percpu.c 82.4 KB
Newer Older
1
/*
2
 * mm/percpu.c - percpu memory allocator
3 4 5 6
 *
 * Copyright (C) 2009		SUSE Linux Products GmbH
 * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
 *
7 8 9
 * Copyright (C) 2017		Facebook Inc.
 * Copyright (C) 2017		Dennis Zhou <dennisszhou@gmail.com>
 *
10
 * This file is released under the GPLv2 license.
11
 *
12 13 14 15
 * The percpu allocator handles both static and dynamic areas.  Percpu
 * areas are allocated in chunks which are divided into units.  There is
 * a 1-to-1 mapping for units to possible cpus.  These units are grouped
 * based on NUMA properties of the machine.
16 17 18 19 20 21
 *
 *  c0                           c1                         c2
 *  -------------------          -------------------        ------------
 * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
 *  -------------------  ......  -------------------  ....  ------------
 *
22 23 24 25 26 27 28 29 30
 * Allocation is done by offsets into a unit's address space.  Ie., an
 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
 * c1:u1, c1:u2, etc.  On NUMA machines, the mapping may be non-linear
 * and even sparse.  Access is handled by configuring percpu base
 * registers according to the cpu to unit mappings and offsetting the
 * base address using pcpu_unit_size.
 *
 * There is special consideration for the first chunk which must handle
 * the static percpu variables in the kernel image as allocation services
31
 * are not online yet.  In short, the first chunk is structured like so:
32 33 34 35 36 37 38
 *
 *                  <Static | [Reserved] | Dynamic>
 *
 * The static data is copied from the original section managed by the
 * linker.  The reserved section, if non-zero, primarily manages static
 * percpu variables from kernel modules.  Finally, the dynamic section
 * takes care of normal allocations.
39
 *
40 41 42 43 44 45 46 47 48 49 50 51 52 53
 * The allocator organizes chunks into lists according to free size and
 * tries to allocate from the fullest chunk first.  Each chunk is managed
 * by a bitmap with metadata blocks.  The allocation map is updated on
 * every allocation and free to reflect the current state while the boundary
 * map is only updated on allocation.  Each metadata block contains
 * information to help mitigate the need to iterate over large portions
 * of the bitmap.  The reverse mapping from page to chunk is stored in
 * the page's index.  Lastly, units are lazily backed and grow in unison.
 *
 * There is a unique conversion that goes on here between bytes and bits.
 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE.  The chunk
 * tracks the number of pages it is responsible for in nr_pages.  Helper
 * functions are used to convert from between the bytes, bits, and blocks.
 * All hints are managed in bits unless explicitly stated.
54
 *
55
 * To use this allocator, arch code should do the following:
56 57
 *
 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
58 59
 *   regular address to percpu pointer and back if they need to be
 *   different from the default
60
 *
61 62
 * - use pcpu_setup_first_chunk() during percpu area initialization to
 *   setup the first chunk containing the kernel static percpu area
63 64
 */

65 66
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

67 68
#include <linux/bitmap.h>
#include <linux/bootmem.h>
69
#include <linux/err.h>
70
#include <linux/lcm.h>
71
#include <linux/list.h>
72
#include <linux/log2.h>
73 74 75 76 77 78
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/percpu.h>
#include <linux/pfn.h>
#include <linux/slab.h>
79
#include <linux/spinlock.h>
80
#include <linux/vmalloc.h>
81
#include <linux/workqueue.h>
82
#include <linux/kmemleak.h>
83 84

#include <asm/cacheflush.h>
85
#include <asm/sections.h>
86
#include <asm/tlbflush.h>
87
#include <asm/io.h>
88

89 90 91
#define CREATE_TRACE_POINTS
#include <trace/events/percpu.h>

92 93
#include "percpu-internal.h"

94 95 96
/* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
#define PCPU_SLOT_BASE_SHIFT		5

97 98
#define PCPU_EMPTY_POP_PAGES_LOW	2
#define PCPU_EMPTY_POP_PAGES_HIGH	4
99

100
#ifdef CONFIG_SMP
101 102 103
/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
#ifndef __addr_to_pcpu_ptr
#define __addr_to_pcpu_ptr(addr)					\
104 105 106
	(void __percpu *)((unsigned long)(addr) -			\
			  (unsigned long)pcpu_base_addr	+		\
			  (unsigned long)__per_cpu_start)
107 108 109
#endif
#ifndef __pcpu_ptr_to_addr
#define __pcpu_ptr_to_addr(ptr)						\
110 111 112
	(void __force *)((unsigned long)(ptr) +				\
			 (unsigned long)pcpu_base_addr -		\
			 (unsigned long)__per_cpu_start)
113
#endif
114 115 116 117 118
#else	/* CONFIG_SMP */
/* on UP, it's always identity mapped */
#define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
#define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
#endif	/* CONFIG_SMP */
119

120 121 122 123
static int pcpu_unit_pages __ro_after_init;
static int pcpu_unit_size __ro_after_init;
static int pcpu_nr_units __ro_after_init;
static int pcpu_atom_size __ro_after_init;
124
int pcpu_nr_slots __ro_after_init;
125
static size_t pcpu_chunk_struct_size __ro_after_init;
126

T
Tejun Heo 已提交
127
/* cpus with the lowest and highest unit addresses */
128 129
static unsigned int pcpu_low_unit_cpu __ro_after_init;
static unsigned int pcpu_high_unit_cpu __ro_after_init;
130

131
/* the address of the first chunk which starts with the kernel static area */
132
void *pcpu_base_addr __ro_after_init;
133 134
EXPORT_SYMBOL_GPL(pcpu_base_addr);

135 136
static const int *pcpu_unit_map __ro_after_init;		/* cpu -> unit */
const unsigned long *pcpu_unit_offsets __ro_after_init;	/* cpu -> unit offset */
137

138
/* group information, used for vm allocation */
139 140 141
static int pcpu_nr_groups __ro_after_init;
static const unsigned long *pcpu_group_offsets __ro_after_init;
static const size_t *pcpu_group_sizes __ro_after_init;
142

143 144 145 146 147
/*
 * The first chunk which always exists.  Note that unlike other
 * chunks, this one can be allocated and mapped in several different
 * ways and thus often doesn't live in the vmalloc area.
 */
148
struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
149 150 151

/*
 * Optional reserved chunk.  This chunk reserves part of the first
152 153
 * chunk and serves it for reserved allocations.  When the reserved
 * region doesn't exist, the following variable is NULL.
154
 */
155
struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
156

157
DEFINE_SPINLOCK(pcpu_lock);	/* all internal data structures */
158
static DEFINE_MUTEX(pcpu_alloc_mutex);	/* chunk create/destroy, [de]pop, map ext */
159

160
struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
161

162 163 164
/* chunks which need their map areas extended, protected by pcpu_lock */
static LIST_HEAD(pcpu_map_extend_chunks);

165 166 167 168
/*
 * The number of empty populated pages, protected by pcpu_lock.  The
 * reserved chunk doesn't contribute to the count.
 */
169
int pcpu_nr_empty_pop_pages;
170

171 172 173 174 175 176
/*
 * Balance work is used to populate or destroy chunks asynchronously.  We
 * try to keep the number of populated free pages between
 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
 * empty chunk.
 */
177 178
static void pcpu_balance_workfn(struct work_struct *work);
static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
179 180 181 182 183 184 185 186
static bool pcpu_async_enabled __read_mostly;
static bool pcpu_atomic_alloc_failed;

static void pcpu_schedule_balance_work(void)
{
	if (pcpu_async_enabled)
		schedule_work(&pcpu_balance_work);
}
187

188
/**
189 190 191
 * pcpu_addr_in_chunk - check if the address is served from this chunk
 * @chunk: chunk of interest
 * @addr: percpu address
192 193
 *
 * RETURNS:
194
 * True if the address is served from this chunk.
195
 */
196
static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
197
{
198 199
	void *start_addr, *end_addr;

200
	if (!chunk)
201
		return false;
202

203 204 205
	start_addr = chunk->base_addr + chunk->start_offset;
	end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
		   chunk->end_offset;
206 207

	return addr >= start_addr && addr < end_addr;
208 209
}

210
static int __pcpu_size_to_slot(int size)
211
{
T
Tejun Heo 已提交
212
	int highbit = fls(size);	/* size is in bytes */
213 214 215
	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
}

216 217 218 219 220 221 222
static int pcpu_size_to_slot(int size)
{
	if (size == pcpu_unit_size)
		return pcpu_nr_slots - 1;
	return __pcpu_size_to_slot(size);
}

223 224
static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
{
225
	if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || chunk->contig_bits == 0)
226 227
		return 0;

228
	return pcpu_size_to_slot(chunk->free_bytes);
229 230
}

231 232 233 234 235 236 237 238 239 240 241 242 243
/* set the pointer to a chunk in a page struct */
static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
{
	page->index = (unsigned long)pcpu;
}

/* obtain pointer to a chunk from a page struct */
static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
{
	return (struct pcpu_chunk *)page->index;
}

static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
244
{
245
	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
246 247
}

248 249 250 251 252
static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
{
	return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
}

253 254
static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
				     unsigned int cpu, int page_idx)
255
{
256 257
	return (unsigned long)chunk->base_addr +
	       pcpu_unit_page_offset(cpu, page_idx);
258 259
}

260
static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end)
T
Tejun Heo 已提交
261
{
262 263
	*rs = find_next_zero_bit(bitmap, end, *rs);
	*re = find_next_bit(bitmap, end, *rs + 1);
T
Tejun Heo 已提交
264 265
}

266
static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end)
T
Tejun Heo 已提交
267
{
268 269
	*rs = find_next_bit(bitmap, end, *rs);
	*re = find_next_zero_bit(bitmap, end, *rs + 1);
T
Tejun Heo 已提交
270 271 272
}

/*
273 274 275
 * Bitmap region iterators.  Iterates over the bitmap between
 * [@start, @end) in @chunk.  @rs and @re should be integer variables
 * and will be set to start and end index of the current free region.
T
Tejun Heo 已提交
276
 */
277 278 279 280
#define pcpu_for_each_unpop_region(bitmap, rs, re, start, end)		     \
	for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \
	     (rs) < (re);						     \
	     (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end)))
T
Tejun Heo 已提交
281

282 283 284 285
#define pcpu_for_each_pop_region(bitmap, rs, re, start, end)		     \
	for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end));   \
	     (rs) < (re);						     \
	     (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end)))
T
Tejun Heo 已提交
286

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
/*
 * The following are helper functions to help access bitmaps and convert
 * between bitmap offsets to address offsets.
 */
static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
{
	return chunk->alloc_map +
	       (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
}

static unsigned long pcpu_off_to_block_index(int off)
{
	return off / PCPU_BITMAP_BLOCK_BITS;
}

static unsigned long pcpu_off_to_block_off(int off)
{
	return off & (PCPU_BITMAP_BLOCK_BITS - 1);
}

307 308 309 310 311
static unsigned long pcpu_block_off_to_off(int index, int off)
{
	return index * PCPU_BITMAP_BLOCK_BITS + off;
}

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
/**
 * pcpu_next_md_free_region - finds the next hint free area
 * @chunk: chunk of interest
 * @bit_off: chunk offset
 * @bits: size of free area
 *
 * Helper function for pcpu_for_each_md_free_region.  It checks
 * block->contig_hint and performs aggregation across blocks to find the
 * next hint.  It modifies bit_off and bits in-place to be consumed in the
 * loop.
 */
static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
				     int *bits)
{
	int i = pcpu_off_to_block_index(*bit_off);
	int block_off = pcpu_off_to_block_off(*bit_off);
	struct pcpu_block_md *block;

	*bits = 0;
	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
	     block++, i++) {
		/* handles contig area across blocks */
		if (*bits) {
			*bits += block->left_free;
			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
				continue;
			return;
		}

		/*
		 * This checks three things.  First is there a contig_hint to
		 * check.  Second, have we checked this hint before by
		 * comparing the block_off.  Third, is this the same as the
		 * right contig hint.  In the last case, it spills over into
		 * the next block and should be handled by the contig area
		 * across blocks code.
		 */
		*bits = block->contig_hint;
		if (*bits && block->contig_hint_start >= block_off &&
		    *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
			*bit_off = pcpu_block_off_to_off(i,
					block->contig_hint_start);
			return;
		}
356 357
		/* reset to satisfy the second predicate above */
		block_off = 0;
358 359 360 361 362 363

		*bits = block->right_free;
		*bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
	}
}

364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
/**
 * pcpu_next_fit_region - finds fit areas for a given allocation request
 * @chunk: chunk of interest
 * @alloc_bits: size of allocation
 * @align: alignment of area (max PAGE_SIZE)
 * @bit_off: chunk offset
 * @bits: size of free area
 *
 * Finds the next free region that is viable for use with a given size and
 * alignment.  This only returns if there is a valid area to be used for this
 * allocation.  block->first_free is returned if the allocation request fits
 * within the block to see if the request can be fulfilled prior to the contig
 * hint.
 */
static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
				 int align, int *bit_off, int *bits)
{
	int i = pcpu_off_to_block_index(*bit_off);
	int block_off = pcpu_off_to_block_off(*bit_off);
	struct pcpu_block_md *block;

	*bits = 0;
	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
	     block++, i++) {
		/* handles contig area across blocks */
		if (*bits) {
			*bits += block->left_free;
			if (*bits >= alloc_bits)
				return;
			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
				continue;
		}

		/* check block->contig_hint */
		*bits = ALIGN(block->contig_hint_start, align) -
			block->contig_hint_start;
		/*
		 * This uses the block offset to determine if this has been
		 * checked in the prior iteration.
		 */
		if (block->contig_hint &&
		    block->contig_hint_start >= block_off &&
		    block->contig_hint >= *bits + alloc_bits) {
			*bits += alloc_bits + block->contig_hint_start -
				 block->first_free;
			*bit_off = pcpu_block_off_to_off(i, block->first_free);
			return;
		}
412 413
		/* reset to satisfy the second predicate above */
		block_off = 0;
414 415 416 417 418 419 420 421 422 423 424 425 426

		*bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
				 align);
		*bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
		*bit_off = pcpu_block_off_to_off(i, *bit_off);
		if (*bits >= alloc_bits)
			return;
	}

	/* no valid offsets were found - fail condition */
	*bit_off = pcpu_chunk_map_bits(chunk);
}

427 428 429
/*
 * Metadata free area iterators.  These perform aggregation of free areas
 * based on the metadata blocks and return the offset @bit_off and size in
430 431
 * bits of the free area @bits.  pcpu_for_each_fit_region only returns when
 * a fit is found for the allocation request.
432 433 434 435 436 437 438
 */
#define pcpu_for_each_md_free_region(chunk, bit_off, bits)		\
	for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits));	\
	     (bit_off) < pcpu_chunk_map_bits((chunk));			\
	     (bit_off) += (bits) + 1,					\
	     pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))

439 440 441 442 443 444 445 446
#define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits)     \
	for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
				  &(bits));				      \
	     (bit_off) < pcpu_chunk_map_bits((chunk));			      \
	     (bit_off) += (bits),					      \
	     pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
				  &(bits)))

447
/**
448
 * pcpu_mem_zalloc - allocate memory
449
 * @size: bytes to allocate
450
 *
451
 * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
452
 * kzalloc() is used; otherwise, vzalloc() is used.  The returned
453
 * memory is always zeroed.
454
 *
455 456 457
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
458
 * RETURNS:
459
 * Pointer to the allocated area on success, NULL on failure.
460
 */
461
static void *pcpu_mem_zalloc(size_t size)
462
{
463 464 465
	if (WARN_ON_ONCE(!slab_is_available()))
		return NULL;

466 467
	if (size <= PAGE_SIZE)
		return kzalloc(size, GFP_KERNEL);
468 469
	else
		return vzalloc(size);
470
}
471

472 473 474 475
/**
 * pcpu_mem_free - free memory
 * @ptr: memory to free
 *
476
 * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
477
 */
478
static void pcpu_mem_free(void *ptr)
479
{
480
	kvfree(ptr);
481 482 483 484 485 486 487 488 489
}

/**
 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
 * @chunk: chunk of interest
 * @oslot: the previous slot it was on
 *
 * This function is called after an allocation or free changed @chunk.
 * New slot according to the changed state is determined and @chunk is
490 491
 * moved to the slot.  Note that the reserved chunk is never put on
 * chunk slots.
492 493 494
 *
 * CONTEXT:
 * pcpu_lock.
495 496 497 498 499
 */
static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
{
	int nslot = pcpu_chunk_slot(chunk);

500
	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
501 502 503 504 505 506 507
		if (oslot < nslot)
			list_move(&chunk->list, &pcpu_slot[nslot]);
		else
			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
	}
}

508
/**
509
 * pcpu_cnt_pop_pages- counts populated backing pages in range
510
 * @chunk: chunk of interest
511 512
 * @bit_off: start offset
 * @bits: size of area to check
513
 *
514 515 516
 * Calculates the number of populated pages in the region
 * [page_start, page_end).  This keeps track of how many empty populated
 * pages are available and decide if async work should be scheduled.
517
 *
518
 * RETURNS:
519
 * The nr of populated pages.
520
 */
521 522
static inline int pcpu_cnt_pop_pages(struct pcpu_chunk *chunk, int bit_off,
				     int bits)
523
{
524 525
	int page_start = PFN_UP(bit_off * PCPU_MIN_ALLOC_SIZE);
	int page_end = PFN_DOWN((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
526

527
	if (page_start >= page_end)
528 529
		return 0;

530 531 532 533 534 535 536 537 538
	/*
	 * bitmap_weight counts the number of bits set in a bitmap up to
	 * the specified number of bits.  This is counting the populated
	 * pages up to page_end and then subtracting the populated pages
	 * up to page_start to count the populated pages in
	 * [page_start, page_end).
	 */
	return bitmap_weight(chunk->populated, page_end) -
	       bitmap_weight(chunk->populated, page_start);
539 540 541
}

/**
542
 * pcpu_chunk_update - updates the chunk metadata given a free area
543
 * @chunk: chunk of interest
544 545
 * @bit_off: chunk offset
 * @bits: size of free area
546
 *
547
 * This updates the chunk's contig hint and starting offset given a free area.
548
 * Choose the best starting offset if the contig hint is equal.
549 550 551
 */
static void pcpu_chunk_update(struct pcpu_chunk *chunk, int bit_off, int bits)
{
552 553
	if (bits > chunk->contig_bits) {
		chunk->contig_bits_start = bit_off;
554
		chunk->contig_bits = bits;
555 556 557 558 559
	} else if (bits == chunk->contig_bits && chunk->contig_bits_start &&
		   (!bit_off ||
		    __ffs(bit_off) > __ffs(chunk->contig_bits_start))) {
		/* use the start with the best alignment */
		chunk->contig_bits_start = bit_off;
560
	}
561 562 563 564 565
}

/**
 * pcpu_chunk_refresh_hint - updates metadata about a chunk
 * @chunk: chunk of interest
566
 *
567 568 569
 * Iterates over the metadata blocks to find the largest contig area.
 * It also counts the populated pages and uses the delta to update the
 * global count.
570
 *
571 572
 * Updates:
 *      chunk->contig_bits
573
 *      chunk->contig_bits_start
574
 *      nr_empty_pop_pages (chunk and global)
575
 */
576
static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk)
577
{
578
	int bit_off, bits, nr_empty_pop_pages;
579

580 581
	/* clear metadata */
	chunk->contig_bits = 0;
582

583
	bit_off = chunk->first_bit;
584
	bits = nr_empty_pop_pages = 0;
585 586
	pcpu_for_each_md_free_region(chunk, bit_off, bits) {
		pcpu_chunk_update(chunk, bit_off, bits);
587

588
		nr_empty_pop_pages += pcpu_cnt_pop_pages(chunk, bit_off, bits);
589
	}
590

591 592 593 594 595 596 597 598 599 600 601
	/*
	 * Keep track of nr_empty_pop_pages.
	 *
	 * The chunk maintains the previous number of free pages it held,
	 * so the delta is used to update the global counter.  The reserved
	 * chunk is not part of the free page count as they are populated
	 * at init and are special to serving reserved allocations.
	 */
	if (chunk != pcpu_reserved_chunk)
		pcpu_nr_empty_pop_pages +=
			(nr_empty_pop_pages - chunk->nr_empty_pop_pages);
602

603 604
	chunk->nr_empty_pop_pages = nr_empty_pop_pages;
}
605

606 607 608 609 610 611 612
/**
 * pcpu_block_update - updates a block given a free area
 * @block: block of interest
 * @start: start offset in block
 * @end: end offset in block
 *
 * Updates a block given a known free area.  The region [start, end) is
613 614
 * expected to be the entirety of the free area within a block.  Chooses
 * the best starting offset if the contig hints are equal.
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
 */
static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
{
	int contig = end - start;

	block->first_free = min(block->first_free, start);
	if (start == 0)
		block->left_free = contig;

	if (end == PCPU_BITMAP_BLOCK_BITS)
		block->right_free = contig;

	if (contig > block->contig_hint) {
		block->contig_hint_start = start;
		block->contig_hint = contig;
630 631 632 633
	} else if (block->contig_hint_start && contig == block->contig_hint &&
		   (!start || __ffs(start) > __ffs(block->contig_hint_start))) {
		/* use the start with the best alignment */
		block->contig_hint_start = start;
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
	}
}

/**
 * pcpu_block_refresh_hint
 * @chunk: chunk of interest
 * @index: index of the metadata block
 *
 * Scans over the block beginning at first_free and updates the block
 * metadata accordingly.
 */
static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
{
	struct pcpu_block_md *block = chunk->md_blocks + index;
	unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
	int rs, re;	/* region start, region end */

	/* clear hints */
	block->contig_hint = 0;
	block->left_free = block->right_free = 0;

	/* iterate over free areas and update the contig hints */
	pcpu_for_each_unpop_region(alloc_map, rs, re, block->first_free,
				   PCPU_BITMAP_BLOCK_BITS) {
		pcpu_block_update(block, rs, re);
	}
}

/**
 * pcpu_block_update_hint_alloc - update hint on allocation path
 * @chunk: chunk of interest
 * @bit_off: chunk offset
 * @bits: size of request
667 668 669 670
 *
 * Updates metadata for the allocation path.  The metadata only has to be
 * refreshed by a full scan iff the chunk's contig hint is broken.  Block level
 * scans are required if the block's contig hint is broken.
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
 */
static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
					 int bits)
{
	struct pcpu_block_md *s_block, *e_block, *block;
	int s_index, e_index;	/* block indexes of the freed allocation */
	int s_off, e_off;	/* block offsets of the freed allocation */

	/*
	 * Calculate per block offsets.
	 * The calculation uses an inclusive range, but the resulting offsets
	 * are [start, end).  e_index always points to the last block in the
	 * range.
	 */
	s_index = pcpu_off_to_block_index(bit_off);
	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
	s_off = pcpu_off_to_block_off(bit_off);
	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;

	s_block = chunk->md_blocks + s_index;
	e_block = chunk->md_blocks + e_index;

	/*
	 * Update s_block.
695 696 697
	 * block->first_free must be updated if the allocation takes its place.
	 * If the allocation breaks the contig_hint, a scan is required to
	 * restore this hint.
698
	 */
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
	if (s_off == s_block->first_free)
		s_block->first_free = find_next_zero_bit(
					pcpu_index_alloc_map(chunk, s_index),
					PCPU_BITMAP_BLOCK_BITS,
					s_off + bits);

	if (s_off >= s_block->contig_hint_start &&
	    s_off < s_block->contig_hint_start + s_block->contig_hint) {
		/* block contig hint is broken - scan to fix it */
		pcpu_block_refresh_hint(chunk, s_index);
	} else {
		/* update left and right contig manually */
		s_block->left_free = min(s_block->left_free, s_off);
		if (s_index == e_index)
			s_block->right_free = min_t(int, s_block->right_free,
					PCPU_BITMAP_BLOCK_BITS - e_off);
		else
			s_block->right_free = 0;
	}
718 719 720 721 722

	/*
	 * Update e_block.
	 */
	if (s_index != e_index) {
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
		/*
		 * When the allocation is across blocks, the end is along
		 * the left part of the e_block.
		 */
		e_block->first_free = find_next_zero_bit(
				pcpu_index_alloc_map(chunk, e_index),
				PCPU_BITMAP_BLOCK_BITS, e_off);

		if (e_off == PCPU_BITMAP_BLOCK_BITS) {
			/* reset the block */
			e_block++;
		} else {
			if (e_off > e_block->contig_hint_start) {
				/* contig hint is broken - scan to fix it */
				pcpu_block_refresh_hint(chunk, e_index);
			} else {
				e_block->left_free = 0;
				e_block->right_free =
					min_t(int, e_block->right_free,
					      PCPU_BITMAP_BLOCK_BITS - e_off);
			}
		}
745 746 747 748 749 750 751 752 753

		/* update in-between md_blocks */
		for (block = s_block + 1; block < e_block; block++) {
			block->contig_hint = 0;
			block->left_free = 0;
			block->right_free = 0;
		}
	}

754 755 756 757 758 759 760 761
	/*
	 * The only time a full chunk scan is required is if the chunk
	 * contig hint is broken.  Otherwise, it means a smaller space
	 * was used and therefore the chunk contig hint is still correct.
	 */
	if (bit_off >= chunk->contig_bits_start  &&
	    bit_off < chunk->contig_bits_start + chunk->contig_bits)
		pcpu_chunk_refresh_hint(chunk);
762 763 764 765 766 767 768
}

/**
 * pcpu_block_update_hint_free - updates the block hints on the free path
 * @chunk: chunk of interest
 * @bit_off: chunk offset
 * @bits: size of request
769 770 771 772 773 774 775 776 777 778 779
 *
 * Updates metadata for the allocation path.  This avoids a blind block
 * refresh by making use of the block contig hints.  If this fails, it scans
 * forward and backward to determine the extent of the free area.  This is
 * capped at the boundary of blocks.
 *
 * A chunk update is triggered if a page becomes free, a block becomes free,
 * or the free spans across blocks.  This tradeoff is to minimize iterating
 * over the block metadata to update chunk->contig_bits.  chunk->contig_bits
 * may be off by up to a page, but it will never be more than the available
 * space.  If the contig hint is contained in one block, it will be accurate.
780 781 782 783 784 785 786
 */
static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
					int bits)
{
	struct pcpu_block_md *s_block, *e_block, *block;
	int s_index, e_index;	/* block indexes of the freed allocation */
	int s_off, e_off;	/* block offsets of the freed allocation */
787
	int start, end;		/* start and end of the whole free area */
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802

	/*
	 * Calculate per block offsets.
	 * The calculation uses an inclusive range, but the resulting offsets
	 * are [start, end).  e_index always points to the last block in the
	 * range.
	 */
	s_index = pcpu_off_to_block_index(bit_off);
	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
	s_off = pcpu_off_to_block_off(bit_off);
	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;

	s_block = chunk->md_blocks + s_index;
	e_block = chunk->md_blocks + e_index;

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
	/*
	 * Check if the freed area aligns with the block->contig_hint.
	 * If it does, then the scan to find the beginning/end of the
	 * larger free area can be avoided.
	 *
	 * start and end refer to beginning and end of the free area
	 * within each their respective blocks.  This is not necessarily
	 * the entire free area as it may span blocks past the beginning
	 * or end of the block.
	 */
	start = s_off;
	if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
		start = s_block->contig_hint_start;
	} else {
		/*
		 * Scan backwards to find the extent of the free area.
		 * find_last_bit returns the starting bit, so if the start bit
		 * is returned, that means there was no last bit and the
		 * remainder of the chunk is free.
		 */
		int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
					  start);
		start = (start == l_bit) ? 0 : l_bit + 1;
	}

	end = e_off;
	if (e_off == e_block->contig_hint_start)
		end = e_block->contig_hint_start + e_block->contig_hint;
	else
		end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
				    PCPU_BITMAP_BLOCK_BITS, end);

835
	/* update s_block */
836 837
	e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
	pcpu_block_update(s_block, start, e_off);
838 839 840 841

	/* freeing in the same block */
	if (s_index != e_index) {
		/* update e_block */
842
		pcpu_block_update(e_block, 0, end);
843 844 845 846 847 848 849 850 851 852 853

		/* reset md_blocks in the middle */
		for (block = s_block + 1; block < e_block; block++) {
			block->first_free = 0;
			block->contig_hint_start = 0;
			block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
			block->left_free = PCPU_BITMAP_BLOCK_BITS;
			block->right_free = PCPU_BITMAP_BLOCK_BITS;
		}
	}

854 855 856 857 858 859 860 861 862 863 864 865 866
	/*
	 * Refresh chunk metadata when the free makes a page free, a block
	 * free, or spans across blocks.  The contig hint may be off by up to
	 * a page, but if the hint is contained in a block, it will be accurate
	 * with the else condition below.
	 */
	if ((ALIGN_DOWN(end, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS)) >
	     ALIGN(start, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS))) ||
	    s_index != e_index)
		pcpu_chunk_refresh_hint(chunk);
	else
		pcpu_chunk_update(chunk, pcpu_block_off_to_off(s_index, start),
				  s_block->contig_hint);
867 868
}

869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
/**
 * pcpu_is_populated - determines if the region is populated
 * @chunk: chunk of interest
 * @bit_off: chunk offset
 * @bits: size of area
 * @next_off: return value for the next offset to start searching
 *
 * For atomic allocations, check if the backing pages are populated.
 *
 * RETURNS:
 * Bool if the backing pages are populated.
 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
 */
static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
			      int *next_off)
{
	int page_start, page_end, rs, re;
886

887 888
	page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
	page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
889

890 891 892 893
	rs = page_start;
	pcpu_next_unpop(chunk->populated, &rs, &re, page_end);
	if (rs >= page_end)
		return true;
894

895 896
	*next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
	return false;
897 898
}

899
/**
900 901 902 903 904 905
 * pcpu_find_block_fit - finds the block index to start searching
 * @chunk: chunk of interest
 * @alloc_bits: size of request in allocation units
 * @align: alignment of area (max PAGE_SIZE bytes)
 * @pop_only: use populated regions only
 *
906 907 908 909 910 911 912 913
 * Given a chunk and an allocation spec, find the offset to begin searching
 * for a free region.  This iterates over the bitmap metadata blocks to
 * find an offset that will be guaranteed to fit the requirements.  It is
 * not quite first fit as if the allocation does not fit in the contig hint
 * of a block or chunk, it is skipped.  This errs on the side of caution
 * to prevent excess iteration.  Poor alignment can cause the allocator to
 * skip over blocks and chunks that have valid free areas.
 *
914 915 916
 * RETURNS:
 * The offset in the bitmap to begin searching.
 * -1 if no offset is found.
917
 */
918 919
static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
			       size_t align, bool pop_only)
920
{
921
	int bit_off, bits, next_off;
922

923 924 925 926 927 928 929 930 931 932 933
	/*
	 * Check to see if the allocation can fit in the chunk's contig hint.
	 * This is an optimization to prevent scanning by assuming if it
	 * cannot fit in the global hint, there is memory pressure and creating
	 * a new chunk would happen soon.
	 */
	bit_off = ALIGN(chunk->contig_bits_start, align) -
		  chunk->contig_bits_start;
	if (bit_off + alloc_bits > chunk->contig_bits)
		return -1;

934 935 936
	bit_off = chunk->first_bit;
	bits = 0;
	pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
937
		if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
938
						   &next_off))
939
			break;
940

941
		bit_off = next_off;
942
		bits = 0;
943
	}
944 945 946 947 948

	if (bit_off == pcpu_chunk_map_bits(chunk))
		return -1;

	return bit_off;
949 950
}

951
/**
952
 * pcpu_alloc_area - allocates an area from a pcpu_chunk
953
 * @chunk: chunk of interest
954 955 956
 * @alloc_bits: size of request in allocation units
 * @align: alignment of area (max PAGE_SIZE)
 * @start: bit_off to start searching
957
 *
958
 * This function takes in a @start offset to begin searching to fit an
959 960 961 962 963 964
 * allocation of @alloc_bits with alignment @align.  It needs to scan
 * the allocation map because if it fits within the block's contig hint,
 * @start will be block->first_free. This is an attempt to fill the
 * allocation prior to breaking the contig hint.  The allocation and
 * boundary maps are updated accordingly if it confirms a valid
 * free area.
965
 *
966
 * RETURNS:
967 968
 * Allocated addr offset in @chunk on success.
 * -1 if no matching area is found.
969
 */
970 971
static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
			   size_t align, int start)
972
{
973 974
	size_t align_mask = (align) ? (align - 1) : 0;
	int bit_off, end, oslot;
975

976
	lockdep_assert_held(&pcpu_lock);
977

978
	oslot = pcpu_chunk_slot(chunk);
979

980 981 982
	/*
	 * Search to find a fit.
	 */
983
	end = start + alloc_bits + PCPU_BITMAP_BLOCK_BITS;
984 985 986 987
	bit_off = bitmap_find_next_zero_area(chunk->alloc_map, end, start,
					     alloc_bits, align_mask);
	if (bit_off >= end)
		return -1;
988

989 990
	/* update alloc map */
	bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
A
Al Viro 已提交
991

992 993 994 995
	/* update boundary map */
	set_bit(bit_off, chunk->bound_map);
	bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
	set_bit(bit_off + alloc_bits, chunk->bound_map);
996

997
	chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
998

999 1000 1001 1002 1003 1004 1005
	/* update first free bit */
	if (bit_off == chunk->first_bit)
		chunk->first_bit = find_next_zero_bit(
					chunk->alloc_map,
					pcpu_chunk_map_bits(chunk),
					bit_off + alloc_bits);

1006
	pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
1007 1008 1009

	pcpu_chunk_relocate(chunk, oslot);

1010
	return bit_off * PCPU_MIN_ALLOC_SIZE;
1011 1012 1013
}

/**
1014
 * pcpu_free_area - frees the corresponding offset
1015
 * @chunk: chunk of interest
1016
 * @off: addr offset into chunk
1017
 *
1018 1019
 * This function determines the size of an allocation to free using
 * the boundary bitmap and clears the allocation map.
1020
 */
1021
static void pcpu_free_area(struct pcpu_chunk *chunk, int off)
1022
{
1023
	int bit_off, bits, end, oslot;
1024

1025
	lockdep_assert_held(&pcpu_lock);
1026
	pcpu_stats_area_dealloc(chunk);
1027

1028
	oslot = pcpu_chunk_slot(chunk);
1029

1030
	bit_off = off / PCPU_MIN_ALLOC_SIZE;
A
Al Viro 已提交
1031

1032 1033 1034 1035 1036
	/* find end index */
	end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
			    bit_off + 1);
	bits = end - bit_off;
	bitmap_clear(chunk->alloc_map, bit_off, bits);
1037

1038 1039
	/* update metadata */
	chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE;
1040

1041 1042 1043
	/* update first free bit */
	chunk->first_bit = min(chunk->first_bit, bit_off);

1044
	pcpu_block_update_hint_free(chunk, bit_off, bits);
1045 1046 1047 1048

	pcpu_chunk_relocate(chunk, oslot);
}

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
{
	struct pcpu_block_md *md_block;

	for (md_block = chunk->md_blocks;
	     md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
	     md_block++) {
		md_block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
		md_block->left_free = PCPU_BITMAP_BLOCK_BITS;
		md_block->right_free = PCPU_BITMAP_BLOCK_BITS;
	}
}

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
/**
 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
 * @tmp_addr: the start of the region served
 * @map_size: size of the region served
 *
 * This is responsible for creating the chunks that serve the first chunk.  The
 * base_addr is page aligned down of @tmp_addr while the region end is page
 * aligned up.  Offsets are kept track of to determine the region served. All
 * this is done to appease the bitmap allocator in avoiding partial blocks.
 *
 * RETURNS:
 * Chunk serving the region at @tmp_addr of @map_size.
 */
1075
static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1076
							 int map_size)
1077 1078
{
	struct pcpu_chunk *chunk;
1079
	unsigned long aligned_addr, lcm_align;
1080
	int start_offset, offset_bits, region_size, region_bits;
1081 1082 1083 1084 1085

	/* region calculations */
	aligned_addr = tmp_addr & PAGE_MASK;

	start_offset = tmp_addr - aligned_addr;
1086

1087 1088 1089 1090 1091 1092 1093
	/*
	 * Align the end of the region with the LCM of PAGE_SIZE and
	 * PCPU_BITMAP_BLOCK_SIZE.  One of these constants is a multiple of
	 * the other.
	 */
	lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
	region_size = ALIGN(start_offset + map_size, lcm_align);
1094

1095
	/* allocate chunk */
1096 1097 1098
	chunk = memblock_virt_alloc(sizeof(struct pcpu_chunk) +
				    BITS_TO_LONGS(region_size >> PAGE_SHIFT),
				    0);
1099

1100
	INIT_LIST_HEAD(&chunk->list);
1101 1102

	chunk->base_addr = (void *)aligned_addr;
1103
	chunk->start_offset = start_offset;
1104
	chunk->end_offset = region_size - chunk->start_offset - map_size;
1105

1106
	chunk->nr_pages = region_size >> PAGE_SHIFT;
1107
	region_bits = pcpu_chunk_map_bits(chunk);
1108

1109 1110 1111 1112 1113 1114 1115
	chunk->alloc_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits) *
					       sizeof(chunk->alloc_map[0]), 0);
	chunk->bound_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits + 1) *
					       sizeof(chunk->bound_map[0]), 0);
	chunk->md_blocks = memblock_virt_alloc(pcpu_chunk_nr_blocks(chunk) *
					       sizeof(chunk->md_blocks[0]), 0);
	pcpu_init_md_blocks(chunk);
1116 1117 1118

	/* manage populated page bitmap */
	chunk->immutable = true;
1119 1120
	bitmap_fill(chunk->populated, chunk->nr_pages);
	chunk->nr_populated = chunk->nr_pages;
1121 1122 1123
	chunk->nr_empty_pop_pages =
		pcpu_cnt_pop_pages(chunk, start_offset / PCPU_MIN_ALLOC_SIZE,
				   map_size / PCPU_MIN_ALLOC_SIZE);
1124

1125 1126
	chunk->contig_bits = map_size / PCPU_MIN_ALLOC_SIZE;
	chunk->free_bytes = map_size;
1127 1128 1129

	if (chunk->start_offset) {
		/* hide the beginning of the bitmap */
1130 1131 1132 1133
		offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
		bitmap_set(chunk->alloc_map, 0, offset_bits);
		set_bit(0, chunk->bound_map);
		set_bit(offset_bits, chunk->bound_map);
1134

1135 1136
		chunk->first_bit = offset_bits;

1137
		pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1138 1139
	}

1140 1141
	if (chunk->end_offset) {
		/* hide the end of the bitmap */
1142 1143 1144 1145 1146 1147 1148
		offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
		bitmap_set(chunk->alloc_map,
			   pcpu_chunk_map_bits(chunk) - offset_bits,
			   offset_bits);
		set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
			chunk->bound_map);
		set_bit(region_bits, chunk->bound_map);
1149

1150 1151 1152
		pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
					     - offset_bits, offset_bits);
	}
1153

1154 1155 1156
	return chunk;
}

1157 1158 1159
static struct pcpu_chunk *pcpu_alloc_chunk(void)
{
	struct pcpu_chunk *chunk;
1160
	int region_bits;
1161

1162
	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
1163 1164 1165
	if (!chunk)
		return NULL;

1166 1167 1168
	INIT_LIST_HEAD(&chunk->list);
	chunk->nr_pages = pcpu_unit_pages;
	region_bits = pcpu_chunk_map_bits(chunk);
1169

1170 1171 1172 1173
	chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
					   sizeof(chunk->alloc_map[0]));
	if (!chunk->alloc_map)
		goto alloc_map_fail;
1174

1175 1176 1177 1178
	chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
					   sizeof(chunk->bound_map[0]));
	if (!chunk->bound_map)
		goto bound_map_fail;
1179

1180 1181 1182 1183 1184 1185 1186
	chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
					   sizeof(chunk->md_blocks[0]));
	if (!chunk->md_blocks)
		goto md_blocks_fail;

	pcpu_init_md_blocks(chunk);

1187 1188 1189
	/* init metadata */
	chunk->contig_bits = region_bits;
	chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
1190

1191
	return chunk;
1192

1193 1194
md_blocks_fail:
	pcpu_mem_free(chunk->bound_map);
1195 1196 1197 1198 1199 1200
bound_map_fail:
	pcpu_mem_free(chunk->alloc_map);
alloc_map_fail:
	pcpu_mem_free(chunk);

	return NULL;
1201 1202 1203 1204 1205 1206
}

static void pcpu_free_chunk(struct pcpu_chunk *chunk)
{
	if (!chunk)
		return;
1207 1208
	pcpu_mem_free(chunk->bound_map);
	pcpu_mem_free(chunk->alloc_map);
1209
	pcpu_mem_free(chunk);
1210 1211
}

1212 1213 1214 1215 1216
/**
 * pcpu_chunk_populated - post-population bookkeeping
 * @chunk: pcpu_chunk which got populated
 * @page_start: the start page
 * @page_end: the end page
1217
 * @for_alloc: if this is to populate for allocation
1218 1219 1220 1221
 *
 * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
 * the bookkeeping information accordingly.  Must be called after each
 * successful population.
1222 1223 1224
 *
 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
 * is to serve an allocation in that area.
1225
 */
1226 1227
static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
				 int page_end, bool for_alloc)
1228 1229 1230 1231 1232 1233 1234
{
	int nr = page_end - page_start;

	lockdep_assert_held(&pcpu_lock);

	bitmap_set(chunk->populated, page_start, nr);
	chunk->nr_populated += nr;
1235 1236 1237 1238 1239

	if (!for_alloc) {
		chunk->nr_empty_pop_pages += nr;
		pcpu_nr_empty_pop_pages += nr;
	}
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
}

/**
 * pcpu_chunk_depopulated - post-depopulation bookkeeping
 * @chunk: pcpu_chunk which got depopulated
 * @page_start: the start page
 * @page_end: the end page
 *
 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
 * Update the bookkeeping information accordingly.  Must be called after
 * each successful depopulation.
 */
static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
				   int page_start, int page_end)
{
	int nr = page_end - page_start;

	lockdep_assert_held(&pcpu_lock);

	bitmap_clear(chunk->populated, page_start, nr);
	chunk->nr_populated -= nr;
1261
	chunk->nr_empty_pop_pages -= nr;
1262 1263 1264
	pcpu_nr_empty_pop_pages -= nr;
}

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
/*
 * Chunk management implementation.
 *
 * To allow different implementations, chunk alloc/free and
 * [de]population are implemented in a separate file which is pulled
 * into this file and compiled together.  The following functions
 * should be implemented.
 *
 * pcpu_populate_chunk		- populate the specified range of a chunk
 * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
 * pcpu_create_chunk		- create a new chunk
 * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
 * pcpu_addr_to_page		- translate address to physical address
 * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
1279
 */
1280 1281 1282 1283 1284 1285
static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
static struct pcpu_chunk *pcpu_create_chunk(void);
static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
static struct page *pcpu_addr_to_page(void *addr);
static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1286

1287 1288 1289
#ifdef CONFIG_NEED_PER_CPU_KM
#include "percpu-km.c"
#else
1290
#include "percpu-vm.c"
1291
#endif
1292

1293 1294 1295 1296
/**
 * pcpu_chunk_addr_search - determine chunk containing specified address
 * @addr: address for which the chunk needs to be determined.
 *
1297 1298 1299
 * This is an internal function that handles all but static allocations.
 * Static percpu address values should never be passed into the allocator.
 *
1300 1301 1302 1303 1304
 * RETURNS:
 * The address of the found chunk.
 */
static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
{
1305
	/* is it in the dynamic region (first chunk)? */
1306
	if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
1307
		return pcpu_first_chunk;
1308 1309

	/* is it in the reserved region? */
1310
	if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1311
		return pcpu_reserved_chunk;
1312 1313 1314 1315 1316 1317 1318 1319 1320

	/*
	 * The address is relative to unit0 which might be unused and
	 * thus unmapped.  Offset the address to the unit space of the
	 * current processor before looking it up in the vmalloc
	 * space.  Note that any possible cpu id can be used here, so
	 * there's no need to worry about preemption or cpu hotplug.
	 */
	addr += pcpu_unit_offsets[raw_smp_processor_id()];
1321
	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1322 1323
}

1324
/**
1325
 * pcpu_alloc - the percpu allocator
T
Tejun Heo 已提交
1326
 * @size: size of area to allocate in bytes
1327
 * @align: alignment of area (max PAGE_SIZE)
1328
 * @reserved: allocate from the reserved chunk if available
1329
 * @gfp: allocation flags
1330
 *
1331
 * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
1332 1333 1334
 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
 * then no warning will be triggered on invalid or failed allocation
 * requests.
1335 1336 1337 1338
 *
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
1339 1340
static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
				 gfp_t gfp)
1341
{
1342 1343
	bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
	bool do_warn = !(gfp & __GFP_NOWARN);
1344
	static int warn_limit = 10;
1345
	struct pcpu_chunk *chunk;
1346
	const char *err;
1347
	int slot, off, cpu, ret;
1348
	unsigned long flags;
1349
	void __percpu *ptr;
1350
	size_t bits, bit_align;
1351

1352
	/*
1353 1354 1355 1356
	 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
	 * therefore alignment must be a minimum of that many bytes.
	 * An allocation may have internal fragmentation from rounding up
	 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1357
	 */
1358 1359
	if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
		align = PCPU_MIN_ALLOC_SIZE;
1360

1361
	size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1362 1363
	bits = size >> PCPU_MIN_ALLOC_SHIFT;
	bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
V
Viro 已提交
1364

1365 1366
	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
		     !is_power_of_2(align))) {
1367
		WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
J
Joe Perches 已提交
1368
		     size, align);
1369 1370 1371
		return NULL;
	}

1372 1373 1374
	if (!is_atomic)
		mutex_lock(&pcpu_alloc_mutex);

1375
	spin_lock_irqsave(&pcpu_lock, flags);
1376

1377 1378 1379
	/* serve reserved allocations from the reserved chunk if available */
	if (reserved && pcpu_reserved_chunk) {
		chunk = pcpu_reserved_chunk;
1380

1381 1382
		off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
		if (off < 0) {
1383
			err = "alloc from reserved chunk failed";
1384
			goto fail_unlock;
1385
		}
1386

1387
		off = pcpu_alloc_area(chunk, bits, bit_align, off);
1388 1389
		if (off >= 0)
			goto area_found;
1390

1391
		err = "alloc from reserved chunk failed";
1392
		goto fail_unlock;
1393 1394
	}

1395
restart:
1396
	/* search through normal chunks */
1397 1398
	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1399 1400 1401
			off = pcpu_find_block_fit(chunk, bits, bit_align,
						  is_atomic);
			if (off < 0)
1402
				continue;
1403

1404
			off = pcpu_alloc_area(chunk, bits, bit_align, off);
1405 1406
			if (off >= 0)
				goto area_found;
1407

1408 1409 1410
		}
	}

1411
	spin_unlock_irqrestore(&pcpu_lock, flags);
1412

T
Tejun Heo 已提交
1413 1414 1415 1416 1417
	/*
	 * No space left.  Create a new chunk.  We don't want multiple
	 * tasks to create chunks simultaneously.  Serialize and create iff
	 * there's still no empty chunk after grabbing the mutex.
	 */
1418 1419
	if (is_atomic) {
		err = "atomic alloc failed, no space left";
1420
		goto fail;
1421
	}
1422

T
Tejun Heo 已提交
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
	if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
		chunk = pcpu_create_chunk();
		if (!chunk) {
			err = "failed to allocate new chunk";
			goto fail;
		}

		spin_lock_irqsave(&pcpu_lock, flags);
		pcpu_chunk_relocate(chunk, -1);
	} else {
		spin_lock_irqsave(&pcpu_lock, flags);
1434
	}
1435 1436

	goto restart;
1437 1438

area_found:
1439
	pcpu_stats_area_alloc(chunk, size);
1440
	spin_unlock_irqrestore(&pcpu_lock, flags);
1441

1442
	/* populate if not all pages are already there */
1443
	if (!is_atomic) {
1444
		int page_start, page_end, rs, re;
1445

1446 1447
		page_start = PFN_DOWN(off);
		page_end = PFN_UP(off + size);
T
Tejun Heo 已提交
1448

1449 1450
		pcpu_for_each_unpop_region(chunk->populated, rs, re,
					   page_start, page_end) {
1451 1452 1453 1454 1455 1456
			WARN_ON(chunk->immutable);

			ret = pcpu_populate_chunk(chunk, rs, re);

			spin_lock_irqsave(&pcpu_lock, flags);
			if (ret) {
1457
				pcpu_free_area(chunk, off);
1458 1459 1460
				err = "failed to populate";
				goto fail_unlock;
			}
1461
			pcpu_chunk_populated(chunk, rs, re, true);
1462
			spin_unlock_irqrestore(&pcpu_lock, flags);
1463
		}
1464

1465 1466
		mutex_unlock(&pcpu_alloc_mutex);
	}
1467

1468 1469 1470
	if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
		pcpu_schedule_balance_work();

1471 1472 1473 1474
	/* clear the areas and return address relative to base address */
	for_each_possible_cpu(cpu)
		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);

1475
	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1476
	kmemleak_alloc_percpu(ptr, size, gfp);
1477 1478 1479 1480

	trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
			chunk->base_addr, off, ptr);

1481
	return ptr;
1482 1483

fail_unlock:
1484
	spin_unlock_irqrestore(&pcpu_lock, flags);
T
Tejun Heo 已提交
1485
fail:
1486 1487
	trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);

1488
	if (!is_atomic && do_warn && warn_limit) {
1489
		pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
J
Joe Perches 已提交
1490
			size, align, is_atomic, err);
1491 1492
		dump_stack();
		if (!--warn_limit)
1493
			pr_info("limit reached, disable warning\n");
1494
	}
1495 1496 1497 1498
	if (is_atomic) {
		/* see the flag handling in pcpu_blance_workfn() */
		pcpu_atomic_alloc_failed = true;
		pcpu_schedule_balance_work();
1499 1500
	} else {
		mutex_unlock(&pcpu_alloc_mutex);
1501
	}
1502
	return NULL;
1503
}
1504 1505

/**
1506
 * __alloc_percpu_gfp - allocate dynamic percpu area
1507 1508
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
1509
 * @gfp: allocation flags
1510
 *
1511 1512
 * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1513 1514 1515
 * be called from any context but is a lot more likely to fail. If @gfp
 * has __GFP_NOWARN then no warning will be triggered on invalid or failed
 * allocation requests.
1516
 *
1517 1518 1519
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
{
	return pcpu_alloc(size, align, false, gfp);
}
EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);

/**
 * __alloc_percpu - allocate dynamic percpu area
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
 *
 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
 */
1533
void __percpu *__alloc_percpu(size_t size, size_t align)
1534
{
1535
	return pcpu_alloc(size, align, false, GFP_KERNEL);
1536
}
1537 1538
EXPORT_SYMBOL_GPL(__alloc_percpu);

1539 1540 1541 1542 1543
/**
 * __alloc_reserved_percpu - allocate reserved percpu area
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
 *
1544 1545 1546 1547
 * Allocate zero-filled percpu area of @size bytes aligned at @align
 * from reserved percpu area if arch has set it up; otherwise,
 * allocation is served from the same dynamic area.  Might sleep.
 * Might trigger writeouts.
1548
 *
1549 1550 1551
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
1552 1553 1554
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
1555
void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1556
{
1557
	return pcpu_alloc(size, align, true, GFP_KERNEL);
1558 1559
}

1560
/**
1561
 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1562 1563 1564 1565
 * @work: unused
 *
 * Reclaim all fully free chunks except for the first one.
 */
1566
static void pcpu_balance_workfn(struct work_struct *work)
1567
{
1568 1569
	LIST_HEAD(to_free);
	struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1570
	struct pcpu_chunk *chunk, *next;
1571
	int slot, nr_to_pop, ret;
1572

1573 1574 1575 1576
	/*
	 * There's no reason to keep around multiple unused chunks and VM
	 * areas can be scarce.  Destroy all free chunks except for one.
	 */
1577 1578
	mutex_lock(&pcpu_alloc_mutex);
	spin_lock_irq(&pcpu_lock);
1579

1580
	list_for_each_entry_safe(chunk, next, free_head, list) {
1581 1582 1583
		WARN_ON(chunk->immutable);

		/* spare the first one */
1584
		if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1585 1586
			continue;

1587
		list_move(&chunk->list, &to_free);
1588 1589
	}

1590
	spin_unlock_irq(&pcpu_lock);
1591

1592
	list_for_each_entry_safe(chunk, next, &to_free, list) {
1593
		int rs, re;
1594

1595 1596
		pcpu_for_each_pop_region(chunk->populated, rs, re, 0,
					 chunk->nr_pages) {
1597
			pcpu_depopulate_chunk(chunk, rs, re);
1598 1599 1600
			spin_lock_irq(&pcpu_lock);
			pcpu_chunk_depopulated(chunk, rs, re);
			spin_unlock_irq(&pcpu_lock);
1601
		}
1602
		pcpu_destroy_chunk(chunk);
1603
	}
T
Tejun Heo 已提交
1604

1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
	/*
	 * Ensure there are certain number of free populated pages for
	 * atomic allocs.  Fill up from the most packed so that atomic
	 * allocs don't increase fragmentation.  If atomic allocation
	 * failed previously, always populate the maximum amount.  This
	 * should prevent atomic allocs larger than PAGE_SIZE from keeping
	 * failing indefinitely; however, large atomic allocs are not
	 * something we support properly and can be highly unreliable and
	 * inefficient.
	 */
retry_pop:
	if (pcpu_atomic_alloc_failed) {
		nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
		/* best effort anyway, don't worry about synchronization */
		pcpu_atomic_alloc_failed = false;
	} else {
		nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
				  pcpu_nr_empty_pop_pages,
				  0, PCPU_EMPTY_POP_PAGES_HIGH);
	}

	for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
		int nr_unpop = 0, rs, re;

		if (!nr_to_pop)
			break;

		spin_lock_irq(&pcpu_lock);
		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1634
			nr_unpop = chunk->nr_pages - chunk->nr_populated;
1635 1636 1637 1638 1639 1640 1641 1642 1643
			if (nr_unpop)
				break;
		}
		spin_unlock_irq(&pcpu_lock);

		if (!nr_unpop)
			continue;

		/* @chunk can't go away while pcpu_alloc_mutex is held */
1644 1645
		pcpu_for_each_unpop_region(chunk->populated, rs, re, 0,
					   chunk->nr_pages) {
1646 1647 1648 1649 1650 1651
			int nr = min(re - rs, nr_to_pop);

			ret = pcpu_populate_chunk(chunk, rs, rs + nr);
			if (!ret) {
				nr_to_pop -= nr;
				spin_lock_irq(&pcpu_lock);
1652
				pcpu_chunk_populated(chunk, rs, rs + nr, false);
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
				spin_unlock_irq(&pcpu_lock);
			} else {
				nr_to_pop = 0;
			}

			if (!nr_to_pop)
				break;
		}
	}

	if (nr_to_pop) {
		/* ran out of chunks to populate, create a new one and retry */
		chunk = pcpu_create_chunk();
		if (chunk) {
			spin_lock_irq(&pcpu_lock);
			pcpu_chunk_relocate(chunk, -1);
			spin_unlock_irq(&pcpu_lock);
			goto retry_pop;
		}
	}

T
Tejun Heo 已提交
1674
	mutex_unlock(&pcpu_alloc_mutex);
1675 1676 1677 1678 1679 1680
}

/**
 * free_percpu - free percpu area
 * @ptr: pointer to area to free
 *
1681 1682 1683 1684
 * Free percpu area @ptr.
 *
 * CONTEXT:
 * Can be called from atomic context.
1685
 */
1686
void free_percpu(void __percpu *ptr)
1687
{
1688
	void *addr;
1689
	struct pcpu_chunk *chunk;
1690
	unsigned long flags;
1691
	int off;
1692 1693 1694 1695

	if (!ptr)
		return;

1696 1697
	kmemleak_free_percpu(ptr);

1698 1699
	addr = __pcpu_ptr_to_addr(ptr);

1700
	spin_lock_irqsave(&pcpu_lock, flags);
1701 1702

	chunk = pcpu_chunk_addr_search(addr);
T
Tejun Heo 已提交
1703
	off = addr - chunk->base_addr;
1704

1705
	pcpu_free_area(chunk, off);
1706

1707
	/* if there are more than one fully free chunks, wake up grim reaper */
1708
	if (chunk->free_bytes == pcpu_unit_size) {
1709 1710
		struct pcpu_chunk *pos;

1711
		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1712
			if (pos != chunk) {
1713
				pcpu_schedule_balance_work();
1714 1715 1716 1717
				break;
			}
	}

1718 1719
	trace_percpu_free_percpu(chunk->base_addr, off, ptr);

1720
	spin_unlock_irqrestore(&pcpu_lock, flags);
1721 1722 1723
}
EXPORT_SYMBOL_GPL(free_percpu);

1724
bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
1725
{
1726
#ifdef CONFIG_SMP
1727 1728 1729 1730 1731 1732
	const size_t static_size = __per_cpu_end - __per_cpu_start;
	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
	unsigned int cpu;

	for_each_possible_cpu(cpu) {
		void *start = per_cpu_ptr(base, cpu);
1733
		void *va = (void *)addr;
1734

1735
		if (va >= start && va < start + static_size) {
1736
			if (can_addr) {
1737
				*can_addr = (unsigned long) (va - start);
1738 1739 1740
				*can_addr += (unsigned long)
					per_cpu_ptr(base, get_boot_cpu_id());
			}
1741
			return true;
1742 1743
		}
	}
1744 1745
#endif
	/* on UP, can't distinguish from other static vars, always false */
1746 1747 1748
	return false;
}

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
/**
 * is_kernel_percpu_address - test whether address is from static percpu area
 * @addr: address to test
 *
 * Test whether @addr belongs to in-kernel static percpu area.  Module
 * static percpu areas are not considered.  For those, use
 * is_module_percpu_address().
 *
 * RETURNS:
 * %true if @addr is from in-kernel static percpu area, %false otherwise.
 */
bool is_kernel_percpu_address(unsigned long addr)
{
	return __is_kernel_percpu_address(addr, NULL);
}

1765 1766 1767 1768 1769 1770 1771 1772 1773
/**
 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
 * @addr: the address to be converted to physical address
 *
 * Given @addr which is dereferenceable address obtained via one of
 * percpu access macros, this function translates it into its physical
 * address.  The caller is responsible for ensuring @addr stays valid
 * until this function finishes.
 *
1774 1775 1776 1777 1778
 * percpu allocator has special setup for the first chunk, which currently
 * supports either embedding in linear address space or vmalloc mapping,
 * and, from the second one, the backing allocator (currently either vm or
 * km) provides translation.
 *
1779
 * The addr can be translated simply without checking if it falls into the
1780 1781 1782 1783 1784
 * first chunk. But the current code reflects better how percpu allocator
 * actually works, and the verification can discover both bugs in percpu
 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
 * code.
 *
1785 1786 1787 1788 1789
 * RETURNS:
 * The physical address for @addr.
 */
phys_addr_t per_cpu_ptr_to_phys(void *addr)
{
1790 1791
	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
	bool in_first_chunk = false;
T
Tejun Heo 已提交
1792
	unsigned long first_low, first_high;
1793 1794 1795
	unsigned int cpu;

	/*
T
Tejun Heo 已提交
1796
	 * The following test on unit_low/high isn't strictly
1797 1798
	 * necessary but will speed up lookups of addresses which
	 * aren't in the first chunk.
1799 1800 1801 1802 1803
	 *
	 * The address check is against full chunk sizes.  pcpu_base_addr
	 * points to the beginning of the first chunk including the
	 * static region.  Assumes good intent as the first chunk may
	 * not be full (ie. < pcpu_unit_pages in size).
1804
	 */
1805 1806 1807 1808
	first_low = (unsigned long)pcpu_base_addr +
		    pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
	first_high = (unsigned long)pcpu_base_addr +
		     pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
T
Tejun Heo 已提交
1809 1810
	if ((unsigned long)addr >= first_low &&
	    (unsigned long)addr < first_high) {
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
		for_each_possible_cpu(cpu) {
			void *start = per_cpu_ptr(base, cpu);

			if (addr >= start && addr < start + pcpu_unit_size) {
				in_first_chunk = true;
				break;
			}
		}
	}

	if (in_first_chunk) {
1822
		if (!is_vmalloc_addr(addr))
1823 1824
			return __pa(addr);
		else
1825 1826
			return page_to_phys(vmalloc_to_page(addr)) +
			       offset_in_page(addr);
1827
	} else
1828 1829
		return page_to_phys(pcpu_addr_to_page(addr)) +
		       offset_in_page(addr);
1830 1831
}

1832
/**
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
 * pcpu_alloc_alloc_info - allocate percpu allocation info
 * @nr_groups: the number of groups
 * @nr_units: the number of units
 *
 * Allocate ai which is large enough for @nr_groups groups containing
 * @nr_units units.  The returned ai's groups[0].cpu_map points to the
 * cpu_map array which is long enough for @nr_units and filled with
 * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
 * pointer of other groups.
 *
 * RETURNS:
 * Pointer to the allocated pcpu_alloc_info on success, NULL on
 * failure.
 */
struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
						      int nr_units)
{
	struct pcpu_alloc_info *ai;
	size_t base_size, ai_size;
	void *ptr;
	int unit;

	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
			  __alignof__(ai->groups[0].cpu_map[0]));
	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);

1859
	ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
	if (!ptr)
		return NULL;
	ai = ptr;
	ptr += base_size;

	ai->groups[0].cpu_map = ptr;

	for (unit = 0; unit < nr_units; unit++)
		ai->groups[0].cpu_map[unit] = NR_CPUS;

	ai->nr_groups = nr_groups;
	ai->__ai_size = PFN_ALIGN(ai_size);

	return ai;
}

/**
 * pcpu_free_alloc_info - free percpu allocation info
 * @ai: pcpu_alloc_info to free
 *
 * Free @ai which was allocated by pcpu_alloc_alloc_info().
 */
void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
{
1884
	memblock_free_early(__pa(ai), ai->__ai_size);
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
}

/**
 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
 * @lvl: loglevel
 * @ai: allocation info to dump
 *
 * Print out information about @ai using loglevel @lvl.
 */
static void pcpu_dump_alloc_info(const char *lvl,
				 const struct pcpu_alloc_info *ai)
1896
{
1897
	int group_width = 1, cpu_width = 1, width;
1898
	char empty_str[] = "--------";
1899 1900 1901 1902 1903 1904 1905
	int alloc = 0, alloc_end = 0;
	int group, v;
	int upa, apl;	/* units per alloc, allocs per line */

	v = ai->nr_groups;
	while (v /= 10)
		group_width++;
1906

1907
	v = num_possible_cpus();
1908
	while (v /= 10)
1909 1910
		cpu_width++;
	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1911

1912 1913 1914
	upa = ai->alloc_size / ai->unit_size;
	width = upa * (cpu_width + 1) + group_width + 3;
	apl = rounddown_pow_of_two(max(60 / width, 1));
1915

1916 1917 1918
	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1919

1920 1921 1922 1923 1924 1925 1926 1927
	for (group = 0; group < ai->nr_groups; group++) {
		const struct pcpu_group_info *gi = &ai->groups[group];
		int unit = 0, unit_end = 0;

		BUG_ON(gi->nr_units % upa);
		for (alloc_end += gi->nr_units / upa;
		     alloc < alloc_end; alloc++) {
			if (!(alloc % apl)) {
1928
				pr_cont("\n");
1929 1930
				printk("%spcpu-alloc: ", lvl);
			}
1931
			pr_cont("[%0*d] ", group_width, group);
1932 1933 1934

			for (unit_end += upa; unit < unit_end; unit++)
				if (gi->cpu_map[unit] != NR_CPUS)
1935 1936
					pr_cont("%0*d ",
						cpu_width, gi->cpu_map[unit]);
1937
				else
1938
					pr_cont("%s ", empty_str);
1939 1940
		}
	}
1941
	pr_cont("\n");
1942 1943
}

1944
/**
1945
 * pcpu_setup_first_chunk - initialize the first percpu chunk
1946
 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1947
 * @base_addr: mapped address
1948 1949 1950
 *
 * Initialize the first percpu chunk which contains the kernel static
 * perpcu area.  This function is to be called from arch percpu area
1951
 * setup path.
1952
 *
1953 1954 1955 1956 1957 1958
 * @ai contains all information necessary to initialize the first
 * chunk and prime the dynamic percpu allocator.
 *
 * @ai->static_size is the size of static percpu area.
 *
 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1959 1960 1961 1962 1963 1964 1965
 * reserve after the static area in the first chunk.  This reserves
 * the first chunk such that it's available only through reserved
 * percpu allocation.  This is primarily used to serve module percpu
 * static areas on architectures where the addressing model has
 * limited offset range for symbol relocations to guarantee module
 * percpu symbols fall inside the relocatable range.
 *
1966 1967 1968
 * @ai->dyn_size determines the number of bytes available for dynamic
 * allocation in the first chunk.  The area between @ai->static_size +
 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1969
 *
1970 1971 1972
 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
 * and equal to or larger than @ai->static_size + @ai->reserved_size +
 * @ai->dyn_size.
1973
 *
1974 1975
 * @ai->atom_size is the allocation atom size and used as alignment
 * for vm areas.
1976
 *
1977 1978 1979 1980 1981 1982 1983 1984 1985
 * @ai->alloc_size is the allocation size and always multiple of
 * @ai->atom_size.  This is larger than @ai->atom_size if
 * @ai->unit_size is larger than @ai->atom_size.
 *
 * @ai->nr_groups and @ai->groups describe virtual memory layout of
 * percpu areas.  Units which should be colocated are put into the
 * same group.  Dynamic VM areas will be allocated according to these
 * groupings.  If @ai->nr_groups is zero, a single group containing
 * all units is assumed.
1986
 *
1987 1988
 * The caller should have mapped the first chunk at @base_addr and
 * copied static data to each unit.
1989
 *
1990 1991 1992 1993 1994 1995 1996
 * The first chunk will always contain a static and a dynamic region.
 * However, the static region is not managed by any chunk.  If the first
 * chunk also contains a reserved region, it is served by two chunks -
 * one for the reserved region and one for the dynamic region.  They
 * share the same vm, but use offset regions in the area allocation map.
 * The chunk serving the dynamic region is circulated in the chunk slots
 * and available for dynamic allocation like any other chunk.
1997
 *
1998
 * RETURNS:
T
Tejun Heo 已提交
1999
 * 0 on success, -errno on failure.
2000
 */
T
Tejun Heo 已提交
2001 2002
int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
				  void *base_addr)
2003
{
2004
	size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2005
	size_t static_size, dyn_size;
2006
	struct pcpu_chunk *chunk;
2007 2008
	unsigned long *group_offsets;
	size_t *group_sizes;
T
Tejun Heo 已提交
2009
	unsigned long *unit_off;
2010
	unsigned int cpu;
2011 2012
	int *unit_map;
	int group, unit, i;
2013 2014
	int map_size;
	unsigned long tmp_addr;
2015

2016 2017
#define PCPU_SETUP_BUG_ON(cond)	do {					\
	if (unlikely(cond)) {						\
2018 2019
		pr_emerg("failed to initialize, %s\n", #cond);		\
		pr_emerg("cpu_possible_mask=%*pb\n",			\
2020
			 cpumask_pr_args(cpu_possible_mask));		\
2021 2022 2023 2024 2025
		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
		BUG();							\
	}								\
} while (0)

2026
	/* sanity checks */
2027
	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2028
#ifdef CONFIG_SMP
2029
	PCPU_SETUP_BUG_ON(!ai->static_size);
2030
	PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2031
#endif
2032
	PCPU_SETUP_BUG_ON(!base_addr);
2033
	PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2034
	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2035
	PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2036
	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2037
	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2038
	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2039
	PCPU_SETUP_BUG_ON(!ai->dyn_size);
2040
	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2041 2042
	PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
			    IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2043
	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2044

2045
	/* process group information and build config tables accordingly */
2046 2047 2048 2049 2050 2051
	group_offsets = memblock_virt_alloc(ai->nr_groups *
					     sizeof(group_offsets[0]), 0);
	group_sizes = memblock_virt_alloc(ai->nr_groups *
					   sizeof(group_sizes[0]), 0);
	unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
	unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
2052

2053
	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2054
		unit_map[cpu] = UINT_MAX;
T
Tejun Heo 已提交
2055 2056 2057

	pcpu_low_unit_cpu = NR_CPUS;
	pcpu_high_unit_cpu = NR_CPUS;
2058

2059 2060
	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
		const struct pcpu_group_info *gi = &ai->groups[group];
2061

2062 2063 2064
		group_offsets[group] = gi->base_offset;
		group_sizes[group] = gi->nr_units * ai->unit_size;

2065 2066 2067 2068
		for (i = 0; i < gi->nr_units; i++) {
			cpu = gi->cpu_map[i];
			if (cpu == NR_CPUS)
				continue;
2069

D
Dan Carpenter 已提交
2070
			PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2071 2072
			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2073

2074
			unit_map[cpu] = unit + i;
T
Tejun Heo 已提交
2075 2076
			unit_off[cpu] = gi->base_offset + i * ai->unit_size;

T
Tejun Heo 已提交
2077 2078 2079 2080 2081 2082 2083
			/* determine low/high unit_cpu */
			if (pcpu_low_unit_cpu == NR_CPUS ||
			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
				pcpu_low_unit_cpu = cpu;
			if (pcpu_high_unit_cpu == NR_CPUS ||
			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
				pcpu_high_unit_cpu = cpu;
2084
		}
2085
	}
2086 2087 2088
	pcpu_nr_units = unit;

	for_each_possible_cpu(cpu)
2089 2090 2091 2092
		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);

	/* we're done parsing the input, undefine BUG macro and dump config */
#undef PCPU_SETUP_BUG_ON
2093
	pcpu_dump_alloc_info(KERN_DEBUG, ai);
2094

2095 2096 2097
	pcpu_nr_groups = ai->nr_groups;
	pcpu_group_offsets = group_offsets;
	pcpu_group_sizes = group_sizes;
2098
	pcpu_unit_map = unit_map;
T
Tejun Heo 已提交
2099
	pcpu_unit_offsets = unit_off;
2100 2101

	/* determine basic parameters */
2102
	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2103
	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2104
	pcpu_atom_size = ai->atom_size;
T
Tejun Heo 已提交
2105 2106
	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
2107

2108 2109
	pcpu_stats_save_ai(ai);

2110 2111 2112 2113 2114
	/*
	 * Allocate chunk slots.  The additional last slot is for
	 * empty chunks.
	 */
	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
2115 2116
	pcpu_slot = memblock_virt_alloc(
			pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
2117 2118 2119
	for (i = 0; i < pcpu_nr_slots; i++)
		INIT_LIST_HEAD(&pcpu_slot[i]);

2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
	/*
	 * The end of the static region needs to be aligned with the
	 * minimum allocation size as this offsets the reserved and
	 * dynamic region.  The first chunk ends page aligned by
	 * expanding the dynamic region, therefore the dynamic region
	 * can be shrunk to compensate while still staying above the
	 * configured sizes.
	 */
	static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
	dyn_size = ai->dyn_size - (static_size - ai->static_size);

2131
	/*
2132 2133 2134 2135 2136 2137
	 * Initialize first chunk.
	 * If the reserved_size is non-zero, this initializes the reserved
	 * chunk.  If the reserved_size is zero, the reserved chunk is NULL
	 * and the dynamic region is initialized here.  The first chunk,
	 * pcpu_first_chunk, will always point to the chunk that serves
	 * the dynamic region.
2138
	 */
2139 2140
	tmp_addr = (unsigned long)base_addr + static_size;
	map_size = ai->reserved_size ?: dyn_size;
2141
	chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2142

2143
	/* init dynamic chunk if necessary */
2144
	if (ai->reserved_size) {
2145
		pcpu_reserved_chunk = chunk;
2146

2147
		tmp_addr = (unsigned long)base_addr + static_size +
2148
			   ai->reserved_size;
2149
		map_size = dyn_size;
2150
		chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2151 2152
	}

2153
	/* link the first chunk in */
2154
	pcpu_first_chunk = chunk;
2155
	pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
2156
	pcpu_chunk_relocate(pcpu_first_chunk, -1);
2157

2158
	pcpu_stats_chunk_alloc();
2159
	trace_percpu_create_chunk(base_addr);
2160

2161
	/* we're done */
T
Tejun Heo 已提交
2162
	pcpu_base_addr = base_addr;
T
Tejun Heo 已提交
2163
	return 0;
2164
}
2165

2166 2167
#ifdef CONFIG_SMP

2168
const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2169 2170 2171 2172
	[PCPU_FC_AUTO]	= "auto",
	[PCPU_FC_EMBED]	= "embed",
	[PCPU_FC_PAGE]	= "page",
};
2173

2174
enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2175

2176 2177
static int __init percpu_alloc_setup(char *str)
{
2178 2179 2180
	if (!str)
		return -EINVAL;

2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
	if (0)
		/* nada */;
#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
	else if (!strcmp(str, "embed"))
		pcpu_chosen_fc = PCPU_FC_EMBED;
#endif
#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
	else if (!strcmp(str, "page"))
		pcpu_chosen_fc = PCPU_FC_PAGE;
#endif
	else
2192
		pr_warn("unknown allocator %s specified\n", str);
2193

2194
	return 0;
2195
}
2196
early_param("percpu_alloc", percpu_alloc_setup);
2197

2198 2199 2200 2201 2202
/*
 * pcpu_embed_first_chunk() is used by the generic percpu setup.
 * Build it if needed by the arch config or the generic setup is going
 * to be used.
 */
2203 2204
#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
#define BUILD_EMBED_FIRST_CHUNK
#endif

/* build pcpu_page_first_chunk() iff needed by the arch config */
#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
#define BUILD_PAGE_FIRST_CHUNK
#endif

/* pcpu_build_alloc_info() is used by both embed and page first chunk */
#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
/**
 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
 * @reserved_size: the size of reserved percpu area in bytes
 * @dyn_size: minimum free size for dynamic allocation in bytes
 * @atom_size: allocation atom size
 * @cpu_distance_fn: callback to determine distance between cpus, optional
 *
 * This function determines grouping of units, their mappings to cpus
 * and other parameters considering needed percpu size, allocation
 * atom size and distances between CPUs.
 *
2226
 * Groups are always multiples of atom size and CPUs which are of
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
 * LOCAL_DISTANCE both ways are grouped together and share space for
 * units in the same group.  The returned configuration is guaranteed
 * to have CPUs on different nodes on different groups and >=75% usage
 * of allocated virtual address space.
 *
 * RETURNS:
 * On success, pointer to the new allocation_info is returned.  On
 * failure, ERR_PTR value is returned.
 */
static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
				size_t reserved_size, size_t dyn_size,
				size_t atom_size,
				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
{
	static int group_map[NR_CPUS] __initdata;
	static int group_cnt[NR_CPUS] __initdata;
	const size_t static_size = __per_cpu_end - __per_cpu_start;
	int nr_groups = 1, nr_units = 0;
	size_t size_sum, min_unit_size, alloc_size;
	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
	int last_allocs, group, unit;
	unsigned int cpu, tcpu;
	struct pcpu_alloc_info *ai;
	unsigned int *cpu_map;

	/* this function may be called multiple times */
	memset(group_map, 0, sizeof(group_map));
	memset(group_cnt, 0, sizeof(group_cnt));

	/* calculate size_sum and ensure dyn_size is enough for early alloc */
	size_sum = PFN_ALIGN(static_size + reserved_size +
			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
	dyn_size = size_sum - static_size - reserved_size;

	/*
	 * Determine min_unit_size, alloc_size and max_upa such that
	 * alloc_size is multiple of atom_size and is the smallest
L
Lucas De Marchi 已提交
2264
	 * which can accommodate 4k aligned segments which are equal to
2265 2266 2267 2268
	 * or larger than min_unit_size.
	 */
	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);

2269
	/* determine the maximum # of units that can fit in an allocation */
2270 2271
	alloc_size = roundup(min_unit_size, atom_size);
	upa = alloc_size / min_unit_size;
2272
	while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
		upa--;
	max_upa = upa;

	/* group cpus according to their proximity */
	for_each_possible_cpu(cpu) {
		group = 0;
	next_group:
		for_each_possible_cpu(tcpu) {
			if (cpu == tcpu)
				break;
			if (group_map[tcpu] == group && cpu_distance_fn &&
			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
				group++;
				nr_groups = max(nr_groups, group + 1);
				goto next_group;
			}
		}
		group_map[cpu] = group;
		group_cnt[group]++;
	}

	/*
2296 2297 2298
	 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
	 * Expand the unit_size until we use >= 75% of the units allocated.
	 * Related to atom_size, which could be much larger than the unit_size.
2299 2300 2301 2302 2303
	 */
	last_allocs = INT_MAX;
	for (upa = max_upa; upa; upa--) {
		int allocs = 0, wasted = 0;

2304
		if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
			continue;

		for (group = 0; group < nr_groups; group++) {
			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
			allocs += this_allocs;
			wasted += this_allocs * upa - group_cnt[group];
		}

		/*
		 * Don't accept if wastage is over 1/3.  The
		 * greater-than comparison ensures upa==1 always
		 * passes the following check.
		 */
		if (wasted > num_possible_cpus() / 3)
			continue;

		/* and then don't consume more memory */
		if (allocs > last_allocs)
			break;
		last_allocs = allocs;
		best_upa = upa;
	}
	upa = best_upa;

	/* allocate and fill alloc_info */
	for (group = 0; group < nr_groups; group++)
		nr_units += roundup(group_cnt[group], upa);

	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
	if (!ai)
		return ERR_PTR(-ENOMEM);
	cpu_map = ai->groups[0].cpu_map;

	for (group = 0; group < nr_groups; group++) {
		ai->groups[group].cpu_map = cpu_map;
		cpu_map += roundup(group_cnt[group], upa);
	}

	ai->static_size = static_size;
	ai->reserved_size = reserved_size;
	ai->dyn_size = dyn_size;
	ai->unit_size = alloc_size / upa;
	ai->atom_size = atom_size;
	ai->alloc_size = alloc_size;

	for (group = 0, unit = 0; group_cnt[group]; group++) {
		struct pcpu_group_info *gi = &ai->groups[group];

		/*
		 * Initialize base_offset as if all groups are located
		 * back-to-back.  The caller should update this to
		 * reflect actual allocation.
		 */
		gi->base_offset = unit * ai->unit_size;

		for_each_possible_cpu(cpu)
			if (group_map[cpu] == group)
				gi->cpu_map[gi->nr_units++] = cpu;
		gi->nr_units = roundup(gi->nr_units, upa);
		unit += gi->nr_units;
	}
	BUG_ON(unit != nr_units);

	return ai;
}
#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */

#if defined(BUILD_EMBED_FIRST_CHUNK)
2373 2374 2375
/**
 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
 * @reserved_size: the size of reserved percpu area in bytes
2376
 * @dyn_size: minimum free size for dynamic allocation in bytes
2377 2378 2379
 * @atom_size: allocation atom size
 * @cpu_distance_fn: callback to determine distance between cpus, optional
 * @alloc_fn: function to allocate percpu page
L
Lucas De Marchi 已提交
2380
 * @free_fn: function to free percpu page
2381 2382 2383 2384 2385
 *
 * This is a helper to ease setting up embedded first percpu chunk and
 * can be called where pcpu_setup_first_chunk() is expected.
 *
 * If this function is used to setup the first chunk, it is allocated
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
 * by calling @alloc_fn and used as-is without being mapped into
 * vmalloc area.  Allocations are always whole multiples of @atom_size
 * aligned to @atom_size.
 *
 * This enables the first chunk to piggy back on the linear physical
 * mapping which often uses larger page size.  Please note that this
 * can result in very sparse cpu->unit mapping on NUMA machines thus
 * requiring large vmalloc address space.  Don't use this allocator if
 * vmalloc space is not orders of magnitude larger than distances
 * between node memory addresses (ie. 32bit NUMA machines).
2396
 *
2397
 * @dyn_size specifies the minimum dynamic area size.
2398 2399
 *
 * If the needed size is smaller than the minimum or specified unit
2400
 * size, the leftover is returned using @free_fn.
2401 2402
 *
 * RETURNS:
T
Tejun Heo 已提交
2403
 * 0 on success, -errno on failure.
2404
 */
2405
int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
2406 2407 2408 2409
				  size_t atom_size,
				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
				  pcpu_fc_alloc_fn_t alloc_fn,
				  pcpu_fc_free_fn_t free_fn)
2410
{
2411 2412
	void *base = (void *)ULONG_MAX;
	void **areas = NULL;
2413
	struct pcpu_alloc_info *ai;
2414 2415
	size_t size_sum, areas_size;
	unsigned long max_distance;
2416
	int group, i, highest_group, rc;
2417

2418 2419
	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
				   cpu_distance_fn);
2420 2421
	if (IS_ERR(ai))
		return PTR_ERR(ai);
2422

2423
	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2424
	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
2425

2426
	areas = memblock_virt_alloc_nopanic(areas_size, 0);
2427
	if (!areas) {
T
Tejun Heo 已提交
2428
		rc = -ENOMEM;
2429
		goto out_free;
2430
	}
2431

2432 2433
	/* allocate, copy and determine base address & max_distance */
	highest_group = 0;
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
	for (group = 0; group < ai->nr_groups; group++) {
		struct pcpu_group_info *gi = &ai->groups[group];
		unsigned int cpu = NR_CPUS;
		void *ptr;

		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
			cpu = gi->cpu_map[i];
		BUG_ON(cpu == NR_CPUS);

		/* allocate space for the whole group */
		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
		if (!ptr) {
			rc = -ENOMEM;
			goto out_free_areas;
		}
2449 2450
		/* kmemleak tracks the percpu allocations separately */
		kmemleak_free(ptr);
2451
		areas[group] = ptr;
2452

2453
		base = min(ptr, base);
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
		if (ptr > areas[highest_group])
			highest_group = group;
	}
	max_distance = areas[highest_group] - base;
	max_distance += ai->unit_size * ai->groups[highest_group].nr_units;

	/* warn if maximum distance is further than 75% of vmalloc space */
	if (max_distance > VMALLOC_TOTAL * 3 / 4) {
		pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
				max_distance, VMALLOC_TOTAL);
#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
		/* and fail if we have fallback */
		rc = -EINVAL;
		goto out_free_areas;
#endif
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
	}

	/*
	 * Copy data and free unused parts.  This should happen after all
	 * allocations are complete; otherwise, we may end up with
	 * overlapping groups.
	 */
	for (group = 0; group < ai->nr_groups; group++) {
		struct pcpu_group_info *gi = &ai->groups[group];
		void *ptr = areas[group];
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489

		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
			if (gi->cpu_map[i] == NR_CPUS) {
				/* unused unit, free whole */
				free_fn(ptr, ai->unit_size);
				continue;
			}
			/* copy and return the unused part */
			memcpy(ptr, __per_cpu_load, ai->static_size);
			free_fn(ptr + size_sum, ai->unit_size - size_sum);
		}
2490
	}
2491

2492
	/* base address is now known, determine group base offsets */
2493
	for (group = 0; group < ai->nr_groups; group++) {
2494
		ai->groups[group].base_offset = areas[group] - base;
2495
	}
2496

2497
	pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2498 2499
		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
		ai->dyn_size, ai->unit_size);
2500

T
Tejun Heo 已提交
2501
	rc = pcpu_setup_first_chunk(ai, base);
2502 2503 2504 2505
	goto out_free;

out_free_areas:
	for (group = 0; group < ai->nr_groups; group++)
2506 2507 2508
		if (areas[group])
			free_fn(areas[group],
				ai->groups[group].nr_units * ai->unit_size);
2509
out_free:
2510
	pcpu_free_alloc_info(ai);
2511
	if (areas)
2512
		memblock_free_early(__pa(areas), areas_size);
T
Tejun Heo 已提交
2513
	return rc;
2514
}
2515
#endif /* BUILD_EMBED_FIRST_CHUNK */
2516

2517
#ifdef BUILD_PAGE_FIRST_CHUNK
2518
/**
2519
 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2520 2521
 * @reserved_size: the size of reserved percpu area in bytes
 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
L
Lucas De Marchi 已提交
2522
 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2523 2524
 * @populate_pte_fn: function to populate pte
 *
2525 2526
 * This is a helper to ease setting up page-remapped first percpu
 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2527 2528 2529 2530 2531
 *
 * This is the basic allocator.  Static percpu area is allocated
 * page-by-page into vmalloc area.
 *
 * RETURNS:
T
Tejun Heo 已提交
2532
 * 0 on success, -errno on failure.
2533
 */
T
Tejun Heo 已提交
2534 2535 2536 2537
int __init pcpu_page_first_chunk(size_t reserved_size,
				 pcpu_fc_alloc_fn_t alloc_fn,
				 pcpu_fc_free_fn_t free_fn,
				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2538
{
2539
	static struct vm_struct vm;
2540
	struct pcpu_alloc_info *ai;
2541
	char psize_str[16];
T
Tejun Heo 已提交
2542
	int unit_pages;
2543
	size_t pages_size;
T
Tejun Heo 已提交
2544
	struct page **pages;
T
Tejun Heo 已提交
2545
	int unit, i, j, rc;
2546 2547
	int upa;
	int nr_g0_units;
2548

2549 2550
	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);

2551
	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2552 2553 2554
	if (IS_ERR(ai))
		return PTR_ERR(ai);
	BUG_ON(ai->nr_groups != 1);
2555 2556 2557 2558 2559 2560
	upa = ai->alloc_size/ai->unit_size;
	nr_g0_units = roundup(num_possible_cpus(), upa);
	if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) {
		pcpu_free_alloc_info(ai);
		return -EINVAL;
	}
2561 2562

	unit_pages = ai->unit_size >> PAGE_SHIFT;
2563 2564

	/* unaligned allocations can't be freed, round up to page size */
2565 2566
	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
			       sizeof(pages[0]));
2567
	pages = memblock_virt_alloc(pages_size, 0);
2568

2569
	/* allocate pages */
2570
	j = 0;
2571 2572
	for (unit = 0; unit < num_possible_cpus(); unit++) {
		unsigned int cpu = ai->groups[0].cpu_map[unit];
T
Tejun Heo 已提交
2573
		for (i = 0; i < unit_pages; i++) {
2574 2575
			void *ptr;

2576
			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2577
			if (!ptr) {
2578
				pr_warn("failed to allocate %s page for cpu%u\n",
2579
						psize_str, cpu);
2580 2581
				goto enomem;
			}
2582 2583
			/* kmemleak tracks the percpu allocations separately */
			kmemleak_free(ptr);
T
Tejun Heo 已提交
2584
			pages[j++] = virt_to_page(ptr);
2585
		}
2586
	}
2587

2588 2589
	/* allocate vm area, map the pages and copy static data */
	vm.flags = VM_ALLOC;
2590
	vm.size = num_possible_cpus() * ai->unit_size;
2591 2592
	vm_area_register_early(&vm, PAGE_SIZE);

2593
	for (unit = 0; unit < num_possible_cpus(); unit++) {
2594
		unsigned long unit_addr =
2595
			(unsigned long)vm.addr + unit * ai->unit_size;
2596

T
Tejun Heo 已提交
2597
		for (i = 0; i < unit_pages; i++)
2598 2599 2600
			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));

		/* pte already populated, the following shouldn't fail */
T
Tejun Heo 已提交
2601 2602 2603 2604
		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
				      unit_pages);
		if (rc < 0)
			panic("failed to map percpu area, err=%d\n", rc);
2605

2606 2607 2608 2609 2610 2611 2612 2613 2614
		/*
		 * FIXME: Archs with virtual cache should flush local
		 * cache for the linear mapping here - something
		 * equivalent to flush_cache_vmap() on the local cpu.
		 * flush_cache_vmap() can't be used as most supporting
		 * data structures are not set up yet.
		 */

		/* copy static data */
2615
		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2616 2617 2618
	}

	/* we're ready, commit */
2619
	pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
2620 2621
		unit_pages, psize_str, vm.addr, ai->static_size,
		ai->reserved_size, ai->dyn_size);
2622

T
Tejun Heo 已提交
2623
	rc = pcpu_setup_first_chunk(ai, vm.addr);
2624 2625 2626 2627
	goto out_free_ar;

enomem:
	while (--j >= 0)
T
Tejun Heo 已提交
2628
		free_fn(page_address(pages[j]), PAGE_SIZE);
T
Tejun Heo 已提交
2629
	rc = -ENOMEM;
2630
out_free_ar:
2631
	memblock_free_early(__pa(pages), pages_size);
2632
	pcpu_free_alloc_info(ai);
T
Tejun Heo 已提交
2633
	return rc;
2634
}
2635
#endif /* BUILD_PAGE_FIRST_CHUNK */
2636

2637
#ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
2638
/*
2639
 * Generic SMP percpu area setup.
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
 *
 * The embedding helper is used because its behavior closely resembles
 * the original non-dynamic generic percpu area setup.  This is
 * important because many archs have addressing restrictions and might
 * fail if the percpu area is located far away from the previous
 * location.  As an added bonus, in non-NUMA cases, embedding is
 * generally a good idea TLB-wise because percpu area can piggy back
 * on the physical linear memory mapping which uses large page
 * mappings on applicable archs.
 */
unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(__per_cpu_offset);

2653 2654 2655
static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
				       size_t align)
{
2656 2657
	return  memblock_virt_alloc_from_nopanic(
			size, align, __pa(MAX_DMA_ADDRESS));
2658
}
2659

2660 2661
static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
{
2662
	memblock_free_early(__pa(ptr), size);
2663 2664
}

2665 2666 2667 2668
void __init setup_per_cpu_areas(void)
{
	unsigned long delta;
	unsigned int cpu;
T
Tejun Heo 已提交
2669
	int rc;
2670 2671 2672 2673 2674

	/*
	 * Always reserve area for module percpu variables.  That's
	 * what the legacy allocator did.
	 */
T
Tejun Heo 已提交
2675
	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2676 2677
				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
T
Tejun Heo 已提交
2678
	if (rc < 0)
2679
		panic("Failed to initialize percpu areas.");
2680 2681 2682

	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
	for_each_possible_cpu(cpu)
T
Tejun Heo 已提交
2683
		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2684
}
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
#endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */

#else	/* CONFIG_SMP */

/*
 * UP percpu area setup.
 *
 * UP always uses km-based percpu allocator with identity mapping.
 * Static percpu variables are indistinguishable from the usual static
 * variables and don't require any special preparation.
 */
void __init setup_per_cpu_areas(void)
{
	const size_t unit_size =
		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
					 PERCPU_DYNAMIC_RESERVE));
	struct pcpu_alloc_info *ai;
	void *fc;

	ai = pcpu_alloc_alloc_info(1, 1);
2705 2706 2707
	fc = memblock_virt_alloc_from_nopanic(unit_size,
					      PAGE_SIZE,
					      __pa(MAX_DMA_ADDRESS));
2708 2709
	if (!ai || !fc)
		panic("Failed to allocate memory for percpu areas.");
2710 2711
	/* kmemleak tracks the percpu allocations separately */
	kmemleak_free(fc);
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724

	ai->dyn_size = unit_size;
	ai->unit_size = unit_size;
	ai->atom_size = unit_size;
	ai->alloc_size = unit_size;
	ai->groups[0].nr_units = 1;
	ai->groups[0].cpu_map[0] = 0;

	if (pcpu_setup_first_chunk(ai, fc) < 0)
		panic("Failed to initialize percpu areas.");
}

#endif	/* CONFIG_SMP */
2725

2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
/*
 * Percpu allocator is initialized early during boot when neither slab or
 * workqueue is available.  Plug async management until everything is up
 * and running.
 */
static int __init percpu_enable_async(void)
{
	pcpu_async_enabled = true;
	return 0;
}
subsys_initcall(percpu_enable_async);