SLAVE_BUSWIDTH_8_BYTES:
		addr_width = STEDMA40_DOUBLEWORD_WIDTH;
		break;
	default:
		dev_err(d40c->base->dev,
			"illegal peripheral address width "
			"requested (%d)\n",
			config->src_addr_width);
		return;
	}

	if (config_maxburst >= 16)
		psize = STEDMA40_PSIZE_LOG_16;
	else if (config_maxburst >= 8)
		psize = STEDMA40_PSIZE_LOG_8;
	else if (config_maxburst >= 4)
		psize = STEDMA40_PSIZE_LOG_4;
	else
		psize = STEDMA40_PSIZE_LOG_1;

	/* Set up all the endpoint configs */
	cfg->src_info.data_width = addr_width;
	cfg->src_info.psize = psize;
	cfg->src_info.endianess = STEDMA40_LITTLE_ENDIAN;
	cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
	cfg->dst_info.data_width = addr_width;
	cfg->dst_info.psize = psize;
	cfg->dst_info.endianess = STEDMA40_LITTLE_ENDIAN;
	cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;

	/* These settings will take precedence later */
	d40c->runtime_addr = config_addr;
	d40c->runtime_direction = config->direction;
	dev_dbg(d40c->base->dev,
		"configured channel %s for %s, data width %d, "
		"maxburst %d bytes, LE, no flow control\n",
		dma_chan_name(chan),
		(config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
		config_addr_width,
		config_maxburst);
}

2266 2267
static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
		       unsigned long arg)
2268 2269 2270 2271
{
	unsigned long flags;
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);

2272 2273 2274 2275 2276 2277
	if (d40c->phy_chan == NULL) {
		dev_err(&d40c->chan.dev->device,
			"[%s] Channel is not allocated!\n", __func__);
		return -EINVAL;
	}

2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
	switch (cmd) {
	case DMA_TERMINATE_ALL:
		spin_lock_irqsave(&d40c->lock, flags);
		d40_term_all(d40c);
		spin_unlock_irqrestore(&d40c->lock, flags);
		return 0;
	case DMA_PAUSE:
		return d40_pause(chan);
	case DMA_RESUME:
		return d40_resume(chan);
2288 2289 2290 2291 2292 2293
	case DMA_SLAVE_CONFIG:
		d40_set_runtime_config(chan,
			(struct dma_slave_config *) arg);
		return 0;
	default:
		break;
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
	}

	/* Other commands are unimplemented */
	return -ENXIO;
}

/* Initialization functions */

static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
				 struct d40_chan *chans, int offset,
				 int num_chans)
{
	int i = 0;
	struct d40_chan *d40c;

	INIT_LIST_HEAD(&dma->channels);

	for (i = offset; i < offset + num_chans; i++) {
		d40c = &chans[i];
		d40c->base = base;
		d40c->chan.device = dma;

		spin_lock_init(&d40c->lock);

		d40c->log_num = D40_PHY_CHAN;

		INIT_LIST_HEAD(&d40c->active);
		INIT_LIST_HEAD(&d40c->queue);
		INIT_LIST_HEAD(&d40c->client);

		tasklet_init(&d40c->tasklet, dma_tasklet,
			     (unsigned long) d40c);

		list_add_tail(&d40c->chan.device_node,
			      &dma->channels);
	}
}

static int __init d40_dmaengine_init(struct d40_base *base,
				     int num_reserved_chans)
{
	int err ;

	d40_chan_init(base, &base->dma_slave, base->log_chans,
		      0, base->num_log_chans);

	dma_cap_zero(base->dma_slave.cap_mask);
	dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);

	base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources;
	base->dma_slave.device_free_chan_resources = d40_free_chan_resources;
	base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy;
	base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg;
	base->dma_slave.device_tx_status = d40_tx_status;
	base->dma_slave.device_issue_pending = d40_issue_pending;
	base->dma_slave.device_control = d40_control;
	base->dma_slave.dev = base->dev;

	err = dma_async_device_register(&base->dma_slave);

	if (err) {
		dev_err(base->dev,
			"[%s] Failed to register slave channels\n",
			__func__);
		goto failure1;
	}

	d40_chan_init(base, &base->dma_memcpy, base->log_chans,
		      base->num_log_chans, base->plat_data->memcpy_len);

	dma_cap_zero(base->dma_memcpy.cap_mask);
	dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);

	base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources;
	base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources;
	base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy;
	base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg;
	base->dma_memcpy.device_tx_status = d40_tx_status;
	base->dma_memcpy.device_issue_pending = d40_issue_pending;
	base->dma_memcpy.device_control = d40_control;
	base->dma_memcpy.dev = base->dev;
	/*
	 * This controller can only access address at even
	 * 32bit boundaries, i.e. 2^2
	 */
	base->dma_memcpy.copy_align = 2;

	err = dma_async_device_register(&base->dma_memcpy);

	if (err) {
		dev_err(base->dev,
			"[%s] Failed to regsiter memcpy only channels\n",
			__func__);
		goto failure2;
	}

	d40_chan_init(base, &base->dma_both, base->phy_chans,
		      0, num_reserved_chans);

	dma_cap_zero(base->dma_both.cap_mask);
	dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
	dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);

	base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources;
	base->dma_both.device_free_chan_resources = d40_free_chan_resources;
	base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy;
	base->dma_both.device_prep_slave_sg = d40_prep_slave_sg;
	base->dma_both.device_tx_status = d40_tx_status;
	base->dma_both.device_issue_pending = d40_issue_pending;
	base->dma_both.device_control = d40_control;
	base->dma_both.dev = base->dev;
	base->dma_both.copy_align = 2;
	err = dma_async_device_register(&base->dma_both);

	if (err) {
		dev_err(base->dev,
			"[%s] Failed to register logical and physical capable channels\n",
			__func__);
		goto failure3;
	}
	return 0;
failure3:
	dma_async_device_unregister(&base->dma_memcpy);
failure2:
	dma_async_device_unregister(&base->dma_slave);
failure1:
	return err;
}

/* Initialization functions. */

static int __init d40_phy_res_init(struct d40_base *base)
{
	int i;
	int num_phy_chans_avail = 0;
	u32 val[2];
	int odd_even_bit = -2;

	val[0] = readl(base->virtbase + D40_DREG_PRSME);
	val[1] = readl(base->virtbase + D40_DREG_PRSMO);

	for (i = 0; i < base->num_phy_chans; i++) {
		base->phy_res[i].num = i;
		odd_even_bit += 2 * ((i % 2) == 0);
		if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
			/* Mark security only channels as occupied */
			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
		} else {
			base->phy_res[i].allocated_src = D40_ALLOC_FREE;
			base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
			num_phy_chans_avail++;
		}
		spin_lock_init(&base->phy_res[i].lock);
	}
2449 2450 2451 2452 2453 2454 2455 2456

	/* Mark disabled channels as occupied */
	for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
			num_phy_chans_avail--;
	}

2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
	dev_info(base->dev, "%d of %d physical DMA channels available\n",
		 num_phy_chans_avail, base->num_phy_chans);

	/* Verify settings extended vs standard */
	val[0] = readl(base->virtbase + D40_DREG_PRTYP);

	for (i = 0; i < base->num_phy_chans; i++) {

		if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
		    (val[0] & 0x3) != 1)
			dev_info(base->dev,
				 "[%s] INFO: channel %d is misconfigured (%d)\n",
				 __func__, i, val[0] & 0x3);

		val[0] = val[0] >> 2;
	}

	return num_phy_chans_avail;
}

static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
{
	static const struct d40_reg_val dma_id_regs[] = {
		/* Peripheral Id */
		{ .reg = D40_DREG_PERIPHID0, .val = 0x0040},
		{ .reg = D40_DREG_PERIPHID1, .val = 0x0000},
		/*
		 * D40_DREG_PERIPHID2 Depends on HW revision:
		 *  MOP500/HREF ED has 0x0008,
		 *  ? has 0x0018,
		 *  HREF V1 has 0x0028
		 */
		{ .reg = D40_DREG_PERIPHID3, .val = 0x0000},

		/* PCell Id */
		{ .reg = D40_DREG_CELLID0, .val = 0x000d},
		{ .reg = D40_DREG_CELLID1, .val = 0x00f0},
		{ .reg = D40_DREG_CELLID2, .val = 0x0005},
		{ .reg = D40_DREG_CELLID3, .val = 0x00b1}
	};
	struct stedma40_platform_data *plat_data;
	struct clk *clk = NULL;
	void __iomem *virtbase = NULL;
	struct resource *res = NULL;
	struct d40_base *base = NULL;
	int num_log_chans = 0;
	int num_phy_chans;
	int i;
2505
	u32 val;
2506
	u32 rev;
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544

	clk = clk_get(&pdev->dev, NULL);

	if (IS_ERR(clk)) {
		dev_err(&pdev->dev, "[%s] No matching clock found\n",
			__func__);
		goto failure;
	}

	clk_enable(clk);

	/* Get IO for DMAC base address */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
	if (!res)
		goto failure;

	if (request_mem_region(res->start, resource_size(res),
			       D40_NAME " I/O base") == NULL)
		goto failure;

	virtbase = ioremap(res->start, resource_size(res));
	if (!virtbase)
		goto failure;

	/* HW version check */
	for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
		if (dma_id_regs[i].val !=
		    readl(virtbase + dma_id_regs[i].reg)) {
			dev_err(&pdev->dev,
				"[%s] Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
				__func__,
				dma_id_regs[i].val,
				dma_id_regs[i].reg,
				readl(virtbase + dma_id_regs[i].reg));
			goto failure;
		}
	}

2545
	/* Get silicon revision and designer */
2546
	val = readl(virtbase + D40_DREG_PERIPHID2);
2547

2548 2549
	if ((val & D40_DREG_PERIPHID2_DESIGNER_MASK) !=
	    D40_HW_DESIGNER) {
2550 2551
		dev_err(&pdev->dev,
			"[%s] Unknown designer! Got %x wanted %x\n",
2552 2553
			__func__, val & D40_DREG_PERIPHID2_DESIGNER_MASK,
			D40_HW_DESIGNER);
2554 2555 2556
		goto failure;
	}

2557 2558 2559
	rev = (val & D40_DREG_PERIPHID2_REV_MASK) >>
		D40_DREG_PERIPHID2_REV_POS;

2560 2561 2562 2563
	/* The number of physical channels on this HW */
	num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;

	dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2564
		 rev, res->start);
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585

	plat_data = pdev->dev.platform_data;

	/* Count the number of logical channels in use */
	for (i = 0; i < plat_data->dev_len; i++)
		if (plat_data->dev_rx[i] != 0)
			num_log_chans++;

	for (i = 0; i < plat_data->dev_len; i++)
		if (plat_data->dev_tx[i] != 0)
			num_log_chans++;

	base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
		       (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
		       sizeof(struct d40_chan), GFP_KERNEL);

	if (base == NULL) {
		dev_err(&pdev->dev, "[%s] Out of memory\n", __func__);
		goto failure;
	}

2586
	base->rev = rev;
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
	base->clk = clk;
	base->num_phy_chans = num_phy_chans;
	base->num_log_chans = num_log_chans;
	base->phy_start = res->start;
	base->phy_size = resource_size(res);
	base->virtbase = virtbase;
	base->plat_data = plat_data;
	base->dev = &pdev->dev;
	base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
	base->log_chans = &base->phy_chans[num_phy_chans];

	base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
				GFP_KERNEL);
	if (!base->phy_res)
		goto failure;

	base->lookup_phy_chans = kzalloc(num_phy_chans *
					 sizeof(struct d40_chan *),
					 GFP_KERNEL);
	if (!base->lookup_phy_chans)
		goto failure;

	if (num_log_chans + plat_data->memcpy_len) {
		/*
		 * The max number of logical channels are event lines for all
		 * src devices and dst devices
		 */
		base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
						 sizeof(struct d40_chan *),
						 GFP_KERNEL);
		if (!base->lookup_log_chans)
			goto failure;
	}
2620 2621 2622 2623

	base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
					    sizeof(struct d40_desc *) *
					    D40_LCLA_LINK_PER_EVENT_GRP,
2624 2625 2626 2627
					    GFP_KERNEL);
	if (!base->lcla_pool.alloc_map)
		goto failure;

2628 2629 2630 2631 2632 2633
	base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
					    0, SLAB_HWCACHE_ALIGN,
					    NULL);
	if (base->desc_slab == NULL)
		goto failure;

2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
	return base;

failure:
	if (clk) {
		clk_disable(clk);
		clk_put(clk);
	}
	if (virtbase)
		iounmap(virtbase);
	if (res)
		release_mem_region(res->start,
				   resource_size(res));
	if (virtbase)
		iounmap(virtbase);

	if (base) {
		kfree(base->lcla_pool.alloc_map);
		kfree(base->lookup_log_chans);
		kfree(base->lookup_phy_chans);
		kfree(base->phy_res);
		kfree(base);
	}

	return NULL;
}

static void __init d40_hw_init(struct d40_base *base)
{

	static const struct d40_reg_val dma_init_reg[] = {
		/* Clock every part of the DMA block from start */
		{ .reg = D40_DREG_GCC,    .val = 0x0000ff01},

		/* Interrupts on all logical channels */
		{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
	};
	int i;
	u32 prmseo[2] = {0, 0};
	u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
	u32 pcmis = 0;
	u32 pcicr = 0;

	for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
		writel(dma_init_reg[i].val,
		       base->virtbase + dma_init_reg[i].reg);

	/* Configure all our dma channels to default settings */
	for (i = 0; i < base->num_phy_chans; i++) {

		activeo[i % 2] = activeo[i % 2] << 2;

		if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
		    == D40_ALLOC_PHY) {
			activeo[i % 2] |= 3;
			continue;
		}

		/* Enable interrupt # */
		pcmis = (pcmis << 1) | 1;

		/* Clear interrupt # */
		pcicr = (pcicr << 1) | 1;

		/* Set channel to physical mode */
		prmseo[i % 2] = prmseo[i % 2] << 2;
		prmseo[i % 2] |= 1;

	}

	writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
	writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
	writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
	writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);

	/* Write which interrupt to enable */
	writel(pcmis, base->virtbase + D40_DREG_PCMIS);

	/* Write which interrupt to clear */
	writel(pcicr, base->virtbase + D40_DREG_PCICR);

}

2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
static int __init d40_lcla_allocate(struct d40_base *base)
{
	unsigned long *page_list;
	int i, j;
	int ret = 0;

	/*
	 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
	 * To full fill this hardware requirement without wasting 256 kb
	 * we allocate pages until we get an aligned one.
	 */
	page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
			    GFP_KERNEL);

	if (!page_list) {
		ret = -ENOMEM;
		goto failure;
	}

	/* Calculating how many pages that are required */
	base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;

	for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
		page_list[i] = __get_free_pages(GFP_KERNEL,
						base->lcla_pool.pages);
		if (!page_list[i]) {

			dev_err(base->dev,
				"[%s] Failed to allocate %d pages.\n",
				__func__, base->lcla_pool.pages);

			for (j = 0; j < i; j++)
				free_pages(page_list[j], base->lcla_pool.pages);
			goto failure;
		}

		if ((virt_to_phys((void *)page_list[i]) &
		     (LCLA_ALIGNMENT - 1)) == 0)
			break;
	}

	for (j = 0; j < i; j++)
		free_pages(page_list[j], base->lcla_pool.pages);

	if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
		base->lcla_pool.base = (void *)page_list[i];
	} else {
2774 2775 2776 2777
		/*
		 * After many attempts and no succees with finding the correct
		 * alignment, try with allocating a big buffer.
		 */
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
		dev_warn(base->dev,
			 "[%s] Failed to get %d pages @ 18 bit align.\n",
			 __func__, base->lcla_pool.pages);
		base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
							 base->num_phy_chans +
							 LCLA_ALIGNMENT,
							 GFP_KERNEL);
		if (!base->lcla_pool.base_unaligned) {
			ret = -ENOMEM;
			goto failure;
		}

		base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
						 LCLA_ALIGNMENT);
	}

	writel(virt_to_phys(base->lcla_pool.base),
	       base->virtbase + D40_DREG_LCLA);
failure:
	kfree(page_list);
	return ret;
}

2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
static int __init d40_probe(struct platform_device *pdev)
{
	int err;
	int ret = -ENOENT;
	struct d40_base *base;
	struct resource *res = NULL;
	int num_reserved_chans;
	u32 val;

	base = d40_hw_detect_init(pdev);

	if (!base)
		goto failure;

	num_reserved_chans = d40_phy_res_init(base);

	platform_set_drvdata(pdev, base);

	spin_lock_init(&base->interrupt_lock);
	spin_lock_init(&base->execmd_lock);

	/* Get IO for logical channel parameter address */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
	if (!res) {
		ret = -ENOENT;
		dev_err(&pdev->dev,
			"[%s] No \"lcpa\" memory resource\n",
			__func__);
		goto failure;
	}
	base->lcpa_size = resource_size(res);
	base->phy_lcpa = res->start;

	if (request_mem_region(res->start, resource_size(res),
			       D40_NAME " I/O lcpa") == NULL) {
		ret = -EBUSY;
		dev_err(&pdev->dev,
			"[%s] Failed to request LCPA region 0x%x-0x%x\n",
			__func__, res->start, res->end);
		goto failure;
	}

	/* We make use of ESRAM memory for this. */
	val = readl(base->virtbase + D40_DREG_LCPA);
	if (res->start != val && val != 0) {
		dev_warn(&pdev->dev,
			 "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
			 __func__, val, res->start);
	} else
		writel(res->start, base->virtbase + D40_DREG_LCPA);

	base->lcpa_base = ioremap(res->start, resource_size(res));
	if (!base->lcpa_base) {
		ret = -ENOMEM;
		dev_err(&pdev->dev,
			"[%s] Failed to ioremap LCPA region\n",
			__func__);
		goto failure;
	}

2861 2862 2863 2864
	ret = d40_lcla_allocate(base);
	if (ret) {
		dev_err(&pdev->dev, "[%s] Failed to allocate LCLA area\n",
			__func__);
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
		goto failure;
	}

	spin_lock_init(&base->lcla_pool.lock);

	base->irq = platform_get_irq(pdev, 0);

	ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);

	if (ret) {
		dev_err(&pdev->dev, "[%s] No IRQ defined\n", __func__);
		goto failure;
	}

	err = d40_dmaengine_init(base, num_reserved_chans);
	if (err)
		goto failure;

	d40_hw_init(base);

	dev_info(base->dev, "initialized\n");
	return 0;

failure:
	if (base) {
2890 2891
		if (base->desc_slab)
			kmem_cache_destroy(base->desc_slab);
2892 2893
		if (base->virtbase)
			iounmap(base->virtbase);
2894 2895 2896
		if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
			free_pages((unsigned long)base->lcla_pool.base,
				   base->lcla_pool.pages);
2897 2898 2899

		kfree(base->lcla_pool.base_unaligned);

2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
		if (base->phy_lcpa)
			release_mem_region(base->phy_lcpa,
					   base->lcpa_size);
		if (base->phy_start)
			release_mem_region(base->phy_start,
					   base->phy_size);
		if (base->clk) {
			clk_disable(base->clk);
			clk_put(base->clk);
		}

		kfree(base->lcla_pool.alloc_map);
		kfree(base->lookup_log_chans);
		kfree(base->lookup_phy_chans);
		kfree(base->phy_res);
		kfree(base);
	}

	dev_err(&pdev->dev, "[%s] probe failed\n", __func__);
	return ret;
}

static struct platform_driver d40_driver = {
	.driver = {
		.owner = THIS_MODULE,
		.name  = D40_NAME,
	},
};

int __init stedma40_init(void)
{
	return platform_driver_probe(&d40_driver, d40_probe);
}
arch_initcall(stedma40_init);