ste_dma40.c 74.9 KB
Newer Older
1
/*
2 3
 * Copyright (C) Ericsson AB 2007-2008
 * Copyright (C) ST-Ericsson SA 2008-2010
4
 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5
 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6 7 8 9 10 11 12 13 14
 * License terms: GNU General Public License (GPL) version 2
 */

#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/dmaengine.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/delay.h>
15
#include <linux/err.h>
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

#include <plat/ste_dma40.h>

#include "ste_dma40_ll.h"

#define D40_NAME "dma40"

#define D40_PHY_CHAN -1

/* For masking out/in 2 bit channel positions */
#define D40_CHAN_POS(chan)  (2 * (chan / 2))
#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))

/* Maximum iterations taken before giving up suspending a channel */
#define D40_SUSPEND_MAX_IT 500

32 33
/* Hardware requirement on LCLA alignment */
#define LCLA_ALIGNMENT 0x40000
34 35 36 37 38

/* Max number of links per event group */
#define D40_LCLA_LINK_PER_EVENT_GRP 128
#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP

39 40 41 42
/* Attempts before giving up to trying to get pages that are aligned */
#define MAX_LCLA_ALLOC_ATTEMPTS 256

/* Bit markings for allocation map */
43 44 45 46 47
#define D40_ALLOC_FREE		(1 << 31)
#define D40_ALLOC_PHY		(1 << 30)
#define D40_ALLOC_LOG_FREE	0

/* Hardware designer of the block */
48
#define D40_HW_DESIGNER 0x8
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

/**
 * enum 40_command - The different commands and/or statuses.
 *
 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
 */
enum d40_command {
	D40_DMA_STOP		= 0,
	D40_DMA_RUN		= 1,
	D40_DMA_SUSPEND_REQ	= 2,
	D40_DMA_SUSPENDED	= 3
};

/**
 * struct d40_lli_pool - Structure for keeping LLIs in memory
 *
 * @base: Pointer to memory area when the pre_alloc_lli's are not large
 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
 * pre_alloc_lli is used.
71
 * @dma_addr: DMA address, if mapped
72 73 74 75 76 77
 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
 * one buffer to one buffer.
 */
struct d40_lli_pool {
	void	*base;
78
	int	 size;
79
	dma_addr_t	dma_addr;
80
	/* Space for dst and src, plus an extra for padding */
81
	u8	 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
82 83 84 85 86 87 88 89 90 91
};

/**
 * struct d40_desc - A descriptor is one DMA job.
 *
 * @lli_phy: LLI settings for physical channel. Both src and dst=
 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
 * lli_len equals one.
 * @lli_log: Same as above but for logical channels.
 * @lli_pool: The pool with two entries pre-allocated.
92
 * @lli_len: Number of llis of current descriptor.
93 94
 * @lli_current: Number of transfered llis.
 * @lcla_alloc: Number of LCLA entries allocated.
95 96 97 98
 * @txd: DMA engine struct. Used for among other things for communication
 * during a transfer.
 * @node: List entry.
 * @is_in_client_list: true if the client owns this descriptor.
99
 * the previous one.
100 101 102 103 104 105 106 107 108 109
 *
 * This descriptor is used for both logical and physical transfers.
 */
struct d40_desc {
	/* LLI physical */
	struct d40_phy_lli_bidir	 lli_phy;
	/* LLI logical */
	struct d40_log_lli_bidir	 lli_log;

	struct d40_lli_pool		 lli_pool;
110
	int				 lli_len;
111 112
	int				 lli_current;
	int				 lcla_alloc;
113 114 115 116 117 118 119 120 121 122

	struct dma_async_tx_descriptor	 txd;
	struct list_head		 node;

	bool				 is_in_client_list;
};

/**
 * struct d40_lcla_pool - LCLA pool settings and data.
 *
123 124 125 126 127
 * @base: The virtual address of LCLA. 18 bit aligned.
 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
 * This pointer is only there for clean-up on error.
 * @pages: The number of pages needed for all physical channels.
 * Only used later for clean-up on error
128
 * @lock: Lock to protect the content in this struct.
129
 * @alloc_map: big map over which LCLA entry is own by which job.
130 131 132
 */
struct d40_lcla_pool {
	void		*base;
133
	dma_addr_t	dma_addr;
134 135
	void		*base_unaligned;
	int		 pages;
136
	spinlock_t	 lock;
137
	struct d40_desc	**alloc_map;
138 139 140 141 142 143 144 145 146 147 148 149
};

/**
 * struct d40_phy_res - struct for handling eventlines mapped to physical
 * channels.
 *
 * @lock: A lock protection this entity.
 * @num: The physical channel number of this entity.
 * @allocated_src: Bit mapped to show which src event line's are mapped to
 * this physical channel. Can also be free or physically allocated.
 * @allocated_dst: Same as for src but is dst.
 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
150
 * event line number.
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
 */
struct d40_phy_res {
	spinlock_t lock;
	int	   num;
	u32	   allocated_src;
	u32	   allocated_dst;
};

struct d40_base;

/**
 * struct d40_chan - Struct that describes a channel.
 *
 * @lock: A spinlock to protect this struct.
 * @log_num: The logical number, if any of this channel.
 * @completed: Starts with 1, after first interrupt it is set to dma engine's
 * current cookie.
 * @pending_tx: The number of pending transfers. Used between interrupt handler
 * and tasklet.
 * @busy: Set to true when transfer is ongoing on this channel.
171 172
 * @phy_chan: Pointer to physical channel which this instance runs on. If this
 * point is NULL, then the channel is not allocated.
173 174 175 176 177 178 179
 * @chan: DMA engine handle.
 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
 * transfer and call client callback.
 * @client: Cliented owned descriptor list.
 * @active: Active descriptor.
 * @queue: Queued jobs.
 * @dma_cfg: The client configuration of this dma channel.
180
 * @configured: whether the dma_cfg configuration is valid
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
 * @base: Pointer to the device instance struct.
 * @src_def_cfg: Default cfg register setting for src.
 * @dst_def_cfg: Default cfg register setting for dst.
 * @log_def: Default logical channel settings.
 * @lcla: Space for one dst src pair for logical channel transfers.
 * @lcpa: Pointer to dst and src lcpa settings.
 *
 * This struct can either "be" a logical or a physical channel.
 */
struct d40_chan {
	spinlock_t			 lock;
	int				 log_num;
	/* ID of the most recent completed transfer */
	int				 completed;
	int				 pending_tx;
	bool				 busy;
	struct d40_phy_res		*phy_chan;
	struct dma_chan			 chan;
	struct tasklet_struct		 tasklet;
	struct list_head		 client;
	struct list_head		 active;
	struct list_head		 queue;
	struct stedma40_chan_cfg	 dma_cfg;
204
	bool				 configured;
205 206 207 208 209 210
	struct d40_base			*base;
	/* Default register configurations */
	u32				 src_def_cfg;
	u32				 dst_def_cfg;
	struct d40_def_lcsp		 log_def;
	struct d40_log_lli_full		*lcpa;
211 212 213
	/* Runtime reconfiguration */
	dma_addr_t			runtime_addr;
	enum dma_data_direction		runtime_direction;
214 215 216 217 218 219 220 221 222 223
};

/**
 * struct d40_base - The big global struct, one for each probe'd instance.
 *
 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
 * @execmd_lock: Lock for execute command usage since several channels share
 * the same physical register.
 * @dev: The device structure.
 * @virtbase: The virtual base address of the DMA's register.
224
 * @rev: silicon revision detected.
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
 * @clk: Pointer to the DMA clock structure.
 * @phy_start: Physical memory start of the DMA registers.
 * @phy_size: Size of the DMA register map.
 * @irq: The IRQ number.
 * @num_phy_chans: The number of physical channels. Read from HW. This
 * is the number of available channels for this driver, not counting "Secure
 * mode" allocated physical channels.
 * @num_log_chans: The number of logical channels. Calculated from
 * num_phy_chans.
 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
 * @dma_slave: dma_device channels that can do only do slave transfers.
 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
 * @log_chans: Room for all possible logical channels in system.
 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
 * to log_chans entries.
 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
 * to phy_chans entries.
 * @plat_data: Pointer to provided platform_data which is the driver
 * configuration.
 * @phy_res: Vector containing all physical channels.
 * @lcla_pool: lcla pool settings and data.
 * @lcpa_base: The virtual mapped address of LCPA.
 * @phy_lcpa: The physical address of the LCPA.
 * @lcpa_size: The size of the LCPA area.
249
 * @desc_slab: cache for descriptors.
250 251 252 253 254 255
 */
struct d40_base {
	spinlock_t			 interrupt_lock;
	spinlock_t			 execmd_lock;
	struct device			 *dev;
	void __iomem			 *virtbase;
256
	u8				  rev:4;
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
	struct clk			 *clk;
	phys_addr_t			  phy_start;
	resource_size_t			  phy_size;
	int				  irq;
	int				  num_phy_chans;
	int				  num_log_chans;
	struct dma_device		  dma_both;
	struct dma_device		  dma_slave;
	struct dma_device		  dma_memcpy;
	struct d40_chan			 *phy_chans;
	struct d40_chan			 *log_chans;
	struct d40_chan			**lookup_log_chans;
	struct d40_chan			**lookup_phy_chans;
	struct stedma40_platform_data	 *plat_data;
	/* Physical half channels */
	struct d40_phy_res		 *phy_res;
	struct d40_lcla_pool		  lcla_pool;
	void				 *lcpa_base;
	dma_addr_t			  phy_lcpa;
	resource_size_t			  lcpa_size;
277
	struct kmem_cache		 *desc_slab;
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
};

/**
 * struct d40_interrupt_lookup - lookup table for interrupt handler
 *
 * @src: Interrupt mask register.
 * @clr: Interrupt clear register.
 * @is_error: true if this is an error interrupt.
 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
 */
struct d40_interrupt_lookup {
	u32 src;
	u32 clr;
	bool is_error;
	int offset;
};

/**
 * struct d40_reg_val - simple lookup struct
 *
 * @reg: The register.
 * @val: The value that belongs to the register in reg.
 */
struct d40_reg_val {
	unsigned int reg;
	unsigned int val;
};

307 308 309 310 311
static struct device *chan2dev(struct d40_chan *d40c)
{
	return &d40c->chan.dev->device;
}

312 313 314 315 316 317 318 319 320 321
static bool chan_is_physical(struct d40_chan *chan)
{
	return chan->log_num == D40_PHY_CHAN;
}

static bool chan_is_logical(struct d40_chan *chan)
{
	return !chan_is_physical(chan);
}

322 323 324 325 326 327
static void __iomem *chan_base(struct d40_chan *chan)
{
	return chan->base->virtbase + D40_DREG_PCBASE +
	       chan->phy_chan->num * D40_DREG_PCDELTA;
}

328 329 330 331 332 333
#define d40_err(dev, format, arg...)		\
	dev_err(dev, "[%s] " format, __func__, ## arg)

#define chan_err(d40c, format, arg...)		\
	d40_err(chan2dev(d40c), format, ## arg)

334
static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
			      int lli_len, bool is_log)
{
	u32 align;
	void *base;

	if (is_log)
		align = sizeof(struct d40_log_lli);
	else
		align = sizeof(struct d40_phy_lli);

	if (lli_len == 1) {
		base = d40d->lli_pool.pre_alloc_lli;
		d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
		d40d->lli_pool.base = NULL;
	} else {
350
		d40d->lli_pool.size = lli_len * 2 * align;
351 352 353 354 355 356 357 358 359 360 361

		base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
		d40d->lli_pool.base = base;

		if (d40d->lli_pool.base == NULL)
			return -ENOMEM;
	}

	if (is_log) {
		d40d->lli_log.src = PTR_ALIGN((struct d40_log_lli *) base,
					      align);
362
		d40d->lli_log.dst = d40d->lli_log.src + lli_len;
363 364

		d40d->lli_pool.dma_addr = 0;
365 366 367
	} else {
		d40d->lli_phy.src = PTR_ALIGN((struct d40_phy_lli *)base,
					      align);
368
		d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
369 370 371 372 373 374 375 376 377 378 379 380 381

		d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
							 d40d->lli_phy.src,
							 d40d->lli_pool.size,
							 DMA_TO_DEVICE);

		if (dma_mapping_error(d40c->base->dev,
				      d40d->lli_pool.dma_addr)) {
			kfree(d40d->lli_pool.base);
			d40d->lli_pool.base = NULL;
			d40d->lli_pool.dma_addr = 0;
			return -ENOMEM;
		}
382 383 384 385 386
	}

	return 0;
}

387
static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
388
{
389 390 391 392
	if (d40d->lli_pool.dma_addr)
		dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
				 d40d->lli_pool.size, DMA_TO_DEVICE);

393 394 395 396 397 398 399 400 401
	kfree(d40d->lli_pool.base);
	d40d->lli_pool.base = NULL;
	d40d->lli_pool.size = 0;
	d40d->lli_log.src = NULL;
	d40d->lli_log.dst = NULL;
	d40d->lli_phy.src = NULL;
	d40d->lli_phy.dst = NULL;
}

402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
static int d40_lcla_alloc_one(struct d40_chan *d40c,
			      struct d40_desc *d40d)
{
	unsigned long flags;
	int i;
	int ret = -EINVAL;
	int p;

	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);

	p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;

	/*
	 * Allocate both src and dst at the same time, therefore the half
	 * start on 1 since 0 can't be used since zero is used as end marker.
	 */
	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
		if (!d40c->base->lcla_pool.alloc_map[p + i]) {
			d40c->base->lcla_pool.alloc_map[p + i] = d40d;
			d40d->lcla_alloc++;
			ret = i;
			break;
		}
	}

	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);

	return ret;
}

static int d40_lcla_free_all(struct d40_chan *d40c,
			     struct d40_desc *d40d)
{
	unsigned long flags;
	int i;
	int ret = -EINVAL;

439
	if (chan_is_physical(d40c))
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
		return 0;

	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);

	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
		if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
						    D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
			d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
							D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
			d40d->lcla_alloc--;
			if (d40d->lcla_alloc == 0) {
				ret = 0;
				break;
			}
		}
	}

	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);

	return ret;

}

463 464 465 466 467 468 469
static void d40_desc_remove(struct d40_desc *d40d)
{
	list_del(&d40d->node);
}

static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
{
R
Rabin Vincent 已提交
470
	struct d40_desc *desc = NULL;
471 472

	if (!list_empty(&d40c->client)) {
R
Rabin Vincent 已提交
473 474 475
		struct d40_desc *d;
		struct d40_desc *_d;

476 477
		list_for_each_entry_safe(d, _d, &d40c->client, node)
			if (async_tx_test_ack(&d->txd)) {
478
				d40_pool_lli_free(d40c, d);
479
				d40_desc_remove(d);
R
Rabin Vincent 已提交
480 481
				desc = d;
				memset(desc, 0, sizeof(*desc));
482
				break;
483 484
			}
	}
R
Rabin Vincent 已提交
485 486 487 488 489 490 491 492

	if (!desc)
		desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);

	if (desc)
		INIT_LIST_HEAD(&desc->node);

	return desc;
493 494 495 496
}

static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
{
497

498
	d40_pool_lli_free(d40c, d40d);
499
	d40_lcla_free_all(d40c, d40d);
500
	kmem_cache_free(d40c->base->desc_slab, d40d);
501 502 503 504 505 506 507
}

static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
{
	list_add_tail(&desc->node, &d40c->active);
}

508 509 510 511
static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
{
	int curr_lcla = -EINVAL, next_lcla;

512
	if (chan_is_physical(d40c)) {
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
		d40_phy_lli_write(d40c->base->virtbase,
				  d40c->phy_chan->num,
				  d40d->lli_phy.dst,
				  d40d->lli_phy.src);
		d40d->lli_current = d40d->lli_len;
	} else {

		if ((d40d->lli_len - d40d->lli_current) > 1)
			curr_lcla = d40_lcla_alloc_one(d40c, d40d);

		d40_log_lli_lcpa_write(d40c->lcpa,
				       &d40d->lli_log.dst[d40d->lli_current],
				       &d40d->lli_log.src[d40d->lli_current],
				       curr_lcla);

		d40d->lli_current++;
		for (; d40d->lli_current < d40d->lli_len; d40d->lli_current++) {
530 531 532 533
			unsigned int lcla_offset = d40c->phy_chan->num * 1024 +
						   8 * curr_lcla * 2;
			struct d40_lcla_pool *pool = &d40c->base->lcla_pool;
			struct d40_log_lli *lcla = pool->base + lcla_offset;
534 535 536 537 538 539 540 541 542 543 544

			if (d40d->lli_current + 1 < d40d->lli_len)
				next_lcla = d40_lcla_alloc_one(d40c, d40d);
			else
				next_lcla = -EINVAL;

			d40_log_lli_lcla_write(lcla,
					       &d40d->lli_log.dst[d40d->lli_current],
					       &d40d->lli_log.src[d40d->lli_current],
					       next_lcla);

545 546 547 548
			dma_sync_single_range_for_device(d40c->base->dev,
						pool->dma_addr, lcla_offset,
						2 * sizeof(struct d40_log_lli),
						DMA_TO_DEVICE);
549 550 551 552 553 554 555 556 557 558 559 560

			curr_lcla = next_lcla;

			if (curr_lcla == -EINVAL) {
				d40d->lli_current++;
				break;
			}

		}
	}
}

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
{
	struct d40_desc *d;

	if (list_empty(&d40c->active))
		return NULL;

	d = list_first_entry(&d40c->active,
			     struct d40_desc,
			     node);
	return d;
}

static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
{
	list_add_tail(&desc->node, &d40c->queue);
}

static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
{
	struct d40_desc *d;

	if (list_empty(&d40c->queue))
		return NULL;

	d = list_first_entry(&d40c->queue,
			     struct d40_desc,
			     node);
	return d;
}

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
static int d40_psize_2_burst_size(bool is_log, int psize)
{
	if (is_log) {
		if (psize == STEDMA40_PSIZE_LOG_1)
			return 1;
	} else {
		if (psize == STEDMA40_PSIZE_PHY_1)
			return 1;
	}

	return 2 << psize;
}

/*
 * The dma only supports transmitting packages up to
 * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
 * dma elements required to send the entire sg list
 */
static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
{
	int dmalen;
	u32 max_w = max(data_width1, data_width2);
	u32 min_w = min(data_width1, data_width2);
	u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);

	if (seg_max > STEDMA40_MAX_SEG_SIZE)
		seg_max -= (1 << max_w);

	if (!IS_ALIGNED(size, 1 << max_w))
		return -EINVAL;

	if (size <= seg_max)
		dmalen = 1;
	else {
		dmalen = size / seg_max;
		if (dmalen * seg_max < size)
			dmalen++;
	}
	return dmalen;
}

static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
			   u32 data_width1, u32 data_width2)
{
	struct scatterlist *sg;
	int i;
	int len = 0;
	int ret;

	for_each_sg(sgl, sg, sg_len, i) {
		ret = d40_size_2_dmalen(sg_dma_len(sg),
					data_width1, data_width2);
		if (ret < 0)
			return ret;
		len += ret;
	}
	return len;
}
650

651
/* Support functions for logical channels */
652 653 654 655

static int d40_channel_execute_command(struct d40_chan *d40c,
				       enum d40_command command)
{
656 657
	u32 status;
	int i;
658 659 660
	void __iomem *active_reg;
	int ret = 0;
	unsigned long flags;
661
	u32 wmask;
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678

	spin_lock_irqsave(&d40c->base->execmd_lock, flags);

	if (d40c->phy_chan->num % 2 == 0)
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
	else
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;

	if (command == D40_DMA_SUSPEND_REQ) {
		status = (readl(active_reg) &
			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
			D40_CHAN_POS(d40c->phy_chan->num);

		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
			goto done;
	}

679 680 681
	wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
	writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
	       active_reg);
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702

	if (command == D40_DMA_SUSPEND_REQ) {

		for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
			status = (readl(active_reg) &
				  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
				D40_CHAN_POS(d40c->phy_chan->num);

			cpu_relax();
			/*
			 * Reduce the number of bus accesses while
			 * waiting for the DMA to suspend.
			 */
			udelay(3);

			if (status == D40_DMA_STOP ||
			    status == D40_DMA_SUSPENDED)
				break;
		}

		if (i == D40_SUSPEND_MAX_IT) {
703 704 705
			chan_err(d40c,
				"unable to suspend the chl %d (log: %d) status %x\n",
				d40c->phy_chan->num, d40c->log_num,
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
				status);
			dump_stack();
			ret = -EBUSY;
		}

	}
done:
	spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
	return ret;
}

static void d40_term_all(struct d40_chan *d40c)
{
	struct d40_desc *d40d;

	/* Release active descriptors */
	while ((d40d = d40_first_active_get(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}

	/* Release queued descriptors waiting for transfer */
	while ((d40d = d40_first_queued(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}


	d40c->pending_tx = 0;
	d40c->busy = false;
}

738 739 740
static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
				   u32 event, int reg)
{
741
	void __iomem *addr = chan_base(d40c) + reg;
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
	int tries;

	if (!enable) {
		writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
		       | ~D40_EVENTLINE_MASK(event), addr);
		return;
	}

	/*
	 * The hardware sometimes doesn't register the enable when src and dst
	 * event lines are active on the same logical channel.  Retry to ensure
	 * it does.  Usually only one retry is sufficient.
	 */
	tries = 100;
	while (--tries) {
		writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
		       | ~D40_EVENTLINE_MASK(event), addr);

		if (readl(addr) & D40_EVENTLINE_MASK(event))
			break;
	}

	if (tries != 99)
		dev_dbg(chan2dev(d40c),
			"[%s] workaround enable S%cLNK (%d tries)\n",
			__func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
			100 - tries);

	WARN_ON(!tries);
}

773 774 775 776 777 778 779 780 781 782 783
static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
{
	unsigned long flags;

	spin_lock_irqsave(&d40c->phy_chan->lock, flags);

	/* Enable event line connected to device (or memcpy) */
	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);

784 785
		__d40_config_set_event(d40c, do_enable, event,
				       D40_CHAN_REG_SSLNK);
786
	}
787

788 789 790
	if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM) {
		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);

791 792
		__d40_config_set_event(d40c, do_enable, event,
				       D40_CHAN_REG_SDLNK);
793 794 795 796 797
	}

	spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
}

798
static u32 d40_chan_has_events(struct d40_chan *d40c)
799
{
800
	void __iomem *chanbase = chan_base(d40c);
801
	u32 val;
802

803 804
	val = readl(chanbase + D40_CHAN_REG_SSLNK);
	val |= readl(chanbase + D40_CHAN_REG_SDLNK);
805

806
	return val;
807 808
}

809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
static u32 d40_get_prmo(struct d40_chan *d40c)
{
	static const unsigned int phy_map[] = {
		[STEDMA40_PCHAN_BASIC_MODE]
			= D40_DREG_PRMO_PCHAN_BASIC,
		[STEDMA40_PCHAN_MODULO_MODE]
			= D40_DREG_PRMO_PCHAN_MODULO,
		[STEDMA40_PCHAN_DOUBLE_DST_MODE]
			= D40_DREG_PRMO_PCHAN_DOUBLE_DST,
	};
	static const unsigned int log_map[] = {
		[STEDMA40_LCHAN_SRC_PHY_DST_LOG]
			= D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
		[STEDMA40_LCHAN_SRC_LOG_DST_PHY]
			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
		[STEDMA40_LCHAN_SRC_LOG_DST_LOG]
			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
	};

828
	if (chan_is_physical(d40c))
829 830 831 832 833
		return phy_map[d40c->dma_cfg.mode_opt];
	else
		return log_map[d40c->dma_cfg.mode_opt];
}

834
static void d40_config_write(struct d40_chan *d40c)
835 836 837 838 839 840 841
{
	u32 addr_base;
	u32 var;

	/* Odd addresses are even addresses + 4 */
	addr_base = (d40c->phy_chan->num % 2) * 4;
	/* Setup channel mode to logical or physical */
842
	var = ((u32)(chan_is_logical(d40c)) + 1) <<
843 844 845 846
		D40_CHAN_POS(d40c->phy_chan->num);
	writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);

	/* Setup operational mode option register */
847
	var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
848 849 850

	writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);

851
	if (chan_is_logical(d40c)) {
852 853 854 855
		int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
			   & D40_SREG_ELEM_LOG_LIDX_MASK;
		void __iomem *chanbase = chan_base(d40c);

856
		/* Set default config for CFG reg */
857 858
		writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
		writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
859

860
		/* Set LIDX for lcla */
861 862
		writel(lidx, chanbase + D40_CHAN_REG_SSELT);
		writel(lidx, chanbase + D40_CHAN_REG_SDELT);
863 864 865
	}
}

866 867 868 869
static u32 d40_residue(struct d40_chan *d40c)
{
	u32 num_elt;

870
	if (chan_is_logical(d40c))
871 872
		num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
			>> D40_MEM_LCSP2_ECNT_POS;
873 874 875 876 877 878
	else {
		u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
		num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
			  >> D40_SREG_ELEM_PHY_ECNT_POS;
	}

879 880 881 882 883 884 885
	return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
}

static bool d40_tx_is_linked(struct d40_chan *d40c)
{
	bool is_link;

886
	if (chan_is_logical(d40c))
887 888
		is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
	else
889 890 891
		is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
			  & D40_SREG_LNK_PHYS_LNK_MASK;

892 893 894 895 896 897 898 899 900 901
	return is_link;
}

static int d40_pause(struct dma_chan *chan)
{
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	int res = 0;
	unsigned long flags;

902 903 904
	if (!d40c->busy)
		return 0;

905 906 907 908
	spin_lock_irqsave(&d40c->lock, flags);

	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
	if (res == 0) {
909
		if (chan_is_logical(d40c)) {
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
			d40_config_set_event(d40c, false);
			/* Resume the other logical channels if any */
			if (d40_chan_has_events(d40c))
				res = d40_channel_execute_command(d40c,
								  D40_DMA_RUN);
		}
	}

	spin_unlock_irqrestore(&d40c->lock, flags);
	return res;
}

static int d40_resume(struct dma_chan *chan)
{
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	int res = 0;
	unsigned long flags;

929 930 931
	if (!d40c->busy)
		return 0;

932 933 934
	spin_lock_irqsave(&d40c->lock, flags);

	if (d40c->base->rev == 0)
935
		if (chan_is_logical(d40c)) {
936 937 938 939 940 941 942 943
			res = d40_channel_execute_command(d40c,
							  D40_DMA_SUSPEND_REQ);
			goto no_suspend;
		}

	/* If bytes left to transfer or linked tx resume job */
	if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {

944
		if (chan_is_logical(d40c))
945 946 947 948 949 950 951 952 953 954
			d40_config_set_event(d40c, true);

		res = d40_channel_execute_command(d40c, D40_DMA_RUN);
	}

no_suspend:
	spin_unlock_irqrestore(&d40c->lock, flags);
	return res;
}

955 956 957 958 959 960 961 962 963 964
static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
{
	struct d40_chan *d40c = container_of(tx->chan,
					     struct d40_chan,
					     chan);
	struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
	unsigned long flags;

	spin_lock_irqsave(&d40c->lock, flags);

965 966 967 968 969 970 971
	d40c->chan.cookie++;

	if (d40c->chan.cookie < 0)
		d40c->chan.cookie = 1;

	d40d->txd.cookie = d40c->chan.cookie;

972 973 974 975 976 977 978 979 980
	d40_desc_queue(d40c, d40d);

	spin_unlock_irqrestore(&d40c->lock, flags);

	return tx->cookie;
}

static int d40_start(struct d40_chan *d40c)
{
981 982 983
	if (d40c->base->rev == 0) {
		int err;

984
		if (chan_is_logical(d40c)) {
985 986 987 988 989 990 991
			err = d40_channel_execute_command(d40c,
							  D40_DMA_SUSPEND_REQ);
			if (err)
				return err;
		}
	}

992
	if (chan_is_logical(d40c))
993 994
		d40_config_set_event(d40c, true);

995
	return d40_channel_execute_command(d40c, D40_DMA_RUN);
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
}

static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
{
	struct d40_desc *d40d;
	int err;

	/* Start queued jobs, if any */
	d40d = d40_first_queued(d40c);

	if (d40d != NULL) {
		d40c->busy = true;

		/* Remove from queue */
		d40_desc_remove(d40d);

		/* Add to active queue */
		d40_desc_submit(d40c, d40d);

1015 1016
		/* Initiate DMA job */
		d40_desc_load(d40c, d40d);
1017

1018 1019
		/* Start dma job */
		err = d40_start(d40c);
1020

1021 1022
		if (err)
			return NULL;
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
	}

	return d40d;
}

/* called from interrupt context */
static void dma_tc_handle(struct d40_chan *d40c)
{
	struct d40_desc *d40d;

	/* Get first active entry from list */
	d40d = d40_first_active_get(d40c);

	if (d40d == NULL)
		return;

1039
	d40_lcla_free_all(d40c, d40d);
1040

1041
	if (d40d->lli_current < d40d->lli_len) {
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
		d40_desc_load(d40c, d40d);
		/* Start dma job */
		(void) d40_start(d40c);
		return;
	}

	if (d40_queue_start(d40c) == NULL)
		d40c->busy = false;

	d40c->pending_tx++;
	tasklet_schedule(&d40c->tasklet);

}

static void dma_tasklet(unsigned long data)
{
	struct d40_chan *d40c = (struct d40_chan *) data;
1059
	struct d40_desc *d40d;
1060 1061 1062 1063 1064 1065 1066
	unsigned long flags;
	dma_async_tx_callback callback;
	void *callback_param;

	spin_lock_irqsave(&d40c->lock, flags);

	/* Get first active entry from list */
1067
	d40d = d40_first_active_get(d40c);
1068

1069
	if (d40d == NULL)
1070 1071
		goto err;

1072
	d40c->completed = d40d->txd.cookie;
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083

	/*
	 * If terminating a channel pending_tx is set to zero.
	 * This prevents any finished active jobs to return to the client.
	 */
	if (d40c->pending_tx == 0) {
		spin_unlock_irqrestore(&d40c->lock, flags);
		return;
	}

	/* Callback to client */
1084 1085 1086 1087
	callback = d40d->txd.callback;
	callback_param = d40d->txd.callback_param;

	if (async_tx_test_ack(&d40d->txd)) {
1088
		d40_pool_lli_free(d40c, d40d);
1089 1090
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
1091
	} else {
1092 1093
		if (!d40d->is_in_client_list) {
			d40_desc_remove(d40d);
1094
			d40_lcla_free_all(d40c, d40d);
1095 1096
			list_add_tail(&d40d->node, &d40c->client);
			d40d->is_in_client_list = true;
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
		}
	}

	d40c->pending_tx--;

	if (d40c->pending_tx)
		tasklet_schedule(&d40c->tasklet);

	spin_unlock_irqrestore(&d40c->lock, flags);

1107
	if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
		callback(callback_param);

	return;

 err:
	/* Rescue manouver if receiving double interrupts */
	if (d40c->pending_tx > 0)
		d40c->pending_tx--;
	spin_unlock_irqrestore(&d40c->lock, flags);
}

static irqreturn_t d40_handle_interrupt(int irq, void *data)
{
	static const struct d40_interrupt_lookup il[] = {
		{D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
		{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
		{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
		{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
		{D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
		{D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
		{D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
		{D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
		{D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
		{D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
	};

	int i;
	u32 regs[ARRAY_SIZE(il)];
	u32 idx;
	u32 row;
	long chan = -1;
	struct d40_chan *d40c;
	unsigned long flags;
	struct d40_base *base = data;

	spin_lock_irqsave(&base->interrupt_lock, flags);

	/* Read interrupt status of both logical and physical channels */
	for (i = 0; i < ARRAY_SIZE(il); i++)
		regs[i] = readl(base->virtbase + il[i].src);

	for (;;) {

		chan = find_next_bit((unsigned long *)regs,
				     BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);

		/* No more set bits found? */
		if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
			break;

		row = chan / BITS_PER_LONG;
		idx = chan & (BITS_PER_LONG - 1);

		/* ACK interrupt */
1162
		writel(1 << idx, base->virtbase + il[row].clr);
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172

		if (il[row].offset == D40_PHY_CHAN)
			d40c = base->lookup_phy_chans[idx];
		else
			d40c = base->lookup_log_chans[il[row].offset + idx];
		spin_lock(&d40c->lock);

		if (!il[row].is_error)
			dma_tc_handle(d40c);
		else
1173 1174
			d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
				chan, il[row].offset, idx);
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189

		spin_unlock(&d40c->lock);
	}

	spin_unlock_irqrestore(&base->interrupt_lock, flags);

	return IRQ_HANDLED;
}

static int d40_validate_conf(struct d40_chan *d40c,
			     struct stedma40_chan_cfg *conf)
{
	int res = 0;
	u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
	u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
1190
	bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1191

1192
	if (!conf->dir) {
1193
		chan_err(d40c, "Invalid direction.\n");
1194 1195 1196 1197 1198 1199 1200
		res = -EINVAL;
	}

	if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
	    d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
	    d40c->runtime_addr == 0) {

1201 1202
		chan_err(d40c, "Invalid TX channel address (%d)\n",
			 conf->dst_dev_type);
1203 1204 1205 1206 1207 1208
		res = -EINVAL;
	}

	if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
	    d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
	    d40c->runtime_addr == 0) {
1209 1210
		chan_err(d40c, "Invalid RX channel address (%d)\n",
			conf->src_dev_type);
1211 1212 1213 1214
		res = -EINVAL;
	}

	if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1215
	    dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1216
		chan_err(d40c, "Invalid dst\n");
1217 1218 1219
		res = -EINVAL;
	}

1220
	if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1221
	    src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1222
		chan_err(d40c, "Invalid src\n");
1223 1224 1225 1226 1227
		res = -EINVAL;
	}

	if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
	    dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1228
		chan_err(d40c, "No event line\n");
1229 1230 1231 1232 1233
		res = -EINVAL;
	}

	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
	    (src_event_group != dst_event_group)) {
1234
		chan_err(d40c, "Invalid event group\n");
1235 1236 1237 1238 1239 1240 1241 1242
		res = -EINVAL;
	}

	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
		/*
		 * DMAC HW supports it. Will be added to this driver,
		 * in case any dma client requires it.
		 */
1243
		chan_err(d40c, "periph to periph not supported\n");
1244 1245 1246
		res = -EINVAL;
	}

1247 1248 1249 1250 1251 1252 1253 1254 1255
	if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
	    (1 << conf->src_info.data_width) !=
	    d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
	    (1 << conf->dst_info.data_width)) {
		/*
		 * The DMAC hardware only supports
		 * src (burst x width) == dst (burst x width)
		 */

1256
		chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1257 1258 1259
		res = -EINVAL;
	}

1260 1261 1262 1263
	return res;
}

static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
1264
			       int log_event_line, bool is_log)
1265 1266 1267
{
	unsigned long flags;
	spin_lock_irqsave(&phy->lock, flags);
1268
	if (!is_log) {
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
		/* Physical interrupts are masked per physical full channel */
		if (phy->allocated_src == D40_ALLOC_FREE &&
		    phy->allocated_dst == D40_ALLOC_FREE) {
			phy->allocated_dst = D40_ALLOC_PHY;
			phy->allocated_src = D40_ALLOC_PHY;
			goto found;
		} else
			goto not_found;
	}

	/* Logical channel */
	if (is_src) {
		if (phy->allocated_src == D40_ALLOC_PHY)
			goto not_found;

		if (phy->allocated_src == D40_ALLOC_FREE)
			phy->allocated_src = D40_ALLOC_LOG_FREE;

		if (!(phy->allocated_src & (1 << log_event_line))) {
			phy->allocated_src |= 1 << log_event_line;
			goto found;
		} else
			goto not_found;
	} else {
		if (phy->allocated_dst == D40_ALLOC_PHY)
			goto not_found;

		if (phy->allocated_dst == D40_ALLOC_FREE)
			phy->allocated_dst = D40_ALLOC_LOG_FREE;

		if (!(phy->allocated_dst & (1 << log_event_line))) {
			phy->allocated_dst |= 1 << log_event_line;
			goto found;
		} else
			goto not_found;
	}

not_found:
	spin_unlock_irqrestore(&phy->lock, flags);
	return false;
found:
	spin_unlock_irqrestore(&phy->lock, flags);
	return true;
}

static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
			       int log_event_line)
{
	unsigned long flags;
	bool is_free = false;

	spin_lock_irqsave(&phy->lock, flags);
	if (!log_event_line) {
		phy->allocated_dst = D40_ALLOC_FREE;
		phy->allocated_src = D40_ALLOC_FREE;
		is_free = true;
		goto out;
	}

	/* Logical channel */
	if (is_src) {
		phy->allocated_src &= ~(1 << log_event_line);
		if (phy->allocated_src == D40_ALLOC_LOG_FREE)
			phy->allocated_src = D40_ALLOC_FREE;
	} else {
		phy->allocated_dst &= ~(1 << log_event_line);
		if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
			phy->allocated_dst = D40_ALLOC_FREE;
	}

	is_free = ((phy->allocated_src | phy->allocated_dst) ==
		   D40_ALLOC_FREE);

out:
	spin_unlock_irqrestore(&phy->lock, flags);

	return is_free;
}

static int d40_allocate_channel(struct d40_chan *d40c)
{
	int dev_type;
	int event_group;
	int event_line;
	struct d40_phy_res *phys;
	int i;
	int j;
	int log_num;
	bool is_src;
1358
	bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382

	phys = d40c->base->phy_res;

	if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
		dev_type = d40c->dma_cfg.src_dev_type;
		log_num = 2 * dev_type;
		is_src = true;
	} else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
		   d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
		/* dst event lines are used for logical memcpy */
		dev_type = d40c->dma_cfg.dst_dev_type;
		log_num = 2 * dev_type + 1;
		is_src = false;
	} else
		return -EINVAL;

	event_group = D40_TYPE_TO_GROUP(dev_type);
	event_line = D40_TYPE_TO_EVENT(dev_type);

	if (!is_log) {
		if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
			/* Find physical half channel */
			for (i = 0; i < d40c->base->num_phy_chans; i++) {

1383 1384
				if (d40_alloc_mask_set(&phys[i], is_src,
						       0, is_log))
1385 1386 1387 1388 1389 1390
					goto found_phy;
			}
		} else
			for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
				int phy_num = j  + event_group * 2;
				for (i = phy_num; i < phy_num + 2; i++) {
1391 1392 1393 1394
					if (d40_alloc_mask_set(&phys[i],
							       is_src,
							       0,
							       is_log))
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
						goto found_phy;
				}
			}
		return -EINVAL;
found_phy:
		d40c->phy_chan = &phys[i];
		d40c->log_num = D40_PHY_CHAN;
		goto out;
	}
	if (dev_type == -1)
		return -EINVAL;

	/* Find logical channel */
	for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
		int phy_num = j + event_group * 2;
		/*
		 * Spread logical channels across all available physical rather
		 * than pack every logical channel at the first available phy
		 * channels.
		 */
		if (is_src) {
			for (i = phy_num; i < phy_num + 2; i++) {
				if (d40_alloc_mask_set(&phys[i], is_src,
1418
						       event_line, is_log))
1419 1420 1421 1422 1423
					goto found_log;
			}
		} else {
			for (i = phy_num + 1; i >= phy_num; i--) {
				if (d40_alloc_mask_set(&phys[i], is_src,
1424
						       event_line, is_log))
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
					goto found_log;
			}
		}
	}
	return -EINVAL;

found_log:
	d40c->phy_chan = &phys[i];
	d40c->log_num = log_num;
out:

	if (is_log)
		d40c->base->lookup_log_chans[d40c->log_num] = d40c;
	else
		d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;

	return 0;

}

static int d40_config_memcpy(struct d40_chan *d40c)
{
	dma_cap_mask_t cap = d40c->chan.device->cap_mask;

	if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
		d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
		d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
			memcpy[d40c->chan.chan_id];

	} else if (dma_has_cap(DMA_MEMCPY, cap) &&
		   dma_has_cap(DMA_SLAVE, cap)) {
		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
	} else {
1459
		chan_err(d40c, "No memcpy\n");
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
		return -EINVAL;
	}

	return 0;
}


static int d40_free_dma(struct d40_chan *d40c)
{

	int res = 0;
1471
	u32 event;
1472 1473
	struct d40_phy_res *phy = d40c->phy_chan;
	bool is_src;
1474 1475 1476
	struct d40_desc *d;
	struct d40_desc *_d;

1477 1478 1479 1480

	/* Terminate all queued and active transfers */
	d40_term_all(d40c);

1481 1482 1483
	/* Release client owned descriptors */
	if (!list_empty(&d40c->client))
		list_for_each_entry_safe(d, _d, &d40c->client, node) {
1484
			d40_pool_lli_free(d40c, d);
1485 1486 1487 1488
			d40_desc_remove(d);
			d40_desc_free(d40c, d);
		}

1489
	if (phy == NULL) {
1490
		chan_err(d40c, "phy == null\n");
1491 1492 1493 1494 1495
		return -EINVAL;
	}

	if (phy->allocated_src == D40_ALLOC_FREE &&
	    phy->allocated_dst == D40_ALLOC_FREE) {
1496
		chan_err(d40c, "channel already free\n");
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
		return -EINVAL;
	}

	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
		is_src = false;
	} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
		is_src = true;
	} else {
1508
		chan_err(d40c, "Unknown direction\n");
1509 1510 1511
		return -EINVAL;
	}

1512 1513
	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
	if (res) {
1514
		chan_err(d40c, "suspend failed\n");
1515 1516 1517
		return res;
	}

1518
	if (chan_is_logical(d40c)) {
1519
		/* Release logical channel, deactivate the event line */
1520

1521
		d40_config_set_event(d40c, false);
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
		d40c->base->lookup_log_chans[d40c->log_num] = NULL;

		/*
		 * Check if there are more logical allocation
		 * on this phy channel.
		 */
		if (!d40_alloc_mask_free(phy, is_src, event)) {
			/* Resume the other logical channels if any */
			if (d40_chan_has_events(d40c)) {
				res = d40_channel_execute_command(d40c,
								  D40_DMA_RUN);
				if (res) {
1534 1535
					chan_err(d40c,
						"Executing RUN command\n");
1536 1537 1538 1539 1540
					return res;
				}
			}
			return 0;
		}
1541 1542 1543
	} else {
		(void) d40_alloc_mask_free(phy, is_src, 0);
	}
1544 1545 1546 1547

	/* Release physical channel */
	res = d40_channel_execute_command(d40c, D40_DMA_STOP);
	if (res) {
1548
		chan_err(d40c, "Failed to stop channel\n");
1549 1550 1551
		return res;
	}
	d40c->phy_chan = NULL;
1552
	d40c->configured = false;
1553 1554 1555 1556 1557
	d40c->base->lookup_phy_chans[phy->num] = NULL;

	return 0;
}

1558 1559
static bool d40_is_paused(struct d40_chan *d40c)
{
1560
	void __iomem *chanbase = chan_base(d40c);
1561 1562 1563 1564 1565 1566 1567 1568
	bool is_paused = false;
	unsigned long flags;
	void __iomem *active_reg;
	u32 status;
	u32 event;

	spin_lock_irqsave(&d40c->lock, flags);

1569
	if (chan_is_physical(d40c)) {
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
		if (d40c->phy_chan->num % 2 == 0)
			active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
		else
			active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;

		status = (readl(active_reg) &
			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
			D40_CHAN_POS(d40c->phy_chan->num);
		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
			is_paused = true;

		goto _exit;
	}

	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1585
	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1586
		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1587
		status = readl(chanbase + D40_CHAN_REG_SDLNK);
1588
	} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1589
		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1590
		status = readl(chanbase + D40_CHAN_REG_SSLNK);
1591
	} else {
1592
		chan_err(d40c, "Unknown direction\n");
1593 1594
		goto _exit;
	}
1595

1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
	status = (status & D40_EVENTLINE_MASK(event)) >>
		D40_EVENTLINE_POS(event);

	if (status != D40_DMA_RUN)
		is_paused = true;
_exit:
	spin_unlock_irqrestore(&d40c->lock, flags);
	return is_paused;

}


1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
static u32 stedma40_residue(struct dma_chan *chan)
{
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	u32 bytes_left;
	unsigned long flags;

	spin_lock_irqsave(&d40c->lock, flags);
	bytes_left = d40_residue(d40c);
	spin_unlock_irqrestore(&d40c->lock, flags);

	return bytes_left;
}

struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
						   struct scatterlist *sgl_dst,
						   struct scatterlist *sgl_src,
						   unsigned int sgl_len,
1626
						   unsigned long dma_flags)
1627 1628 1629 1630 1631
{
	int res;
	struct d40_desc *d40d;
	struct d40_chan *d40c = container_of(chan, struct d40_chan,
					     chan);
1632
	unsigned long flags;
1633

1634
	if (d40c->phy_chan == NULL) {
1635
		chan_err(d40c, "Unallocated channel.\n");
1636 1637 1638
		return ERR_PTR(-EINVAL);
	}

1639
	spin_lock_irqsave(&d40c->lock, flags);
1640 1641 1642 1643 1644
	d40d = d40_desc_get(d40c);

	if (d40d == NULL)
		goto err;

1645 1646 1647 1648
	d40d->lli_len = d40_sg_2_dmalen(sgl_dst, sgl_len,
					d40c->dma_cfg.src_info.data_width,
					d40c->dma_cfg.dst_info.data_width);
	if (d40d->lli_len < 0) {
1649
		chan_err(d40c, "Unaligned size\n");
1650 1651 1652
		goto err;
	}

1653
	d40d->lli_current = 0;
1654
	d40d->txd.flags = dma_flags;
1655

1656
	if (chan_is_logical(d40c)) {
1657

1658
		if (d40_pool_lli_alloc(d40c, d40d, d40d->lli_len, true) < 0) {
1659
			chan_err(d40c, "Out of memory\n");
1660 1661 1662
			goto err;
		}

1663
		(void) d40_log_sg_to_lli(sgl_src,
1664 1665 1666
					 sgl_len,
					 d40d->lli_log.src,
					 d40c->log_def.lcsp1,
1667 1668
					 d40c->dma_cfg.src_info.data_width,
					 d40c->dma_cfg.dst_info.data_width);
1669

1670
		(void) d40_log_sg_to_lli(sgl_dst,
1671 1672 1673
					 sgl_len,
					 d40d->lli_log.dst,
					 d40c->log_def.lcsp3,
1674 1675
					 d40c->dma_cfg.dst_info.data_width,
					 d40c->dma_cfg.src_info.data_width);
1676
	} else {
1677
		if (d40_pool_lli_alloc(d40c, d40d, d40d->lli_len, false) < 0) {
1678
			chan_err(d40c, "Out of memory\n");
1679 1680 1681 1682 1683 1684 1685
			goto err;
		}

		res = d40_phy_sg_to_lli(sgl_src,
					sgl_len,
					0,
					d40d->lli_phy.src,
1686
					virt_to_phys(d40d->lli_phy.src),
1687 1688
					d40c->src_def_cfg,
					d40c->dma_cfg.src_info.data_width,
1689
					d40c->dma_cfg.dst_info.data_width,
1690
					d40c->dma_cfg.src_info.psize);
1691 1692 1693 1694 1695 1696 1697 1698

		if (res < 0)
			goto err;

		res = d40_phy_sg_to_lli(sgl_dst,
					sgl_len,
					0,
					d40d->lli_phy.dst,
1699
					virt_to_phys(d40d->lli_phy.dst),
1700 1701
					d40c->dst_def_cfg,
					d40c->dma_cfg.dst_info.data_width,
1702
					d40c->dma_cfg.src_info.data_width,
1703
					d40c->dma_cfg.dst_info.psize);
1704 1705 1706 1707

		if (res < 0)
			goto err;

1708 1709 1710
		dma_sync_single_for_device(d40c->base->dev,
					   d40d->lli_pool.dma_addr,
					   d40d->lli_pool.size, DMA_TO_DEVICE);
1711 1712 1713 1714 1715 1716
	}

	dma_async_tx_descriptor_init(&d40d->txd, chan);

	d40d->txd.tx_submit = d40_tx_submit;

1717
	spin_unlock_irqrestore(&d40c->lock, flags);
1718 1719 1720

	return &d40d->txd;
err:
1721 1722
	if (d40d)
		d40_desc_free(d40c, d40d);
1723
	spin_unlock_irqrestore(&d40c->lock, flags);
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
	return NULL;
}
EXPORT_SYMBOL(stedma40_memcpy_sg);

bool stedma40_filter(struct dma_chan *chan, void *data)
{
	struct stedma40_chan_cfg *info = data;
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	int err;

	if (data) {
		err = d40_validate_conf(d40c, info);
		if (!err)
			d40c->dma_cfg = *info;
	} else
		err = d40_config_memcpy(d40c);

1742 1743 1744
	if (!err)
		d40c->configured = true;

1745 1746 1747 1748
	return err == 0;
}
EXPORT_SYMBOL(stedma40_filter);

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
{
	bool realtime = d40c->dma_cfg.realtime;
	bool highprio = d40c->dma_cfg.high_priority;
	u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
	u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
	u32 event = D40_TYPE_TO_EVENT(dev_type);
	u32 group = D40_TYPE_TO_GROUP(dev_type);
	u32 bit = 1 << event;

	/* Destination event lines are stored in the upper halfword */
	if (!src)
		bit <<= 16;

	writel(bit, d40c->base->virtbase + prioreg + group * 4);
	writel(bit, d40c->base->virtbase + rtreg + group * 4);
}

static void d40_set_prio_realtime(struct d40_chan *d40c)
{
	if (d40c->base->rev < 3)
		return;

	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
		__d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);

	if ((d40c->dma_cfg.dir ==  STEDMA40_MEM_TO_PERIPH) ||
	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
		__d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
}

1781 1782 1783 1784 1785 1786 1787
/* DMA ENGINE functions */
static int d40_alloc_chan_resources(struct dma_chan *chan)
{
	int err;
	unsigned long flags;
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
1788
	bool is_free_phy;
1789 1790 1791 1792
	spin_lock_irqsave(&d40c->lock, flags);

	d40c->completed = chan->cookie = 1;

1793 1794
	/* If no dma configuration is set use default configuration (memcpy) */
	if (!d40c->configured) {
1795
		err = d40_config_memcpy(d40c);
1796
		if (err) {
1797
			chan_err(d40c, "Failed to configure memcpy channel\n");
1798 1799
			goto fail;
		}
1800
	}
1801
	is_free_phy = (d40c->phy_chan == NULL);
1802 1803 1804

	err = d40_allocate_channel(d40c);
	if (err) {
1805
		chan_err(d40c, "Failed to allocate channel\n");
1806
		goto fail;
1807 1808
	}

1809 1810
	/* Fill in basic CFG register values */
	d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
1811
		    &d40c->dst_def_cfg, chan_is_logical(d40c));
1812

1813 1814
	d40_set_prio_realtime(d40c);

1815
	if (chan_is_logical(d40c)) {
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
		d40_log_cfg(&d40c->dma_cfg,
			    &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);

		if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
			d40c->lcpa = d40c->base->lcpa_base +
			  d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
		else
			d40c->lcpa = d40c->base->lcpa_base +
			  d40c->dma_cfg.dst_dev_type *
			  D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
	}

	/*
	 * Only write channel configuration to the DMA if the physical
	 * resource is free. In case of multiple logical channels
	 * on the same physical resource, only the first write is necessary.
	 */
1833 1834
	if (is_free_phy)
		d40_config_write(d40c);
1835
fail:
1836
	spin_unlock_irqrestore(&d40c->lock, flags);
1837
	return err;
1838 1839 1840 1841 1842 1843 1844 1845 1846
}

static void d40_free_chan_resources(struct dma_chan *chan)
{
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	int err;
	unsigned long flags;

1847
	if (d40c->phy_chan == NULL) {
1848
		chan_err(d40c, "Cannot free unallocated channel\n");
1849 1850 1851 1852
		return;
	}


1853 1854 1855 1856 1857
	spin_lock_irqsave(&d40c->lock, flags);

	err = d40_free_dma(d40c);

	if (err)
1858
		chan_err(d40c, "Failed to free channel\n");
1859 1860 1861 1862 1863 1864 1865
	spin_unlock_irqrestore(&d40c->lock, flags);
}

static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
						       dma_addr_t dst,
						       dma_addr_t src,
						       size_t size,
1866
						       unsigned long dma_flags)
1867 1868 1869 1870
{
	struct d40_desc *d40d;
	struct d40_chan *d40c = container_of(chan, struct d40_chan,
					     chan);
1871
	unsigned long flags;
1872

1873
	if (d40c->phy_chan == NULL) {
1874
		chan_err(d40c, "Channel is not allocated.\n");
1875 1876 1877
		return ERR_PTR(-EINVAL);
	}

1878
	spin_lock_irqsave(&d40c->lock, flags);
1879 1880 1881
	d40d = d40_desc_get(d40c);

	if (d40d == NULL) {
1882
		chan_err(d40c, "Descriptor is NULL\n");
1883 1884 1885
		goto err;
	}

1886
	d40d->txd.flags = dma_flags;
1887 1888 1889 1890
	d40d->lli_len = d40_size_2_dmalen(size,
					  d40c->dma_cfg.src_info.data_width,
					  d40c->dma_cfg.dst_info.data_width);
	if (d40d->lli_len < 0) {
1891
		chan_err(d40c, "Unaligned size\n");
1892 1893 1894
		goto err;
	}

1895 1896 1897 1898 1899

	dma_async_tx_descriptor_init(&d40d->txd, chan);

	d40d->txd.tx_submit = d40_tx_submit;

1900
	if (chan_is_logical(d40c)) {
1901

1902
		if (d40_pool_lli_alloc(d40c,d40d, d40d->lli_len, true) < 0) {
1903
			chan_err(d40c, "Out of memory\n");
1904 1905
			goto err;
		}
1906
		d40d->lli_current = 0;
1907

1908 1909 1910 1911 1912 1913 1914 1915
		if (d40_log_buf_to_lli(d40d->lli_log.src,
				       src,
				       size,
				       d40c->log_def.lcsp1,
				       d40c->dma_cfg.src_info.data_width,
				       d40c->dma_cfg.dst_info.data_width,
				       true) == NULL)
			goto err;
1916

1917 1918 1919 1920 1921 1922 1923 1924
		if (d40_log_buf_to_lli(d40d->lli_log.dst,
				       dst,
				       size,
				       d40c->log_def.lcsp3,
				       d40c->dma_cfg.dst_info.data_width,
				       d40c->dma_cfg.src_info.data_width,
				       true) == NULL)
			goto err;
1925 1926 1927

	} else {

1928
		if (d40_pool_lli_alloc(d40c, d40d, d40d->lli_len, false) < 0) {
1929
			chan_err(d40c, "Out of memory\n");
1930 1931 1932
			goto err;
		}

1933
		if (d40_phy_buf_to_lli(d40d->lli_phy.src,
1934 1935 1936 1937 1938 1939 1940
				       src,
				       size,
				       d40c->dma_cfg.src_info.psize,
				       0,
				       d40c->src_def_cfg,
				       true,
				       d40c->dma_cfg.src_info.data_width,
1941 1942 1943
				       d40c->dma_cfg.dst_info.data_width,
				       false) == NULL)
			goto err;
1944

1945
		if (d40_phy_buf_to_lli(d40d->lli_phy.dst,
1946 1947 1948 1949 1950 1951 1952
				       dst,
				       size,
				       d40c->dma_cfg.dst_info.psize,
				       0,
				       d40c->dst_def_cfg,
				       true,
				       d40c->dma_cfg.dst_info.data_width,
1953 1954 1955
				       d40c->dma_cfg.src_info.data_width,
				       false) == NULL)
			goto err;
1956

1957 1958 1959
		dma_sync_single_for_device(d40c->base->dev,
					   d40d->lli_pool.dma_addr,
					   d40d->lli_pool.size, DMA_TO_DEVICE);
1960 1961
	}

1962
	spin_unlock_irqrestore(&d40c->lock, flags);
1963 1964 1965
	return &d40d->txd;

err:
1966 1967
	if (d40d)
		d40_desc_free(d40c, d40d);
1968
	spin_unlock_irqrestore(&d40c->lock, flags);
1969 1970 1971
	return NULL;
}

1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
static struct dma_async_tx_descriptor *
d40_prep_sg(struct dma_chan *chan,
	    struct scatterlist *dst_sg, unsigned int dst_nents,
	    struct scatterlist *src_sg, unsigned int src_nents,
	    unsigned long dma_flags)
{
	if (dst_nents != src_nents)
		return NULL;

	return stedma40_memcpy_sg(chan, dst_sg, src_sg, dst_nents, dma_flags);
}

1984 1985 1986 1987 1988
static int d40_prep_slave_sg_log(struct d40_desc *d40d,
				 struct d40_chan *d40c,
				 struct scatterlist *sgl,
				 unsigned int sg_len,
				 enum dma_data_direction direction,
1989
				 unsigned long dma_flags)
1990 1991 1992 1993
{
	dma_addr_t dev_addr = 0;
	int total_size;

1994 1995 1996 1997
	d40d->lli_len = d40_sg_2_dmalen(sgl, sg_len,
					d40c->dma_cfg.src_info.data_width,
					d40c->dma_cfg.dst_info.data_width);
	if (d40d->lli_len < 0) {
1998
		chan_err(d40c, "Unaligned size\n");
1999 2000 2001
		return -EINVAL;
	}

2002
	if (d40_pool_lli_alloc(d40c, d40d, d40d->lli_len, true) < 0) {
2003
		chan_err(d40c, "Out of memory\n");
2004 2005 2006
		return -ENOMEM;
	}

2007
	d40d->lli_current = 0;
2008

2009
	if (direction == DMA_FROM_DEVICE)
2010 2011 2012 2013
		if (d40c->runtime_addr)
			dev_addr = d40c->runtime_addr;
		else
			dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
2014
	else if (direction == DMA_TO_DEVICE)
2015 2016 2017 2018 2019
		if (d40c->runtime_addr)
			dev_addr = d40c->runtime_addr;
		else
			dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];

2020
	else
2021
		return -EINVAL;
2022

2023
	total_size = d40_log_sg_to_dev(sgl, sg_len,
2024 2025 2026 2027 2028
				       &d40d->lli_log,
				       &d40c->log_def,
				       d40c->dma_cfg.src_info.data_width,
				       d40c->dma_cfg.dst_info.data_width,
				       direction,
2029
				       dev_addr);
2030

2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
	if (total_size < 0)
		return -EINVAL;

	return 0;
}

static int d40_prep_slave_sg_phy(struct d40_desc *d40d,
				 struct d40_chan *d40c,
				 struct scatterlist *sgl,
				 unsigned int sgl_len,
				 enum dma_data_direction direction,
2042
				 unsigned long dma_flags)
2043 2044 2045 2046 2047
{
	dma_addr_t src_dev_addr;
	dma_addr_t dst_dev_addr;
	int res;

2048 2049 2050 2051
	d40d->lli_len = d40_sg_2_dmalen(sgl, sgl_len,
					d40c->dma_cfg.src_info.data_width,
					d40c->dma_cfg.dst_info.data_width);
	if (d40d->lli_len < 0) {
2052
		chan_err(d40c, "Unaligned size\n");
2053 2054 2055
		return -EINVAL;
	}

2056
	if (d40_pool_lli_alloc(d40c, d40d, d40d->lli_len, false) < 0) {
2057
		chan_err(d40c, "Out of memory\n");
2058 2059 2060
		return -ENOMEM;
	}

2061
	d40d->lli_current = 0;
2062 2063 2064

	if (direction == DMA_FROM_DEVICE) {
		dst_dev_addr = 0;
2065 2066 2067 2068
		if (d40c->runtime_addr)
			src_dev_addr = d40c->runtime_addr;
		else
			src_dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
2069
	} else if (direction == DMA_TO_DEVICE) {
2070 2071 2072 2073
		if (d40c->runtime_addr)
			dst_dev_addr = d40c->runtime_addr;
		else
			dst_dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
2074 2075 2076 2077 2078 2079 2080 2081
		src_dev_addr = 0;
	} else
		return -EINVAL;

	res = d40_phy_sg_to_lli(sgl,
				sgl_len,
				src_dev_addr,
				d40d->lli_phy.src,
2082
				virt_to_phys(d40d->lli_phy.src),
2083 2084
				d40c->src_def_cfg,
				d40c->dma_cfg.src_info.data_width,
2085
				d40c->dma_cfg.dst_info.data_width,
2086
				d40c->dma_cfg.src_info.psize);
2087 2088 2089 2090 2091 2092 2093
	if (res < 0)
		return res;

	res = d40_phy_sg_to_lli(sgl,
				sgl_len,
				dst_dev_addr,
				d40d->lli_phy.dst,
2094
				virt_to_phys(d40d->lli_phy.dst),
2095 2096
				d40c->dst_def_cfg,
				d40c->dma_cfg.dst_info.data_width,
2097
				d40c->dma_cfg.src_info.data_width,
2098
				d40c->dma_cfg.dst_info.psize);
2099 2100 2101
	if (res < 0)
		return res;

2102 2103
	dma_sync_single_for_device(d40c->base->dev, d40d->lli_pool.dma_addr,
				   d40d->lli_pool.size, DMA_TO_DEVICE);
2104 2105 2106 2107 2108 2109 2110
	return 0;
}

static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
							 struct scatterlist *sgl,
							 unsigned int sg_len,
							 enum dma_data_direction direction,
2111
							 unsigned long dma_flags)
2112 2113 2114 2115
{
	struct d40_desc *d40d;
	struct d40_chan *d40c = container_of(chan, struct d40_chan,
					     chan);
2116
	unsigned long flags;
2117 2118
	int err;

2119
	if (d40c->phy_chan == NULL) {
2120
		chan_err(d40c, "Cannot prepare unallocated channel\n");
2121 2122 2123
		return ERR_PTR(-EINVAL);
	}

2124
	spin_lock_irqsave(&d40c->lock, flags);
2125 2126 2127
	d40d = d40_desc_get(d40c);

	if (d40d == NULL)
2128
		goto err;
2129

2130
	if (chan_is_logical(d40c))
2131
		err = d40_prep_slave_sg_log(d40d, d40c, sgl, sg_len,
2132
					    direction, dma_flags);
2133 2134
	else
		err = d40_prep_slave_sg_phy(d40d, d40c, sgl, sg_len,
2135
					    direction, dma_flags);
2136
	if (err) {
2137
		chan_err(d40c, "Failed to prepare %s slave sg job: %d\n",
2138
			chan_is_logical(d40c) ? "log" : "phy", err);
2139
		goto err;
2140 2141
	}

2142
	d40d->txd.flags = dma_flags;
2143 2144 2145 2146 2147

	dma_async_tx_descriptor_init(&d40d->txd, chan);

	d40d->txd.tx_submit = d40_tx_submit;

2148
	spin_unlock_irqrestore(&d40c->lock, flags);
2149
	return &d40d->txd;
2150 2151 2152 2153 2154 2155

err:
	if (d40d)
		d40_desc_free(d40c, d40d);
	spin_unlock_irqrestore(&d40c->lock, flags);
	return NULL;
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
}

static enum dma_status d40_tx_status(struct dma_chan *chan,
				     dma_cookie_t cookie,
				     struct dma_tx_state *txstate)
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	dma_cookie_t last_used;
	dma_cookie_t last_complete;
	int ret;

2167
	if (d40c->phy_chan == NULL) {
2168
		chan_err(d40c, "Cannot read status of unallocated channel\n");
2169 2170 2171
		return -EINVAL;
	}

2172 2173 2174
	last_complete = d40c->completed;
	last_used = chan->cookie;

2175 2176 2177 2178
	if (d40_is_paused(d40c))
		ret = DMA_PAUSED;
	else
		ret = dma_async_is_complete(cookie, last_complete, last_used);
2179

2180 2181
	dma_set_tx_state(txstate, last_complete, last_used,
			 stedma40_residue(chan));
2182 2183 2184 2185 2186 2187 2188 2189 2190

	return ret;
}

static void d40_issue_pending(struct dma_chan *chan)
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	unsigned long flags;

2191
	if (d40c->phy_chan == NULL) {
2192
		chan_err(d40c, "Channel is not allocated!\n");
2193 2194 2195
		return;
	}

2196 2197 2198 2199 2200 2201 2202 2203 2204
	spin_lock_irqsave(&d40c->lock, flags);

	/* Busy means that pending jobs are already being processed */
	if (!d40c->busy)
		(void) d40_queue_start(d40c);

	spin_unlock_irqrestore(&d40c->lock, flags);
}

2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
/* Runtime reconfiguration extension */
static void d40_set_runtime_config(struct dma_chan *chan,
			       struct dma_slave_config *config)
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
	enum dma_slave_buswidth config_addr_width;
	dma_addr_t config_addr;
	u32 config_maxburst;
	enum stedma40_periph_data_width addr_width;
	int psize;

	if (config->direction == DMA_FROM_DEVICE) {
		dma_addr_t dev_addr_rx =
			d40c->base->plat_data->dev_rx[cfg->src_dev_type];

		config_addr = config->src_addr;
		if (dev_addr_rx)
			dev_dbg(d40c->base->dev,
				"channel has a pre-wired RX address %08x "
				"overriding with %08x\n",
				dev_addr_rx, config_addr);
		if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
			dev_dbg(d40c->base->dev,
				"channel was not configured for peripheral "
				"to memory transfer (%d) overriding\n",
				cfg->dir);
		cfg->dir = STEDMA40_PERIPH_TO_MEM;

		config_addr_width = config->src_addr_width;
		config_maxburst = config->src_maxburst;

	} else if (config->direction == DMA_TO_DEVICE) {
		dma_addr_t dev_addr_tx =
			d40c->base->plat_data->dev_tx[cfg->dst_dev_type];

		config_addr = config->dst_addr;
		if (dev_addr_tx)
			dev_dbg(d40c->base->dev,
				"channel has a pre-wired TX address %08x "
				"overriding with %08x\n",
				dev_addr_tx, config_addr);
		if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
			dev_dbg(d40c->base->dev,
				"channel was not configured for memory "
				"to peripheral transfer (%d) overriding\n",
				cfg->dir);
		cfg->dir = STEDMA40_MEM_TO_PERIPH;

		config_addr_width = config->dst_addr_width;
		config_maxburst = config->dst_maxburst;

	} else {
		dev_err(d40c->base->dev,
			"unrecognized channel direction %d\n",
			config->direction);
		return;
	}

	switch (config_addr_width) {
	case DMA_SLAVE_BUSWIDTH_1_BYTE:
		addr_width = STEDMA40_BYTE_WIDTH;
		break;
	case DMA_SLAVE_BUSWIDTH_2_BYTES:
		addr_width = STEDMA40_HALFWORD_WIDTH;
		break;
	case DMA_SLAVE_BUSWIDTH_4_BYTES:
		addr_width = STEDMA40_WORD_WIDTH;
		break;
	case DMA_SLAVE_BUSWIDTH_8_BYTES:
		addr_width = STEDMA40_DOUBLEWORD_WIDTH;
		break;
	default:
		dev_err(d40c->base->dev,
			"illegal peripheral address width "
			"requested (%d)\n",
			config->src_addr_width);
		return;
	}

2285
	if (chan_is_logical(d40c)) {
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
		if (config_maxburst >= 16)
			psize = STEDMA40_PSIZE_LOG_16;
		else if (config_maxburst >= 8)
			psize = STEDMA40_PSIZE_LOG_8;
		else if (config_maxburst >= 4)
			psize = STEDMA40_PSIZE_LOG_4;
		else
			psize = STEDMA40_PSIZE_LOG_1;
	} else {
		if (config_maxburst >= 16)
			psize = STEDMA40_PSIZE_PHY_16;
		else if (config_maxburst >= 8)
			psize = STEDMA40_PSIZE_PHY_8;
		else if (config_maxburst >= 4)
			psize = STEDMA40_PSIZE_PHY_4;
2301 2302
		else if (config_maxburst >= 2)
			psize = STEDMA40_PSIZE_PHY_2;
2303 2304 2305
		else
			psize = STEDMA40_PSIZE_PHY_1;
	}
2306 2307 2308 2309

	/* Set up all the endpoint configs */
	cfg->src_info.data_width = addr_width;
	cfg->src_info.psize = psize;
2310
	cfg->src_info.big_endian = false;
2311 2312 2313
	cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
	cfg->dst_info.data_width = addr_width;
	cfg->dst_info.psize = psize;
2314
	cfg->dst_info.big_endian = false;
2315 2316
	cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;

2317
	/* Fill in register values */
2318
	if (chan_is_logical(d40c))
2319 2320 2321 2322 2323
		d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
	else
		d40_phy_cfg(cfg, &d40c->src_def_cfg,
			    &d40c->dst_def_cfg, false);

2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
	/* These settings will take precedence later */
	d40c->runtime_addr = config_addr;
	d40c->runtime_direction = config->direction;
	dev_dbg(d40c->base->dev,
		"configured channel %s for %s, data width %d, "
		"maxburst %d bytes, LE, no flow control\n",
		dma_chan_name(chan),
		(config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
		config_addr_width,
		config_maxburst);
}

2336 2337
static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
		       unsigned long arg)
2338 2339 2340 2341
{
	unsigned long flags;
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);

2342
	if (d40c->phy_chan == NULL) {
2343
		chan_err(d40c, "Channel is not allocated!\n");
2344 2345 2346
		return -EINVAL;
	}

2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
	switch (cmd) {
	case DMA_TERMINATE_ALL:
		spin_lock_irqsave(&d40c->lock, flags);
		d40_term_all(d40c);
		spin_unlock_irqrestore(&d40c->lock, flags);
		return 0;
	case DMA_PAUSE:
		return d40_pause(chan);
	case DMA_RESUME:
		return d40_resume(chan);
2357 2358 2359 2360 2361 2362
	case DMA_SLAVE_CONFIG:
		d40_set_runtime_config(chan,
			(struct dma_slave_config *) arg);
		return 0;
	default:
		break;
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
	}

	/* Other commands are unimplemented */
	return -ENXIO;
}

/* Initialization functions */

static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
				 struct d40_chan *chans, int offset,
				 int num_chans)
{
	int i = 0;
	struct d40_chan *d40c;

	INIT_LIST_HEAD(&dma->channels);

	for (i = offset; i < offset + num_chans; i++) {
		d40c = &chans[i];
		d40c->base = base;
		d40c->chan.device = dma;

		spin_lock_init(&d40c->lock);

		d40c->log_num = D40_PHY_CHAN;

		INIT_LIST_HEAD(&d40c->active);
		INIT_LIST_HEAD(&d40c->queue);
		INIT_LIST_HEAD(&d40c->client);

		tasklet_init(&d40c->tasklet, dma_tasklet,
			     (unsigned long) d40c);

		list_add_tail(&d40c->chan.device_node,
			      &dma->channels);
	}
}

static int __init d40_dmaengine_init(struct d40_base *base,
				     int num_reserved_chans)
{
	int err ;

	d40_chan_init(base, &base->dma_slave, base->log_chans,
		      0, base->num_log_chans);

	dma_cap_zero(base->dma_slave.cap_mask);
	dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);

	base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources;
	base->dma_slave.device_free_chan_resources = d40_free_chan_resources;
	base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy;
2415
	base->dma_slave.device_prep_dma_sg = d40_prep_sg;
2416 2417 2418 2419 2420 2421 2422 2423 2424
	base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg;
	base->dma_slave.device_tx_status = d40_tx_status;
	base->dma_slave.device_issue_pending = d40_issue_pending;
	base->dma_slave.device_control = d40_control;
	base->dma_slave.dev = base->dev;

	err = dma_async_device_register(&base->dma_slave);

	if (err) {
2425
		d40_err(base->dev, "Failed to register slave channels\n");
2426 2427 2428 2429 2430 2431 2432 2433
		goto failure1;
	}

	d40_chan_init(base, &base->dma_memcpy, base->log_chans,
		      base->num_log_chans, base->plat_data->memcpy_len);

	dma_cap_zero(base->dma_memcpy.cap_mask);
	dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2434
	dma_cap_set(DMA_SG, base->dma_slave.cap_mask);
2435 2436 2437 2438

	base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources;
	base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources;
	base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy;
2439
	base->dma_slave.device_prep_dma_sg = d40_prep_sg;
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
	base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg;
	base->dma_memcpy.device_tx_status = d40_tx_status;
	base->dma_memcpy.device_issue_pending = d40_issue_pending;
	base->dma_memcpy.device_control = d40_control;
	base->dma_memcpy.dev = base->dev;
	/*
	 * This controller can only access address at even
	 * 32bit boundaries, i.e. 2^2
	 */
	base->dma_memcpy.copy_align = 2;

	err = dma_async_device_register(&base->dma_memcpy);

	if (err) {
2454 2455
		d40_err(base->dev,
			"Failed to regsiter memcpy only channels\n");
2456 2457 2458 2459 2460 2461 2462 2463 2464
		goto failure2;
	}

	d40_chan_init(base, &base->dma_both, base->phy_chans,
		      0, num_reserved_chans);

	dma_cap_zero(base->dma_both.cap_mask);
	dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
	dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2465
	dma_cap_set(DMA_SG, base->dma_slave.cap_mask);
2466 2467 2468 2469

	base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources;
	base->dma_both.device_free_chan_resources = d40_free_chan_resources;
	base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy;
2470
	base->dma_slave.device_prep_dma_sg = d40_prep_sg;
2471 2472 2473 2474 2475 2476 2477 2478 2479
	base->dma_both.device_prep_slave_sg = d40_prep_slave_sg;
	base->dma_both.device_tx_status = d40_tx_status;
	base->dma_both.device_issue_pending = d40_issue_pending;
	base->dma_both.device_control = d40_control;
	base->dma_both.dev = base->dev;
	base->dma_both.copy_align = 2;
	err = dma_async_device_register(&base->dma_both);

	if (err) {
2480 2481
		d40_err(base->dev,
			"Failed to register logical and physical capable channels\n");
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
		goto failure3;
	}
	return 0;
failure3:
	dma_async_device_unregister(&base->dma_memcpy);
failure2:
	dma_async_device_unregister(&base->dma_slave);
failure1:
	return err;
}

/* Initialization functions. */

static int __init d40_phy_res_init(struct d40_base *base)
{
	int i;
	int num_phy_chans_avail = 0;
	u32 val[2];
	int odd_even_bit = -2;

	val[0] = readl(base->virtbase + D40_DREG_PRSME);
	val[1] = readl(base->virtbase + D40_DREG_PRSMO);

	for (i = 0; i < base->num_phy_chans; i++) {
		base->phy_res[i].num = i;
		odd_even_bit += 2 * ((i % 2) == 0);
		if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
			/* Mark security only channels as occupied */
			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
		} else {
			base->phy_res[i].allocated_src = D40_ALLOC_FREE;
			base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
			num_phy_chans_avail++;
		}
		spin_lock_init(&base->phy_res[i].lock);
	}
2519 2520 2521

	/* Mark disabled channels as occupied */
	for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2522 2523 2524 2525 2526
		int chan = base->plat_data->disabled_channels[i];

		base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
		base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
		num_phy_chans_avail--;
2527 2528
	}

2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
	dev_info(base->dev, "%d of %d physical DMA channels available\n",
		 num_phy_chans_avail, base->num_phy_chans);

	/* Verify settings extended vs standard */
	val[0] = readl(base->virtbase + D40_DREG_PRTYP);

	for (i = 0; i < base->num_phy_chans; i++) {

		if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
		    (val[0] & 0x3) != 1)
			dev_info(base->dev,
				 "[%s] INFO: channel %d is misconfigured (%d)\n",
				 __func__, i, val[0] & 0x3);

		val[0] = val[0] >> 2;
	}

	return num_phy_chans_avail;
}

static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
{
	static const struct d40_reg_val dma_id_regs[] = {
		/* Peripheral Id */
		{ .reg = D40_DREG_PERIPHID0, .val = 0x0040},
		{ .reg = D40_DREG_PERIPHID1, .val = 0x0000},
		/*
		 * D40_DREG_PERIPHID2 Depends on HW revision:
2557
		 *  DB8500ed has 0x0008,
2558
		 *  ? has 0x0018,
2559 2560
		 *  DB8500v1 has 0x0028
		 *  DB8500v2 has 0x0038
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
		 */
		{ .reg = D40_DREG_PERIPHID3, .val = 0x0000},

		/* PCell Id */
		{ .reg = D40_DREG_CELLID0, .val = 0x000d},
		{ .reg = D40_DREG_CELLID1, .val = 0x00f0},
		{ .reg = D40_DREG_CELLID2, .val = 0x0005},
		{ .reg = D40_DREG_CELLID3, .val = 0x00b1}
	};
	struct stedma40_platform_data *plat_data;
	struct clk *clk = NULL;
	void __iomem *virtbase = NULL;
	struct resource *res = NULL;
	struct d40_base *base = NULL;
	int num_log_chans = 0;
	int num_phy_chans;
	int i;
2578
	u32 val;
2579
	u32 rev;
2580 2581 2582 2583

	clk = clk_get(&pdev->dev, NULL);

	if (IS_ERR(clk)) {
2584
		d40_err(&pdev->dev, "No matching clock found\n");
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
		goto failure;
	}

	clk_enable(clk);

	/* Get IO for DMAC base address */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
	if (!res)
		goto failure;

	if (request_mem_region(res->start, resource_size(res),
			       D40_NAME " I/O base") == NULL)
		goto failure;

	virtbase = ioremap(res->start, resource_size(res));
	if (!virtbase)
		goto failure;

	/* HW version check */
	for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
		if (dma_id_regs[i].val !=
		    readl(virtbase + dma_id_regs[i].reg)) {
2607 2608
			d40_err(&pdev->dev,
				"Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
2609 2610 2611 2612 2613 2614 2615
				dma_id_regs[i].val,
				dma_id_regs[i].reg,
				readl(virtbase + dma_id_regs[i].reg));
			goto failure;
		}
	}

2616
	/* Get silicon revision and designer */
2617
	val = readl(virtbase + D40_DREG_PERIPHID2);
2618

2619 2620
	if ((val & D40_DREG_PERIPHID2_DESIGNER_MASK) !=
	    D40_HW_DESIGNER) {
2621 2622
		d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
			val & D40_DREG_PERIPHID2_DESIGNER_MASK,
2623
			D40_HW_DESIGNER);
2624 2625 2626
		goto failure;
	}

2627 2628 2629
	rev = (val & D40_DREG_PERIPHID2_REV_MASK) >>
		D40_DREG_PERIPHID2_REV_POS;

2630 2631 2632 2633
	/* The number of physical channels on this HW */
	num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;

	dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2634
		 rev, res->start);
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651

	plat_data = pdev->dev.platform_data;

	/* Count the number of logical channels in use */
	for (i = 0; i < plat_data->dev_len; i++)
		if (plat_data->dev_rx[i] != 0)
			num_log_chans++;

	for (i = 0; i < plat_data->dev_len; i++)
		if (plat_data->dev_tx[i] != 0)
			num_log_chans++;

	base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
		       (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
		       sizeof(struct d40_chan), GFP_KERNEL);

	if (base == NULL) {
2652
		d40_err(&pdev->dev, "Out of memory\n");
2653 2654 2655
		goto failure;
	}

2656
	base->rev = rev;
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
	base->clk = clk;
	base->num_phy_chans = num_phy_chans;
	base->num_log_chans = num_log_chans;
	base->phy_start = res->start;
	base->phy_size = resource_size(res);
	base->virtbase = virtbase;
	base->plat_data = plat_data;
	base->dev = &pdev->dev;
	base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
	base->log_chans = &base->phy_chans[num_phy_chans];

	base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
				GFP_KERNEL);
	if (!base->phy_res)
		goto failure;

	base->lookup_phy_chans = kzalloc(num_phy_chans *
					 sizeof(struct d40_chan *),
					 GFP_KERNEL);
	if (!base->lookup_phy_chans)
		goto failure;

	if (num_log_chans + plat_data->memcpy_len) {
		/*
		 * The max number of logical channels are event lines for all
		 * src devices and dst devices
		 */
		base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
						 sizeof(struct d40_chan *),
						 GFP_KERNEL);
		if (!base->lookup_log_chans)
			goto failure;
	}
2690 2691 2692 2693

	base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
					    sizeof(struct d40_desc *) *
					    D40_LCLA_LINK_PER_EVENT_GRP,
2694 2695 2696 2697
					    GFP_KERNEL);
	if (!base->lcla_pool.alloc_map)
		goto failure;

2698 2699 2700 2701 2702 2703
	base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
					    0, SLAB_HWCACHE_ALIGN,
					    NULL);
	if (base->desc_slab == NULL)
		goto failure;

2704 2705 2706
	return base;

failure:
2707
	if (!IS_ERR(clk)) {
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
		clk_disable(clk);
		clk_put(clk);
	}
	if (virtbase)
		iounmap(virtbase);
	if (res)
		release_mem_region(res->start,
				   resource_size(res));
	if (virtbase)
		iounmap(virtbase);

	if (base) {
		kfree(base->lcla_pool.alloc_map);
		kfree(base->lookup_log_chans);
		kfree(base->lookup_phy_chans);
		kfree(base->phy_res);
		kfree(base);
	}

	return NULL;
}

static void __init d40_hw_init(struct d40_base *base)
{

	static const struct d40_reg_val dma_init_reg[] = {
		/* Clock every part of the DMA block from start */
		{ .reg = D40_DREG_GCC,    .val = 0x0000ff01},

		/* Interrupts on all logical channels */
		{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
	};
	int i;
	u32 prmseo[2] = {0, 0};
	u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
	u32 pcmis = 0;
	u32 pcicr = 0;

	for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
		writel(dma_init_reg[i].val,
		       base->virtbase + dma_init_reg[i].reg);

	/* Configure all our dma channels to default settings */
	for (i = 0; i < base->num_phy_chans; i++) {

		activeo[i % 2] = activeo[i % 2] << 2;

		if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
		    == D40_ALLOC_PHY) {
			activeo[i % 2] |= 3;
			continue;
		}

		/* Enable interrupt # */
		pcmis = (pcmis << 1) | 1;

		/* Clear interrupt # */
		pcicr = (pcicr << 1) | 1;

		/* Set channel to physical mode */
		prmseo[i % 2] = prmseo[i % 2] << 2;
		prmseo[i % 2] |= 1;

	}

	writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
	writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
	writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
	writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);

	/* Write which interrupt to enable */
	writel(pcmis, base->virtbase + D40_DREG_PCMIS);

	/* Write which interrupt to clear */
	writel(pcicr, base->virtbase + D40_DREG_PCICR);

}

2797 2798
static int __init d40_lcla_allocate(struct d40_base *base)
{
2799
	struct d40_lcla_pool *pool = &base->lcla_pool;
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
	unsigned long *page_list;
	int i, j;
	int ret = 0;

	/*
	 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
	 * To full fill this hardware requirement without wasting 256 kb
	 * we allocate pages until we get an aligned one.
	 */
	page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
			    GFP_KERNEL);

	if (!page_list) {
		ret = -ENOMEM;
		goto failure;
	}

	/* Calculating how many pages that are required */
	base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;

	for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
		page_list[i] = __get_free_pages(GFP_KERNEL,
						base->lcla_pool.pages);
		if (!page_list[i]) {

2825 2826
			d40_err(base->dev, "Failed to allocate %d pages.\n",
				base->lcla_pool.pages);
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843

			for (j = 0; j < i; j++)
				free_pages(page_list[j], base->lcla_pool.pages);
			goto failure;
		}

		if ((virt_to_phys((void *)page_list[i]) &
		     (LCLA_ALIGNMENT - 1)) == 0)
			break;
	}

	for (j = 0; j < i; j++)
		free_pages(page_list[j], base->lcla_pool.pages);

	if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
		base->lcla_pool.base = (void *)page_list[i];
	} else {
2844 2845 2846 2847
		/*
		 * After many attempts and no succees with finding the correct
		 * alignment, try with allocating a big buffer.
		 */
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
		dev_warn(base->dev,
			 "[%s] Failed to get %d pages @ 18 bit align.\n",
			 __func__, base->lcla_pool.pages);
		base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
							 base->num_phy_chans +
							 LCLA_ALIGNMENT,
							 GFP_KERNEL);
		if (!base->lcla_pool.base_unaligned) {
			ret = -ENOMEM;
			goto failure;
		}

		base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
						 LCLA_ALIGNMENT);
	}

2864 2865 2866 2867 2868 2869 2870 2871 2872
	pool->dma_addr = dma_map_single(base->dev, pool->base,
					SZ_1K * base->num_phy_chans,
					DMA_TO_DEVICE);
	if (dma_mapping_error(base->dev, pool->dma_addr)) {
		pool->dma_addr = 0;
		ret = -ENOMEM;
		goto failure;
	}

2873 2874 2875 2876 2877 2878 2879
	writel(virt_to_phys(base->lcla_pool.base),
	       base->virtbase + D40_DREG_LCLA);
failure:
	kfree(page_list);
	return ret;
}

2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
static int __init d40_probe(struct platform_device *pdev)
{
	int err;
	int ret = -ENOENT;
	struct d40_base *base;
	struct resource *res = NULL;
	int num_reserved_chans;
	u32 val;

	base = d40_hw_detect_init(pdev);

	if (!base)
		goto failure;

	num_reserved_chans = d40_phy_res_init(base);

	platform_set_drvdata(pdev, base);

	spin_lock_init(&base->interrupt_lock);
	spin_lock_init(&base->execmd_lock);

	/* Get IO for logical channel parameter address */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
	if (!res) {
		ret = -ENOENT;
2905
		d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
2906 2907 2908 2909 2910 2911 2912 2913
		goto failure;
	}
	base->lcpa_size = resource_size(res);
	base->phy_lcpa = res->start;

	if (request_mem_region(res->start, resource_size(res),
			       D40_NAME " I/O lcpa") == NULL) {
		ret = -EBUSY;
2914 2915 2916
		d40_err(&pdev->dev,
			"Failed to request LCPA region 0x%x-0x%x\n",
			res->start, res->end);
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
		goto failure;
	}

	/* We make use of ESRAM memory for this. */
	val = readl(base->virtbase + D40_DREG_LCPA);
	if (res->start != val && val != 0) {
		dev_warn(&pdev->dev,
			 "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
			 __func__, val, res->start);
	} else
		writel(res->start, base->virtbase + D40_DREG_LCPA);

	base->lcpa_base = ioremap(res->start, resource_size(res));
	if (!base->lcpa_base) {
		ret = -ENOMEM;
2932
		d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
2933 2934 2935
		goto failure;
	}

2936 2937
	ret = d40_lcla_allocate(base);
	if (ret) {
2938
		d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
2939 2940 2941 2942 2943 2944 2945 2946 2947
		goto failure;
	}

	spin_lock_init(&base->lcla_pool.lock);

	base->irq = platform_get_irq(pdev, 0);

	ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
	if (ret) {
2948
		d40_err(&pdev->dev, "No IRQ defined\n");
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
		goto failure;
	}

	err = d40_dmaengine_init(base, num_reserved_chans);
	if (err)
		goto failure;

	d40_hw_init(base);

	dev_info(base->dev, "initialized\n");
	return 0;

failure:
	if (base) {
2963 2964
		if (base->desc_slab)
			kmem_cache_destroy(base->desc_slab);
2965 2966
		if (base->virtbase)
			iounmap(base->virtbase);
2967 2968 2969 2970 2971 2972

		if (base->lcla_pool.dma_addr)
			dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
					 SZ_1K * base->num_phy_chans,
					 DMA_TO_DEVICE);

2973 2974 2975
		if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
			free_pages((unsigned long)base->lcla_pool.base,
				   base->lcla_pool.pages);
2976 2977 2978

		kfree(base->lcla_pool.base_unaligned);

2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
		if (base->phy_lcpa)
			release_mem_region(base->phy_lcpa,
					   base->lcpa_size);
		if (base->phy_start)
			release_mem_region(base->phy_start,
					   base->phy_size);
		if (base->clk) {
			clk_disable(base->clk);
			clk_put(base->clk);
		}

		kfree(base->lcla_pool.alloc_map);
		kfree(base->lookup_log_chans);
		kfree(base->lookup_phy_chans);
		kfree(base->phy_res);
		kfree(base);
	}

2997
	d40_err(&pdev->dev, "probe failed\n");
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
	return ret;
}

static struct platform_driver d40_driver = {
	.driver = {
		.owner = THIS_MODULE,
		.name  = D40_NAME,
	},
};

R
Rabin Vincent 已提交
3008
static int __init stedma40_init(void)
3009 3010 3011 3012
{
	return platform_driver_probe(&d40_driver, d40_probe);
}
arch_initcall(stedma40_init);